1
|
Alhouei B, Eslamian G, Mohtadi M. A Systematic Review of the Effects of Probiotics and Synbiotics on Infection Incidence after Liver Transplant Surgery. Prev Nutr Food Sci 2025; 30:101-109. [PMID: 40352302 PMCID: PMC12061535 DOI: 10.3746/pnf.2025.30.2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 05/14/2025] Open
Abstract
Among organ transplant operations, liver transplantation (LTX) has one of the highest risks of postoperative infection. This study aimed to systematically review the current evidence on the use of probiotics and synbiotics in reducing the incidence of postoperative infections in liver transplant recipients. A systematic search was performed to identify studies that investigated the role of probiotics and synbiotics in reducing postoperative infection rates in liver transplant recipients. Eight studies that qualified were included in the review. The results showed that probiotics and synbiotics effectively reduced the overall infection rates in liver transplant patients compared with the placebo or control groups. This positive effect might be attributed to improved intestinal barrier function, gut microbiota restoration, and decreased inflammation. Furthermore, probiotic treatment was associated with shorter durations of antibiotic use and hospital stays. The use of probiotics and synbiotics after LTX holds promise in decreasing postoperative infections and providing substantial advantages for patients. Probiotics have been shown to boost the levels of beneficial bacterial, decrease inflammation, fortify the intestinal barrier, lessen oxidative stress, and improve the generation of anti-inflammatory short-chain fatty acids. However, more extensive research is needed to identify the most effective probiotic strains and evaluate their effectiveness in this specific patient demographic.
Collapse
Affiliation(s)
- Barbod Alhouei
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Mahshad Mohtadi
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| |
Collapse
|
2
|
Wu Y, Zhang X, Wang GQ, Jiao Y. Clinical significance of perioperative probiotic intervention on recovery following intestinal surgery. World J Gastrointest Surg 2025; 17:97503. [DOI: 10.4240/wjgs.v17.i2.97503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Restoring the balance of gut microbiota has emerged as a critical strategy in treating intestinal disorders, with probiotics playing a pivotal role in maintaining bacterial equilibrium. Surgical preparations, trauma, and digestive tract reconstruction associated with intestinal surgeries often disrupt the intestinal flora, prompting interest in the potential role of probiotics in postoperative recovery. Lan et al conducted a prospective randomized study on 60 patients with acute appendicitis, revealing that postoperative administration of Bacillus licheniformis capsules facilitated early resolution of inflammation and restoration of gastrointestinal motility, offering a novel therapeutic avenue for accelerated postoperative recovery. This editorial delves into the effects of perioperative probiotic supplementation on physical and intestinal recovery following surgery. Within the framework of enhanced recovery after surgery, the exploration of new probiotic supplementation strategies to mitigate surgical complications and reshape gut microbiota is particularly intriguing.
Collapse
Affiliation(s)
- Yang Wu
- Department of Nephrology, Jilin People’s Hospital, Jilin 132000, Jilin Province, China
| | - Xin Zhang
- Department of Nephrology, Jilin People’s Hospital, Jilin 132000, Jilin Province, China
| | - Guan-Qiao Wang
- Department of Abdominal Tumor Surgery, Jilin Cancer Hospital, Changchun 130000, Jilin Province, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
3
|
Mak KM, Shekhar AC. Soybean polyenylphosphatidylcholine (PPC) is beneficial in liver and extrahepatic tissue injury: An update in experimental research. Anat Rec (Hoboken) 2024; 307:2162-2186. [PMID: 37814787 DOI: 10.1002/ar.25333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Polyenylphosphatidylcholine (PPC) is a purified polyunsaturated phosphatidylcholine extract of soybeans. This article updates PPC's beneficial effects on various forms of liver cell injury and other tissues in experimental research. PPC downregulates hepatocyte CYP2E1 expression and associated hepatotoxicity, as well as attenuates oxidative stress, apoptosis, lipoprotein oxidation and steatosis in alcoholic and nonalcoholic liver injury. PPC inhibits pro-inflammatory cytokine production, while stimulating anti-inflammatory cytokine secretion in ethanol or lipopolysaccharide-stimulated Kupffer cells/macrophages. It promotes M2-type macrophage polarization and metabolic reprogramming of glucose and lipid metabolism. PPC mitigates steatosis in NAFLD through inhibiting polarization of pro-inflammatory M1-type Kupffer cells, alleviating metabolic inflammation, remodeling hepatic lipid metabolism, correcting imbalances between lipogenesis and lipolysis and enhancing lipoprotein secretion from hepatocytes. PPC is antifibrotic by preventing progression of alcoholic hepatic fibrosis in baboons and also prevents CCl4-induced fibrosis in rats. PPC supplementation replenishes the phosphatidylcholine content of damaged cell membranes, resulting in increased membrane fluidity and functioning. Phosphatidylcholine repletion prevents increased membrane curvature of the endoplasmic reticulum and Golgi and decreases sterol regulatory element binding protein-1-mediated lipogenesis, reducing steatosis. PPC remodels gut microbiota and affects hepatic lipid metabolism via the gut-hepatic-axis and also alleviates brain inflammatory responses and cognitive impairment via the gut-brain-axis. Additionally, PPC protects extrahepatic tissues from injury caused by various toxic compounds by reducing oxidative stress, inflammation, and membrane damage. It also stimulates liver regeneration, enhances sensitivity of cancer cells to radiotherapy/chemotherapy, and inhibits experimental hepatocarcinogenesis. PPC's beneficial effects justify it as a supportive treatment of liver disease.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Souza CE, Jacobson NE, An MA, Droit L, Vega AA, Rosales M, Mihindukulasuriya KA, Pastrana K, Handley SA, Parkes M, Rimmer J, Wang D, Dinsdale EA, A. Edwards R, Segall AM. Draft genomes of 12 Bifidobacterium isolates from human IBD fecal samples. Microbiol Resour Announc 2024; 13:e0013023. [PMID: 38099679 PMCID: PMC10793331 DOI: 10.1128/mra.00130-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/19/2023] [Indexed: 01/18/2024] Open
Abstract
Twelve Bifidobacterium strains were isolated from fecal samples of inflammatory bowel disease patients and matched "household control" individuals. These include the species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum.
Collapse
Affiliation(s)
- Cole E. Souza
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Nicole E. Jacobson
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Michelle A. An
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alejandro A. Vega
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Mariel Rosales
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Kathie A. Mihindukulasuriya
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Karina Pastrana
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Miles Parkes
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, Division of Gastroenterology, Addenbrooke's NHS Trust Hospital, Cambridge, United Kingdom
| | - Joanna Rimmer
- Department of Medicine, Division of Gastroenterology, Addenbrooke's NHS Trust Hospital, Cambridge, United Kingdom
- Academic Department of Military Medicine, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration (FAME), College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration (FAME), College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Anca M. Segall
- Department of Biology, Viral Information Institute, San Diego State University, San Diego, California, USA
| |
Collapse
|
5
|
Deng Y, Yang S, Zhang L, Chen C, Cheng X, Hou C. Chronic bee paralysis virus exploits host antimicrobial peptides and alters gut microbiota composition to facilitate viral infection. THE ISME JOURNAL 2024; 18:wrae051. [PMID: 38519112 PMCID: PMC11014883 DOI: 10.1093/ismejo/wrae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/15/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The significance of gut microbiota in regulating animal immune response to viral infection is increasingly recognized. However, how chronic bee paralysis virus (CBPV) exploits host immune to disturb microbiota for its proliferation remains elusive. Through histopathological examination, we discovered that the hindgut harbored the highest level of CBPV, and displayed visible signs of damages. The metagenomic analysis showed that a notable reduction in the levels of Snodgrassella alvi and Lactobacillus apis, and a significant increase in the abundance of the opportunistic pathogens such as Enterobacter hormaechei and Enterobacter cloacae following CBPV infection. Subsequent co-inoculation experiments showed that these opportunistic pathogens facilitated the CBPV proliferation, leading to accelerated mortality in bees and exacerbation of bloated abdomen symptoms after CBPV infection. The expression level of antimicrobial peptide (AMP) was found to be significantly up-regulated by over 1000 times in response to CBPV infection, as demonstrated by subsequent transcriptome and quantitative real-time PCR investigations. In particular, through correlation analysis and a bacteriostatic test revealed that the AMPs did not exhibit any inhibitory effect against the two opportunistic pathogens. However, they did demonstrate inhibitory activity against S. alvi and L. apis. Our findings provide different evidence that the virus infection may stimulate and utilize the host's AMPs to eradicate probiotic species and facilitate the proliferation of opportunistic bacteria. This process weakens the intestinal barrier and ultimately resulting in the typical bloated abdomen.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenxiao Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xuefen Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
6
|
Li J, Liu Y, Li Y, Sun T, Xiang H, He Z. The Role of Gut Microbiota and Circadian Rhythm Oscillation of Hepatic Ischemia-Reperfusion Injury in Diabetic Mice. Biomedicines 2023; 12:54. [PMID: 38255161 PMCID: PMC10813792 DOI: 10.3390/biomedicines12010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm oscillation and the gut microbiota play important roles in several physiological functions and pathology regulations. In this study, we aimed to elucidate the characteristics of diabetic hepatic ischemia-reperfusion injury (HIRI) and the role of the intestinal microbiota in diabetic mice with HIRI. Hepatic ischemia-reperfusion injury surgery was performed at ZT0 or ZT12. The liver pathological score and the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed to evaluate liver injury. We conducted an FMT experiment to examine the role of intestinal microbiota in diabetic mice with HIRI. The 16S rRNA gene sequencing of fecal samples was performed for microbial analysis. Our results showed that hyperglycemia aggravated HIRI in diabetic mice, but there was no diurnal variation seen in diabetic HIRI. We also demonstrated that there were significant alterations in the gut microbiota composition between the diabetic and control mice and that gut microbiota transplantation from diabetic mice had obvious harmful effects on HIRI. These findings provide some useful information for the future research of diabetic mice with HIRI.
