1
|
Zheng W, Tang S, Ren X, Song S, Ai C. Fucoidan alleviated colitis aggravated by fiber deficiency through protecting the gut barrier, suppressing the MAPK/NF-κB pathway, and modulating gut microbiota and metabolites. Front Nutr 2025; 11:1462584. [PMID: 39925971 PMCID: PMC11802440 DOI: 10.3389/fnut.2024.1462584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/26/2024] [Indexed: 02/11/2025] Open
Abstract
Insufficient dietary fiber intake has become a global public health issue, affecting the development and management of various diseases, including intestinal diseases and obesity. This study showed that dietary fiber deficiency enhanced the susceptibility of mice to colitis, which could be attributed to the disruption of the gut barrier integrity, activation of the NF-κB pathway, and oxidative stress. Undaria pinnatifida fucoidan (UPF) alleviated colitis symptoms in mice that fed with a fiber deficient diet (FD), characterized by increased weight gain and reduced disease activity index, liver and spleen indexes, and histological score. The protective effect of UPF against FD-exacerbated colitis can be attributed to the alleviation of oxidative stress, the preservation of the gut barrier integrity, and inhibition of the MAPK/NF-κB pathway. UPF ameliorated the gut microbiota composition, leading to increased microbiota richness, as well as increased levels of Muribaculaceae, Lactobacillaceae, and Bifidobacterium and reduced levels of Proteobacteria, Bacteroidetes, and Bacteroides. Metabolomics analysis revealed that UPF improved the profile of microbiota metabolites, with increased levels of carnitine and taurine and decreased levels of tyrosine and deoxycholic acid. This study suggests that UPF has the potential to be developed as a novel prebiotic agent to enhance human health.
Collapse
Affiliation(s)
- Weiyun Zheng
- School of Agronomy and Life Science, Shanxi Datong University, Datong, China
| | - Shuangru Tang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiaomeng Ren
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| | - Shuang Song
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| | - Chunqing Ai
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Li M, Zhuo X, Liu Y, You J, Lin J. PPARγ activation attenuates neonatal CRD-induced visceral pain sensitization and anxiety in male rats by alleviating oxidative stress. BMC Gastroenterol 2025; 25:22. [PMID: 39833676 PMCID: PMC11749074 DOI: 10.1186/s12876-025-03618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Visceral pain sensitization and emotional reactions due to irritable bowel syndrome (IBS) occur frequently in the general population. Oxidative stress plays a crucial role in the pathogenesis of IBS. Previous studies have demonstrated that activation of peroxisome proliferator-activated receptor gamma (PPARγ) has analgesic effects. Therefore, we aimed to determine whether PPARγ activation ameliorates oxidative stress and affects thus nociceptive sensitization and emotional responses in IBS. METHODS The study utilized male Sprague-Dawley (SD) rats, that suffered from neonatal colorectal distension (CRD), to assess the effects of various doses of rosiglitazone on visceral hyperalgesia and anxiety. Electromyography (EMG) of the external abdominal oblique muscles was used to evaluate visceral hypersensitivity, and Open Field Test (OFT) and Elevated Plus Maze (EPM) were used to evaluate anxiety. Superoxide dismutase (SOD) and malondialdehyde (MDA) in the spinal cord were analyzed by water-soluble tetrazolium-1 (WST-1) and thiobarbituric acid (TBA) methods, respectively, the expression levels of PPARγ in the spinal cord were assessed by qRT-PCR and Western blotting. RESULTS Neonatal CRD-induced rats showed visceral pain sensitization and anxiety in adulthood, with down-regulated expression of PPARγ and SOD and elevated MDA levels in the spinal cord. Rosiglitazone alleviated visceral hypersensitivity and anxiety by activating PPARγ protein expression and promoting MDA up-regulation and SOD down-regulation in the spinal cord, which were reversed by GW9662, an antagonist of PPARγ. CONCLUSION This study demonstrated that rosiglitazone alleviated visceral pain sensitization and anxiety in male IBS rats by alleviating oxidative stress through activation of PPARγ.
Collapse
Affiliation(s)
- Minjie Li
- Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University, No. 20, Cha Zhong Road, Fuzhou, Fujian Province, People's Republic of China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiyu Zhuo
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, China
| | - Yongxiao Liu
- Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University, No. 20, Cha Zhong Road, Fuzhou, Fujian Province, People's Republic of China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinchao You
- Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University, No. 20, Cha Zhong Road, Fuzhou, Fujian Province, People's Republic of China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianqing Lin
- Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University, No. 20, Cha Zhong Road, Fuzhou, Fujian Province, People's Republic of China.
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Jin J, Jung M, Sonn SK, Seo S, Suh J, Kweon HY, Moon SH, Jo H, Yoon NH, Oh GT. Peroxiredoxin 3 Deficiency Exacerbates DSS-Induced Acute Colitis via Exosomal miR-1260b-Mediated Barrier Disruption and Proinflammatory Signaling. Antioxid Redox Signal 2025; 42:133-149. [PMID: 38970422 DOI: 10.1089/ars.2023.0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Aims: Peroxiredoxin3 (Prdx3) is an intracellular antioxidant enzyme that is specifically localized in mitochondria and protects against oxidative stress by removing mitochondrial reactive oxygen species (ROS). The intestinal epithelium provides a physical and biochemical barrier that segregates host tissues from commensal bacteria to maintain intestinal homeostasis. An imbalance between the cellular antioxidant defense system and oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the role of Prdx3 in the intestinal epithelium under intestinal inflammation has not been elucidated. To investigate the potential role of Prdx3 in intestinal inflammation, we used intestinal epithelial cell (IEC)-specific Prdx3-knockout mice. Results: IEC-specific Prdx3-deficient mice showed more severe colitis phenotypes with greater degrees of body weight loss, colon shortening, barrier disruption, mitochondrial damage, and ROS generation in IECs. Furthermore, exosomal miR-1260b was dramatically increased in Prdx3-knockdown colonic epithelial cells. Mechanistically, Prdx3 deficiency promoted intestinal barrier disruption and inflammation via P38-mitogen-activated protein kinase/NFκB signaling. Innovation: This is the first study to report the protective role of Prdx3 in acute colitis using IEC-specific conditional knockout mice. Conclusion: Our study sheds light on the role of exosome-loaded miRNAs, particularly miR-1260b, in IBD. Targeting miR-1260b or modulating exosome-mediated intercellular communication may hold promise as potential therapeutic strategies for managing IBD and restoring intestinal barrier integrity. Antioxid. Redox Signal. 42, 133-149.
Collapse
Affiliation(s)
- Jing Jin
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Moajury Jung
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Seong-Keun Sonn
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | | | - Joowon Suh
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Hyae Yon Kweon
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Shin Hye Moon
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Huiju Jo
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Na Hyeon Yoon
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
| | - Goo Taeg Oh
- Department of Life Science, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, Republic of Korea
- Imvastech Inc., Seoul, Republic of Korea
| |
Collapse
|
4
|
Xie Y, Zheng L, Chen W, Zeng Y, Yao K, Zhou T. Potential Signal Pathways and Therapeutic Effects of Mesenchymal Stem Cell on Oxidative Stress in Diseases. Curr Pharm Des 2025; 31:83-94. [PMID: 39257144 DOI: 10.2174/0113816128308454240823074555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/25/2024] [Indexed: 09/12/2024]
Abstract
Oxidative stress is a biological stress response produced by the destruction of redox equilibrium in aerobic metabolism in organisms, which is closely related to the occurrence of many diseases. Mesenchymal stem cells (MSCs) have been found to improve oxidative stress injury in a variety of diseases, including lung injury, liver diseases, atherosclerotic diseases, diabetes and its complications, ischemia-reperfusion injury, inflammatory bowel disease. The antioxidant stress capacity of MSCs may be a breakthrough in the treatment of these diseases. This review found that MSCs have the ability to resist oxidative stress, which may be achieved through MSCs involvement in mediating the Nrf2, MAPK, NF-κB, AMPK, PI3K/AKT and Wnt4/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Yina Xie
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Lingqian Zheng
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wenmin Chen
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yang Zeng
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kaijin Yao
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
5
|
Boldyreva LV, Evtushenko AA, Lvova MN, Morozova KN, Kiseleva EV. Underneath the Gut-Brain Axis in IBD-Evidence of the Non-Obvious. Int J Mol Sci 2024; 25:12125. [PMID: 39596193 PMCID: PMC11594934 DOI: 10.3390/ijms252212125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The gut-brain axis (GBA) plays a pivotal role in human health and wellness by orchestrating complex bidirectional regulation and influencing numerous critical processes within the body. Over the past decade, research has increasingly focused on the GBA in the context of inflammatory bowel disease (IBD). Beyond its well-documented effects on the GBA-enteric nervous system and vagus nerve dysregulation, and gut microbiota misbalance-IBD also leads to impairments in the metabolic and cellular functions: metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton dysregulation. These systemic effects are currently underexplored in relation to the GBA; however, they are crucial for the nervous system cells' functioning. This review summarizes the studies on the particular mechanisms of metabolic dysregulation, mitochondrial dysfunction, cationic transport, and cytoskeleton impairments in IBD. Understanding the involvement of these processes in the GBA may help find new therapeutic targets and develop systemic approaches to improve the quality of life in IBD patients.
Collapse
Affiliation(s)
- Lidiya V. Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Anna A. Evtushenko
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
| | - Maria N. Lvova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Ksenia N. Morozova
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| | - Elena V. Kiseleva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.N.L.); (K.N.M.); (E.V.K.)
| |
Collapse
|
6
|
Varzandeh R, Khezri MR, Esmaeilzadeh Z, Jafari A, Ghasemnejad-Berenji M. Protective effects of topiramate on acetic acid-induced colitis in rats through the inhibition of oxidative stress. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1141-1149. [PMID: 37632553 DOI: 10.1007/s00210-023-02677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Ulcerative colitis is an intestinal inflammatory condition characterized by a rise in inflammatory mediator production and oxidative stress. Topiramate is an anticonvulsant agent with effectiveness on a wide range of seizures, which is anti-oxidative. This study aims to examine the protective effects of topiramate on acetic acid-induced ulcerative colitis in rats. Rats were randomly divided into four groups as follows: control, acetic acid, acetic acid + topiramate, and acetic acid + dexamethasone groups. Topiramate (100 mg/kg/day) or dexamethasone (2 mg/kg/day) was administered for six consecutive days, and ulcerative colitis was induced on the first day of the study by transrectal administration of 4% acetic acid. Four hours after the last dose of treatments, animals of each group were sacrificed, and colon tissues were removed for further macroscopic, histopathologic, and biochemical analyses. Treatment with topiramate markedly decreased colonic lesions and macroscopic scores as well as the improvement of histopathologic changes. Topiramate also effectively decreased the levels of malondialdehyde and upregulated the activity of anti-oxidative enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Our results reveal that the administration of topiramate ameliorates acetic acid-induced colitis in rats via anti-oxidative properties, and further studies may introduce it as an effective therapeutic candidate to decrease ulcerative colitis severity.
