1
|
Tang YL, Zhu L, Tao Y, Lu W, Cheng H. Role of targeting TLR4 signaling axis in liver-related diseases. Pathol Res Pract 2023; 244:154410. [PMID: 36917917 DOI: 10.1016/j.prp.2023.154410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Toll-like receptor 4 (TLR4) plays an important role as a key signal-receiving transmembrane protein molecule in the liver, and substances that target the liver exert therapeutic effects via TLR4-related signaling pathways. This article provides a comprehensive review of targeting the TLR4 signaling axis to play an important role in the liver based on endogenous substances. Articles were divided into 5 major types of liver disease, acute liver injury, viral hepatitis, alcoholic and non-alcoholic liver disease, cirrhosis, and liver cancer, to elucidate how various endogenous substances affect the liver via the TLR4 pathway and the important role of the pathway itself in liver-related diseases to discover the potential therapeutic implications of the TLR4-related pathway in the liver. The results indicate that activation of the TLR4-related signaling axis primarily plays a role in promoting disease progression in liver-related diseases, and the TLR4/MyD88/NF-κB axis plays the most dominant role. Therefore, exploring the full effects of drugs targeting the TLR4-related signaling axis in the liver and the new use of old drugs may be a new research direction.
Collapse
Affiliation(s)
- Ying-Le Tang
- Medical College, Yangzhou University, Yangzhou, China
| | - Lin Zhu
- Medical College, Yangzhou University, Yangzhou, China
| | - Yan Tao
- Medical College, Yangzhou University, Yangzhou, China
| | - Wen Lu
- Medical College, Yangzhou University, Yangzhou, China
| | - Hong Cheng
- Yangzhou University Medical College, Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University, Jiangsu, Yangzhou, China.
| |
Collapse
|
2
|
Wang FD, Zhou J, Chen EQ. Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Front Pharmacol 2022; 13:787748. [PMID: 35222022 PMCID: PMC8874120 DOI: 10.3389/fphar.2022.787748] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is the pathological process of excessive extracellular matrix deposition after liver injury and is a precursor to cirrhosis, hepatocellular carcinoma (HCC). It is essentially a wound healing response to liver tissue damage. Numerous studies have shown that hepatic stellate cells play a critical role in this process, with various cells, cytokines, and signaling pathways engaged. Currently, the treatment targeting etiology is considered the most effective measure to prevent and treat liver fibrosis, but reversal fibrosis by elimination of the causative agent often occurs too slowly or too rarely to avoid life-threatening complications, especially in advanced fibrosis. Liver transplantation is the only treatment option in the end-stage, leaving us with an urgent need for new therapies. An in-depth understanding of the mechanisms of liver fibrosis could identify new targets for the treatment. Most of the drugs targeting critical cells and cytokines in the pathogenesis of liver fibrosis are still in pre-clinical trials and there are hardly any definitive anti-fibrotic chemical or biological drugs available for clinical use. In this review, we will summarize the pathogenesis of liver fibrosis, focusing on the role of key cells, associated mechanisms, and signaling pathways, and summarize various therapeutic measures or drugs that have been trialed in clinical practice or are in the research stage.
Collapse
Affiliation(s)
| | | | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wang H, Li X, Dong G, Yan F, Zhang J, Shi H, Ning Z, Gao M, Cheng D, Ma Q, Wang C, Zhao M, Dai J, Li C, Li Z, Zhang H, Xiong H. Toll-like Receptor 4 Inhibitor TAK-242 Improves Fulminant Hepatitis by Regulating Accumulation of Myeloid-Derived Suppressor Cell. Inflammation 2020; 44:671-681. [PMID: 33083887 DOI: 10.1007/s10753-020-01366-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Fulminant hepatitis (FH) is an acute clinical disease with a poor prognosis and high mortality rate. The purpose of this study was to determine the protective effect of the Toll-like receptor 4 (TLR4) inhibitor TAK-242 on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced explosive hepatitis and explore in vivo and in vitro mechanisms. Mice were pretreated with TAK-242 for 3 h prior to LPS (10 μg/kg)/D-GalN (250 mg/kg) administration. Compared to the LPS/D-GalN group, the TAK-242 pretreatment group showed significantly prolonged survival, reduced serum alanine aminotransferase and aspartate aminotransferase levels, relieved oxidative stress, and reduced inflammatory interleukin (IL)-6, IL-12, and tumor necrosis factor-α levels. In addition, TAK-242 increased the accumulation of myeloid-derived suppressor cells (MDSCs). Next, mice were treated with an anti-Gr-1 antibody to deplete MDSCs, and adoptive transfer experiments were performed. We found that TAK-242 protected against FH by regulating MDSCs. In the in vitro studies, TAK-242 regulated the accumulation of MDSCs and promoted the release of immunosuppressive inflammatory cytokines. In addition, TAK-242 inhibited protein expression of nuclear factor-κB and mitogen-activated protein kinases. In summary, TAK-242 had a hepatoprotective effect against LPS/D-GalN-induced explosive hepatitis in mice. Its protective effect may be involved in suppressing inflammation, reducing oxidative stress, and increasing the proportion of MDSCs.