Collapse
Affiliation(s)
| | | | | | | | - Hongbing Xiang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Y.L.); (Y.L.); (T.S.)
| | - Zhigang He
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.); (Y.L.); (Y.L.); (T.S.)
| |
Collapse
|
7
|
Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B, Bromberg JS. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 2023; 15:2291164. [PMID: 38055306 PMCID: PMC10730214 DOI: 10.1080/19490976.2023.2291164] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Bifidobacterium is a widely distributed commensal bacterial genus that displays beneficial pro-homeostatic and anti-inflammatory immunomodulatory properties. Depletion or absence of Bifidobacterium in humans and model organisms is associated with autoimmune responses and impaired immune homeostasis. At the cellular level, Bifidobacterium upregulates suppressive regulatory T cells, maintains intestinal barrier function, modulates dendritic cell and macrophage activity, and dampens intestinal Th2 and Th17 programs. While there has been a large volume of literature characterizing the probiotic properties of various Bifidobacterial species, the likely multifactorial mechanisms underlying these effects remain elusive, in particular, its immune tolerogenic effect. However, recent work has shed light on Bifidobacterium surface structural polysaccharide and protein elements, as well as its metabolic products, as commensal mediators of immune homeostasis. This review aims to discuss several mechanisms Bifidobacterium utilizes for immune modulation as well as their indirect impact on the regulation of gut microbiome structure and function, from structural molecules to produced metabolites. These mechanisms are pertinent to an increasingly networked understanding of immune tolerance and homeostasis in health and disease.
Collapse
Affiliation(s)
- Samuel J Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Bifidobacterium animalis A12 and Lactobacillus salivarius M18-6 Alleviate Alcohol Injury by keap1-Nrf2 Pathway and Thioredoxin System. Foods 2023; 12:foods12030439. [PMID: 36765968 PMCID: PMC9914461 DOI: 10.3390/foods12030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Excessive drinking can significantly damage people's health and well-being. Although some lactic acid bacterial strains have been previously shown to alleviate the symptoms of alcohol injury, the mechanism underlying these effects remains unclear. The aim of this study was to establish an alcohol injury model and examine the protective effect and mechanism of B. animalis A12 and L. salivarius M18-6. The results showed that A12 freeze-dried powder could maintain the survival rate of mice with alcohol injury at 100%. Compared with Alco group, L. salivarius M18-6 dead cell improved the survival rate of mice, attenuated liver steatosis, and significantly down-regulated serum Alanine transaminase (ALT) level; at the same time, it activated keap1-Nrf2 signaling pathway and up-regulated Superoxide dismutase (SOD), it protects mouse liver cells from oxidative stress induced by alcohol injury. In addition, B. animalis A12 can reduce the stress response to short-term alcohol intake and improve the ability of anti-oxidative stress by upregulating the level of isobutyric acid, reducing the level of keap1 protein in the liver of mice and upregulating the expression of thioredoxin genes (Txnrd1, Txnrd3, Txn1). Taken together, the results showed that B. animalis A12 and L. salivarius M18-6 alleviate alcohol injury in mice through keap1-Nrf2 signaling pathway and thioredoxin system.
Collapse
|
9
|
Fadl MG, Kamel Z. Cholesterol-lowering effects and safety assessment of Lactobacillus spp. in vivo and in vitro testing for human use as probiotic from the dairy product in Egypt. J Genet Eng Biotechnol 2022; 20:144. [PMID: 36255551 DOI: 10.1186/s43141-022-00423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/23/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The toxicity profile of lactobacilli may be strain dependent, so it should be considered for safe utilization of probiotics. Further, in vivo studies are necessary to evaluate their safety. RESULT The ability of various probiotic strains to hydrolyze bile salts has been confirmed without noticeable hemolytic activity. Results revealed the presence of α-glucosidase, β-glucosidase, α-galactosidase, and β-galactosidase activity in all investigated isolates, while none of the isolates produced the carcinogenic enzyme β-glucuronidase. The probiotic strains exhibited remarkable cholesterol-lowering impact. Also, we found no evidence of chronic toxicity under the experimental conditions based on gross pathological examination of the viscera and study of the spleen and liver weight ratios. These findings indicated that the investigated strains, either alone or combined with their metabolites, had no obvious adverse effect on the mice's general health status. CONCLUSION There is prove that the investigated probiotic strains are safe to be utilized for enhancing of the growth performance and are free of adverse side effects.
Collapse
Affiliation(s)
- Mostafa G Fadl
- Nuclear Materials Authority, P.O. Box 530, El Maadi, Cairo, Egypt.
| | - Zenat Kamel
- Faculty of Science, Microbiology & Botany Department, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Chen Q, Sun S, Mei C, Zhao J, Zhang H, Wang G, Chen W. Capabilities of bio-binding, antioxidant and intestinal environmental repair jointly determine the ability of lactic acid bacteria to mitigate perfluorooctane sulfonate toxicity. ENVIRONMENT INTERNATIONAL 2022; 166:107388. [PMID: 35809485 DOI: 10.1016/j.envint.2022.107388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a novel environmental contaminant that can be enriched in humans through the food chain, causing liver diseases, neurotoxicity and metabolic disorders. Lactic acid bacteria (LAB) are safe food-grade microorganisms that exhibit high antioxidant activity and bio-binding capacity towards toxins. Here, strains of LAB with different PFOS binding capacities and antioxidant activities were selected and analyzed for their ability in mitigating the toxic effects of PFOS. The results showed that the PFOS binding capacity and antioxidant activity of LAB largely influenced their ability in alleviating the toxic effects of PFOS. Notably, the individual LAB strains with low PFOS binding capacities and antioxidant activities also attenuated the toxic effects of PFOS, which was shown to up-regulate the contents of short-chain fatty acids (SCFAs) in the cecum and of tight junction proteins in the intestines of mice. Therefore, the mitigation pathway of PFOS-induced toxic damage by LAB is not limited to bio-binding and antioxidant. Repairing the gut environment damaged by PFOS is also essential for LAB to alleviate the toxic damage due to PFOS and may be partly independent of the bio-binding and antioxidant. Therefore, LAB as an alternative pathway for alleviating PFOS toxicity is suggested.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Shanshan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Chunxia Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
11
|
Kumari VBC, Huligere SS, Ramu R, Naik Bajpe S, Sreenivasa MY, Silina E, Stupin V, Achar RR. Evaluation of Probiotic and Antidiabetic Attributes of Lactobacillus Strains Isolated From Fermented Beetroot. Front Microbiol 2022; 13:911243. [PMID: 35774469 PMCID: PMC9237538 DOI: 10.3389/fmicb.2022.911243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fermented foods are sources of functionally salient microbes. These microbes when ingested can regulate biomolecule metabolism which has a plethora of health benefits. Lactic acid bacteria species (LABs) isolated from fermented beetroot were biochemically characterized and validated using 16s rRNA sequence. Also, an in vitro assay was conducted to confirm the probiotic activity of the isolates. The cell-free supernatant (CS), cell-free extract (CE), and intact cell (IC) were evaluated for α-glucosidase and α-amylase inhibition. The six isolates RAMULAB01–06 were categorized to be Lactobacillus spp. by observing phenotypic and biochemical characters. Molecular validation using 16S rDNA sequencing, followed by homology search in NCBI database, suggested that the isolates are >95% similar to L. paracasei and L. casei. Also, isolates exhibited probiotic potential with a high survival rate (>96%) in the gastrointestinal condition, and adherence capability (>53%), colonization (>86%), antibacterial, and antibiotic activity. The safety assessments expressed that the isolates are safe. The α-glucosidase and α-amylase inhibition by CS, CE, and IC ranged from 3.97 ± 1.42% to 53.91 ± 3.11% and 5.1 ± 0.08% to 57.15 ± 0.56%, respectively. Hence, these species have exceptional antidiabetic potential which could be explicated to its use as a functional food and health-related food products.