Collapse
Affiliation(s)
- Reza Varzandeh
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Research Institute On Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Liu JY, Tsai FL, Chuang YL, Ye JC. Aqueous extracts of Ocimum gratissimum mitigate colitis and protect against AOM/DSS-induced colorectal cancer in mice. Carcinogenesis 2023; 44:837-846. [PMID: 37864831 DOI: 10.1093/carcin/bgad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
In this study, we explored the in vivo effects of Ocimum gratissimum aqueous extracts (OGE) on colorectal cancer (CRC) development provoked by azoxymethane/dextran sodium sulfate (AOM/DSS). The results showed a significant reduction in the tumor load and tumor number for the OGEH group that received continued administration of OGE compared to the AOM/DSS group, with P values of <0.01, but this was not observed in the OGEHs group that received separated administration of OGE. All groups except the control group exhibited aberrant crypt foci (ACF) and adenocarcinoma of lesion pathology in colon, and both conditions were significantly reduced in the OGEH group (P < 0.01) as compared to the AOM/DSS group. Subsequent investigation into whether OGE exhibits eliminative effects on DSS-induced severe colitis (SC) in mice showed that the disease activity index score was significantly reduced in the OGE-treated groups (P < 0.01), also colon colitis histological score was reversed. These data suggest that OGE may be potentially effective in preventing CRC when administered throughout the promotional stages of carcinogenesis by inhibiting inflammatory SC.
Collapse
Affiliation(s)
- Jer-Yuh Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Fang-Ling Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ya-Ling Chuang
- Animal Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Je-Chiuan Ye
- Department of Bachelor's Degree Program for Indigenous Peoples in Senior Health and Care Management, National Taitung University, Taitung, Taiwan
- Master Program in Biomedical Science, National Taitung University, Taitung, Taiwan
| |
Collapse
|
8
|
Sánchez-Quintero MJ, Rodríguez-Díaz C, Rodríguez-González FJ, Fernández-Castañer A, García-Fuentes E, López-Gómez C. Role of Mitochondria in Inflammatory Bowel Diseases: A Systematic Review. Int J Mol Sci 2023; 24:17124. [PMID: 38069446 PMCID: PMC10707203 DOI: 10.3390/ijms242317124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are key cellular organelles whose main function is maintaining cell bioenergetics by producing ATP through oxidative phosphorylation. However, mitochondria are involved in a much higher number of cellular processes. Mitochondria are the home of key metabolic pathways like the tricarboxylic acid cycle and β-oxidation of fatty acids, as well as biosynthetic pathways of key products like nucleotides and amino acids, the control of the redox balance of the cell and detoxifying the cell from H2S and NH3. This plethora of critical functions within the cell is the reason mitochondrial function is involved in several complex disorders (apart from pure mitochondrial disorders), among them inflammatory bowel diseases (IBD). IBD are a group of chronic, inflammatory disorders of the gut, mainly composed of ulcerative colitis and Crohn's disease. In this review, we present the current knowledge regarding the impact of mitochondrial dysfunction in the context of IBD. The role of mitochondria in both intestinal mucosa and immune cell populations are discussed, as well as the role of mitochondrial function in mechanisms like mucosal repair, the microbiota- and brain-gut axes and the development of colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica Cardiología y Cirugía Cardiovascular, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Francisco J. Rodríguez-González
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Alejandra Fernández-Castañer
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos López-Gómez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (M.J.S.-Q.); (C.R.-D.); (A.F.-C.)
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| |
Collapse
|
9
|
da Paz Martins AS, de Andrade KQ, de Araújo ORP, da Conceição GCM, da Silva Gomes A, Goulart MOF, Moura FA. Extraintestinal Manifestations in Induced Colitis: Controversial Effects of N-Acetylcysteine on Colon, Liver, and Kidney. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8811463. [PMID: 37577725 PMCID: PMC10423092 DOI: 10.1155/2023/8811463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent inflammatory bowel disease (IBD) characterized by continuous inflammation in the colonic mucosa. Extraintestinal manifestations (EIM) occur due to the disruption of the intestinal barrier and increased permeability caused by redox imbalance, dysbiosis, and inflammation originating from the intestine and contribute to morbidity and mortality. The aim of this study is to investigate the effects of oral N-acetylcysteine (NAC) on colonic, hepatic, and renal tissues in mice with colitis induced by dextran sulfate sodium (DSS). Male Swiss mice received NAC (150 mg/kg/day) in the drinking water for 30 days before and during (DSS 5% v/v; for 7 days) colitis induction. On the 38th day, colon, liver, and kidney were collected and adequately prepared for the analysis of oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione reduced (GSH), glutathione oxidized (GSSG), malondialdehyde (MDA), and hydrogen peroxide (H2O2)) and inflammatory biomarkers (myeloperoxidase (MPO) -, tumor necrosis factor alpha - (TNF-α, and interleukin-10 (IL-10)). In colon, NAC protected the histological architecture. However, NAC did not level up SOD, in contrast, it increased MDA and pro-inflammatory effect (increased of TNF-α and decreased of IL-10). In liver, colitis caused both oxidative (MDA, SOD, and GSH) and inflammatory damage (IL-10). NAC was able only to increase GSH and GSH/GSSG ratio. Kidney was not affected by colitis; however, NAC despite increasing CAT, GSH, and GSH/GSSG ratio promoted lipid peroxidation (increased MDA) and pro-inflammatory action (decreased IL-10). Despite some beneficial antioxidant effects of NAC, the negative outcomes concerning irreversible oxidative and inflammatory damage in the colon, liver, and kidney confirm the nonsafety of the prophylactic use of this antioxidant in models of induced colitis, suggesting that additional studies are needed, and its use in humans not yet recommended for the therapeutic routine of this disease.
Collapse
Affiliation(s)
- Amylly Sanuelly da Paz Martins
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | | | | | | | - Amanda da Silva Gomes
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Marília Oliveira Fonseca Goulart
- Doctoral Program of the Northeast Biotechnology Network, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Fabiana Andréa Moura
- College of Nutrition, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
- College of Medicine, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| |
Collapse
|
10
|
Li YY, Cui Y, Dong WR, Liu TT, Zhou G, Chen YX. Terminalia bellirica Fruit Extract Alleviates DSS-Induced Ulcerative Colitis by Regulating Gut Microbiota, Inflammatory Mediators, and Cytokines. Molecules 2023; 28:5783. [PMID: 37570753 PMCID: PMC10421151 DOI: 10.3390/molecules28155783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease significantly impacting patients' lives. This study aimed to elucidate the alleviating effect of ethyl acetate extract (TBEA) from Terminalia bellirica fruit on UC and to explore its mechanism. TBEA was the fraction with the best anti-inflammatory activity screened using in vitro anti-inflammatory assays, and HPLC initially characterized its composition. The mice model of ulcerative colitis was established after free drinking of 2.5% dextran sulfate sodium for six days, and the experimental group was treated with 50 mg/kg and 100 mg/kg TBEA for seven days. We found that TBEA significantly alleviated symptoms in UC mice, including a physiologically significant reduction in disease activity index and pathological damage to colonic tissue. TBEA dramatically slowed down oxidative stress and inflammatory process in UC mice, as evidenced by decreasing myeloperoxidase and malondialdehyde activities and increasing glutathione and catalase levels by reducing the concentrations of IL-6, IL-1β, TNF-α, and NO in UC mice, as well as by regulating key proteins in the IL-6/JAK2/STAT3 pathway. Meanwhile, TBEA maintained intestinal homeostasis by regulating intestinal flora structure. Our study provides new ideas for developing TBEA into a new drug to treat UC.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu-Xin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
11
|
Özsoy Ş, Özsoy Z, Gevrek F, Yeniova AÖ. Protective role of vitamin B12 on acetic acid induced colitis in rats. Turk J Surg 2023; 39:7-16. [PMID: 37275922 PMCID: PMC10234719 DOI: 10.47717/turkjsurg.2023.5903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 06/07/2023]
Abstract
Objectives Inflammatory bowel disease (IBD) is a chronic, relapsing, and remittent inflammatory disease of the gastrointestinal tract. Nutritional deficiency may be instrumental in and attributable to this disease. We examined the effect of VitB12 supplementation on acetic acid (AA)-induced colitis in rats. Material and Methods Five minutes after the application of acetic acid to the rats to create a colitis model, VitB12 was administered 1 mg/kg, i.p concentration, then the application continued for three consecutive days. Control groups were included for colitis and VitB12. After 4d, the rats were sacrificed, and colonic tissues were harvested for macroscopic and microscopic examination of colonic damage. TNF-α, IL-1β, IL-6, MDA, GSH and SOD values were measured biochemically. Results There was statistically significant macroscopic improvement in damage to the colon tissues (p <0.05). The severity of inflammation reduced in the VitB12 treated rat group compared with the control group, but was not significantly. The levels of TNF-α, IL-1β, MDA, and SOD did not differ between AA control and VitB12 treated AA colitis group. However, the levels of IL-6 and GSH were statistically significant different in rats with AA-induced colitis after VitB12 injection (p <0.05). Conclusion Nutritional deficiencies might contribute to the pathogenesis of IBD, and the efficacy of VitB12 supplementation has controversial effects on the intestinal mucosa.
Collapse
Affiliation(s)
- Şeyma Özsoy
- Department of Physiology, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat, Türkiye
| | - Zeki Özsoy
- Department of General Surgery, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat, Türkiye
| | - Fikret Gevrek
- Department of Histology, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat, Türkiye
| | - Abdullah Özgür Yeniova
- Department of Internal Medicine and Gastroenterology, Tokat Gaziosmanpaşa University Faculty of Medicine, Tokat, Türkiye
| |
Collapse
|
12
|
Yu Z, Chen J, Liu Y, Meng Q, Liu H, Yao Q, Song W, Ren X, Chen X. The role of potential probiotic strains Lactobacillus reuteri in various intestinal diseases: New roles for an old player. Front Microbiol 2023; 14:1095555. [PMID: 36819028 PMCID: PMC9932687 DOI: 10.3389/fmicb.2023.1095555] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Lactobacillus reuteri (L. reuteri), a type of Lactobacillus spp., is a gut symbiont that can colonize many mammals. Since it was first isolated in 1962, a multitude of research has been conducted to investigate its function and unique role in different diseases as an essential probiotic. Among these, the basic functions, beneficial effects, and underlying mechanisms of L. reuteri have been noticed and understood profoundly in intestinal diseases. The origins of L. reuteri strains are diverse, with humans, rats, and piglets being the most common. With numerous L. reuteri strains playing significant roles in different intestinal diseases, DSM 17938 is the most widely used in humans, especially in children. The mechanisms by which L. reuteri improves intestinal disorders include protecting the gut barrier, suppressing inflammation and the immune response, regulating the gut microbiota and its metabolism, and inhibiting oxidative stress. While a growing body of studies focused on L. reuteri, there are still many unknowns concerning its curative effects, clinical safety, and precise mechanisms. In this review, we initially interpreted the basic functions of L. reuteri and its related metabolites. Then, we comprehensively summarized its functions in different intestinal diseases, including inflammatory bowel disease, colorectal cancer, infection-associated bowel diseases, and pediatric intestinal disorders. We also highlighted some important molecules in relation to the underlying mechanisms. In conclusion, L. reuteri has the potential to exert a beneficial impact on intestinal diseases, which should be further explored to obtain better clinical application and therapeutic effects.
Collapse
Affiliation(s)
- Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Hang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxuan Song
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiangfeng Ren
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Xin Chen ✉
| |
Collapse
|
13
|
Shum TF, Wang L, Chiou J. Impact of Plasticizer on the Intestinal Epithelial Integrity and Tissue-Repairing Ability within Cells in the Proximity of the Human Gut Microbiome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2152. [PMID: 36767519 PMCID: PMC9915929 DOI: 10.3390/ijerph20032152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Toxicological research into the impact of plasticizer on different organs has been reported in the past few decades, while their effects on shifting the gut microbiota and immune cells homeostasis in zebrafish were only studied recently. However, studies on the impact of plasticizer on human gut microbiota are scarce. In this study, we co-incubated healthy human fecal microbiota with different concentrations of Di(2-ethylhexyl) phthalate (DEHP) and di-iso-nonyl phthalate (DINP), analyzed microbial composition by 16S rDNA sequencing, and compared the influence of their derived microbiomes on the human enterocyte (HT-29) and murine macrophage (RAW264.7) cell lines. Microbial diversity is reduced by DEHP treatment in a dose-dependent manner. DEHP treatment reduced the phyla Firmicutes/Bacteroidetes ratio, while DINP treatment promoted Proteobacteria. Expressions of tight/adherens junction genes in HT-29 and anti-inflammatory genes in RAW264.7 were down-regulated by plasticizer-co-incubated microbiota derived metabolites. Overall, it is observed that selected plasticizers at high dosages can induce compositional changes in human microbiota. Metabolites from such altered microbiota could affect the tight junction integrity of the intestinal epithelium and upset macrophage differentiation homeostasis in proximity. Chronic exposure to these plasticizers may promote risks of dysbiosis, leaky gut or the exacerbation of intestinal inflammation.