Collapse
Affiliation(s)
- Haiyan Wang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuehui Li
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Shandong Province, Jining, 272011, China
| | - Dalei Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
4
|
Manzoor S, Khalil S, Malik MA, Shafique K, Gul S, Javed F. Induction of Profibrotic Microenvironment via TLR4 MyD88-Dependent and -Independent Inflammatory Signaling in Chronic Hepatitis C Virus Infection. Viral Immunol 2020; 33:585-593. [PMID: 32808884 DOI: 10.1089/vim.2019.0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) is a well-known pathogen to establish chronic infection leading to end-stage liver disease. The destruction of liver tissues takes its roots under chronic inflammation and proinflammatory signaling in liver microenvironment. The viral proteins interact with certain pattern recognition receptors, including Toll-like receptors, activating the innate immune system to clear the virus. HCV achieves immune evasion through other mechanisms and induce a continuous inflammatory microenvironment via Kupffer cells and Hepatic Stellate cells. This promotes disease progression. The current study aims to elucidate that the role of Toll-like receptor 4 (TLR4) induced innate immune response in chronic inflammation in patients chronically infected with HCV. For this purpose, changes in downstream signaling cascade of TLR4 during chronic HCV infection using peripheral blood mononuclear cells of chronic HCV patients were studied. We found significant increase in expression levels of proinflammatory and profibrotic genes induced by TLR4 Myeloid differentiation factor 88 (MyD88)-dependent pathway between treatment naive and healthy controls, while no significant difference between the expressions of genes involved in TLR4 signaling was found between treatment responders and healthy controls. Interestingly, both TLR4 MyD88-dependent and -independent pathways were found to be operational in nonresponders to interferon treatment. This further strengthens the involvement of innate immune signaling as a leading factor in HCV-mediated liver disease progression and the role of TLR4 MyD88-dependent and -independent pathway in ensuring the conditions for chronic inflammation.
Collapse
Affiliation(s)
- Sobia Manzoor
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Sarah Khalil
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Maliha Ashraf Malik
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Kandeel Shafique
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Sarah Gul
- Department of Bioinformatics and Biotechnology, FBAS, International Islamic University, Islamabad, Pakistan
| | - Farakh Javed
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
5
|
Khedr LH, Rahmo RM, Farag DB, Schaalan MF, El Magdoub HM. Crocin attenuates cisplatin-induced hepatotoxicity via TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β activity: Involvement of miRNA-9 and miRNA-29. Food Chem Toxicol 2020; 140:111307. [PMID: 32259551 DOI: 10.1016/j.fct.2020.111307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
TLR4-induced mitigation of the BMP down-regulation and activin membrane bound inhibitor (BAMBI) and the consequent enhancement of the transforming growth factor-beta (TGF-β) profibrogenic signaling has not yet been studied in cisplatin (CIS)-induced hepatotoxicity. miRNA-9 and29 have been previously reported to modulate TLR4 signaling via either tempering the expression of nuclear factor kappa-B p50 (NF-κB p50) or downregulation of extracellular matrix genes respectively. Hence we aimed to investigate the involvement of TLR4-induced modulation of TGF-β receptor 1 (TGF-βR1) signaling as well as the implication of miRNA-9 and 29 in CIS-induced hepatotoxicity. Moreover, we examined the ability of the phytochemical; crocin (CROC); to interact with either TLR4 or TGF-βR1 through a molecular docking study and subsequently explore its capability to attenuate CIS-induced hepatotoxicity. CROC pretreatment ameliorated the CIS-induced enhancement of TLR4 and TGF-β signaling and enhanced the expression of BAMBI, miRNA-9 and 29. Accordingly, it may be assumed that the protective effect of CROC against CIS-induce hepatotoxicity is mediated via the crosstalk of TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β1 activity in addition to the up-regulation of miRNA-9 and 29. These findings came in alignment with our molecular docking results; emphasizing the molecular antagonistic activity of CROC in both TLR4 and TGF-βR1.
Collapse
Affiliation(s)
- L H Khedr
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Rania M Rahmo
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Doaa Boshra Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Mona F Schaalan
- Pharmacy Practice & Clinical Pharmacy Department, Faculty of Pharmacy, Translational and Clinical Research Unit, Misr International University (MIU), Cairo, Egypt
| | - Hekmat M El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|
6
|
Dong X, Liu J, Xu Y, Cao H. Role of macrophages in experimental liver injury and repair in mice. Exp Ther Med 2019; 17:3835-3847. [PMID: 31007731 PMCID: PMC6468932 DOI: 10.3892/etm.2019.7450] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
Liver macrophages make up the largest proportion of tissue macrophages in the host and consist of two dissimilar groups: Kupffer cells (KCs) and monocyte-derived macrophages (MoMø). As the liver is injured, KCs sense the injury and initiate inflammatory cascades mediated by the release of inflammatory cytokines and chemokines. Subsequently, inflammatory monocytes accumulate in the liver via chemokine-chemokine receptor interactions, resulting in massive inflammatory MoMø infiltration. When live r injury ceases, restorative macrophages, derived from recruited inflammatory monocytes (lymphocyte antigen 6 complex, locus Chi monocytes), promote the resolution of hepatic damage and fibrosis. Consequently, a large number of studies have assessed the mechanisms by which liver macrophages exert their opposing functions at different time-points during liver injury. The present review primarily focuses on the diverse functions of macrophages in experimental liver injury, fibrosis and repair in mice and illustrates how macrophages may be targeted to treat liver disease.
