1
|
Ceccherini E, Michelucci E, Signore G, Coco B, Zari M, Bellini M, Brunetto MR, Cecchettini A, Rocchiccioli S. The Clinical Utility of the Saliva Proteome in Rare Diseases: A Pilot Study for Biomarker Discovery in Primary Sclerosing Cholangitis. J Clin Med 2024; 13:544. [PMID: 38256678 PMCID: PMC10816894 DOI: 10.3390/jcm13020544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is a rare chronic inflammatory liver disease characterized by biliary strictures and cholestasis. Due to the lack of effective serological indicators for diagnosis and prognosis, in the present study, we examined the potentiality of the saliva proteome to comprehensively screen for novel biomarkers. METHODS Saliva samples of PSC patients and healthy controls were processed and subsequently analyzed using a liquid chromatography-tandem mass spectrometry technique. A bioinformatic approach was applied to detect the differentially expressed proteins, their related biological functions and pathways, and the correlation with the clinical evidence in order to identify a possible marker for the PSC group. RESULTS We identified 25 differentially expressed proteins in PSC patients when compared to the healthy control group. Among them, eight proteins exhibited area under the curve values up to 0.800, suggesting these saliva proteins as good discriminators between the two groups. Multiple positive correlations were also identified between the dysregulated salivary proteins and increased serum alkaline phosphatase levels and the presence of ulcerative colitis. Pathway analysis revealed significant enrichments in the immune system, neutrophil degranulation, and in the interleukine-17 signaling pathway. CONCLUSION We demonstrated the potentiality of saliva as a useful biofluid to obtain a fingerprint of the pathology, suggesting disulfide-isomerase A3 and peroxiredoxin-5 as the better discriminating proteins in PSC patients. Hence, analysis of saliva proteins could become, in future, a useful tool in the screening of patients with suspected PSC.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
| | - Elena Michelucci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
- Institute of Chemistry of Organometallic Compounds, National Research Council, 56124 Pisa, Italy
| | - Giovanni Signore
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
- Biochemistry Unit, Department of Biology, University of Pisa, 56123 Pisa, Italy
| | - Barbara Coco
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, 56124 Pisa, Italy; (B.C.); (M.R.B.)
| | - Michela Zari
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.Z.); (M.B.)
| | - Massimo Bellini
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy; (M.Z.); (M.B.)
| | - Maurizia Rossana Brunetto
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, 56124 Pisa, Italy; (B.C.); (M.R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.M.); (G.S.); (A.C.); (S.R.)
| |
Collapse
|
2
|
Peroxiredoxins and Hypoxia-Inducible Factor-1α in Duodenal Tissue: Emerging Factors in the Pathophysiology of Pediatric Celiac Disease Patients. Curr Issues Mol Biol 2023; 45:1779-1793. [PMID: 36826059 PMCID: PMC9954839 DOI: 10.3390/cimb45020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Celiac disease (CD) is an autoimmune enteropathy. Peroxiredoxins (PRDXs) are powerful antioxidant enzymes having an important role in significant cellular pathways including cell survival, apoptosis, and inflammation. This study aimed at investigating the expression levels of all PRDX isoforms (1-6) and their possible relationships with a transcription factor, HIF-1α, in the small intestinal tissue samples of pediatric CD patients. The study groups consisted of first-diagnosed CD patients (n = 7) and non-CD patients with functional gastrointestinal tract disorders as the controls (n = 7). The PRDXs and HIF-1α expression levels were determined by using real-time PCR and Western blotting in duodenal biopsy samples. It was observed that the mRNA and protein expression levels of PRDX 5 were significantly higher in the CD patients, whereas the PRDX 1, -2, and -4 expressions were decreased in each case compared to the control group. No significant differences were detected in the PRDX 3 and PRDX 6 expressions. The expression of HIF-1α was also significantly elevated in CD patients. These findings indicate, for the first time, that PRDXs, particularly PRDX 5, may play a significant role in the pathogenesis of CD. Furthermore, our results suggest that HIF-1α may upregulate PRDX-5 transcription in the duodenal tissue of CD.