Collapse
Affiliation(s)
- V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Ramith Ramu ; orcid.org/0000-0003-2776-5815
| | - Shrisha Naik Bajpe
- Department of Biotechnology, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
12
|
Kumari V. B. C, Huligere SS, Shbeer AM, Ageel M, M. K. J, S. JC, Ramu R. Probiotic Potential Lacticaseibacillus casei and Limosilactobacillus fermentum Strains Isolated from Dosa Batter Inhibit α-Glucosidase and α-Amylase Enzymes. Microorganisms 2022; 10:1195. [PMID: 35744713 PMCID: PMC9228708 DOI: 10.3390/microorganisms10061195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Fermented food plays a major role in gastrointestinal health, as well as possesses other health benefits, such as beneficiary effects in the management of diabetes. Probiotics are thought to be viable sources for enhancing the microbiome of the human gut. In the present study, using biochemical, physiological, and molecular approaches, the isolated Lactobacillus spp. from dosa batter were identified. The cell-free supernatant (CS), cell-free extract (CE), and intact cells (IC) were evaluated for their inhibitory potential against the carbohydrate hydrolyzing enzymes α-glucosidase and α-amylase. Then, 16S rDNA amplification and sequencing were used to identify the species. A homology search in NCBI database was performed that suggests the isolates are >95% similar to Limosilactobacillus fermentum and Lacticaseibacillus casei. Different standard parameters were used to evaluate the probiotic potential of strains RAMULAB07, RAMULAB08, RAMULAB09, RAMULAB10, RAMULAB11, and RAMULAB12. The strains expressed a significant tolerance to the gastric and intestinal juices with a higher survival rate (>98%). A high adhesion capability was observed by the isolates exhibited through hydrophobicity (>65%), aggregation assays (>75%), and adherence assay on HT-29 cells (>82%) and buccal epithelial cells. In addition, the isolates expressed antibacterial and antibiotic properties. Safety assessments (DNase and hemolytic assay) revealed that the isolates could be classified as safe. α-glucosidase and α-amylase inhibition of the isolates for CS, CE, and IC ranged from 7.50% to 65.01% and 20.21% to 56.91%, respectively. The results suggest that these species have exceptional antidiabetic potential, which may be explained by their use as foods that can have health-enhancing effects beyond basic nutrition.
Collapse
Affiliation(s)
- Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (C.K.V.B.); (S.S.H.)
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (C.K.V.B.); (S.S.H.)
| | - Abdullah M. Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Mohammed Ageel
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia; (A.M.S.); (M.A.)
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Jagadeep Chandra S.
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India; (C.K.V.B.); (S.S.H.)
| |
Collapse
|
13
|
Xu J, Xu Y, Song Y. Efficacy of Probiotics Supplementation on the Prognosis of Patients After Liver Transplantation: a Systematic Review and Meta-analysis. Indian J Surg 2022. [DOI: 10.1007/s12262-022-03318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Lei J, Xie Y, Sheng J, Song J. Intestinal microbiota dysbiosis in acute kidney injury: novel insights into mechanisms and promising therapeutic strategies. Ren Fail 2022; 44:571-580. [PMID: 35350960 PMCID: PMC8967199 DOI: 10.1080/0886022x.2022.2056054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the clinical impact of intestinal microbiota–kidney interaction has been emerging. Experimental evidence highlighted a bidirectional evolutionary correlation between intestinal microbiota and kidney diseases. Nonetheless, acute kidney injury (AKI) is still a global public health concern associated with high morbidity, mortality, healthcare costs, and limited efficient therapy. Several studies on the intestinal microbiome have improved the knowledge and treatment of AKI. Therefore, the present review outlines the concept of the gut–kidney axis and data about intestinal microbiota dysbiosis in AKI to improve the understanding of the mechanisms of the intestinal microbiome on the modification of kidney function and response to kidney injury. We also introduced the future directions and research areas, emphasizing the intervention approaches and recent research advances of intestinal microbiota dysbiosis during AKI, thereby providing a new perspective for future clinical trials.
Collapse
Affiliation(s)
- Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yifan Xie
- Department of Rheumatism and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Binda C, Gibiino G, Coluccio C, Sbrancia M, Dajti E, Sinagra E, Capurso G, Sambri V, Cucchetti A, Ercolani G, Fabbri C. Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms 2022; 10:312. [PMID: 35208765 PMCID: PMC8877314 DOI: 10.3390/microorganisms10020312] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recent evidence regarding microbiota is modifying the cornerstones on pathogenesis and the approaches to several gastrointestinal diseases, including biliary diseases. The burden of biliary diseases, indeed, is progressively increasing, considering that gallstone disease affects up to 20% of the European population. At the same time, neoplasms of the biliary system have an increasing incidence and poor prognosis. Framing the specific state of biliary eubiosis or dysbiosis is made difficult by the use of heterogeneous techniques and the sometimes unwarranted invasive sampling in healthy subjects. The influence of the microbial balance on the health status of the biliary tract could also account for some of the complications surrounding the post-liver-transplant phase. The aim of this extensive narrative review is to summarize the current evidence on this topic, to highlight gaps in the available evidence in order to guide further clinical research in these settings, and, eventually, to provide new tools to treat biliary lithiasis, biliopancreatic cancers, and even cholestatic disease.
Collapse
Affiliation(s)
- Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Elton Dajti
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
| | - Emanuele Sinagra
- Endoscopy Unit, Fondazione Istituto San Raffaele-G. Giglio, 90015 Cefalù, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy
| | - Gabriele Capurso
- Division of Pancreato-Biliary Endoscopy and EUS, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milano, Italy;
| | - Vittorio Sambri
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy;
- Unit of Microbiology, Department of Pathological Anatomy, Trasfusion Medicine and Laboratory Medicine, University of Bologna, 40125 Bologna, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Ausl Romagna, 47121 Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Ausl Romagna, 47121 Forlì, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Although gut dysbiosis can hasten disease progression in end-stage liver disease and contribute to disease severity, morbidity and mortality, its impact during and after transplant needs further study. RECENT FINDINGS Changes in the microbiome are associated with hepatic decompensation. Immune homeostasis is further disrupted during transplant and with immunosuppressants required after transplant. There is increasing evidence of the role of microbiota in peri and posttransplant complications. SUMMARY Although transplant is highly successful with acceptable survival rates, infections, rejection, disease recurrence and death remain important complications. Prognostication and interventions involving the gut microbiome could be beneficial.
Collapse
Affiliation(s)
- Nikki Duong
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | | |
Collapse
|
17
|
Xu S, Zhao M, Wang Q, Xu Z, Pan B, Xue Y, Dai Z, Wang S, Xue Z, Wang F, Xu C. Effectiveness of Probiotics and Prebiotics Against Acute Liver Injury: A Meta-Analysis. Front Med (Lausanne) 2021; 8:739337. [PMID: 34621765 PMCID: PMC8490661 DOI: 10.3389/fmed.2021.739337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Acute liver injury (ALI) is a clinical syndrome characterized by rapid loss of liver function, which may progress to life-threatening liver failure. We conducted this meta-analysis to examine the evidence on the effects of probiotics or prebiotics on ALI. Methods and Results: Several databases, including PubMed, EMBASE, and Cochrane Library, were scrutinized from the inception through February 2021 by combining key search terms, yielding 26 eligible studies, which concluded that modulation of gut microbiota significantly decreased aspartate transaminase [standardized mean difference (SMD): −1.51, 95% confidence interval (CI): −2.03 to −1.00], alanine aminotransferase (SMD: −1.42, 95% CI: −1.85 to −0.98), and bilirubin (SMD: −0.91, 95% CI: −1.33 to −0.49). In addition, administration of probiotics or prebiotics also promoted proliferation of Bifidobacterium (SMD: 1.21, 95% CI: −0.18 to 2.60) and inhibited Enterococcus (SMD: −1.00, 95% CI: −1.39 to −0.61), contributing to lower levels of endotoxin (SMD: −2.14, 95% CI: −2.91 to −1.37). Tight junction protein ZO-1 (SMD: 1.95, 95% CI: 0.14 to 3.76) was upregulated after intervention, thereby reducing bacterial translocation to the liver [odds ratio (OR) = 0.23, 95% CI: 0.13–0.44] and mesenteric lymph node (OR = 0.14, 95% CI: 0.08 to 0.26), with decreased tumor necrosis factor-α (SMD: −2.84, 95% CI: −3.76 to −1.93) and interleukin-6 (SMD: −2.62, 95% CI: −4.14 to −1.10). Oxidative stress was also relieved by reducing malondialdehyde (SMD: −1.83, 95% CI: −2.55 to −1.10) while elevating superoxide dismutase (SMD: 1.78, 95% CI: 1.00–2.55) and glutathione (SMD: 1.83, 95% CI: 0.76–2.91). Conclusion: Our findings suggest that probiotics and prebiotics could be a promising therapeutic strategy in ALI and possess a potential for clinical applications. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=255888, CRD42021255888.
Collapse
Affiliation(s)
- Sheng Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Zhao
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinjian Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhihua Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binhui Pan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yilang Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zebin Dai
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sisi Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Zhanxiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
19
|
Modulation of the immune response and metabolism in germ-free rats colonized by the probiotic Lactobacillus salivarius LI01. Appl Microbiol Biotechnol 2021; 105:1629-1645. [PMID: 33507355 DOI: 10.1007/s00253-021-11099-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/06/2023]
Abstract
The gut microbiota plays an important role in multifaceted physiological functions in the host. Previous studies have assessed the probiotic effects of Lactobacillus salivarius LI01. In this study, we aimed to investigate the potential effects and putative mechanism of L. salivarius LI01 in immune modulation and metabolic regulation through the monocolonization of germ-free (GF) Sprague-Dawley (SD) rats with L. salivarius LI01. The GF rats were separated into two groups and administered a gavage of L. salivarius LI01 or an equal amount of phosphate-buffered saline. The levels of serum biomarkers, such as interleukin (IL)-1α, IL-5, and IL-10, were restored by L. salivarius LI01, which indicated the activation of Th0 cell differentiation toward immune homeostasis. L. salivarius LI01 also stimulated the immune response and metabolic process by altering transcriptional expression in the ileum and liver. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of the 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which indicated that L. salivarius LI01 exerts an effect on energy accumulation. The LI01 group showed alterations in fecal carbohydrates accompanied by an increased body weight gain. In addition, L. salivarius LI01 produced indole-3-lactic acid (ILA) and enhanced arginine metabolism by rebalancing the interconversion between arginine and proline. These findings provide evidence showing that L. salivarius LI01 can directly impact the host by modulating immunity and metabolism. KEY POINTS : • Lactobacillus salivarius LI01 conventionalizes the cytokine profile and activates the immune response. • LI01 modulates carbohydrate metabolism and arginine transaction. • LI01 generates tryptophan-derived indole-3-lactic acid. • The cytochrome P450 family contributes to the response to altered metabolites.