Collapse
Affiliation(s)
- Xiaotian Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jingqi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yanping Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
7
|
Hepatoprotective Effects of Kaempferol-3-O-α-l-Arabinopyranosyl-7-O-α-l-Rhamnopyranoside on d-Galactosamine and Lipopolysaccharide Caused Hepatic Failure in Mice. Molecules 2017; 22:molecules22101755. [PMID: 29057809 PMCID: PMC6151520 DOI: 10.3390/molecules22101755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/30/2022] Open
Abstract
Fulminant hepatic failure (FHF), associated with high mortality, is characterized by extensive death of hepatocytes and hepatic dysfunction. There is no effective treatment for FHF. Several studies have indicated that flavonoids can protect the liver from different factor-induced injury. Previously, we found that the extracts of Elaeagnus mollis leaves had favorable protective effects on acute liver injury. However, the role and mechanisms behind that was elusive. This study examined the hepatoprotective mechanisms of kaempferol-3-O-α-l-arabinopyranosyl-7-O-α-l-rhamnopyra-noside (KAR), a major flavonol glycoside of E. mollis, against d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced hepatic failure. KAR reduces the mouse mortality, protects the normal liver structure, inhibits the serum aspartate aminotransferase (AST) and alamine aminotransferase (ALT) activity and decreases the production of malondialdehyde (MDA) and reactive oxygen species (ROS) and inflammatory cytokines, TNF-α, IL-6, and IL-1β. Furthermore, KAR inhibits the apoptosis of hepatocytes and reduces the expression of TLR4 and NF-κB signaling pathway-related proteins induced by GalN/LPS treatment. These findings suggest that the anti-oxidative, anti-inflammatory, and anti-apoptotic effects of KAR on GalN/LPS-induced acute liver injury were performed through down-regulating the activity of the TLR4 and NF-κB signaling pathways.
Collapse
|
8
|
Koo HJ, Lee S, Chang KJ, Sohn E, Sohn EH, Kang SC, Pyo S. Hepatic anti-inflammatory effect of hexane extracts of Dioscorea batatas Decne: Possible suppression of toll-like receptor 4-mediated signaling. Biomed Pharmacother 2017; 92:157-167. [PMID: 28538192 DOI: 10.1016/j.biopha.2017.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
The hepatic anti-inflammatory potential of hexane extracts of Dioscorea batatas Decne edible part (EDH-1e) and bark (EDH-2b) were investigated in Western-type diet-fed apolipoprotein E null [ApoE (-/-)] mice and HepG2 cells. EDH-1e and EDH-2b suppressed the increased levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, transforming growth factor beta 1 (TGF-β1), vascular cell adhesion protein 1 (VCAM-1), and monocyte chemoattractant protein-1 (MCP-1), and reduced infiltration of monocytes into liver tissue. The protein levels of Toll-like receptor 4 (TLR4) were also downregulated by EDH-1e and EDH-2b treatment as were the levels of activator protein 1 (AP-1), c-fos, and c-jun in the livers from Western-type diet-fed ApoE (-/-) mice and in lipopolysaccharide-stimulated HepG2 cells. Taken together, EDH-1e and EDH-2b attenuated hepatic inflammation and fibrosis via suppression of the TLR4-AP1-mediated signaling pathway.
Collapse
Affiliation(s)
- Hyun Jung Koo
- Department of Medicinal and Industrial Crops, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - SungRyul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Kwang Jin Chang
- Department of Medicinal and Industrial Crops, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Eunsoo Sohn
- Department of Scientometric Research, Korea Institute of Science and Technology Information, Seoul, Republic of Korea
| | - Eun-Hwa Sohn
- Department of Herbal Medicine Resources, Kangwon National University, Samcheok 25913, Republic of Korea.