Collapse
|
3
|
A Fiber-Based SPR Aptasensor for the In Vitro Detection of Inflammation Biomarkers. MICROMACHINES 2022; 13:mi13071036. [PMID: 35888854 PMCID: PMC9317006 DOI: 10.3390/mi13071036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
It is widely accepted that the abnormal concentrations of different inflammation biomarkers can be used for the early diagnosis of cardiovascular disease (CVD). Currently, many reported strategies, which require extra report tags or bulky detection equipment, are not portable enough for onsite inflammation biomarker detection. In this work, a fiber-based surface plasmon resonance (SPR) biosensor decorated with DNA aptamers, which were specific to two typical inflammation biomarkers, C-reactive protein (CRP) and cardiac troponin I (cTn-I), was developed. By optimizing the surface concentration of the DNA aptamer, the proposed sensor could achieve a limit of detection (LOD) of 1.7 nM (0.204 μg/mL) and 2.5 nM (57.5 ng/mL) to CRP and cTn-I, respectively. Additionally, this biosensor could also be used to detect other biomarkers by immobilizing corresponding specific DNA aptamers. Integrated with a miniaturized spectral analysis device, the proposed sensor could be applied for constructing a portable instrument to provide the point of care testing (POCT) for CVD patients.
Collapse
|
4
|
Phillips CL, Welch BA, Garrett MR, Grayson BE. Regional heterogeneity in rat Peyer's patches through whole transcriptome analysis. Exp Biol Med (Maywood) 2021; 246:513-522. [PMID: 33236653 PMCID: PMC7934146 DOI: 10.1177/1535370220973014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022] Open
Abstract
Peyer's patches are gut-associated lymphoid tissue located throughout the intestinal wall. Peyer's patches consist of highly organized ovoid-shaped follicles, classified as non-encapsulated lymphatic tissues, populated with B cells, T cells, macrophages, and dendritic cells and function as an organism's intestinal surveillance. Limited work compares the gene profiles of Peyer's patches derived from different intestinal regions. In the current study, we first performed whole transcriptome analysis using RNAseq to compare duodenal and ileal Peyer's patches obtained from the small intestine of Long Evans rats. Of the 12,300 genes that were highly expressed, 18.5% were significantly different between the duodenum and ileum. Using samples obtained from additional subjects (n = 10), we validated the novel gene expression patterns in Peyer's patches obtained from the three regions of the small intestine. Rats had a significantly reduced number of Peyer's patches in the duodenum in comparison to either the jejunum or ileum. Regional differences in structural, metabolic, and immune-related genes were validated. Genes such as alcohol dehydrogenase 1, gap junction protein beta 2, and serine peptidase inhibitor clade b, member 1a were significantly reduced in the ileum in comparison to other regions. On the other hand, genes such as complement C3d receptor type, lymphocyte cytosolic protein 1, and lysozyme C2 precursor were significantly lower in the duodenum. In summary, the gene expression pattern of Peyer's patches is influenced by intestinal location and may contribute to its role in that segment.
Collapse
Affiliation(s)
- Charles L Phillips
- Program in Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bradley A Welch
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael R Garrett
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bernadette E Grayson
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
5
|
McQueen P, Busman-Sahay K, Rieder F, Noël-Romas L, McCorrister S, Westmacott G, Estes JD, Burgener A. Intestinal proteomic analysis of a novel non-human primate model of experimental colitis reveals signatures of mitochondrial and metabolic dysfunction. Mucosal Immunol 2019; 12:1327-1335. [PMID: 31481749 PMCID: PMC7673647 DOI: 10.1038/s41385-019-0200-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 02/04/2023]
Abstract
Animal models recapitulating features of chronic colitis, such as ulcerative colitis, Crohn's disease, or HIV infection, are critical to study disease pathogenesis and test novel therapeutics. In this study, we used a proteomics approach to explore the molecular intestinal response in two rhesus macaque (RM) animal models of experimentally induced colitis using dextran sulfate sodium (DSS) and simian immunodeficiency virus (SIV) infection. Proteomic analysis detected more than 2500 proteins in colonic tissue collected from 30 RMs. Differential protein expression analysis revealed a protein expression pattern in DSS-treated RMs resembling the proteome of human ulcerative colitis. In a group of 12 DSS-treated RMs compared to 6 with no treatment, decrease in expression of proteins related to mitochondrial energy metabolism, including fatty acid metabolism was noted, while innate immune activation pathways, including complement and coagulation proteins were upregulated. SIV infection of RMs resulted in increased innate immune responses related to viral defense. Proteomic signatures of barrier damage were apparent in both DSS treatment or SIV infection. These results demonstrate that DSS treatment in a non-human primate model resembles features of human ulcerative colitis, making this a promising tool to study important immunological mechanisms in inflammatory bowel disease.