Collapse
|
20
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
21
|
Grąt M, Grąt K, Krawczyk M, Lewandowski Z, Krasnodębski M, Masior Ł, Patkowski W, Zieniewicz K. Post-hoc analysis of a randomized controlled trial on the impact of pre-transplant use of probiotics on outcomes after liver transplantation. Sci Rep 2020; 10:19944. [PMID: 33204004 PMCID: PMC7672052 DOI: 10.1038/s41598-020-76994-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 11/04/2020] [Indexed: 01/14/2023] Open
Abstract
Perioperative use of probiotics serves as efficient prophylaxis against postoperative infections after liver transplantation, yet data on long-term effects of pre-transplant probiotic intake is lacking. The aim of this study was to assess the effects of pre-transplant probiotic administration on long-term results of liver transplantation. This was secondary analysis of a randomized trial. Patients were randomized to receive either 4-strain probiotic or placebo before liver transplantation. Five year graft survival was set as the primary end-point. Secondary end-points comprised serum bilirubin and C-reactive protein (CRP) concentration, international normalized ratio (INR), serum transaminases and gamma-glutamyl transferase (GGT) activity. Study group comprised 44 patients, of whom 21 received probiotics and 23 received placebo with 5-year graft survival of 81.0% and 87.0%, respectively (p = 0.591). Patients in the probiotic arm exhibited lower INR (p = 0.001) and CRP (p = 0.030) over the first 6 post-transplant months. In the absence of hepatitis B or C virus infection, pre-transplant administration of probiotics also reduced aspartate transaminase activity (p = 0.032). In the intervention arm, patients receiving probiotics for under and over 30 days had 5-year graft survival rates of 100% and 66.7%, respectively (p = 0.061). Duration of probiotic intake > 30 days was additionally associated with increased INR (p = 0.031), GGT (p = 0.032) and a tendency towards increased bilirubin (p = 0.074) over first 6 post-transplant months. Pre-transplant administration of probiotics has mild positive influence on 6-month allograft function, yet should not exceed 30 days due to potential negative effects on long-term outcomes. (ClinicalTrials.gov Identifier: NCT01735591).
Collapse
Affiliation(s)
- M Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - K Grąt
- Second Department of Clinical Radiology, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland.
| | - M Krawczyk
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Z Lewandowski
- Department of Epidemiology and Biostatistics, Medical University of Warsaw, Warsaw, Poland
| | - M Krasnodębski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Ł Masior
- Second Department of General, Vascular and Oncological Surgery, Medical University of Warsaw, Warsaw, Poland
| | - W Patkowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - K Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Tang C, Cao D, Wang L. The association between SNPs and hepatitis B virus related acute-on-chronic liver failure. INFECTION GENETICS AND EVOLUTION 2020; 86:104615. [PMID: 33152536 DOI: 10.1016/j.meegid.2020.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study intended to investigate the association between ten single nucleotide polymorphisms (rs1143623, rs12692386, rs1799983, rs2297518, rs2910164, rs3129859, rs4251961, rs4846085, rs641738, rs873457) with susceptibility and prognosis of hepatitis B related acute-on-chronic liver failure (HBV-ACLF). METHODS This is a hospital-based case-control study included 274 patients with HBV-ACLF and 534 patients with chronic hepatitis B. The patients who were successfully followed were divided into the survival group and the death group according to the clinical outcome during the hospitalization and 90 days after discharge. The ten SNPs were genotyped in all subjects by using imLDR. Genotype, allele frequency, dominant model, recessive model and codominant model were constructed to investigate the association between single nucleotide polymorphisms with susceptibility and prognosis of HBV-ACLF. RESULTS The genotype distribution of rs1143623 was statistically different between the two groups (P = 0.04), but the allele frequency was not statistically significant (P = 0.44). GC and GG + CG genotypes at rs1143623 reduced the risk of HBV-ACLF. There were only two GG and GT genotypes in rs1799983 in our study, and the genotype and allele frequency were statistically different between the death group and the survival group (P = 0.027, P = 0.023). Patients with T allele may reduce the risk of death in patients with HBV-ACLF. The genotype and allele frequency of rs2297518 showed no significant difference. In dominant models, patients with GA + AA genotypes at rs2297518 had a reduced risk of death.
Collapse
Affiliation(s)
- Congchen Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lichun Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Lou JM, Ren ZG, Li A, Rao BC, Yu ZJ. Fecal microbiota transplantation has therapeutic effects on chronic hepatits B patients via altering composition of gut microbiota. Hepatobiliary Pancreat Dis Int 2020; 19:486-487. [PMID: 31974041 DOI: 10.1016/j.hbpd.2019.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Jia-Min Lou
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, China; Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, China; Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ang Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, China; Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ben-Chen Rao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, China; Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zu-Jiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, China; Gene Hospital of Henan Province, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
24
|
Yang X, Lu D, Zhuo J, Lin Z, Yang M, Xu X. The Gut-liver Axis in Immune Remodeling: New insight into Liver Diseases. Int J Biol Sci 2020; 16:2357-2366. [PMID: 32760203 PMCID: PMC7378637 DOI: 10.7150/ijbs.46405] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota consists of a dynamic multispecies community of bacteria, fungi, archaea, and protozoans, playing a fundamental role in the induction, training, and function of the host immune system. The liver is anatomically and physiologically linked to the gut microbiota via enterohepatic circulation, specifically receiving intestine-derived blood through the portal vein. The gut microbiota is crucial for maintaining immune homeostasis of the gut-liver axis. A shift in gut microbiota composition can result in activation of the mucosal immune response causing homeostasis imbalance. This imbalance results in translocation of bacteria and migration of immune cells to the liver, which is related to inflammation-mediated liver injury and tumor progression. In this review, we outline the role of the gut microbiota in modulating host immunity and summarize novel findings and recent advances in immune-based therapeutics associated with the gut-liver axis. Moving forward, a deep understanding of the microbiome-immune-liver axis will provide insight into the basic mechanisms of gut microbiota dysbiosis affecting liver diseases.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| |
Collapse
|
25
|
Co-Culture with Bifidobacterium catenulatum Improves the Growth, Gut Colonization, and Butyrate Production of Faecalibacterium prausnitzii: In Vitro and In Vivo Studies. Microorganisms 2020; 8:microorganisms8050788. [PMID: 32466189 PMCID: PMC7285360 DOI: 10.3390/microorganisms8050788] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Faecalibacterium prausnitzii is a major commensal bacterium in the human gut. It produces short-chain fatty acids that promote intestinal health. However, the bacterium is extremely oxygen-sensitive, making it difficult to develop as a probiotic. To facilitate practical application of F. prausnitzii, we investigated factors that affect its growth and mammalian gut colonization. We evaluated cross-feeding interactions between F. prausnitzii and seven Bifidobacterium strains, and the anti-inflammatory properties of bacterial metabolites produced in co-culture, in vitro and in vivo. Co-culture of F. prausnitzii and Bifidobacterium catenulatum, with fructooligosaccharides as an energy source, resulted in the greatest viable cell-count and butyrate production increases. Further, the co-culture supernatant reduced the amount of proinflammatory cytokines produced by HT-29 cells and RAW 264.7 macrophages, an effect that was similar to that of butyrate. Furthermore, feeding mice both Faecalibacterium and Bifidobacterium enhanced F. prausnitzii gut colonization. Finally, feeding the co-culture supernatant decreased interleukin 8 levels in the colon and increased butyrate levels in the cecum in the dextran sodium sulfate-induced colitis mouse model. These observations indicate that the Faecalibacterium-Bifidobacterium co-culture exerts an anti-inflammatory effect by promoting F. prausnitzii survival and short-chain fatty acid production, with possible implications for the treatment of inflammatory bowel disease.