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
9
|
El-Agamy DS, Shebl AM, Shaaban AA. Modulation ofd-galactosamine/lipopolysacharride–induced fulminant hepatic failure by nilotinib. Hum Exp Toxicol 2017; 37:51-60. [DOI: 10.1177/0960327117689910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- DS El-Agamy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt
| | - AM Shebl
- Faculty of Medicine, Department of Pathology, Mansoura University, Mansoura, Egypt
| | - AA Shaaban
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Cytokines in Hepatic Injury. LIVER PATHOPHYSIOLOGY 2017. [DOI: 10.1016/b978-0-12-804274-8.00027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Osumi W, Jin D, Imai Y, Tashiro K, Li ZL, Otsuki Y, Maemura K, Komeda K, Hirokawa F, Hayashi M, Takai S, Uchiyama K. Recombinant human soluble thrombomodulin improved lipopolysaccharide/d-galactosamine-induced acute liver failure in mice. J Pharmacol Sci 2015; 129:233-9. [DOI: 10.1016/j.jphs.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/30/2015] [Accepted: 11/18/2015] [Indexed: 01/27/2023] Open
|
12
|
Mahmoud MF, Gamal S, El-Fayoumi HM. Limonin attenuates hepatocellular injury following liver ischemia and reperfusion in rats via toll-like receptor dependent pathway. Eur J Pharmacol 2014; 740:676-82. [DOI: 10.1016/j.ejphar.2014.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 01/04/2023]
|
13
|
Mahmoud MF, Hamdan DI, Wink M, El-Shazly AM. Hepatoprotective effect of limonin, a natural limonoid from the seed of Citrus aurantium var. bigaradia, on D-galactosamine-induced liver injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2014; 387:251-61. [PMID: 24258286 DOI: 10.1007/s00210-013-0937-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/30/2013] [Indexed: 12/24/2022]
Abstract
Toll-like receptors have been implicated in inflammation and injury in various tissues and organs including the liver. We have investigated the effects of limonin isolated from the dichloromethane fraction of the seeds of bittersweet orange (Citrus aurantium var. bigaradia) in two dose levels (50 and 100 mg/kg) against D-galactosamine (D-GalN)-induced liver toxicity in comparison with standard silymarin treatment on Toll-like receptors expression and hepatic injury, using a well-established rat model of acute hepatic inflammation. The limonoids in the seeds of bittersweet orange were identified. Oral administration of limonin before D-GalN injection, significantly attenuated markers of hepatic damage (elevated liver enzyme activities and total bilirubin) and hepatic inflammation (TNF-α, infiltration of neutrophils), oxidative stress and expression of TLR-4 but not TLR-2 in D-GalN-treated rats. Limonin effects were similar in most aspects to that of the lignan silymarin. The higher dose of limonin (100 mg/kg) performed numerically better for AST and bilirubin, and both doses yielded similar results for ALT and GGT. While the lower dose of limonin (50 mg/kg) performed better against oxidative stress and liver structural damage as compared to the higher dose. Limonin exerts protective effects on liver toxicity associated with inflammation and tissue injury via attenuation of inflammation and reduction of oxidative stress.
Collapse
Affiliation(s)
- Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt,
| | | | | | | |
Collapse
|
14
|
Jung MG, Do GM, Shin JH, Ham YM, Park SY, Kwon O. Acanthopanax koreanum Nakai modulates the immune response by inhibiting TLR 4-dependent cytokine production in rat model of endotoxic shock. Nutr Res Pract 2013; 7:460-5. [PMID: 24353831 PMCID: PMC3865268 DOI: 10.4162/nrp.2013.7.6.460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/04/2013] [Accepted: 07/15/2013] [Indexed: 12/13/2022] Open
Abstract
The hepatoprotective activity of Acanthopanax koreanum Nakai extract (AE) was investigated against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced liver failure rats compared with that of acanthoic acid (AA) isolated from AE. Although D-GalN/LPS (250 mg/kg body weight/10 µg/kg body weight, i.p.) induced hepatic damage, pretreatments with AE (1 and 3% AE/g day) and AA (0.037% AA, equivalent to 3% AE/g day) alleviated the hepatic damage. This effect was the result of a significant decrease in the activity of alanine transaminase. Concomitantly, both the nitric oxide and IL-6 levels in the plasma were significantly decreased by high-dose AE (AE3) treatment compared to the GalN/LPS control (AE0). This response resulted from the regulation of pro-inflammatory signaling via a decrease in TLR4 and CD14 mRNA levels in the liver. While a high degree of necrosis and hemorrhage were observed in the AE0, pretreatment with AE3 and AA reduced the extent of hepatocyte degeneration, necrosis, hemorrhage and inflammatory cell infiltrates compared to the AE0. In conclusion, these results suggest that especially high-dose AE are capable of alleviating D-GalN/LPS-induced hepatic injury by decreasing hepatic toxicity, thereby mitigating the TLR 4-dependent cytokine release. The anti-inflammatory effect of AE could be contributing to that of AA and AE is better than AA.