Collapse
Affiliation(s)
- Peter McQueen
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- National HIV and Retrovirology Labs, JC Wilt Centre for Infectious Diseases, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Laura Noël-Romas
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- National HIV and Retrovirology Labs, JC Wilt Centre for Infectious Diseases, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Stuart McCorrister
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Garrett Westmacott
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute at Oregon Health and Science University, Beaverton, OR, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Adam Burgener
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
- National HIV and Retrovirology Labs, JC Wilt Centre for Infectious Diseases, Public Health Agency of Canada, Winnipeg, MB, Canada.
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, MB, Canada.
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
6
|
Morales AM, Mukai R, Murota K, Terao J. Inhibitory effect of catecholic colonic metabolites of rutin on fatty acid hydroperoxide and hemoglobin dependent lipid peroxidation in Caco-2 cells. J Clin Biochem Nutr 2018; 63:175-180. [PMID: 30487666 PMCID: PMC6252304 DOI: 10.3164/jcbn.18-38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 02/05/2023] Open
Abstract
To determine the preventive effect of dietary rutin on oxidative damages occurring in the digestive tract, 13-hydroperoxyoctadecadienoic acid and hemoglobin were exposed to Caco-2 intestinal cells after the pretreatment with colonic rutin metabolites. Among four catechol-type metabolites, quercetin and 3,4-dihydroxytoluene exerted significant protection on 13-hydroperoxyoctadecadienoic and hemoglobin-dependent lipid peroxidation of this epithelial cell. Compared with quercetin, a much lower concentration allowed 3,4-dihydroxytoluene to maximize the protective effect, though it needed a longer pre-incubation period. Neither quercetin nor 3,4-dihydroxytoluene affected the expression of peroxiredoxin-6 protein, which comprises the cellular antioxidant defense system. It is concluded that 3,4-dihydroxytoluene is a plausible rutin colonic metabolite that can suppress oxidative damages of intestinal epithelial cells by directly inhibiting lipid peroxidation. This result may illuminate the preventive role of dietary rutin against colorectal cancer incidence in relation to the consumption of red and processed meat.
Collapse
Affiliation(s)
- Agustin Martin Morales
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Rie Mukai
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kaeko Murota
- Department of Life Sciecne, Faculty of Science and Engeering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Junji Terao
- Department of Food Science, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Mourad FH, Yau Y, Wasinger VC, Leong RW. Proteomics in Inflammatory Bowel Disease: Approach Using Animal Models. Dig Dis Sci 2017; 62:2266-2276. [PMID: 28717845 DOI: 10.1007/s10620-017-4673-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
Abstract
Recently, proteomics studies have provided important information on the role of proteins in health and disease. In the domain of inflammatory bowel disease, proteomics has shed important light on the pathogenesis and pathophysiology of inflammation and has contributed to the discovery of some putative clinical biomarkers of disease activity. By being able to obtain a large number of specimens from multiple sites and control for confounding environmental, genetic, and metabolic factors, proteomics studies using animal models of colitis offered an alternative approach to human studies. Our aim is to review the information and lessons acquired so far from the use of proteomics in animal models of colitis. These studies helped understand the importance of different proteins at different stages of the disease and unraveled the different pathways that are activated or inhibited during the inflammatory process. Expressed proteins related to inflammation, cellular structure, endoplasmic reticulum stress, and energy depletion advanced the knowledge about the reaction of intestinal cells to inflammation and repair. The role of mesenteric lymphocytes, exosomes, and the intestinal mucosal barrier was emphasized in the inflammatory process. In addition, studies in animal models revealed mechanisms of the beneficial effects of some therapeutic interventions and foods or food components on intestinal inflammation by monitoring changes in protein expression and paved the way for some new possible inflammatory pathways to target in the future. Advances in proteomics technology will further clarify the interaction between intestinal microbiota and IBD pathogenesis and investigate the gene-environmental axis of IBD etiology.