Collapse
Affiliation(s)
- Tim-Fat Shum
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Liwen Wang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jiachi Chiou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Araujo FO, Felício MB, Lima CF, Piccolo MS, Pizziolo VR, Diaz-Muñoz G, Bastos DSS, Oliveira LL, Peluzio MDOCG, Diaz MAN. Antioxidant and anti-inflammatory activity of curcumin transdermal gel in an IL-10 knockout mouse model of inflammatory bowel disease. AN ACAD BRAS CIENC 2022; 94:e20201378. [PMID: 36477991 DOI: 10.1590/0001-3765202220201378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 12/07/2022] Open
Abstract
Inflammatory bowel diseases are a group of inflammatory disorders of the gastrointestinal tract. Their prevalence is still low in Brazil, but the incidence is increasing annually. A variety of compounds present in Curcuma longa L., particularly curcumin, have been shown to reduce oxidative stress and aid in the prevention of associated diseases. This study aimed to assess the effect of curcumin transdermal gel on oxidative stress and intestinal inflammation in IL-10 knockout mice. Female mice were divided into four groups: a control group (C0) treated with vehicle and three experimental groups treated with transdermal gel containing 50 (C50), 75 (C75), and 100 (C100) mg curcumin kg-1 body weight. Colon malondialdehyde concentrations were lower in C50 and C75 groups. C100 treatment led to reduced catalase activity in the small intestine, whereas C50, C75, and C100 treatments resulted in decreased catalase activity in the colon. In contrast, superoxide dismutase activity increased in the small intestine of C50 and C75 mice and decreased in the colon of C50, C75, and C100 mice. Glutathione S-transferase activity increased in the small intestine and decreased in the colon of C75 animals. These findings suggest that curcumin transdermal gel exerts a protective effect against oxidative stress.
Collapse
Affiliation(s)
- Fernanda O Araujo
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Matheus B Felício
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Cássio F Lima
- Instituto Federal de Educação do Pará, Campus Óbidos, Avenida Nelson Souza, s/n, Distrito Industrial, 68250-000 Óbidos, PA, Brazil
| | - Mayra S Piccolo
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Virgínia R Pizziolo
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Gaspar Diaz-Muñoz
- Universidade Federal de Minas Gerais, Departmento de Química, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Daniel S S Bastos
- Universidade Federal de Viçosa, Departmento de Biologia Geral, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Leandro L Oliveira
- Universidade Federal de Viçosa, Departmento de Biologia Geral, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Maria DO C G Peluzio
- Universidade Federal de Viçosa, Departmento de Nutrição e Saúde, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| | - Marisa A N Diaz
- Universidade Federal de Viçosa, Departmento de Bioquímica e Biologia Molecular, Avenida P.H. Rolfs, s/n, Campus Universitário, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
15
|
Ahmad T, Ishaq M, Karpiniec S, Park A, Stringer D, Singh N, Ratanpaul V, Wolfswinkel K, Fitton H, Caruso V, Eri R. Oral Macrocystis pyrifera Fucoidan Administration Exhibits Anti-Inflammatory and Antioxidant Properties and Improves DSS-Induced Colitis in C57BL/6J Mice. Pharmaceutics 2022; 14:2383. [PMID: 36365201 PMCID: PMC9693024 DOI: 10.3390/pharmaceutics14112383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex and multifactorial disorder characterised by relapsing and remitting inflammation of the intestinal tract. Oxidative stress (OS) is the result of an imbalance between production and accumulation of reactive oxygen species (ROS), which has been associated with inflammatory responses and implicated in the exacerbation of IBD. Fucoidan, a sulfated polysaccharide from brown seaweed, is a well-known anti-inflammatory agent and emerging evidence indicates that fucoidan extracts from Macrocystis pyrifera (MPF and DP-MPF) may also modulate oxidative stress. This study investigated the impact of fucoidan extracts, MPF and DP-MPF in a dextran sodium sulphate (DSS)-induced mouse model of acute colitis. 3% DSS was administered in C57BL/6J male mice over a period of 7 days, and MPF and DP-MPF were co-administered orally at a dose of 400 mg/kg body weight. Our results indicated that MPF and DP-MPF significantly prevented body weight loss, improved the disease activity index (DAI), restored colon lengths, reduced the wet colon weight, reduced spleen enlargement, and improved the overall histopathological score. Consistent with the reported anti-inflammatory functions, fucoidan extracts, MPF and DP-MPF significantly reduced the colonic levels of myeloperoxidase (MPO), nitric oxide (NO), malondialdehyde (MDA) and increased the levels of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). In addition, MPF and DP-MPF significantly inhibited levels of pro-inflammatory cytokines in colon-derived tissues. Collectively, our results indicate that MPF and DP-MPF exhibited anti-inflammatory and antioxidant effects representing a promising therapeutic strategy for the cure of IBD.
Collapse
Affiliation(s)
- Tauseef Ahmad
- College of Health and Medicine, University of Tasmania, Newnham, TAS 7248, Australia
| | - Muhammad Ishaq
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | | | - Ahyoung Park
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia
| | | | - Neeraj Singh
- College of Health and Medicine, University of Tasmania, Newnham, TAS 7248, Australia
| | - Vishal Ratanpaul
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Karen Wolfswinkel
- Department of Pathology, Launceston General Hospital (LGH), Launceston, TAS 7250, Australia
| | | | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
- Istituto di Formazione e Ricerca in Scienze Algologiche (ISAL), Torre Pedrera, 47922 Rimini, Italy
| | - Rajaraman Eri
- College of Health and Medicine, University of Tasmania, Newnham, TAS 7248, Australia
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
16
|
Lartey NL, Vargas-Robles H, Guerrero-Fonseca IM, Nava P, Kumatia EK, Ocloo A, Schnoor M. Annickia polycarpa extract attenuates inflammation, neutrophil recruitment, and colon damage during colitis. Immunol Lett 2022; 248:99-108. [PMID: 35841974 DOI: 10.1016/j.imlet.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) are complex inflammatory disorders of the digestive tract. Dysfunctional intestinal epithelial barrier, uncontrolled neutrophil recruitment into the colon, and oxidative stress are major features of IBD. IBD cannot be cured, but symptoms can be alleviated with anti-inflammatory drugs, which often show adverse effects. Thus, safer alternative treatment options are needed. Given the known anti-inflammatory properties of Annickia polycarpa extract (APE), we hypothesized that APE improves the outcome of the inflammatory response during colitis. We assessed APE effects on colon histology, epithelial barrier function and neutrophil recruitment during DSS-induced colitis in mice treated with APE. APE treatment significantly reduced the disease activity index and prevented DSS-induced colon damage as evidenced by reduced colon shortening, ulcerations, crypt dysplasia, edema formation, and leukocyte infiltration. Expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were significantly diminished in APE-treated mice. Importantly, APE administration reduced neutrophil infiltration into the lamina propria leading to reduced oxidative stress, tight junction disruption and epithelial permeability in the colon. Thus, we propose APE as additional treatment strategy to attenuate colitis symptoms and enhance life quality of individuals with IBD.
Collapse
Affiliation(s)
- Nathaniel L Lartey
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico; Department of Health and Allied Sciences, Baldwin University College, Osu-Accra, Ghana
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico
| | | | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico
| | - Emmanuel K Kumatia
- Department of Phytochemistry, Centre for Plant Medicine Research. Akuapem-Mampong, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, LG 54, Legon, Ghana
| | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico.
| |
Collapse
|
17
|
Comparison of Selenium-Enriched Lactobacillusparacasei, Selenium-Enriched Yeast, and Selenite for the Alleviation of DSS-Induced Colitis in Mice. Nutrients 2022; 14:nu14122433. [PMID: 35745163 PMCID: PMC9231187 DOI: 10.3390/nu14122433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) have been found to have decreased immune function. Selenium (Se) is an essential trace element that is beneficial for human health, which has a significant stimulating effect on immune function. We compared the effects of different Se forms on the alleviation of colitis in DSS-induced mice. Moreover, we also aimed to determine whether Se-enriched Lactobacillus paracasei CCFM 1089 could be used as a new organic Se supplement. Different Se supplements (Se-enriched L. paracasei CCFM 1089, Se-enriched yeast and sodium selenite) were given to Se-deficient mice suffering from colitis. Se-enriched L. paracasei CCFM 1089, which is based on selenocysteine (SeCys), had similar effects in terms of reducing oxidative stress and inhibiting pro-inflammatory factors to Se-enriched yeast; however, selenase activity in the Se-enriched L. paracasei CCFM 1089-treated mice was higher than that in other treatment groups. In addition, Se-enriched L. paracasei CCFM 1089 could better protect the intestinal mucosa, which increased the expression of tight junction proteins (ZO-1 and occludin) in mice. Thus Se-enriched L. paracasei CCFM 1089 was shown to alleviate IBD, suggesting that it has potential as a good organic Se supplement.
Collapse
|
18
|
Goudie L, Mancini NL, Shutt TE, Holloway GP, Mu C, Wang A, McKay DM, Shearer J. Impact of experimental colitis on mitochondrial bioenergetics in intestinal epithelial cells. Sci Rep 2022; 12:7453. [PMID: 35523978 PMCID: PMC9076608 DOI: 10.1038/s41598-022-11123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal homeostasis is highly dependent on optimal epithelial barrier function and permeability. Intestinal epithelial cells (IEC) regulate these properties acting as cellular gatekeepers by selectively absorbing nutrients and controlling the passage of luminal bacteria. These functions are energy demanding processes that are presumably met through mitochondrial-based processes. Routine methods for examining IEC mitochondrial function remain sparse, hence, our objective is to present standardized methods for quantifying mitochondrial energetics in an immortalized IEC line. Employing the murine IEC4.1 cell line, we present adapted methods and protocols to examine mitochondrial function using two well-known platforms: the Seahorse Extracellular Flux Analyzer and Oxygraph-2 k. To demonstrate the applicability of these protocols and instruments, IEC were treated with and without the murine colitogenic agent, dextran sulfate sodium (DSS, 2% w/v). Profound impairments with DSS treatment were found with both platforms, however, the Oxygraph-2 k allowed greater resolution of affected pathways including short-chain fatty acid metabolism. Mitochondrial functional analysis is a novel tool to explore the relationship between IEC energetics and functional consequences within the contexts of health and disease. The outlined methods offer an introductory starting point for such assessment and provide the investigator with insights into platform-specific capabilities.