Collapse
|
26
|
Oral Phosphatidylcholine Improves Intestinal Barrier Function in Drug-Induced Liver Injury in Rats. Gastroenterol Res Pract 2019; 2019:8723460. [PMID: 31565053 PMCID: PMC6745161 DOI: 10.1155/2019/8723460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 01/13/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022] Open
Abstract
Objective Phosphatidylcholine (PC) is the major surface-active phospholipid and creates a hydrophobic nature to the surface. It has been reported to reverse the progression of liver fibrosis and to improve liver function. The aim of the present study was to evaluate the effects of orally administered PC on intestinal barrier function (IBF) in rats with drug-induced liver injury. Method Rats with carbon tetrachloride- (CCl4-) induced liver injury were treated with 100 mg/kg PC once daily for 21 days. The effects of PC therapy on (i) liver function and portal pressure, (ii) intestinal and hepatic histology, and (iii) plasma endotoxin, diamine oxidase (DAO), and tumour necrosis factor- (TNF-) α levels were investigated. Results PC therapy reduced portal pressure and improved the liver function in CCl4-induced liver injury. In PC-treated liver injury rats, collagen fibres were gradually decreased, while the disordered arrangement of hepatocytes and disorganized hepatic lobules were partially repaired, and inflammatory cell infiltration was decreased in the fibrous tissue. Lower inflammatory cell infiltration in the ileum improved intestinal histology, and reduced serum DAO levels were observed in PC-treated cirrhotic rats. These changes were associated with reduced inflammatory activity, as indicated by decreased serum TNF-α levels and plasma endotoxin levels. Conclusions These results suggest that PC therapy is hepatoprotective and is able to restore IBF and reduce endotoxaemia in rats with drug-induced liver injury.
Collapse
|
27
|
Functional Microbiomics in Liver Transplantation: Identifying Novel Targets for Improving Allograft Outcomes. Transplantation 2019; 103:668-678. [PMID: 30507741 DOI: 10.1097/tp.0000000000002568] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut dysbiosis, defined as a maladaptive gut microbial imbalance, has been demonstrated in patients with end-stage liver disease, defined as a contributor to disease progression, and associated clinically with severity of disease and liver-related morbidity and mortality. Despite this well-recognized phenomena in patients with end-stage liver disease, the impact of gut dysbiosis and its rate of recovery following liver transplantation (LT) remains incompletely understood. The mechanisms by which alterations in the gut microbiota impact allograft metabolism and immunity, both directly and indirectly, are multifactorial and reflect the complexity of the gut-liver axis. Importantly, while research has largely focused on quantitative and qualitative changes in gut microbial composition, changes in microbial functionality (in the presence or absence of compositional changes) are of critical importance. Therefore, to translate functional microbiomics into clinical practice, one must understand not only the compositional but also the functional changes associated with gut dysbiosis and its resolution post-LT. In this review, we will summarize critical advances in functional microbiomics in LT recipients as they apply to immune-mediated allograft injury, posttransplant complications, and disease recurrence, while highlighting potential areas for microbial-based therapeutics in LT recipients.
Collapse
|
28
|
Serum Zonulin in HBV-Associated Chronic Hepatitis, Liver Cirrhosis, and Hepatocellular Carcinoma. DISEASE MARKERS 2019; 2019:5945721. [PMID: 31485278 PMCID: PMC6710742 DOI: 10.1155/2019/5945721] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
Background The gut microbiota is involved in the occurrence and development of chronic liver diseases. Zonulin is considered a marker of intestinal permeability. The purpose of this study was to assess zonulin levels in patients with chronic hepatitis B (CHB), HBV-associated liver cirrhosis (LC), and HBV-associated hepatocellular carcinoma (HCC). Materials and Methods The study population consisted of 90 HBV-associated HCC patients, 90 HBV-associated LC patients, 90 CHB patients, and 90 healthy subjects. Serum levels of zonulin and AFP were determined. The diagnostic accuracy of each marker was evaluated using receiver operating characteristic (ROC) curve analysis (AUC). Results Serum zonulin levels were significantly higher in patients with HCC than in patients with LC or CHB or healthy subjects (p < 0.001). Moreover, the zonulin levels were increased in the advanced stage of LC and HCC. ROC curve analysis revealed that serum zonulin could be used to differentiate CHB from cirrhosis. In addition, the combination of zonulin and AFP exhibited a significantly larger AUC compared with zonulin or AFP alone. Conclusions Serum zonulin levels were significantly increased both in LC and in HCC and correlated with the advanced stage of LC and HCC. Moreover, the combination of zonulin and AFP confers significant benefit to diagnostic accuracy in differentiating LC from HCC.
Collapse
|
29
|
Jia J, Tian X, Jiang J, Ren Z, Lu H, He N, Xie H, Zhou L, Zheng S. Structural shifts in the intestinal microbiota of rats treated with cyclosporine A after orthotropic liver transplantation. Front Med 2019; 13:451-460. [PMID: 31020543 DOI: 10.1007/s11684-018-0675-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 10/27/2018] [Indexed: 02/07/2023]
Abstract
Understanding the effect of immunosuppressive agents on intestinal microbiota is important to reduce the mortality and morbidity from orthotopic liver transplantation (OLT). We investigated the relationship between the commonly used immunosuppressive agent cyclosporine A (CSA) and the intestinal microbial variation in an OLT model. The rat samples were divided as follows: (1) N group (normal control); (2) I group (isograft LT, Brown Norway [BN] rat to BN); (3) R group (allograft LT, Lewis to BN rat); and (4) CSA group (R group treated with CSA). The intestinal microbiota was assayed by denaturing gradient gel electrophoresis profiles and by using real-time polymerase chain reaction. The liver histopathology and the alanine/aspartate aminotransferase ratio after LT were both ameliorated by CSA. In the CSA group, the numbers of rDNA gene copies of Clostridium cluster I, Clostridium cluster XIV, and Enterobacteriaceae decreased, whereas those of Faecalibacterium prausnitzii increased compared with the R group. Cluster analysis indicated that the samples from the N, I, and CSA groups were clustered, whereas the other clusters contained the samples from the R group. Hence, CSA ameliorates hepatic graft injury and partially restores gut microbiota following LT, and these may benefit hepatic graft rejection.
Collapse
Affiliation(s)
- Junjun Jia
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianwen Jiang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhigang Ren
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Haifeng Lu
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ning He
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Haiyang Xie
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
30
|
The Effect of Peroral Administration of Lactobacillus Fermentum Culture on Dairy Cows Health Indices. MACEDONIAN VETERINARY REVIEW 2018. [DOI: 10.2478/macvetrev-2018-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The culture of Lactobacillus fermentum was isolated from the biogas substrate. The aim was to evaluate the efficiency of perorally applied L. fermentum additive to prevent metabolic diseases in the early lactation period of dairy cows. The experiment was performed in the early lactation group of a herd with 240 cows. The control and experimental group each consisted of 10 clinically healthy cows with normal concentration of β-hydroxybutyrate and glucose. On day 1–5 (D1–D5), the experimental cows received orally 150 ml of L. fermentum product of 8.1x105 CFU/ml. On D1, D2, D5 and D20, the rumen fluid samples were collected from all animals in both groups with an oral-ruminal probe once per day for detection of pH and concentration of volatile fatty acids, on D1, D5 and D20 – blood samples for biochemical analyses. The data were analyzed using Microsoft Excel. Results: Significant changes were observed in the concentration of the liver enzymes AST and GGT. On D1, in the experimental animals AST concentration 100.5±14.0 IU/L was higher than in control cows – 51.4±5.7 IU/L (p<0.05). On D20, AST was reduced significantly only in experimental cows. On D1, GGT concentration 31.5±6.91 IU/L was higher (p<0.05) in experimental animals than in control cows – 13.6±1.53 IU/L, but on D5, GGT concentration in experimental animals was reduced to 18.4±6.41 IU/L (p<0.05), and remained until D20. Conclusion: L. fermentum culture administered orally for five days improved the blood liver enzymes in cows, and the effect lasted for two weeks.
Collapse
|
31
|
The Immunologic Role of Gut Microbiota in Patients with Chronic HBV Infection. J Immunol Res 2018; 2018:2361963. [PMID: 30148173 PMCID: PMC6083645 DOI: 10.1155/2018/2361963] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B can cause acute or chronic liver damage due to hepatitis B virus (HBV) infection. Cirrhosis or hepatocellular carcinoma (HCC) caused by chronic HBV infection often leads to increased mortality. However, the gut and liver have the same embryonic origin; therefore, a close relationship must exist in terms of anatomy and function, and the gut microbiota plays an important role in host metabolic and immune modulation. It is believed that structural changes in the gut microbiota, bacterial translocation, and the resulting immune injury may affect the occurrence and development of liver inflammation caused by chronic HBV infection based on the in-depth cognition of the concept of the “gut-liver axis” and the progress in intestinal microecology. This review aims to summarize and discuss the immunologic role of the gut microbiota in chronic HBV infection.
Collapse
|
32
|
Efficacy and Safety of Probiotics and Synbiotics in Liver Transplantation. Pharmacotherapy 2018; 38:758-768. [DOI: 10.1002/phar.2130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Vinusha KS, Deepika K, Johnson TS, Agrawal GK, Rakwal R. Proteomic studies on lactic acid bacteria: A review. Biochem Biophys Rep 2018; 14:140-148. [PMID: 29872746 PMCID: PMC5986552 DOI: 10.1016/j.bbrep.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023] Open
Abstract
Probiotics are amongst the most common microbes in the gastro-intestinal tract of humans and other animals. Prominent among probiotics are Lactobacillus and Bifidobacterium. They offer wide-ranging health promoting benefits to the host which include reduction in pathological alterations, stimulation of mucosal immunity and interaction with mediators of inflammation among others. Proteomics plays a vital role in understanding biological functions of a cell. Proteomics is also slowly and steadily adding to the existing knowledge on role of probiotics. In this paper, the proteomics of probiotics, with special reference to lactic acid bacteria is reviewed with a view to understand i) proteome map, ii) mechanism of adaptation to harsh gut environment such as low pH and bile acid, iii) role of cell surface proteins in adhering to intestinal epithelial cells, and iv) as a tool to answer basic cell functions. We have also reviewed various analytical methods used to carry out proteome analysis, in which 2D-MS and LC-MS/MS approaches were found to be versatile methods to perform high-throughput sample analyses even for a complex gut samples. Further, we present future road map of understanding gut microbes combining meta-proteomics, meta-genomics, meta-transcriptomics and -metabolomics.