Collapse
Affiliation(s)
- Myung-Gi Jung
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Gyeong-Min Do
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Gyeonggi 461-713, Korea
| | - Young Min Ham
- Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 699-943, Korea
| | - Soo-Yeong Park
- Jeju Biodiversity Research Institute, Jeju Technopark, Jeju 699-943, Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
15
|
Scoparone attenuates d-galactosamine/lipopolysaccharide-induced fulminant hepatic failure through inhibition of toll-like receptor 4 signaling in mice. Food Chem Toxicol 2013; 57:132-9. [DOI: 10.1016/j.fct.2013.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/28/2023]
|
16
|
Protective effects of probiotic Lactobacillus casei Zhang against endotoxin- and d-galactosamine-induced liver injury in rats via anti-oxidative and anti-inflammatory capacities. Int Immunopharmacol 2013; 15:30-7. [DOI: 10.1016/j.intimp.2012.10.026] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/23/2012] [Accepted: 10/26/2012] [Indexed: 12/18/2022]
|
17
|
Tsujimoto T, Kawaratani H, Kitazawa T, Uemura M, Fukui H. Innate immune reactivity of the ileum-liver axis in nonalcoholic steatohepatitis. Dig Dis Sci 2012; 57:1144-51. [PMID: 22367065 DOI: 10.1007/s10620-012-2073-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 01/23/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Over-proliferation and bacterial translocation of Gram-negative bacilli within the intestinal flora, and increased portal venous levels of endotoxins, are involved in nonalcoholic steatohepatitis (NASH). AIM To evaluate the innate immune response in the small intestine and liver using the rat NASH model. METHODS We produced the NASH model by administering a choline-deficient amino acid-defined diet to F344 rats. We analyzed the serum and liver tissue to assess the effects of innate immune reactivity in this NASH model. RESULTS Significant increases were detected in serum ALT levels and in the portal venous serum and whole-liver levels of TNF-α and IFN-γ in the NASH group. Strong Sirius red staining and TNF-α immune staining were seen in the NASH group, and real-time PCR revealed significantly increased expression of TNF-α and TLR4 mRNA in the NASH group. Higher TNF-α levels were detected in the Kupffer cells isolated culture supernatant in the NASH group than in the control group. Immune staining of the ileal tissue specimens resulted in greater staining of TNF-α, TLR4, and macrophage/dendritic cells, mainly in the submucosa, in the NASH group than in the control group. CONCLUSIONS In the small intestine and liver of the rat NASH model, the possibility that enhancement of the innate immune response, mediated by the TLR4 signal, led to increased production of TNF-α was suggested. This interaction between the small intestine and liver may be involved in the onset and progression of NASH.
Collapse
Affiliation(s)
- Tatsuhiro Tsujimoto
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan.
| | | | | | | | | |
Collapse
|
18
|
Ben Ari Z, Avlas O, Pappo O, Zilbermints V, Cheporko Y, Bachmetov L, Zemel R, Shainberg A, Sharon E, Grief F, Hochhauser E. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Cell Physiol Biochem 2012; 29:41-50. [PMID: 22415073 DOI: 10.1159/000337585] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2011] [Indexed: 01/22/2023] Open
Abstract
Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF.
Collapse
Affiliation(s)
- Ziv Ben Ari
- Liver Institute, Beilinson Hospital-Rabin Medical Center, Petah Tiqwa, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sawhney R, Visvanathan K. Polymorphisms of toll-like receptors and their pathways in viral hepatitis. Antivir Ther 2011; 16:443-58. [PMID: 21685532 DOI: 10.3851/imp1820] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are an important part of the innate immune response to a variety of pathogens including hepatic viral infections. Activation of TLRs stimulates a complex intracellular signalling cascade that results in production of proinflammatory cytokines and interferons important for antiviral responses as well as induction of the adaptive arm of the immune system. There is substantial evidence for an important role for TLRs and TLR-mediated signalling in the pathogenesis and outcomes of hepatitis B and C in particular, but it might also influence responses to other viral hepatitis infections. Several single nucleotide polymorphisms (SNPs) of TLRs, relevant adaptor molecules and cytokines mediated by TLR signalling have been described that alter innate immune responses and have been implicated in a variety of human diseases including viral and other infections. There is now significant evidence that a number of TLR SNPs can affect various clinical outcomes in Caucasian patients with chronic HCV. However, the role of these polymorphisms in acute and other chronic hepatitis infections, including HBV as well as in non-Caucasian populations, has not been elucidated. In addition, results for SNPs downstream of TLR activation, such as in relevant cytokines, are inconsistent and their influence requires further investigation to determine the clinical significance of genetic variations in these mediators.
Collapse
Affiliation(s)
- Rohit Sawhney
- Innate Immunity Laboratory, Department of Medicine, Monash University, Melbourne, Australia
| | | |
Collapse
|
20
|
Duan GJ, Zhu J, Xu CY, Wan JY, Zhang L, Ge XD, Liu LM, Liu YS. Protective effect of Gö6976, a PKD inhibitor, on LPS/D: -GalN-induced acute liver injury in mice. Inflamm Res 2011; 60:357-366. [PMID: 21063746 DOI: 10.1007/s00011-010-0278-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 10/27/2010] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Protein kinase D (PKD) is a newly described serine/threonine protein kinase that plays a pivotal role in inflammatory response. In the present study, we examined the protective effect of Gö6976, a PKD inhibitor, on lipopolysaccharide (LPS) and D: -galactosamine (D: -GalN)-induced acute liver injury in mice. MATERIALS AND METHODS Mice were pretreated intraperitoneally with Gö6976 30 min before LPS/D: -GalN administration . The mortality and degree of hepatic injury was subsequently assessed. RESULTS The results indicated that LPS/D: -GalN administration markedly induced hepatic PKD activation, lethality and liver injury, while pretreatment of the PKD inhibitor Gö6976 significantly inhibited LPS-induced PKD activation, improved the survival of LPS/D: -GalN-administered mice and attenuated LPS/D: -GalN-induced liver injury, as evidenced by reduced levels of serum aminotransferases as well as reduced histopathological changes. In addition, the protective effects of Gö6976 were paralleled by suppressed activation of mitogen-activated protein kinases (MAPKs), decreased expression of tumor necrosis factor-α (TNF-α) and adhesion molecules, and reduced apoptosis and myeloperoxidase (MPO) activity in liver. CONCLUSIONS Our experimental data indicated that Gö6976, a PKD inhibitor, could effectively prevent LPS/D: -GalN-induced acute liver injury by inhibition of MAPKs activation to reduce TNF-α production. This suggests the potential pharmacological value of PKD inhibitors in the intervention of inflammation-based liver diseases.