Collapse
Affiliation(s)
- Luke Goudie
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Nicole L Mancini
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Timothy E Shutt
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, HMRB 228, Alberta, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Chunlong Mu
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, HMRB 228, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada. .,Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, HMRB 228, Alberta, Canada.
| |
Collapse
|
19
|
Song L, Zhang Y, Zhu C, Ding X, Yang L, Yan H. Hydrogen-rich water partially alleviate inflammation, oxidative stress and intestinal flora dysbiosis in DSS-induced chronic ulcerative colitis mice. Adv Med Sci 2022; 67:29-38. [PMID: 34784538 DOI: 10.1016/j.advms.2021.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE Oxidative damage and intestinal flora dysbiosis play important roles in the progression of chronic ulcerative colitis (UC). This study explored the effect and mechanism of molecular hydrogen in chronic UC. MATERIALS AND METHODS Male C57BL/6 mice (19.6 ± 0.4 g, 7 weeks) were randomly divided into 3 groups: normal control (NC) group, UC (Dextran Sulfate Sodium, DSS) group, and hydrogen-rich water (HRW, 0.8 ppm)-treated UC (DSS + HRW) group. Mice in the DSS treatment group were treated with DSS for the following 3 cycles to establish chronic UC model: the first 2 cycles consisted of 2.5% DSS for 5 days, followed by drinking water for 16 days, and a third cycle consisted of 2% DSS for 4 days, followed by drinking water for 10 days. The mice in the DSS + HRW group were administered HRW daily throughout the experiment. RESULTS The mice in the DSS groups developed typical clinical signs of colitis. HRW treatment partially ameliorated colitis symptoms, improved histopathological changes, significantly increased glutathione (GSH) concentration and decreased TNF-α level. Notably, HRW treatment significantly inhibited the growth of Enterococcus faecalis, Clostridium perfringens and Bacteroides fragilis (P < 0.05 vs. DSS group), with the relative abundance that was close to the levels in the NC group. Microarray analysis revealed that 252 genes were significantly modified after HRW treatment compared with those in the DSS treatment alone group, and 17 genes were related to inflammation, including 9 interferon-stimulated genes (ISGs). CONCLUSIONS Hydrogen-rich water partially alleviates inflammation, oxidative stress and intestinal flora dysbiosis in DSS-induced chronic UC mice.
Collapse
Affiliation(s)
- Lihua Song
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chuang Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwen Ding
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Yan
- Department of Reproductive Medicine Center, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
20
|
Li H, Che H, Xie J, Dong X, Song L, Xie W, Sun J. Supplementary selenium in the form of selenylation α-D-1,6-glucan ameliorates dextran sulfate sodium induced colitis in vivo. Int J Biol Macromol 2022; 195:67-74. [PMID: 34896151 DOI: 10.1016/j.ijbiomac.2021.11.189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
The deficiency of selenium has been found in clinical IBD patients and supplementation selenium is recognized as beneficial for colitis treatment. In this study, an organic selenium compound-selenylation α-D-1,6-glucan (sCPA) was prepared, and the effect of sCPA on DSS induced colitis mice was investigated. The results suggested that sCPA prevented the weight loss, colon length shortening, and stool loose of colitis mice. It protected colon mucosal barrier by promoting tight junction protein ZO-1 and Occludin expression. Moreover, sCPA reduced oxidative stress via regulating SOD and MDA levels, and decreased the contents of inflammatory proteins NF-κB and NLRP3 and adjusted TNF-α, IFN-γ, IL-1β, and IL-10 inflammatory cytokines. Furthermore, sCPA repaired intestinal microbiota composition especially Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria that altered by DSS in colitis mice. Meanwhile, SCFAs produced by gut microbiota were restored by sCPA close to the level in the normal group. In conclusion, these findings indicated that the sCPA might be a potential dietary selenium supplementation for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Hongyan Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of biochemical engineering, Shandong, Qingdao 266042, China.
| | - Hongxia Che
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of biochemical engineering, Shandong, Qingdao 266042, China
| | - Jingwen Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China
| | - Xiufang Dong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of biochemical engineering, Shandong, Qingdao 266042, China
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of biochemical engineering, Shandong, Qingdao 266042, China
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Shandong, Qingdao 266042, China; Shandong Provincial Key Laboratory of biochemical engineering, Shandong, Qingdao 266042, China
| | - Jinyuan Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
21
|
Yang X, Mao Z, Huang Y, Yan H, Yan Q, Hong J, Fan J, Yao J. Reductively modified albumin attenuates DSS-Induced mouse colitis through rebalancing systemic redox state. Redox Biol 2021; 41:101881. [PMID: 33601276 PMCID: PMC7897995 DOI: 10.1016/j.redox.2021.101881] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/22/2021] [Indexed: 01/16/2023] Open
Abstract
Albumin (Alb) is the most abundant plasma protein with multiple biological functions, including antioxidative property through its thiol activity. Given that inflammatory bowel disease is associated with a decreased level of Alb and an increased level of Alb oxidation, we asked whether Alb could have a therapeutic effect on colitis. Here we tested this possibility. Bovine serum albumin (BSA) was reductively modified with dithiothreitol (DTT) and administrated via gavage or intraperitoneal injection. Dextran sulfate sodium (DSS)-induced mice colitis was associated with massive oxidative stress, as indicated by the elevated sulfenic acid formation in blood, colon tissues, and feces. Treatment of mice with the reductively modified albumin (r-Alb) attenuated the oxidative stress and reduced local inflammation and tissue injury. These effects of r-Alb were only partially achieved by unmodified Alb and wholly lost after blocking the -SH groups with maleimide. In cultured colon epithelial cells, r-Alb prevented DSS- and H2O2-induced ROS elevation and barrier dysfunction, preceded by inhibition of sulfenic acid formation and P38 activation. Further analysis revealed that Alb was susceptible to H2O2-induced oxidation, and it detoxified H2O2 in a -SH group-dependent way. Moreover, Alb reacted with GSH/GSSG via thiol-disulfide exchange and reciprocally regulated the availability of -SH groups. Collectively, our study shows that r-Alb effectively attenuates DSS colitis via -SH group-mediated antioxidative action. Given that the oxidative stress underlies many life-threatening diseases, r-Alb, functioning as a potent antioxidant, could have a wide range of applications.
Collapse
Affiliation(s)
- Xiawen Yang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Zhimin Mao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yanru Huang
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Haizhao Yan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Qiaojing Yan
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jingru Hong
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jian Yao
- Divison of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan.
| |
Collapse
|
22
|
Miao F, Shan C, Ma T, Geng S, Ning D. Walnut oil alleviates DSS-induced colitis in mice by inhibiting NLRP3 inflammasome activation and regulating gut microbiota. Microb Pathog 2021; 154:104866. [PMID: 33775855 DOI: 10.1016/j.micpath.2021.104866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Ulcerative colitis (UC) has become a global disease and closely related to changes in intestinal oxidative stress, inflammatory factors and gut microbiota. Furthermore, the NLRP3 inflammasome activation is a key cause in the pathogenesis of dextran sulfate sodium (DSS)-induced colitis. Recent data showed the potential antioxidative and anti-inflammatory advantage of walnut oil, which widely used in traditional medicine and has become a dietary supplement for some patients. Therefore, we investigated whether walnut oil exerts an anti-inflammatory effect on DSS-induced colitis mice by targeting NLRP3 inflammasome and gut microbiota. Our data showed that walnut oil ameliorated the pathological morphology, decreased the reactive oxygen species (ROS) production and pro-inflammatory cytokines release, down-regulated the related gene proteins expression of NLRP3/ASC/Caspase-1 inflammatory pathway, inhibited apoptosis, shifted from more pathogens towards probiotics, and increased the levels of short-chain fatty acids (SCFAs) in DSS-induced damaging process. Collectively, our study concludes that walnut oil exerts anti-inflammatory effect on DSS-induced colitis in mice by inhibiting the NLRP3 inflammasome activation and modulating gut microbiota, and may be a prominent functional food candidate for UC treatment.
Collapse
Affiliation(s)
- Fujun Miao
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Ting Ma
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Shuxiang Geng
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland, Kunming, 650204, China.
| |
Collapse
|
23
|
Magalhães DDA, Batista JA, Sousa SG, Ferreira JDS, da Rocha Rodrigues L, Pereira CMC, do Nascimento Lima JV, de Albuquerque IF, Bezerra NLSD, Monteiro CEDS, Franco AX, da Costa Filho HB, Ferreira FCS, Havt A, Di Lenardo D, Vasconcelos DFP, de Oliveira JS, Soares PMG, Barbosa ALDR. McN-A-343, a muscarinic agonist, reduces inflammation and oxidative stress in an experimental model of ulcerative colitis. Life Sci 2021; 272:119194. [PMID: 33609541 DOI: 10.1016/j.lfs.2021.119194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
AIM The aim of the present study was to investigate the anti-inflammatory response mediated of the M1 muscarinic acetylcholine receptor (mAChR) during experimental colitis. MATERIAL AND METHODS After the induction of 6% acetic acid colitis, mice were treated with McN-A-343 0.5, 1.0, and 1.5 mg/kg or dexamethasone (DEXA, 2.0 mg/kg) or pirenzepine (PIR, 10 mg/kg; M1 mAChR antagonist). Colonic inflammation was assessed by macroscopic and microscopic lesion scores, colonic wet weight, myeloperoxidase (MPO) activity, interleukin-1 beta (IL1-β) levels and tumor necrosis factor alpha (TNF-α), glutathione (GSH), malondialdehyde (MDA) and nitrate and nitrite (NO3/NO2), mRNA expression of IKKα, nuclear factor kappa beta (NF-kB) and cyclooxygenase-2 (COX-2), as well protein expression of NF-kB and COX-2. RESULTS Treatment with McN-A-343 at a concentration of 1.5 mg/kg showed a significant reduction in intestinal damage as well as a decrease in wet weight, MPO activity, pro-inflammatory cytokine concentration, markers of oxidative stress and expression of inflammatory mediators. The action of the M1 agonist by the administration of pirenzepine, which promoted the blocking of the mAChR M1-mediated anti-inflammatory response, has also been proven. CONCLUSION The results suggest that peripheral colonic M1 mAChR is involved in reversing the pro-inflammatory effect of experimentally induced colitis, which may represent a promising therapeutic alternative for patients with ulcerative colitis.
Collapse
Affiliation(s)
- Diva de Aguiar Magalhães
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Jalles Arruda Batista
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Stefany Guimarães Sousa
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Jayro Dos Santos Ferreira
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil
| | | | | | | | | | | | | | - Alvaro Xavier Franco
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, LEFFAG, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Alexandre Havt
- Laboratory of Molecular Toxinology, LTM, Federal University of Ceará, Fortaleza, CE, Brazil
| | - David Di Lenardo
- Laboratory of Analysis and Histological Processing, LAPHIS, Department of Biomedicine, Federal University of Piauí, Parnaíba, Brazil
| | - Daniel Fernando Pereira Vasconcelos
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil; Laboratory of Analysis and Histological Processing, LAPHIS, Department of Biomedicine, Federal University of Piauí, Parnaíba, Brazil
| | - Jefferson Soares de Oliveira
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil; Biochemistry Laboratory of Laticifers Plants (LABPL), Department of Biomedicine, Federal University of Piauí, Parnaíba, Brazil
| | - Pedro Marcos Gomes Soares
- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, LEFFAG, Federal University of Ceará, Fortaleza, Brazil
| | - André Luiz Dos Reis Barbosa
- Laboratory of Experimental Physiopharmacology, LAFFEX, Federal University of Piauí, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil.
| |
Collapse
|
24
|
Raja TW, Veeramuthu D, Savarimuthu I, Al-Dhabi NA. Current Trends in the Treatment of Systemic Lupus Erythematosus. Curr Pharm Des 2020; 26:2602-2609. [PMID: 32066358 DOI: 10.2174/1381612826666200211122633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is an autoimmune disease in mankind. SLE's downregulation of T and B lymphocytes could cause the development of autoantibodies, which in turn attack cell surface, nuclear, and cytoplasmic molecules, creating immune complexes that harm tissues. OBJECTIVE The objective of the present review is to evaluate SLE's present therapeutic policies and raise consciousness about the disease. METHODS New therapies are rare for SLE. This is due to the complexity of the disease and its various manifestations. Three techniques are used to develop biological treatments for the illness: B-cell modulation, T-cell regulation and cytokine inhibition. This paper reviews the present trends in SLE therapy. RESULTS Each arm of the immune system is a prospective therapeutic development target for this disease; it involves B-cells, T-cells, interferon (IFN) and cytokines. To date, only one of these agents is been approved for use against lupus, belimumab which comes under B-cell therapy. Both the innate and the adaptive immune systems are the objectives. Currently, although there is no full SLE remedy, drug therapy can minimize organ injury and control active disease, which relies on immunosuppressants and glucocorticoids. CONCLUSION It is possible to access SLE treatment in the form of T-cell, B-cell and anticytokine therapies. In these therapies, antibodies and antigens interactions play a major part. Another medication for treating SLE is the non-steroidal anti-inflammatory drug such as hydroxychloroquine. Glucocorticoids (GCs) are another antiinflammatory treatment that suppresses the growth of cytokines related to inflammation and prevents the recruitment of leukocyte by reducing endothelial cell permeability.