Collapse
Affiliation(s)
- K Sri Vinusha
- Department of Biotechnology, K. L. E. F. deemed University, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India
| | - K Deepika
- Department of Biotechnology, K. L. E. F. deemed University, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India
| | - T Sudhakar Johnson
- Department of Biotechnology, K. L. E. F. deemed University, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India
| | - Ganesh K Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.,GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal.,GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal.,Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan.,Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| |
Collapse
|
34
|
de Faria Ghetti F, Oliveira DG, de Oliveira JM, de Castro Ferreira LEVV, Cesar DE, Moreira APB. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr 2018; 57:861-876. [PMID: 28875318 DOI: 10.1007/s00394-017-1524-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nonalcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and ballooning degeneration of hepatocytes, with or without fibrosis. The prevalence of NASH has increased with the obesity epidemic, but its etiology is multifactorial. The current studies suggest the role of gut microbiota in the development and progression of NASH. The aim is to review the studies that investigate the relationship between gut microbiota and NASH. These review also discusses the pathophysiological mechanisms and the influence of diet on the gut-liver axis. RESULT The available literature has proposed mechanisms for an association between gut microbiota and NASH, such as: modification energy homeostasis, lipopolysaccharides (LPS)-endotoxemia, increased endogenous production of ethanol, and alteration in the metabolism of bile acid and choline. There is evidence to suggest that NASH patients have a higher prevalence of bacterial overgrowth in the small intestine and changes in the composition of the gut microbiota. However, there is still a controversy regarding the microbiome profile in this population. The abundance of Bacteroidetes phylum may be increased, decreased, or unaltered in NASH patients. There is an increase in the Escherichia and Bacteroides genus. There is depletion of certain taxa, such as Prevotella and Faecalibacterium. CONCLUSION Although few studies have evaluated the composition of the gut microbiota in patients with NASH, it is observed that these individuals have a distinct gut microbiota, compared to the control groups, which explains, at least in part, the genesis and progression of the disease through multiple mechanisms. Modulation of the gut microbiota through diet control offers new challenges for future studies.
Collapse
Affiliation(s)
- Fabiana de Faria Ghetti
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
- Unidade de Nutrição Clínica, Hospital Universitário, Rua Catulo Breviglieri, s/n, Bairro Santa Catarina, Juiz de Fora, Minas Gerais, CEP 36036-330, Brazil.
| | - Daiane Gonçalves Oliveira
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Juliano Machado de Oliveira
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
35
|
Gut microbial balance and liver transplantation: alteration, management, and prediction. Front Med 2017; 12:123-129. [PMID: 29230676 DOI: 10.1007/s11684-017-0563-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
Liver transplantation is a conventional treatment for terminal stage liver diseases. However, several complications still hinder the survival rate. Intestinal barrier destruction is widely observed among patients receiving liver transplant and suffering from ischemia-reperfusion or rejection injuries because of the relationship between the intestine and the liver, both in anatomy and function. Importantly, the resulting alteration of gut microbiota aggravates graft dysfunctions during the process. This article reviews the research progress for gut microbial alterations and liver transplantation. Especially, this work also evaluates research on the management of gut microbial alteration and the prediction of possible injuries utilizing microbial alteration during liver transplantation. In addition, we propose possible directions for research on gut microbial alteration during liver transplantation and offer a hypothesis on the utilization of microbial alteration in liver transplantation. The aim is not only to predict perioperative injuries but also to function as a method of treatment or even inhibit the rejection of liver transplantation.
Collapse
|
36
|
Trikha R, Rishi P, Tewari R. Remediation of intramacrophageal Shigella dysenteriae type 1 by probiotic lactobacilli isolated from human infants' stool samples. Indian J Med Res 2017; 145:679-686. [PMID: 28948960 PMCID: PMC5644304 DOI: 10.4103/ijmr.ijmr_1212_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background & objectives: Shigella dysenteriae is one of the most virulent pathogens causing bacillary dysentery and is responsible for high mortality in infants. To reduce the load of antibiotic therapy for treating shigellosis, this study was carried out to assess the ex vivo effect of novel probiotic lactobacilli, isolated from infant's stool samples, on killing S. dysenteriae type 1 residing in the rat macrophages. Methods: Stool samples from infants were collected, processed for the isolation of lactobacilli and screened for the probiotic attributes (acid tolerance, bile tolerance, ability to adhere intestinal cells and anti-S. dysenteriae activity). The effect of cell-free supernatant of lactobacilli on Shigella- infected macrophages in terms of phagocytic ability, extent of lipid peroxidation, nitrite, superoxide dismutase and glutathione levels was evaluated. Results: Based on the probiotic attributes, three lactobacilli were isolated from the stool samples of infants. Using classical and molecular tools, these isolates were identified as Lactobacillus pentosus, L. Paraplantarum and L. rhamnosus. All the three lactobacilli had the ability to kill intramacrophage S. dysentriae type 1. The anti-Shigella activity of the probiotic lactobacilli was attributed to increased antioxidative ability and decreased free radical production by the infected macrophages. Interpretation & conclusions: Probiotic cocktail of L. pentosus, L. paraplantarum and L. rhamnosus showed ex vivo killing of S. dysenteriae residing inside the rat macrophages significantly. This cocktail has the potential to be used as a natural alternative for treating S. dysenteriae infection, especially in infants, however, further studies need to be done to confirm these finding in vivo.
Collapse
Affiliation(s)
- Radhika Trikha
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Rupinder Tewari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
37
|
Fang D, Shi D, Lv L, Gu S, Wu W, Chen Y, Guo J, Li A, Hu X, Guo F, Ye J, Li Y, Li L. Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10 attenuate D-galactosamine-induced liver injury by modifying the gut microbiota. Sci Rep 2017; 7:8770. [PMID: 28821814 PMCID: PMC5562910 DOI: 10.1038/s41598-017-09395-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is altered in liver diseases, and several probiotics have been shown to reduce the degree of liver damage. We hypothesized that oral administration of specific Bifidobacterium strains isolated from healthy guts could attenuate liver injury. Five strains were tested in this study. Acute liver injury was induced by D-galactosamine after pretreating Sprague-Dawley rats with the Bifidobacterium strains, and liver function, liver and ileum histology, plasma cytokines, bacterial translocation and the gut microbiome were assessed. Two strains, Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10, conferred liver protection, as well as alleviated the increase in plasma M-CSF, MIP-1α and MCP-1 and bacterial translocation. They also ameliorated ileal mucosal injury and gut flora dysbiosis, especially the enrichment of the opportunistic pathogen Parasutterella and the depletion of the SCFA-producing bacteria Anaerostipes, Coprococcus and Clostridium XI. Negative correlations were found between MIP-1α / MCP-1 and Odoribacter (LI09 group) and MIP-1α / M-CSF and Flavonifractor (LI10 group). Our results indicate that the liver protection effects might be mediated through gut microbiota modification, which thus affect the host immune profile. The desirable characteristics of these two strains may enable them to serve as potential probiotics for the prevention or adjuvant treatment of liver injury.
Collapse
Affiliation(s)
- Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Xinjun Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Feifei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Lanjian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
38
|
Shi D, Lv L, Fang D, Wu W, Hu C, Xu L, Chen Y, Guo J, Hu X, Li A, Guo F, Ye J, Li Y, Andayani D, Li L. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 prevents CCl 4-induced liver cirrhosis by protecting the intestinal barrier in rats. Sci Rep 2017; 7:6927. [PMID: 28761060 PMCID: PMC5537250 DOI: 10.1038/s41598-017-07091-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023] Open
Abstract
Alterations in the gut microbiome have been reported in liver cirrhosis, and probiotic interventions are considered a potential treatment strategy. This study aimed to evaluate the effects and mechanisms of Lactobacillus salivarius LI01, Pediococcus pentosaceus LI05, Lactobacillus rhamnosus GG, Clostridium butyricum MIYAIRI and Bacillus licheniformis Zhengchangsheng on CCl4-induced cirrhotic rats. Only administration of LI01 or LI05 prevented liver fibrosis and down-regulated the hepatic expression of profibrogenic genes. Serum endotoxins, bacterial translocations (BTs), and destruction of intestinal mucosal ultrastructure were reduced in rats treated with LI01 or LI05, indicating maintenance of the gut barrier as a mechanism; this was further confirmed by the reduction of not only hepatic inflammatory cytokines, such as TNF-α, IL-6, and IL-17A, but also hepatic TLR2, TLR4, TLR5 and TLR9. Metagenomic sequencing of 16S rRNA gene showed an increase in potential beneficial bacteria, such as Elusimicrobium and Prevotella, and a decrease in pathogenic bacteria, such as Escherichia. These alterations in gut microbiome were correlated with profibrogenic genes, gut barrier markers and inflammatory cytokines. In conclusion, L. salivarius LI01 and P. pentosaceus LI05 attenuated liver fibrosis by protecting the intestinal barrier and promoting microbiome health. These results suggest novel strategies for the prevention of liver cirrhosis.