Collapse
Affiliation(s)
- G J Duan
- Institute of Pathology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Biswas B, Yenugu S. Antimicrobial responses in the male reproductive tract of lipopolysaccharide challenged rats. Am J Reprod Immunol 2010; 65:557-68. [PMID: 21199063 DOI: 10.1111/j.1600-0897.2010.00937.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Innate immune machinery including the Toll-like receptors (TLRs) confers the first line of defense mechanisms to counter pathogenic microorganisms that enter the body. The male reproductive tract is vulnerable to infection and the role of TLRs and the antimicrobial responses that operate to counter infections in this organ system are poorly understood. METHOD OF STUDY Caput and cauda epididymides, testes and seminal vesicles were collected at 0, 3, 6, 9, 12, 15 and 24 h from rats injected intraperitoneally with a single dose of LPS. Plasma testosterone was measured using ELISA. Expression pattern of defensins and Spag11 isoforms were analysed using RT-PCR. Immunohistochemical analyses was performed to determine SPAG11E protein expression following LPS treatment. RESULTS We provide the first line of evidence that the male reproductive tract induces the expression of Sperm Associated Antigen 11 (Spag11) mRNA variants and defensins when challenged with lipopolysaccharide (LPS) with a concomitant increase in protein expression. However, there was an inverse relationship between induction of antimicrobial gene expression and plasma testosterone. An increase in the mRNA levels of proinflammatory cytokines was observed parallel to the induction of Spag11 variants and majority of defensin expression in the male reproductive tract. CONCLUSION The increase in Spag11 and defensin mRNA in response to LPS administration demonstrates their importance in protecting the male reproductive tract during infection. Results of this study help to understand male reproductive tract innate immune defense mechanisms and to design novel peptide antibiotics to prevent sexually transmitted diseases.
Collapse
Affiliation(s)
- Barnali Biswas
- Department of Animal Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
22
|
Abstract
Hepatic encephalopathy is a serious complication of acute and chronic liver diseases and has a high mortality rate. The pathogenesis of hepatic encephalopathy remains unclear, and there is no means of prevention or effective cure for the disease. Therefore, there is an urgent need for the basic and clinical research of hepatic encephalopathy to elucidate its pathogenesis. The development of animal models is important for elucidating the pathogenesis of hepatic encephalopathy and providing new avenues for diagnosis and therapy of the disease. Among a variety of animal models, rat model is applied most widely for similarity to humans, repeatability, reliability, applicability, controllability, simplicity and economy. In this paper, we briefly review various rat models of hepatic encephalopathy that have different origins.
Collapse
|
23
|
Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. FIBROGENESIS & TISSUE REPAIR 2010; 3:21. [PMID: 20964825 PMCID: PMC2984459 DOI: 10.1186/1755-1536-3-21] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/21/2010] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a family of transmembrane pattern recognition receptors (PRR) that play a key role in innate and adaptive immunity by recognizing structural components unique to bacteria, fungi and viruses. TLR4 is the most studied of the TLRs, and its primary exogenous ligand is lipopolysaccharide, a component of Gram-negative bacterial walls. In the absence of exogenous microbes, endogenous ligands including damage-associated molecular pattern molecules from damaged matrix and injured cells can also activate TLR4 signaling. In humans, single nucleotide polymorphisms of the TLR4 gene have an effect on its signal transduction and on associated risks of specific diseases, including cirrhosis. In liver, TLR4 is expressed by all parenchymal and non-parenchymal cell types, and contributes to tissue damage caused by a variety of etiologies. Intact TLR4 signaling was identified in hepatic stellate cells (HSCs), the major fibrogenic cell type in injured liver, and mediates key responses including an inflammatory phenotype, fibrogenesis and anti-apoptotic properties. Further clarification of the function and endogenous ligands of TLR4 signaling in HSCs and other liver cells could uncover novel mechanisms of fibrogenesis and facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jinsheng Guo
- Division of Liver Diseases, Mount Sinai Hospital, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
24
|
Lian LH, Jin X, Wu YL, Cai XF, Lee JJ, Nan JX. Hepatoprotective effects of Sedum sarmentosum on D-galactosamine/lipopolysaccharide-induced murine fulminant hepatic failure. J Pharmacol Sci 2010; 114:147-57. [PMID: 20838028 DOI: 10.1254/jphs.10045fp] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The hepatoprotective effects of sarmentosin-containing extracts of Sedum sarmentosum (SS) in D-galactosamine (D-GalN) / lipopolysaccharide (LPS)-induced fulminant hepatic failure mouse model. Pretreatment with SS markedly protected mice from lethal liver injury, which has known to be associated with an abrupt elevation of serum tumor necrosis factor (TNF)-α level. Indeed, SS significantly blocked the elevation of TNF-α and alanine aminotransferase and aspartate aminotransferase as well. SS also remarkably reduced number of apoptotic hepatocytes and DNA fragmentation in the liver, which correlated with blockade of caspase-3 activation. In addition, SS suppressed the increased expression of toll-like receptor 4 (TLR4). The activation of c-Jun NH(2)-terminal kinase, extracellular signal-regulated kinase, and p38 induced by D-GalN/LPS was also significantly suppressed by SS treatment. Furthermore, SS significantly inhibited the activation of nuclear factor-κB. In RAW 264.7 cells stimulated with LPS, TNF-α release and TLR4 expression was suppressed by SS pretreatment, which was in line with in vivo results. These findings suggested that SS prevents D-GalN/LPS-induced fulminant hepatic failure, and this protection is likely associated with its anti-apoptotic activity and the down-regulation of mitogen activated protein kinase activity associated at least in part with suppressing the transcription of LPS receptors.