Collapse
Affiliation(s)
- Tharsius W Raja
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai-600034, Tamil Nadu, India
| | - Duraipandiyan Veeramuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai-600034, Tamil Nadu, India
| | | | - Naif A Al-Dhabi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Oxidative stress exacerbates dextran sulfate sodium-induced ulcerative colitis in ICR mice. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00524-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Dang PMC, Rolas L, El-Benna J. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives. Antioxid Redox Signal 2020; 33:354-373. [PMID: 31968991 DOI: 10.1089/ars.2020.8018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their intrinsic cytotoxic properties, mounting evidence indicates that reactive oxygen species (ROS) physiologically produced by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) of epithelial cells (NOX1, dual oxidase [DUOX]2) and phagocytes (NOX2) are critical for innate immune response and homeostasis of the intestinal mucosa. However, dysregulated ROS production could be a driving factor in inflammatory bowel diseases (IBDs). Recent Advances: In addition to NOX2, recent studies have demonstrated that NOX1- and DUOX2-derived ROS can regulate intestinal innate immune defense and homeostasis by impacting many processes, including bacterial virulence, expression of bacteriostatic proteins, epithelial renewal and restitution, and microbiota composition. Moreover, the antibacterial role of DUOX2 is a function conserved in evolution as it has been described in invertebrates, and lower and higher vertebrates. In humans, variants of the NOX2, NOX1, and DUOX2 genes, which are associated with impaired ROS production, have been identified in very early onset IBD, but overexpression of NOX/DUOX, especially DUOX2, has also been described in IBD, suggesting that loss-of-function or excessive activity of the ROS-generating enzymes could contribute to disease progression. Critical Issues: Therapeutic perspectives aiming at targeting NOX/DUOX in IBD should take into account the two sides of NOX/DUOX-derived ROS in intestinal inflammation. Hence, NOX/DUOX inhibitors or ROS inducers should be considered as a function of the disease context. Future Directions: A thorough understanding of the physiological and pathological regulation of NOX/DUOX in the gastrointestinal tract is an absolute pre-requisite for the development of therapeutic strategies that can modulate ROS levels in space and time.
Collapse
Affiliation(s)
- Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| |
Collapse
|
27
|
Inhibitory Effect of Steamed Soybean Wastewater Against DSS-Induced Intestinal Inflammation in Mice. Foods 2020; 9:foods9070954. [PMID: 32708415 PMCID: PMC7404776 DOI: 10.3390/foods9070954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022] Open
Abstract
This study was performed to examine the beneficial potential of steamed soybean wastewater (SSW), which is generated during the manufacture of fermented soybean products and usually discarded as a by-product. The SSW was found to contain considerable amounts of isoflavones and had concentration-dependent radical scavenging capabilities. Moreover, oral administration of SSW effectively prevented colonic damage induced by dextran sulfate sodium (DSS), based on improvement of morphological and histological features, reduction of oxidative stress indicators, suppression of proinflammatory cytokine production, downregulation of inflammatory marker expression in the colonic tissue, and inhibition of the inflammatory activation of macrophages. It suggests that SSW could prevent intestinal inflammation in humans, although its efficacy should be verified through careful study design in humans. These findings have implications for enhancement of the value-added of SSW and for reduction of wastewater treatment costs incurred by the food industry.
Collapse
|
28
|
Balmus IM, Ciobica A, Cojocariu R, Luca AC, Gorgan L. Irritable Bowel Syndrome and Neurological Deficiencies: Is There A Relationship? The Possible Relevance of the Oxidative Stress Status. ACTA ACUST UNITED AC 2020; 56:medicina56040175. [PMID: 32295083 PMCID: PMC7230401 DOI: 10.3390/medicina56040175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Background: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, exhibiting complex and controversial pathological features. Both oxidative stress and inflammation-related reactive oxygen species production may be involved in IBS pathological development. Thus, we focused on several aspects regarding the causes of oxidative stress occurrence in IBS. Additionally, in the molecular context of oxidative changes, we tried to discuss these possible neurological implications in IBS. Methods: The literature search included the main available databases (e.g., ScienceDirect, Pubmed/Medline, Embase, and Google Scholar). Articles in the English language were taken into consideration. Our screening was conducted based on several words such as “irritable bowel syndrome”, “gut brain axis”, “oxidative stress”, “neuroendocrine”, and combinations. Results: While no consistent evidence suggests clear pathway mechanisms, it seems that the inflammatory response may also be relevant in IBS. The mild implication of oxidative stress in IBS has been described through clinical studies and some animal models, revealing changes in the main markers such as antioxidant status and peroxidation markers. Moreover, it seems that the neurological structures involved in the brain-gut axis may be affected in IBS rather than the local gut tissue and functionality. Due to a gut-brain axis bidirectional communication error, a correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress can be suggested. Conclusions: Therefore, there is a possible correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress that are not followed by tissue destruction in IBS patients. Moreover, it is not yet clear whether oxidative stress, inflammation, or neurological impairments are key determinants or in which way these three interact in IBS pathology. However, the conditions in which oxidative imbalances occur may be an interesting research lead in order to find possible explanations for IBS development.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, No. 11, 700506 Iași, Romania;
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Roxana Cojocariu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| | - Alina-Costina Luca
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| |
Collapse
|
29
|
Idebenone Protects against Acute Murine Colitis via Antioxidant and Anti-Inflammatory Mechanisms. Int J Mol Sci 2020; 21:ijms21020484. [PMID: 31940911 PMCID: PMC7013829 DOI: 10.3390/ijms21020484] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is a key player of the inflammatory cascade responsible for the initiation of ulcerative colitis (UC). Although the short chain quinone idebenone is considered a potent antioxidant and a mitochondrial electron donor, emerging evidence suggests that idebenone also displays anti-inflammatory activity. This study evaluated the impact of idebenone in the widely used dextran sodium sulphate (DSS)-induced mouse model of acute colitis. Acute colitis was induced in C57BL/6J mice via continuous exposure to 2.5% DSS over 7 days. Idebenone was co-administered orally at a dose of 200 mg/kg body weight. Idebenone significantly prevented body weight loss and improved the disease activity index (DAI), colon length, and histopathological score. Consistent with its reported antioxidant function, idebenone significantly reduced the colonic levels of malondialdehyde (MDA) and nitric oxide (NO), and increased the expression of the redox factor NAD(P)H (nicotinamide adenine dinucleotide phosphate) dehydrogenase quinone-1 (NQO-1) in DSS-exposed mice. Immunohistochemistry revealed a significantly increased expression of tight junction proteins, which protect and maintain paracellular intestinal permeability. In support of an anti-inflammatory activity, idebenone significantly attenuated the elevated levels of pro-inflammatory cytokines in colon tissue. These results suggest that idebenone could represent a promising therapeutic strategy to interfere with disease pathology in UC by simultaneously inducing antioxidative and anti-inflammatory pathways.
Collapse
|
30
|
Güvenç M, Cellat M, Özkan H, Tekeli İO, Uyar A, Gökçek İ, İşler CT, Yakan A. Protective Effects of Tyrosol Against DSS-Induced Ulcerative Colitis in Rats. Inflammation 2019; 42:1680-1691. [PMID: 31115770 DOI: 10.1007/s10753-019-01028-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, the effects of tyrosol were investigated in DSS-induced experimental ulcerative colitis model. For this purpose, rats were divided into five groups of seven rats in each: control group, colitis group (DSS-4%), tyrosol group (tyrosol 20 mg/kg), sulfasalazine (sulfasalazine+DSS 100 mg/kg), and treatment group (tyrosol+DSS 20 mg/kg). In the study, the active substances were administered to all animals for a period of 21 days. At the end of the study, malondialdehyde (MDA) levels increased (p < 0.001); GSH level (p < 0.05) along with GSH.Px (p < 0.01) and CAT (p < 0.001) activities decreased in the DSS-induced colitis group. However, with the administration of tyrosol, MDA and GSH levels along with GSH.Px and CAT activities came to the same levels as the control group. In the colitis group, an increase occurred in IL-6, COX-2, and NF-κB parameters, which created a significant difference compared to the control group (p < 0.001). Similarly, TNF-α levels also significantly increased with the administration of DSS (p < 0.05) which created a significant difference compared to the control group, while there was no difference among the other groups. As for the Nrf-2 data, it decreased with the administration of DSS which created a significant difference compared to the control group (p < 0.05), while there was no difference in other groups. In the colitis-induced group, IL-6, COX-2, and NF-κB gene expression levels also similarly increased but returned to the normal levels with the administration of tyrosol. In the histopathological scoring, the negativity that increased with the administration of DSS returned to the normal levels with the administration of tyrosol+DSS. In conclusion, according to the data obtained, tyrosol fixed the destruction picture in the DSS-induced colitis model, giving rise to thought that it has a protective effect.
Collapse
Affiliation(s)
- Mehmet Güvenç
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Mustafa Cellat
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Hüseyin Özkan
- Faculty of Veterinary Medicine, Department of Genetics, Hatay Mustafa Kemal University, Hatay, Turkey
| | - İbrahim Ozan Tekeli
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ahmet Uyar
- Faculty of Veterinary Medicine, Department of Pathology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - İshak Gökçek
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Cafer Tayer İşler
- Faculty of Veterinary Medicine, Department of Surgery, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Akın Yakan
- Faculty of Veterinary Medicine, Department of Zootechnics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
31
|
Iqbal U, Anwar H, Quadri AA. Use of Curcumin in Achieving Clinical and Endoscopic Remission in Ulcerative Colitis: A Systematic Review and Meta-analysis. Am J Med Sci 2019; 356:350-356. [PMID: 30360803 DOI: 10.1016/j.amjms.2018.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ulcerative Colitis (UC) is characterized by chronic inflammation of the mucosal layers of the colon. Treatment of refractory UC is challenging and has a huge healthcare burden. Although there have been advancements in immunomodulatory therapies, these require a step-up financially, and these medications are also associated with significant adverse events. Curcumin, an active ingredient of turmeric, has been studied in the past and found to be useful in the treatment of UC when used as an adjuvant along with mesalamine. We did a systematic review and meta-analysis to explore the role curcumin plays in clinical and endoscopic remission in patients with UC. MATERIALS AND METHODS A comprehensive literature review was conducted by first searching the MEDLINE, Pubmed, and Embase databases through December 2017 to identify all studies that compared the use of curcumin when used along with mesalamine with placebo for clinical and endoscopic improvement and remission. RESULTS Three randomized controlled trials including 142 patients were included in the study. Use of curcumin along with mesalamine was associated with increased odds of clinical remission (pooled odds ratio of 6.78, 95% CI: 2.39-19.23, P = 0.042). Clinical improvement, endoscopic remission and improvement rate also trended higher in the curcumin group compared to placebo. CONCLUSIONS This study demonstrates higher clinical remission rates when curcumin was used in combination with mesalamine to achieve remission in patients with UC. Curcumin, due to its cost effectiveness and safer side effect profile, can decrease the healthcare burden and morbidity associated with this relapsing and remitting disease.