Collapse
Affiliation(s)
- Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Lichen Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xinjun Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Feifei Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Dewi Andayani
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| |
Collapse
|
39
|
Asemi Z, Aarabi MH, Hajijafari M, Alizadeh SA, Razzaghi R, Mazoochi M, Esmaillzadeh A. Effects of Synbiotic Food Consumption on Serum Minerals, Liver Enzymes, and Blood Pressure in Patients with Type 2 Diabetes: A Double-blind Randomized Cross-over Controlled Clinical Trial. Int J Prev Med 2017; 8:43. [PMID: 28656099 PMCID: PMC5474907 DOI: 10.4103/ijpvm.ijpvm_257_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This research was to examine the effects of synbiotic intake on minerals, liver enzymes, and blood pressure in patients with type 2 diabetes (T2D). METHODS This randomized, cross-over clinical trial was performed among 62 diabetic patients. Persons were randomly assigned to intake either a synbiotic (n = 62) or a control food (n = 62) for 6 weeks. A 3-week washout period was applied following which persons were crossed over to the alternate intervention arm for an additional 6 weeks. The synbiotic was consisted of Lactobacillus sporogenes (1 × 107 CFU), 0.04 g inulin (HPX) as prebiotic. Persons were asked to consume the synbiotic and control foods 27 g a day. Blood pressure was measured, and blood samples were taken at baseline and after 6-week intervention to assess calcium, magnesium, iron, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and total bilirubin. RESULTS The consumption of a synbiotic food, compared to the control food, resulted in a significant rise of calcium (0.66 vs. -0.14 mg/dL, P = 0.03) and iron (5.06 vs. -9.98 mg/dL, P = 0.03). The decrease of total bilirubin (0.08 vs. -0.04 mg/dL; P = 0.009) was also seen in the synbiotic group compared with the control group. CONCLUSIONS Overall, synbiotic in T2D patients had beneficial effects on calcium, iron, and total bilirubin concentrations.
Collapse
Affiliation(s)
- Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Aarabi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hajijafari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Reza Razzaghi
- Department of Infectious Disease, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Mazoochi
- Department of Cardiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Esmaillzadeh
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
40
|
Riella LV, Bagley J, Iacomini J, Alegre ML. Impact of environmental factors on alloimmunity and transplant fate. J Clin Invest 2017; 127:2482-2491. [PMID: 28481225 DOI: 10.1172/jci90596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although gene-environment interactions have been investigated for many years to understand people's susceptibility to autoimmune diseases or cancer, a role for environmental factors in modulating alloimmune responses and transplant outcomes is only now beginning to emerge. New data suggest that diet, hyperlipidemia, pollutants, commensal microbes, and pathogenic infections can all affect T cell activation, differentiation, and the kinetics of graft rejection. These observations reveal opportunities for novel therapeutic interventions to improve graft outcomes as well as for noninvasive biomarker discovery to predict or diagnose graft deterioration before it becomes irreversible. In this Review, we will focus on the impact of these environmental factors on immune function and, when known, on alloimmune function, as well as on transplant fate.
Collapse
Affiliation(s)
- Leonardo V Riella
- Schuster Family Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jessamyn Bagley
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | - John Iacomini
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Boston, Massachusetts, USA
| | | |
Collapse
|
41
|
Li YT, Yu CB, Yan D, Huang JR, Li LJ. Effects of Salmonella infection on hepatic damage following acute liver injury in rats. Hepatobiliary Pancreat Dis Int 2016; 15:399-405. [PMID: 27498580 DOI: 10.1016/s1499-3872(16)60113-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute liver injury is a common clinical disorder associated with intestinal barrier injury and disturbance of intestinal microbiota. Probiotic supplementation has been reported to reduce liver injury; however, it is unclear whether enteropathogen infection exacerbates liver injury. The purpose of this study was to address this unanswered question using a rat model. METHODS Oral supplementation with Salmonella enterica serovar enteritidis (S. enteritidis) was given to rats for 7 days. Different degrees of acute liver injury were then induced by intraperitoneal injection of D-galactosamine. The presence and extent of liver injury was assayed by measuring the concentrations of serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin. Histology was used to observe liver tissue damage. Additionally, we measured the changes in plasma endotoxin, serum cytokines and bacterial translocation to clarify the mechanisms underlying intestinal microbiota associated liver injury. RESULTS The levels of liver damage and endotoxin were significantly increased in the Salmonella infected rats with severe liver injury compared with the no infection rats with severe liver injury (P<0.01); The peyer's patch CD3+ T cell counts were increased significantly when the Salmonella infection with severe injury group was compared with the normal group (P<0.05). S. enteritidis pretreatment enhanced intestinal barrier impairment and bacterial translocation. CONCLUSIONS Oral S. enteritidis administration exacerbates acute liver injury, especially when injury was severe. Major factors of the exacerbation include inflammatory and oxidative stress injuries induced by the translocated bacteria and associated endotoxins, as well as over-activation of the immune system in the intestine and liver.
Collapse
Affiliation(s)
- Yong-Tao Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | |
Collapse
|
42
|
Doycheva I, Leise MD, Watt KD. The Intestinal Microbiome and the Liver Transplant Recipient: What We Know and What We Need to Know. Transplantation 2016; 100:61-8. [PMID: 26647107 DOI: 10.1097/tp.0000000000001008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestinal microbiome and immune system are in close symbiotic relationship in health. Gut microbiota plays a role in many chronic liver diseases and cirrhosis. However, alterations in the gut microbiome after liver transplantation and the implications for liver transplant recipients are not well understood and rely mainly on experimental animal studies. Recent advances in molecular techniques have identified that increased intestinal permeability, decreased beneficial bacteria, and increased pathogenic species may play important roles in the early posttransplant period. The associations between microbiota perturbation and postliver transplant infections and acute rejection are evolving. The link with metabolic syndrome, obesity, and cardiac disease in the general population require translation into the transplant recipient. This review focuses on our current knowledge of the known and potential interaction of the microbiome in the liver transplant recipient. Future human studies focused on microbiota changes in liver transplant patients are warranted and expected.
Collapse
Affiliation(s)
- Iliana Doycheva
- 1 Division of Gastroenterology and Hepatology, Medical University, Sofia, Bulgaria. 2 Division of Gastroenterology and Hepatology, Mayo Clinic Transplant Center, Rochester, MN
| | | | | |
Collapse
|
43
|
Effect of Overgrowth or Decrease in Gut Microbiota on Health and Disease. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2016. [DOI: 10.5812/pedinfect.34558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Lactobacillus rhamnosus CCFM1107 treatment ameliorates alcohol-induced liver injury in a mouse model of chronic alcohol feeding. J Microbiol 2015; 53:856-63. [DOI: 10.1007/s12275-015-5239-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
|
45
|
Xie Y, Chen H, Zhu B, Qin N, Chen Y, Li Z, Deng M, Jiang H, Xu X, Yang J, Ruan B, Li L. Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation. MICROBIAL ECOLOGY 2014; 68:871-880. [PMID: 25004996 DOI: 10.1007/s00248-014-0452-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/19/2014] [Indexed: 02/08/2023]
Abstract
The previous studies all focus on the effect of probiotics and antibiotics on infection after liver transplantation. Here, we focus on the effect of gut microbiota alteration caused by probiotics and antibiotics on hepatic damage after allograft liver transplantation. Brown-Norway rats received saline, probiotics, or antibiotics via daily gavage for 3 weeks. Orthotopic liver transplantation (OLT) was carried out after 1 week of gavage. Alteration of the intestinal microbiota, liver function and histopathology, serum and liver cytokines, and T cells in peripheral blood and Peyer's patch were evaluated. Distinct segregation of fecal bacterial diversity was observed in the probiotic group and antibiotic group when compared with the allograft group. As for diversity of intestinal mucosal microbiota and pathology of intestine at 2 weeks after OLT, antibiotics and probiotics had a significant effect on ileum and colon. The population of Lactobacillus and Bifidobacterium in the probiotic group was significantly greater than the antibiotic group and the allograft group. The liver injury was significantly reduced in the antibiotic group and the probiotic group compared with the allograft group. The CD4/CD8 and Treg cells in Peyer's patch were decreased in the antibiotic group. The intestinal Treg cell and serum and liver TGF-β were increased markedly while CD4/CD8 ratio was significantly decreased in the probiotic group. It suggested that probiotics mediate their beneficial effects through increase of Treg cells and TGF-β and deduction of CD4/CD8 in rats with acute rejection (AR) after OLT.