Collapse
Affiliation(s)
- Li-Hua Lian
- Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, China
| | | | | | | | | | | |
Collapse
|
25
|
Xu YZ, Xue K, Gao Y, Pan MX, Jian GD, Liu XM, Rao JH. Establishment of a non-human primate model of acute liver failure. Shijie Huaren Xiaohua Zazhi 2010; 18:1985-1989. [DOI: 10.11569/wcjd.v18.i19.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a non-human primate model of acute liver failure (ALF).
METHODS: Fifteen healthy cynomolgus monkeys (Macaca fascicularis) were randomly divided into three groups, which were administered with D-galactosamine via the jugular vein at doses of 0.45 (high-dose group), 0.3 (medium-dose group) and 0.15 g/kg (low-dose group), respectively, to induce ALF. At 0, 12, 24, 36, 48, 60, 72 and 96 h after administration, clinical and intracranial pressure (ICP) data were recorded, and blood samples were collected for measurement of alanine aminotransferase (ALT), prothrombin time (PT), total bilirubin (TBIL), and ammonia (NH3). Animal survival time was recorded to compare the survival rates among the three groups. Postmortem examination was performed in dead cynomolgus monkeys.
RESULTS: All animals were dead in the high- and medium-dose groups, and the mean survival time was 56.1 h ± 8.1 h and 109.8 h ± 11.2 h, respectively. Only one animal died at 98 h after treatment in the low-dose group. In the high- and medium-dose groups, serum levels of ALT, PT, TBIL and NH3, and ICP were significantly higher at all time points than at baseline (0 h) (all P < 0.05). All these parameters were normal at 60 h in the low-dose group. Inflammatory cell infiltration and hepatic cell necrosis were observed in dead cynomolgus monkeys.
CONCLUSION: A cynomolgus monkey model of AHF has been successfully established and can be used for future ALF research.
Collapse
|
26
|
Kitazawa T, Tsujimoto T, Kawaratani H, Fukui H. Salvage effect of E5564, Toll-like receptor 4 antagonist on d-galactosamine and lipopolysaccharide-induced acute liver failure in rats. J Gastroenterol Hepatol 2010; 25:1009-12. [PMID: 20546456 DOI: 10.1111/j.1440-1746.2009.06145.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS The transmembrane protein Toll-like receptor 4 (TLR4), which exists mainly in macrophages such as Kupffer cells of the liver, plays an important role in recognizing and mediating macrophage activation and pro-inflammatory cytokine release. Activation of the pro-inflammatory cytokine cascade, including tumor necrosis factor-alpha (TNF-alpha), has a pivotal role in the progression of severe liver injury. D-galactosamine (GalN) and lipopolysaccharide (LPS)-induced liver injury in rats is an experimental model of fulminant hepatic failure, where TNF-alpha plays a central role in the progression of liver injury. E5564, a synthetic analogue of the lipid A component of endotoxin, inhibits endotoxin-stimulated inflammation and is under study for patients with sepsis. In the present study, we sought to explore the salvage effect of TLR4 antagonist E5564 on GalN+LPS-induced acute liver failure (ALF) in rats. METHODS ALF was induced in male Wistar rats by the intraperitoneal injection of GalN (500 mg/kg) and LPS (50 microg/kg). Immediately after GalN+LPS injection, rats were treated with intravenous injection of E5564 (3 mg/kg). The cumulative survival rates of GalN+LPS-induced ALF rats were compared between those with and without E5564 treatment. RESULTS The intravenous injection of E5564 reduced the elevation of serum total bilirubin, aspartate aminotransferase, alanine aminotransferase and TNF-alpha levels in rats at 3 h after GalN+LPS injection, and improved the survival rate of GalN+LPS-induced ALF rats at 24 h (8% vs 43%). CONCLUSIONS TLR4 antagonist E5564 reduced GalN+LPS-induced acute liver injury in rats and improved the overall survival rate of GalN+LPS-induced ALF rats. It may contribute to the treatment of ALF through blocking endotoxin-induced TNF-alpha overproduction of macrophages.