Collapse
Affiliation(s)
- Umair Iqbal
- Internal Medicine, Bassett Medical Center, Cooperstown, New York.
| | - Hafsa Anwar
- Jinnah Sindh Medical University, Karachi, Pakistan
| | | |
Collapse
|
32
|
Saito Y, Hinoi T, Adachi T, Miguchi M, Niitsu H, Kochi M, Sada H, Sotomaru Y, Sakamoto N, Sentani K, Oue N, Yasui W, Tashiro H, Ohdan H. Synbiotics suppress colitis-induced tumorigenesis in a colon-specific cancer mouse model. PLoS One 2019; 14:e0216393. [PMID: 31242213 PMCID: PMC6594584 DOI: 10.1371/journal.pone.0216393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
Although synbiotics may be effective in maintaining remission of inflammatory bowel disease, their anticarcinogenic effects are still debated. To address this issue, we evaluated the effects of synbiotics, probiotics, and prebiotics on tumorigenesis using a CDX2P-Cre; Apc+/flox mouse model harboring a colon-specific Apc knock out, which develops adenoma and adenocarcinoma of the colon. Dextran sodium sulfate (DSS)-administration promoted colonic tumor development in CDX2P-Cre; Apc+/flox mice, and these tumors were associated with loss of Apc heterozygosity, as confirmed by observation of well-differentiated adenocarcinomas with β-catenin accumulation in tumor cell cytoplasm. Synbiotics-treatment suppressed dextran sodium sulfate-induced colitis in CDX2P-Cre; Apc+/flox mice, thereby reducing mortality, and inhibited tumorigenesis accelerated by DSS-administration. Conversely, neither probiotics nor prebiotics had any effect on inflammation and tumorigenesis. Lactobacillus casei and Bifidobacterium breve were detected in the fecal microbiota of probiotics-treated mice. Synbiotics-treatment suppressed DSS-induced expression of IL-6, STAT-3, COX-2, and TNF-α gene transcripts in normal colonic epithelium, indicating the possibility of suppressing tumor development. Importantly, these genes may be potential therapeutic targets in inflammation-associated colon cancer.
Collapse
Affiliation(s)
- Yasufumi Saito
- Department of Gastroenterological and Transplant Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Hinoi
- Department of Gastroenterological and Transplant Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, Japan
- Department of Surgery, Division of Molecular Oncology, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
- * E-mail:
| | - Tomohiro Adachi
- Department of Gastroenterological and Transplant Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masashi Miguchi
- Department of Gastroenterological and Transplant Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Niitsu
- Department of Gastroenterological and Transplant Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Vanderbilt University Medical Center, GI medicine, Nashville, Tennessee, United States of America
| | - Masatoshi Kochi
- Department of Gastroenterological and Transplant Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruki Sada
- Department of Gastroenterological and Transplant Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirotaka Tashiro
- Department of Gastroenterological and Transplant Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Surgery, Division of Molecular Oncology, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Division of Medicine, Biomedical Sciences Major, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
33
|
Homoectoine Protects Against Colitis by Preventing a Claudin Switch in Epithelial Tight Junctions. Dig Dis Sci 2019; 64:409-420. [PMID: 30269272 DOI: 10.1007/s10620-018-5309-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are multifactorial disorders affecting millions of people worldwide with alarmingly increasing incidences every year. Dysfunction of the intestinal epithelial barrier is associated with IBD pathogenesis, and therapies include anti-inflammatory drugs that enhance intestinal barrier function. However, these drugs often have adverse side effects thus warranting the search for alternatives. Compatible solutes such as bacterial ectoines stabilize cell membranes and proteins. AIM To unravel whether ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) and homoectoine (4,5,6,7-tetrahydro-2-methyl-1H-(1,3)-diazepine-4-carboxylic acid), a synthetic derivative of ectoine, have beneficial effects during dextran sulfate sodium (DSS)-induced colitis in mice. METHODS/RESULTS We found that the disease activity index was significantly reduced by both ectoines. DSS-induced edema formation, epithelial permeability, leukocyte recruitment and tissue damage were reduced by ectoine and homoectoine, with the latter having stronger effects. Interestingly, the claudin switch usually observed during colitis (decreased expression of claudin-1 and increased expression of the leaky claudin-2) was completely prevented by homoectoine, whereas ectoine only reduced claudin-2 expression. Concomitantly, only homoectoine ameliorated the drop in transepithelial electrical resistance induced by IFN-γ and TNF-α in Caco-2 cells. Both ectoines inhibited loss of ZO-1 and occludin and prevented IFN-γ/TNF-α-induced increased paracellular flux of 4 kDa FITC-dextran in vitro. Moreover, both ectoines reduced expression of pro-inflammatory cytokines and oxidative stress during colitis. CONCLUSION While both ectoine and homoectoine have protective effects on the epithelial barrier during inflammation, only homoectoine completely prevented the inflammatory claudin switch in tight junctions. Thus, homoectoine may serve as diet supplement in IBD patients to reach or extend remission.
Collapse
|
34
|
Ghodsi R, Kheirouri S. Positive Association Between Plasma Levels of Advanced Glycation and Precursor of Lipoxidation end Products with Gastrointestinal Problems in Children with Autism. Curr Pediatr Rev 2019; 15:184-190. [PMID: 31264551 DOI: 10.2174/1573396315666190628141333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increased oxidative stress has been reported in autistic patients besides, evidence linking oxidative stress to enhancement of advanced glycation and lipoxidation end products (AGEs and ALEs) and their precursors. OBJECTIVE This study aimed to compare the plasma levels of the AGEs and precursors of ALEs in autistic and healthy children and to evaluate their relationship with autism comorbidities. METHODS In this descriptive study, 54 children, 36 autistic and 18 healthy participated. Plasma levels of AGEs and precursors of ALEs were measured by ELISA method. Severity of autism and Gastrointestinal (GI) disorders were measured by GARSII questionnaire and QPGS-ROME III questionnaire, respectively. RESULTS Plasma levels of AGEs and precursors of ALEs in autistic children were comparable with healthy children. Plasma levels of AGEs and precursor of ALEs were correlated with physical activity and GI disorders in autistic children. A strong association was also found between AGEs and precursors of ALEs. CONCLUSION The results indicate that AGEs and ALEs have a strong correlation together but the AGEs and precursor of ALEs in autistic children are not different from healthy children.
Collapse
Affiliation(s)
- Ramin Ghodsi
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Process Design of the Antioxidant Shuidouchi and Its Effect on Preventing Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice via Antioxidant Activity. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app9010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Shuidouchi is a traditionally fermented soybean product in China. Shuidouchi production requires a variety of processes; however, the production process has not been standardized. It can be developed into high-quality products with enhanced health effects by improving the design of its fermentation process and increasing the content of its active ingredients. In this study, a single-factor experiment was conducted that established different process conditions to determine the fermentation conditions that achieve the highest content of active ingredients and the best in vitro antioxidant effect. The effect of Shuidouchi on the prevention of dextran sulfate sodium-induced colitis in mice was also observed. The obtained results indicated that the optimal process conditions involved soaking for 12 h, placement in a glass container, and fermentation at 35 °C for 48 h. Shuidouchi that was fermented under such conditions had the highest level of soybean isoflavones and exerted greater antioxidant effects than if fermented under other conditions. The Shuidouchi extract (soaking twice the quantity of water for 12 h, placing in a glass container, and fermenting at 35 °C for 48 h) obtained by using the optimal fermentation process can prevent the shortening of the colon and increase the weight-to-length ratio of the colon that is caused by colitis. Shuidouchi extraction not only effectively reduces the disease activity index and the levels of serum endothelin (ET), substance P (SP), and interleukin-10 (IL-10), it also increases the levels of somatostatin (SS), vasoactive intestinal peptide (VIP), and interleukin-2 (IL-2) of mice with colitis. In addition, Shuidouchi extraction increased the levels of glutathione (GSH) and superoxide dismutase (SOD) in colitis mice; in contrast, Shuidouchi decreased the levels of myeloperoxidase (MPO) and malondialdehyde (MDA) in the colon of mice with colitis. Further detection of mRNA in colon tissues showed that Shuidouchi extraction can upregulate the expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), c-Kit, and the stem cell factor (SCF). Furthermore, it can downregulate the expression of inducible nitric oxide synthase (iNOS), interleukin-8 (IL-8), and C-X-C chemokine receptor type 2 (CXCR2) in the colon of mice with colitis. Further experimental results showed that Shuidouchi could reduce the protein expression of interleukin 6 (IL-6), IL-12, and tumor necrosis factor-α (TNF-α) in colitic mice. Therefore, the improved processing of Shuidouchi inhibits colitis, which is directly related to the high content of soybean isoflavones.
Collapse
|
36
|
The Mitochondrial Genes BAK1, FIS1 and SFN are Linked with Alterations in Mitochondrial Membrane Potential in Barrett's Esophagus. Int J Mol Sci 2018; 19:ijms19113483. [PMID: 30404157 PMCID: PMC6275077 DOI: 10.3390/ijms19113483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/27/2018] [Accepted: 11/03/2018] [Indexed: 01/20/2023] Open
Abstract
Barrett's esophagus and esophageal cancer lack prognostic markers that allow the tailoring of personalized medicine and biomarkers with potential to provide insight into treatment response. This study aims to characterize mitochondrial function across the metaplasia-dysplasia-adenocarcinoma disease sequence in Barrett's esophagus and examines the functional effect of manipulating mitochondrial genes. Mitochondrial genes of interest were validated in in vitro cell lines across the metaplasia (QH), dysplasia (GO) and adenocarcinoma (OE33) sequence and in in vivo patient tissue samples. These genes were subsequently knocked down in QH and OE33 cells and the functional effect of siRNA-induced knockdown on reactive oxygen species production, mitochondrial mass, mitochondrial membrane potential and cellular metabolism was investigated. Three global mitochondrial genes (BAK1, FIS1 and SFN) were differentially altered across the in vivo Barrett's disease sequence. We also demonstrate that knockdown of BAK1, FIS1 and SFN in vitro resulted in significant alterations in mitochondrial membrane potential; however, no differences in reactive oxygen species or mitochondrial mass were observed. Furthermore, knockdown of these genes in esophageal adenocarcinoma cells significantly altered cellular metabolism. In conclusion, we found that differential expression of BAK1, FIS1, and SFN were altered across the Barrett's disease sequence and manipulation of these genes elicited significant effects on mitochondrial membrane potential.