Collapse
Affiliation(s)
- Yirui Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ren Z, Jiang J, Lu H, Chen X, He Y, Zhang H, Xie H, Wang W, Zheng S, Zhou L. Intestinal microbial variation may predict early acute rejection after liver transplantation in rats. Transplantation 2014; 98:844-852. [PMID: 25321166 PMCID: PMC4206351 DOI: 10.1097/tp.0000000000000334] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute rejection (AR) remains a life-threatening complication after orthotopic liver transplantation (OLT) and there are few available diagnostic biomarkers clinically for AR. This study aims to identify intestinal microbial profile and explore potential application of microbial profile as a biomarker for AR after OLT. METHODS The OLT models in rats were established. Hepatic graft histology, ultrastructure, function, and intestinal barrier function were tested. Ileocecal contents were collected for intestinal microbial analysis. RESULTS Hepatic graft suffered from the ischemia-reperfusion (I/R) injury on day 1, initial AR on day 3, and severe AR on day 7 after OLT. Real-time quantitative polymerase chain reaction results showed that genus Faecalibacterium prausnitzii and Lactobacillus were decreased, whereas Clostridium bolteae was increased during AR. Notably, cluster analysis of denaturing gradient gel electrophoresis (DGGE) profiles showed the 7AR and 3AR groups clustered together with 73.4% similarity, suggesting that intestinal microbiota was more sensitive than hepatic function in responding to AR. Microbial diversity and species richness were decreased during AR. Phylogenetic tree analysis showed that most of the decreased key bacteria belonged to phylum Firmicutes, whereas increased key bacteria belonged to phylum Bacteroidetes. Moreover, intestinal microvilli loss and tight junction damage were noted, and intestinal barrier dysfunction during AR presented a decrease of fecal secretory immunoglobulin A (sIgA) and increase of blood bacteremia, endotoxin, and tumor necrosis factor-α. CONCLUSION We dynamically detail intestinal microbial characterization and find a high sensitivity of microbial change during AR after OLT, suggesting that intestinal microbial variation may predict AR in early phase and become an assistant therapeutic target to improve rejection after OLT.
Collapse
Affiliation(s)
- Zhigang Ren
- 1 Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. 2 Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. 3 State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. 4 Correspondence to: Lin Zhou, M.D., Ph.D., First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, China. 5 Correspondence to: Shusen Zheng, M.D., Ph.D., First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
De Minicis S, Rychlicki C, Agostinelli L, Saccomanno S, Candelaresi C, Trozzi L, Mingarelli E, Facinelli B, Magi G, Palmieri C, Marzioni M, Benedetti A, Svegliati-Baroni G. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology 2014; 59:1738-49. [PMID: 23959503 DOI: 10.1002/hep.26695] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 08/03/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD) may lead to hepatic fibrosis. Dietary habits affect gut microbiota composition, whereas endotoxins produced by Gram-negative bacteria stimulate hepatic fibrogenesis. However, the mechanisms of action and the potential effect of microbiota in the liver are still unknown. Thus, we sought to analyze whether microbiota may interfere with liver fibrogenesis. Mice fed control (CTRL) or high-fat diet (HFD) were subjected to either bile duct ligation (BDL) or CCl4 treatment. Previously gut-sterilized mice were subjected to microbiota transplantation by oral gavage of cecum content obtained from donor CTRL- or HFD-treated mice. Fibrosis, intestinal permeability, bacterial translocation, and serum endotoxemia were measured. Inflammasome components were evaluated in gut and liver. Microbiota composition (dysbiosis) was evaluated by Pyrosequencing. Fibrosis degree was increased in HFD+BDL versus CTRL+BDL mice, whereas no differences were observed between CTRL+CCl4 and HFD+CCl4 mice. Culture of mesenteric lymph nodes showed higher density of infection in HFD+BDL mice versus CTRL+BDL mice, suggesting higher bacterial translocation rate. Pyrosequencing revealed an increase in percentage of Gram-negative versus Gram-postive bacteria, a reduced ratio between Bacteroidetes and Firmicutes, as well as a dramatic increase of Gram-negative Proteobacteria in HFD+BDL versus CTRL+BDL mice. Inflammasome expression was increased in liver of fibrotic mice, but significantly reduced in gut. Furthermore, microbiota transplantation revealed more liver damage in chimeric mice fed CTRL diet, but receiving the microbiota of HFD-treated mice; liver damage was further enhanced by transplantation of selected Gram-negative bacteria obtained from cecum content of HFD+BDL-treated mice. CONCLUSIONS Dietary habits, by increasing the percentage of intestinal Gram-negative endotoxin producers, may accelerate liver fibrogenesis, introducing dysbiosis as a cofactor contributing to chronic liver injury in NAFLD.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Asemi Z, Bahmani S, Shakeri H, Jamal A, Faraji AM. Effect of multispecies probiotic supplements on serum minerals, liver enzymes and blood pressure in patients with type 2 diabetes. Int J Diabetes Dev Ctries 2014. [DOI: 10.1007/s13410-013-0187-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Salim SY, Young PY, Lukowski CM, Madsen KL, Sis B, Churchill TA, Khadaroo RG. VSL#3 probiotics provide protection against acute intestinal ischaemia/reperfusion injury. Benef Microbes 2013; 4:357-365. [PMID: 24240573 DOI: 10.3920/bm2013.0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acute intestinal ischaemia/reperfusion injury (AII/R) is an adaptive physiologic response during critical illness, involving mesenteric vasoconstriction and hypoperfusion. Prevention of AII/R in high risk patient populations would have a significant impact on morbidity and mortality. The purpose of this study was to investigate the protective effects of VSL#3 probiotic treatment in a murine model of AII/R. Adult 129/SvEv mice were subjected to an experimental AII/R model using superior mesenteric artery occlusion. Animals were pre-treated with either three days or two weeks of VSL#3 probiotics. Local tissue injury markers were assessed by levels of myeloperoxidase and activation of nuclear factor kappa B (NFкB). Systemic and local cytokines, including interleukin (IL)-1β, IL- 10, TNFα, and interferon gamma were measured by ELISA and multiplex fluorescent detection. VSL#3 probiotics reduced local tissue inflammation and injury due to AII/R. A two-week course of VSL#3 was more effective than a shorter three-day course. The reduction in local inflammation from the two-week course of VSL#3 is correlated to a significant reduction in levels of active IL-1β, and tissue levels of myeloperoxidase. Levels of active NFкB were significantly elevated in the vehicle-fed AII/R mice, corroborating with tissue inflammation, which were attenuated by VSL#3 administrations. VSL#3 did not cause any systemic inflammation or lung injury. VSL#3 probiotics are effective in reducing local tissue injury from AII/R by down-regulating pro-inflammatory mediators and immune cell recruitment. This study highlights a potential role for VSL#3 in management of patients at high risk for AII/R.
Collapse
Affiliation(s)
- S Y Salim
- Department of Surgery, University of Alberta, 2D WMC, 8440-112 St NW, Edmonton, AB T6G 2B7, Canada
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - P Y Young
- Department of Surgery, University of Alberta, 2D WMC, 8440-112 St NW, Edmonton, AB T6G 2B7, Canada
| | - C M Lukowski
- Department of Surgery, University of Alberta, 2D WMC, 8440-112 St NW, Edmonton, AB T6G 2B7, Canada
| | - K L Madsen
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - B Sis
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - T A Churchill
- Department of Surgery, University of Alberta, 2D WMC, 8440-112 St NW, Edmonton, AB T6G 2B7, Canada
| | - R G Khadaroo
- Department of Surgery, University of Alberta, 2D WMC, 8440-112 St NW, Edmonton, AB T6G 2B7, Canada
- Division of Critical Care Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada
| |
Collapse
|
50
|
Ren Z, Cui G, Lu H, Chen X, Jiang J, Liu H, He Y, Ding S, Hu Z, Wang W, Zheng S. Liver ischemic preconditioning (IPC) improves intestinal microbiota following liver transplantation in rats through 16s rDNA-based analysis of microbial structure shift. PLoS One 2013; 8:e75950. [PMID: 24098410 PMCID: PMC3788797 DOI: 10.1371/journal.pone.0075950] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 08/16/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury is associated with intestinal microbial dysbiosis. The "gut-liver axis" closely links gut function and liver function in health and disease. Ischemic preconditioning (IPC) has been proven to reduce I/R injury in the surgery. This study aims to explore the effect of IPC on intestinal microbiota and to analyze characteristics of microbial structure shift following liver transplantation (LT). METHODS The LT animal models of liver and gut IPC were established. Hepatic graft function was assessed by histology and serum ALT/AST. Intestinal barrier function was evaluated by mucosal ultrastructure, serum endotoxin, bacterial translocation, fecal sIgA content and serum TNF-α. Intestinal bacterial populations were determined by quantitative PCR. Microbial composition was characterized by DGGE and specific bacterial species were determined by sequence analysis. PRINCIPAL FINDINGS Liver IPC improved hepatic graft function expressed as ameliorated graft structure and reduced ALT/AST levels. After administration of liver IPC, intestinal mucosal ultrastructure improved, serum endotoxin and bacterial translocation mildly decreased, fecal sIgA content increased, and serum TNF-α decreased. Moreover, liver IPC promoted microbial restorations mainly through restoring Bifidobacterium spp., Clostridium clusters XI and Clostridium cluster XIVab on bacterial genus level. DGGE profiles indicated that liver IPC increased microbial diversity and species richness, and cluster analysis demonstrated that microbial structures were similar and clustered together between the NC group and Liver-IPC group. Furthermore, the phylogenetic tree of band sequences showed key bacteria corresponding to 10 key band classes of microbial structure shift induced by liver IPC, most of which were assigned to Bacteroidetes phylum. CONCLUSION Liver IPC cannot only improve hepatic graft function and intestinal barrier function, but also promote restorations of intestinal microbiota following LT, which may further benefit hepatic graft by positive feedback of the "gut-liver axis".
Collapse
Affiliation(s)
- Zhigang Ren
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangying Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhua Chen
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianwen Jiang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong He
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Songming Ding
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenhua Hu
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|