Collapse
Affiliation(s)
- Toshiyuki Kitazawa
- Third Department of Internal Medicine, Nara Medical University, Nara, Japan
| | | | | | | |
Collapse
|
27
|
Tsujimoto T, Kawaratani H, Kitazawa T, Yoshiji H, Fujimoto M, Uemura M, Fukui H. Immunotherapy for nonalcoholic steatohepatitis using the multiple cytokine production modulator Y-40138. World J Gastroenterol 2009; 15:5533-40. [PMID: 19938191 PMCID: PMC2785055 DOI: 10.3748/wjg.15.5533] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the possible use of the multiple cytokine production modulator, Y-40138, as a novel immunotherapy in the rat nonalcoholic steatohepatitis (NASH) model.
METHODS: We allocated 6-wk-old male F344 rats to choline-supplemented, L-amino acid-defined (CSAA) diet (control group), CSAA diet + Y-40138 (control + Y-40138 group), choline-deficient, L-amino acid-defined (CDAA) diet (NASH group), or CDAA diet + Y-40138 (NASH + Y-40138 group). In each group, we measured the plasma alanine aminotransferase (ALT) levels, and the plasma and liver levels of tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and interleukin-10 (IL-10). Tissue specimens of phosphate buffered saline-perfused liver were subjected to hematoxylin and eosin staining, Azan staining, Sirius red staining, and immunohistochemical staining (for Kupffer cells and TNF-α). We then extracted Kupffer cells from the collagenase-perfused livers using the Percoll gradient centrifugation method, and measured the TNF-α levels in the supernatant (in vitro TNF-α production by Kupffer cells) using an enzyme-linked immunosorbent assay kit.
RESULTS: In comparison to the NASH group, serum ALT elevation was mild, production of serum and liver TNF-α and IFN-γ was inhibited, and IL-10 production was increased in the NASH + Y-40138 group. Amelioration of liver histology was also noted in the NASH + Y-40138 group. Kupffer cell immunohistochemical staining revealed no differences between groups, whereas TNF-α immunohistochemical staining showed fewer stained cells in the NASH + Y-40138 group than in the NASH group. The TNF-α levels in the in-vitro Kupffer cell culture supernatant were lower in the NASH + Y-40138 group than in the NASH group.
CONCLUSION: Administration of Y-40138 to NASH model rats reduced hepatic inflammation and suppressed fibrosis. These results indicate that the multiple cytokine production modulator, Y-40138, is promising as a novel treatment for NASH.
Collapse
|
28
|
Kitazawa T, Tsujimoto T, Kawaratani H, Fukui H. Therapeutic approach to regulate innate immune response by Toll-like receptor 4 antagonist E5564 in rats with D-galactosamine-induced acute severe liver injury. J Gastroenterol Hepatol 2009; 24:1089-94. [PMID: 19226379 DOI: 10.1111/j.1440-1746.2008.05770.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Toll-like receptor 4 (TLR4) is a transmembrane protein, existing mainly in macrophages, such as Kupffer cells of the liver. It plays an important role in recognizing and mediating macrophage activation and pro-inflammatory cytokine release. Activation of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-alpha is pivotal in the progression of liver injury. Gut-derived endotoxin has been considered to play an important role in the development and progression of a D-galactosamine (GalN)-induced acute severe liver injury (ALI) model. E5564, a synthetic analog of the lipid A component of endotoxin, inhibits endotoxin-stimulated inflammation and is under study for patients with sepsis. In this study, we seek to explore the effect of TLR4 antagonist E5564 on GalN-induced ALI in rats. METHODS ALI was induced in male Wistar rats by the i.p. injection of 1 g/kg bodyweight of GalN and immediately after GalN injection they were treated with an i.v. injection of 3 mg/kg bodyweight of E5564. At 24 h after GalN injection with or without E5564, serum levels of total bilirubin (T.Bil), alanine aminotransferase (ALT) and TNF-alpha were analyzed. Expression levels of TNF-alpha, TLR4 and CD14 mRNA in the whole liver of rats was detected by reverse transcription polymerase chain reaction analysis. RESULTS The i.v. injection of E5564 reduced the elevation of serum T.Bil, ALT and TNF-alpha levels in rats treated with GalN. The expression level of TNF-alpha mRNA in the whole liver, which was increased at 24 h after GalN injection, was also reduced by i.v. injection of E5564. CONCLUSION TLR4 antagonist E5564 reduced GalN-induced ALI in rats. It may contribute to the treatment of acute liver failure through blocking endotoxin-induced TNF-alpha overproduction of macrophages.
Collapse
Affiliation(s)
- Toshiyuki Kitazawa
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | |
Collapse
|