Collapse
|
37
|
Yang M, Wang J, Yang C, Han H, Rong W, Zhang G. Oral administration of curcumin attenuates visceral hyperalgesia through inhibiting phosphorylation of TRPV1 in rat model of ulcerative colitis. Mol Pain 2018; 13:1744806917726416. [PMID: 28812431 PMCID: PMC5562337 DOI: 10.1177/1744806917726416] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Curcumin has been reported to have anti-inflammatory and anti-nociceptive effects. The present study was designed to explore the potential therapeutic effects of curcumin on visceral hyperalgesia and inflammation in a rat model of ulcerative colitis. We observed the effects of orally administered curcumin on the disease activity index, histological change in colon, colorectal distension-induced abdominal withdrawal reflex, the expression of transient receptor potential vanilloid 1 (TRPV1) and phosphorylated TRPV1 in dextran sulfate sodium-induced colitis rats. In addition, a HEK293 cell line stably expressing human TRPV1 (hTRPV1) was used to examine the effects of curcumin on the change in membrane expression of TRPV1 induced by phorbol myristate acetate (a protein kinase C activator). Results Repeated oral administration of curcumin inhibited the increase in abdominal withdrawal reflex score induced by dextran sulfate sodium without affecting dextran sulfate sodium-induced histological change of colon and the disease activity index. A significant increase in colonic expression of TRPV1 and pTRPV1 was observed in dextran sulfate sodium-treated rats and this was reversed by oral administration of curcumin. TRPV1 expression in L6-S1 dorsal root ganglion was increased in the small- to medium-sized isolectin B4-positive non-peptidergic and calcitonin gene-related peptide-positive peptidergic neurons in dextran sulfate sodium-treated rats and oral administration of curcumin mitigated such changes. In the HEK293 cell line stably expressing hTRPV1, curcumin (1, 3 µm) inhibited phorbol myristate acetate-induced upregulation of membrane TRPV1. Conclusion Oral administration of curcumin alleviates visceral hyperalgesia in dextran sulfate sodium-induced colitis rats. The anti-hyperalgesic effect is partially through downregulating the colonic expression and phosphorylation of TRPV1 on the afferent fibers projected from peptidergic and non-peptidergic nociceptive neurons of dorsal root ganglion.
Collapse
Affiliation(s)
- Mei Yang
- 1 Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Anatomy and Physiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Wang
- 1 Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Anatomy and Physiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxue Yang
- 3 Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxiu Han
- 3 Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifang Rong
- 1 Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Anatomy and Physiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohua Zhang
- 1 Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Department of Anatomy and Physiology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
4-methylesculetin, a coumarin derivative, ameliorates dextran sulfate sodium-induced intestinal inflammation. Chem Biol Interact 2018; 280:59-63. [PMID: 29217385 DOI: 10.1016/j.cbi.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
|
39
|
Anti-inflammatory effect of glucose-lysine Maillard reaction products on intestinal inflammation model in vivo. Int Immunopharmacol 2017; 52:324-332. [PMID: 28987931 DOI: 10.1016/j.intimp.2017.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic disorders that are characterized by intestinal epithelial inflammation and injury. Currently, the most employed therapies are antibiotics and anti-inflammatory drugs; however, the side effects limit long-term effectiveness. We evaluated the impact of glucose-lysine Maillard reaction products (Glc-Lys MRPs) on colitis, induced in rats by an administration of 5% dextran sulfate sodium (DSS) in drinking water. Glc-Lys MRPs ameliorate DSS-induced colitis, as determined by a decrease in disease index activity, colon weight/length ratio, nitric oxide levels in serum, recovery of body weight loss, colon length and serum lysozyme levels. Furthermore, Glc-Lys MRPs increase the glutathione content and the activity of glutathione peroxidase, superoxide dismutase and catalase, and inhibit lipid peroxidation and myeloperoxidase activity in colon tissues. In particular, Glc-Lys MRPs suppress the mRNA level of the inflammatory cytokines and nuclear factor-κB in colon tissues. This study suggests the potential of Glc-Lys MRPs in preventing or treating IBDs.
Collapse
|
40
|
Seo H, Oh J, Hahn D, Kwon CS, Lee JS, Kim JS. Protective Effect of Glyceollins in a Mouse Model of Dextran Sulfate Sodium-Induced Colitis. J Med Food 2017; 20:1055-1062. [PMID: 28956670 DOI: 10.1089/jmf.2017.3960] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glyceollins, which are derived from daidzein in soybean in response to various stimuli or stresses, have been reported to activate antioxidant/detoxifying enzymes in a nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent manner, in addition to exerting anti-inflammatory effects in murine macrophages. As the Nrf2 signaling pathway is known to antagonize nuclear factor (NF)-κB signaling, glyceollins likely have the potential to prevent or treat inflammatory bowel disease. Thus, this study was conducted to examine whether glyceollins could inhibit dextran sulfate sodium (DSS)-induced colitis in a mouse model. Ulcerative colitis (UC) was induced in male BALB/c mice by administering drinking water with 4% DSS for 5 days. Glyceollins (4 or 10 mg/kg of body weight) were orally administered 48 h before and after DSS treatment. We found that glyceollins alleviated histological colon damage and inflammation induced by DSS treatment. More specifically, glyceollins reduced plasma levels of inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6, which were otherwise markedly increased by DSS treatment. Markers of tissue damage, including malondialdehyde and 8-hydroxy-2-guanosine, were significantly increased by DSS treatment; however, this effect was mitigated through concomitant treatment with glyceollins. Furthermore, nuclear accumulation of NF-κB p65 and the expression of inducible nitric oxide synthase were upregulated by glyceollins, consistent with the observed modulation of inflammatory markers. In conclusion, glyceollins have therapeutic potential for UC and merit further clinical study.
Collapse
Affiliation(s)
- Hyelin Seo
- 1 School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University , Daegu, Korea
| | - Jisun Oh
- 1 School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University , Daegu, Korea
| | - Dongyup Hahn
- 1 School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University , Daegu, Korea.,2 Institute of Agricultural Science and Technology, Kyungpook National University , Daegu, Korea
| | - Chong-Suk Kwon
- 3 Department of Food and Nutrition, Andong National University , Andong, Korea
| | - Jeong Soon Lee
- 4 Forest Resources Development Institute , Gyeongsangbuk-do, Korea
| | - Jong-Sang Kim
- 1 School of Food Science and Biotechnology (BK21 Plus), Kyungpook National University , Daegu, Korea.,2 Institute of Agricultural Science and Technology, Kyungpook National University , Daegu, Korea
| |
Collapse
|
41
|
El-Ashmawy NE, Khedr NF, El-Bahrawy HA, El-Adawy SA. Downregulation of iNOS and elevation of cAMP mediate the anti-inflammatory effect of glabridin in rats with ulcerative colitis. Inflammopharmacology 2017; 26:551-559. [PMID: 28707183 DOI: 10.1007/s10787-017-0373-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/01/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alternative medicine is widely accepted by public and becoming an attractive approach for treatment of various diseases. Glabridin (Gla), a major flavonoid present in licorice root, was reported to have antioxidant and anti-inflammatory properties. OBJECTIVE The study aimed to investigate the possible protective role of Gla against dextran sulphate sodium (DSS)-induced ulcerative colitis (UC) in rats and to clarify the molecular mechanisms underlying Gla function. METHODS Forty male Wistar rats were divided into control, colitis group (rats received 5% DSS in drinking water for 7 days), Gla group (50 mg/kg, orally, once daily), and sulfasalazine (SLZ) group (500 mg/kg, orally, once daily). Each of Gla and SLZ was administered 1 week ahead of DSS and parallel with its administration. RESULTS Gla ameliorated the inflammatory alterations induced by DSS. Gla group showed a reduction in colon concentration of tumor necrosis factor-alpha (TNF-α) and a decreased colon myeloperoxidase activity (MPO). Gla treatment downregulated inducible nitric oxide synthase (iNOS) gene expression in rat colon with a decreased content of nitric oxide (NO). Gla also increased cyclic AMP (cAMP) concentration in rat colon compared to colitis group. Such findings were comparable to or even better than those obtained by SLZ treatment. The histological features of UC such as ulceration and inflammatory cell infiltrations were improved in rat group treated by Gla. CONCLUSION Gla proved a potent anti-inflammatory role in UC through different mechanisms and, being a natural product, it could be safely used as a protective measure in inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbia, 31527, Egypt
| | - Naglaa F Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbia, 31527, Egypt
| | - Hoda A El-Bahrawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbia, 31527, Egypt
| | - Samar A El-Adawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, El-Bahr Street, Tanta, El-Gharbia, 31527, Egypt.
| |
Collapse
|
42
|
Shin SK, Cho JH, Kim EJ, Kim EK, Park DK, Kwon KA, Chung JW, Kim KO, Kim YJ. Anti-inflammatory and anti-apoptotic effects of rosuvastatin by regulation of oxidative stress in a dextran sulfate sodium-induced colitis model. World J Gastroenterol 2017; 23:4559-4568. [PMID: 28740344 PMCID: PMC5504371 DOI: 10.3748/wjg.v23.i25.4559] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the anti-inflammatory and anti-apoptotic effects of rosuvastatin by regulation of oxidative stress in a dextran sulfate sodium (DSS)-induced colitis model.
METHODS An acute colitis mouse model was induced by oral administration of 5% DSS in the drinking water for 7 d. In the treated group, rosuvastatin (0.3 mg/kg per day) was administered orally before and after DSS administration for 21 d. On day 21, mice were sacrificed and the colons were removed for macroscopic examination, histology, and Western blot analysis. In the in vitro study, IEC-6 cells were stimulated with 50 ng/mL tumor necrosis factor (TNF)-α and then treated with or without rosuvastatin (2 μmol/L). The levels of reactive oxygen species (ROS), inflammatory mediators, and apoptotic markers were measured.
RESULTS In DSS-induced colitis mice, rosuvastatin treatment significantly reduced the disease activity index and histological damage score compared to untreated mice (P < 0.05). Rosuvastatin also attenuated the DSS-induced increase of 8-hydroxy-2’-deoxyguanosine and NADPH oxidase-1 expression in colon tissue. Multiplex ELISA analysis revealed that rosuvastatin treatment reduced the DSS-induced increase of serum IL-2, IL-4, IL-5, IL-6, IL-12 and IL-17, and G-CSF levels. The increased levels of cleaved caspase-3, caspase-7, and poly (ADP-ribose) polymerase in the DSS group were attenuated by rosuvastatin treatment. In vitro, rosuvastatin significantly reduced the production of ROS, inflammatory mediators and apoptotic markers in TNF-α-treated IEC-6 cells (P < 0.05).
CONCLUSION Rosuvastatin had the antioxidant, anti-inflammatory and anti-apoptotic effects in DSS-induced colitis model. Therefore, it might be a candidate anti-inflammatory drug in patients with inflammatory bowel disease.
Collapse
|
43
|
Streck EL, De Prá SDT, Ferro PR, Carvalho-Silva M, Gomes LM, Agostini JF, Damiani A, Andrade VM, Schuck PF, Ferreira GC, Scaini G. Role of antioxidant treatment on DNA and lipid damage in the brain of rats subjected to a chemically induced chronic model of tyrosinemia type II. Mol Cell Biochem 2017; 435:207-214. [PMID: 28547180 DOI: 10.1007/s11010-017-3070-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/13/2017] [Indexed: 11/28/2022]
Abstract
Tyrosine levels are abnormally elevated in tissues and body fluids of patients with inborn errors of tyrosine metabolism. Tyrosinemia type II, which is caused by tyrosine aminotransferase deficiency, provokes eyes, skin, and central nervous system disturbances in affected patients. However, the mechanisms of brain damage are still poorly known. Considering that studies have demonstrated that oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia, in the present study we investigated the effects of antioxidant treatment (NAC and DFX) on DNA damage and oxidative stress markers induced by chronic administration of L-tyrosine in cerebral cortex, hippocampus, and striatum of rats. The results showed elevated levels of DNA migration, and thus DNA damage, after chronic administration of L-tyrosine in all the analyzed brain areas, and that the antioxidant treatment was able to prevent DNA damage in cerebral cortex and hippocampus. However, the co-administration of NAC plus DFX did not prevent the DNA damage in the striatum. Moreover, we found a significant increase in thiobarbituric acid-reactive substances (TBA-RS) and DCFH oxidation in cerebral cortex, as well as an increase in nitrate/nitrite levels in the hippocampus and striatum. Additionally, the antioxidant treatment was able to prevent the increase in TBA-RS levels and in nitrate/nitrite levels, but not the DCFH oxidation. In conclusion, our findings suggest that reactive oxygen and nitrogen species and oxidative stress can play a role in DNA damage in this disorder. Moreover, NAC/DFX supplementation to tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the current treatment of this disease.
Collapse
Affiliation(s)
- Emilio L Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil. .,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| | - Samira D T De Prá
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Paula Ronsani Ferro
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Jotele F Agostini
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Adriani Damiani
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.,Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| |
Collapse
|
44
|
Farombi EO, Adedara IA, Ajayi BO, Idowu TE, Eriomala OO, Akinbote FO. 6-Gingerol improves testicular function in mice model of chronic ulcerative colitis. Hum Exp Toxicol 2017; 37:358-372. [DOI: 10.1177/0960327117703689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- EO Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - IA Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - BO Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - TE Idowu
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - OO Eriomala
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - FO Akinbote
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
45
|
Teodorak BP, Scaini G, Carvalho-Silva M, Gomes LM, Teixeira LJ, Rebelo J, De Prá SDT, Zeni N, Schuck PF, Ferreira GC, Streck EL. Antioxidants reverse the changes in energy metabolism of rat brain after chronic administration of L.-tyrosine. Metab Brain Dis 2017; 32:557-564. [PMID: 27924409 DOI: 10.1007/s11011-016-9936-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
Tyrosinemia type II is a rare autosomal recessive disease caused by deficiency of hepatic tyrosine aminotransferase and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that high concentrations of tyrosine provoke mitochondrial dysfunction and oxidative stress, in the present study we investigated the in vivo influence of antioxidants (N-acetylcysteine, NAC; and deferoxamine, DFX) administration on the inhibitory effects on parameters of energy metabolism in cerebral cortex, hippocampus and striatum of rats, provoked by chronic administration of L.-tyrosine. Our results showed that chronic administration of L.-tyrosine results in a marked decrease in the activity of citrate synthase in all the analyzed structures and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants administration can prevent this inhibition in hippocampus and striatum. Moreover, chronic administration of L.-tyrosine inhibited the activity of complex I, II-III and IV in the striatum, which can be prevented by antioxidant treatment. However, the co-administration of NAC plus DFX could not prevent the inhibition of creatine kinase activity in the striatum. In conclusion, the present study demonstrates that the administration of antioxidants NAC and DFX attenuates the L.-tyrosine effects on enzymes of the Krebs cycle and the mitochondrial respiratory chain, suggesting that impairment of energy metabolism can be involved with oxidative stress. These results also indicate a possible neuroprotective role for NAC and DFX as a potential adjuvant therapy to the patients with Tyrosinemia type II.
Collapse
Affiliation(s)
- Brena P Teodorak
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Milena Carvalho-Silva
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Lara M Gomes
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Letícia J Teixeira
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Joyce Rebelo
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Samira D T De Prá
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Neila Zeni
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
46
|
da Costa Gonçalves F, Grings M, Nunes NS, Pinto FO, Garcez TNA, Visioli F, Leipnitz G, Paz AH. Antioxidant properties of mesenchymal stem cells against oxidative stress in a murine model of colitis. Biotechnol Lett 2017; 39:613-622. [PMID: 28032203 DOI: 10.1007/s10529-016-2272-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the effects of oxidative stress injury in dextran sulfate sodium (DSS)-induced colitis in mice treated with mesenchymal stem cells (MSC). RESULTS Mice exposed to oral administration of 2% DSS over 7 days presented a high disease activity index and an intense colonic inflammation. Systemic infusion of MSC protected from severe colitis, reducing weight loss and diarrhea while lowering the infiltration of inflammatory cells. Moreover, toxic colitis injury increased oxidative stress. Administration of DSS decreased reduced glutathione (GSH) and superoxide dismutase (SOD) activity, and increased thiobarbituric acid-reactive substances levels in the colon. No alteration was found in catalase (CAT) and glutathione peroxidase (GPx) activity. Otherwise, MSC transplantation was able to prevent the decrease of GSH levels and SOD activity suggestive of an antioxidant property of MSC. CONCLUSION The oxidative stress is a pathomechanism underlying the pathophysiology of colitis and MSC play an important role in preventing the impairment of antioxidants defenses in inflamed colon.
Collapse
Affiliation(s)
- Fabiany da Costa Gonçalves
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil.
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre, RS, CEP 90035-903, Brazil.
| | - Mateus Grings
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Natália Schneider Nunes
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Fernanda Otesbelgue Pinto
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Tuane Nerissa Alves Garcez
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Fernanda Visioli
- Oral Pathology Department, School of Dentistry, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2492, Porto Alegre, RS, CEP 90035-007, Brazil
| | - Guilhian Leipnitz
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2600, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Ana Helena Paz
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, Porto Alegre, RS, CEP 90035-903, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre, RS, CEP 90035-903, Brazil
| |
Collapse
|
47
|
Taya S, Kakehashi A, Wongpoomchai R, Gi M, Ishii N, Wanibuchi H. Preventive Effects of Spirogyra neglecta and a Polysaccharide Extract against Dextran Sodium Sulfate Induced Colitis in Mice. Asian Pac J Cancer Prev 2017; 17:2235-45. [PMID: 27221924 DOI: 10.7314/apjcp.2016.17.4.2235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ulcerative colitis (UC) results from colonic epithelial barrier defects and impaired mucosal immune responses. In this study, we aimed to investigate the modifying effects of a Spirogyra neglecta extract (SNE), a polysaccharide extract (PE) and a chloroform fraction (CF) on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the mechanisms. To induce colitis, ICR mice received 3% DSS in their drinking water for 7 days. Seven days preceding the DSS treatment, oral administration of SNE, PE and CF at doses of 50, 25 and 0.25 mg/kg body weight (low dose), 200, 100 and 1 mg/kg body weight (high dose) and vehicle was started and continued for 14 days. Histologic findings showed that DSS-induced damage of colonic epithelial structure and inflammation was attenuated in mice pre-treated with SNE, PE and CF. Furthermore, SNE and PE significantly protected colonic epithelial cells from DSS-induced cell cycle arrest, while SNE, PE and CF significantly diminished apoptosis. Proteome analysis demonstrated that SNE and PE might ameliorate DSS-induced colitis by inducing antioxidant enzymes, restoring impaired mitochondria function, and regulating inflammatory cytokines, proliferation and apoptosis. These results suggest that SNE and PE could prevent DSS-induced colitis in ICR mice by protection against and/or aiding recovery from damage to the colonic epithelium, reducing ROS and maintaining normal mitochondrial function and apoptosis.
Collapse
Affiliation(s)
- Sirinya Taya
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Asahi-machi, Abeno-ku, Osaka, Japan E-mail : wani@ med.osaka-cu.ac.jp
| | | | | | | | | | | |
Collapse
|
48
|
Kunde DA, Chong WC, Nerurkar PV, Ahuja KD, Just J, Smith JA, Guven N, Eri RD. Bitter melon protects against ER stress in LS174T colonic epithelial cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:2. [PMID: 28049460 PMCID: PMC5210302 DOI: 10.1186/s12906-016-1522-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Bitter Melon (BM) has been used as a functional food in traditional Chinese and Indian medicine for many generations and has gained a great deal of attention due to its apparent benefits in moderating some of the pathogenic processes in a variety of inflammatory conditions. BM extract (BME) has been shown to possess strong anti-oxidant properties. In addition, it can ameliorate oxidative stress and potentially ER stress. There is increasing evidence that oxidative and ER stress are major contributors for intestinal secretory cell dysfunction which leads to local inflammation and disease pathogenesis that are hallmarks of inflammatory bowel diseases (IBD). Hence, the search for potential therapeutics against ER stress and oxidative stress in intestinal epithelial secretory cells may provide valuable resources for the management of IBD. The aim of the present study was to investigate the effects of BME in ameliorating ER stress in colonic epithelial cells. METHODS Human colonic adenocarcinoma LS174T cells were used for the assessment of BME effects on colonic epithelial cells in vitro. Cell viability was assessed using trypan blue exclusion and the effect of BME in ameliorating tunicamycin (TM)-induced ER stress was determined by analysing the mRNA expression of the common ER stress markers; ATF6, XBP1, GRP78, CHOP and PERK by quantitative RT-PCR and GRP78 and CHOP by western blot. RESULTS In the absence of ER stress, BME exhibited no cell toxicity up to 2.0% w/v and no significant effect on the basal mRNA expression of ER stress markers in LS174T cells. In contrast, pre-treatment of LS174T cells with BME followed by induction of ER stress resulted in a significant decrease in mRNA expression of ATF6, XBP1, GRP78, CHOP and PERK and protein expression of GRP78 and CHOP. Co-treatment during induction of ER stress and post- treatment following induction of ER Stress in LS174T cells resulted in a lower but still significant reduction in mRNA expression levels of most ER stress markers. CONCLUSIONS This is one of the first studies demonstrating the efficacy of BME in reducing expression of ER stress markers in colonic epithelial cells suggesting the potential of BME as a dietary intervention in ameliorating ER stress and oxidation in IBD. Interestingly, while the most significant effect was seen with pre-treatment of cells with BME there was a reduced but still significant effect when co-treated or even post-treated. This suggests that BME may even be effective in modulating ER stress in the face of an existing cell stress environment.
Collapse
|
49
|
Petronilho F, Michels M, Danielski LG, Goldim MP, Florentino D, Vieira A, Mendonça MG, Tournier M, Piacentini B, Giustina AD, Leffa DD, Pereira GW, Pereira VD, Rocha JBTD. Diphenyl diselenide attenuates oxidative stress and inflammatory parameters in ulcerative colitis: A comparison with ebselen. Pathol Res Pract 2016; 212:755-60. [DOI: 10.1016/j.prp.2016.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
|
50
|
Abstract
BACKGROUND Cellular oxidative stress and genetic susceptibility have been implicated in the multifactorial etiology of ulcerative colitis (UC). The nuclear genome association with UC has been intensely investigated, but the role of the mitochondrial DNA (mtDNA) has received far less attention and may account for part of the missing heritability. This study is a comprehensive analysis of the mtDNA contribution to UC susceptibility. METHODS The association of mitochondrial single-nucleotide polymorphisms (mtSNPs) and haplogroups with UC was tested in 488 cases and 833 controls of European ancestry from the NIDDK IBD Genetics Consortium Ulcerative Colitis Genome-Wide Association Study available through dbGaP and from the Illumina Genotype Control Database (studies 64 and 65). RESULTS No evidence of population stratification could be detected using 218 ancestry informative markers for European Americans. Seven of the 58 tested mtSNPs were nominally associated with UC, and A10550G in MT-ND4L withstands the Bonferroni correction (P = 1.29E-06, odds ratio [ORG] [95% confidence interval (CI)] = 4.80 [2.54-9.05], 10550G allele: 8.1% of patients and 1.9% of controls). A10550G remains equally associated after conditional analyses on the 11 UC genome-wide association studies (GWAS) top SNPs (6.35E-07 < Pcond < 4.58E-06), which suggests that it constitutes an independent risk factor from nuclear-encoded susceptibility loci. We detected additive (but not multiplicative) epistatic interactions between A10550G and all 11 top GWAS hits. Subhaplogroup K1 (P = 0.021, OR [95% CI] = 1.71 [1.08-2.69]) increased the risk for UC, whereas the U5b lineage conferred protection (P = 0.016, OR [95% CI] = 0.34 [0.14-0.82]). CONCLUSIONS These results suggest that UC has a dual mitochondrial and nuclear genetic control that warrants further replication in independent data sets and reinforces its etiopathogenic complexity.
Collapse
|