Collapse
Affiliation(s)
- Fadi H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, P.O. Box 113-6044, Hamra, Beirut, 110 32090, Lebanon. .,Gastroenterology and Liver Services, Concord Repatriation General Hospital, Hospital Road, Concord, NSW, 2137, Australia.
| | - Yunki Yau
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Hospital Road, Concord, NSW, 2137, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of NSW Australia, Kensington, NSW, 2052, Australia
| | - Rupert W Leong
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Hospital Road, Concord, NSW, 2137, Australia
| |
Collapse
|
8
|
Burgener SS, Baumann M, Basilico P, Remold-O'Donnell E, Touw IP, Benarafa C. Myeloid conditional deletion and transgenic models reveal a threshold for the neutrophil survival factor Serpinb1. Biol Chem 2017; 397:897-905. [PMID: 27107834 DOI: 10.1515/hsz-2016-0132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/20/2016] [Indexed: 11/15/2022]
Abstract
Serpinb1 is an inhibitor of neutrophil granule serine proteases cathepsin G, proteinase-3 and elastase. One of its core physiological functions is to protect neutrophils from granule protease-mediated cell death. Mice lacking Serpinb1a (Sb1a-/-), its mouse ortholog, have reduced bone marrow neutrophil numbers due to cell death mediated by cathepsin G and the mice show increased susceptibility to lung infections. Here, we show that conditional deletion of Serpinb1a using the Lyz2-cre and Cebpa-cre knock-in mice effectively leads to recombination-mediated deletion in neutrophils but protein-null neutrophils were only obtained using the latter recombinase-expressing strain. Absence of Serpinb1a protein in neutrophils caused neutropenia and increased granule permeabilization-induced cell death. We then generated transgenic mice expressing human Serpinb1 in neutrophils under the human MRP8 (S100A8) promoter. Serpinb1a expression levels in founder lines correlated positively with increased neutrophil survival when crossed with Sb1a-/- mice, which had their defective neutrophil phenotype rescued in the higher expressing transgenic line. Using new conditional and transgenic mouse models, our study demonstrates the presence of a relatively low Serpinb1a protein threshold in neutrophils that is required for sustained survival. These models will also be helpful in delineating recently described functions of Serpinb1 in metabolism and cancer.
Collapse
|
9
|
Melhem H, Spalinger MR, Cosin-Roger J, Atrott K, Lang S, Wojtal KA, Vavricka SR, Rogler G, Frey-Wagner I. Prdx6 Deficiency Ameliorates DSS Colitis: Relevance of Compensatory Antioxidant Mechanisms. J Crohns Colitis 2017; 11:871-884. [PMID: 28199527 DOI: 10.1093/ecco-jcc/jjx016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS An imbalance between cellular antioxidant defence system[s] and reactive oxygen species [ROS]-driven oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease. Peroxiredoxin [PRDX] 6 contributes to an appropriate redox balance by clearing ROS and reducing peroxidized membrane phospholipids. We here studied the role of PRDX6 in acute and chronic dextran sodium sulphate [DSS]-induced colitis. METHODS To investigate the impact of PRDX6 on intestinal inflammation, we used wild type [WT], Prdx6 knock-out mice [Prdx6-/-] and transgenic mice [Prdx6tg/tg], overexpressing Prdx6. Acute and chronic colitis was induced by DSS in WT, Prdx6-/- and Prdx6tg/tg mice. Colitis was evaluated by endoscopy, colon length, histopathological assessment and myeloperoxidase [MPO] activity. Changes in mRNA and protein expression of pro-inflammatory cytokines and antioxidant enzymes were evaluated by real-time quantitative polymerase chain reaction [RT-qPCR] and western blot. Total glutathione [GSH] levels in colon samples were determined. RESULTS Prdx6-/- mice exposed to acute and chronic DSS showed a significant decrease in the clinical parameters and in colonic expression of pro-inflammatory cytokines compared with WT mice. mRNA expression of antioxidant enzymes in colon samples was significantly increased in Prdx6-/- compared with WT mice exposed to acute and chronic DSS. In addition, total GSH levels were increased in Prdx6-/- mice treated with DSS in comparison with WT. Overexpression of Prdx6 did not significantly influence acute and chronic colitis. CONCLUSIONS Our data indicate that a lack of the antioxidant enzyme PRDX6 protects against the development of acute and chronic experimental colitis and is associated with increased expression and function of other antioxidant enzymes, suggesting effective compensatory mechanisms.
Collapse
Affiliation(s)
- Hassan Melhem
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Jesus Cosin-Roger
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Kacper A Wojtal
- Department of Gastroenterology and Hepatology, University Hospital Zurich,Zurich, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology [ZIHP], University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.,Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland
| |
Collapse
|
10
|
Helenius TO, Misiorek JO, Nyström JH, Fortelius LE, Habtezion A, Liao J, Asghar MN, Zhang H, Azhar S, Omary MB, Toivola DM. Keratin 8 absence down-regulates colonocyte HMGCS2 and modulates colonic ketogenesis and energy metabolism. Mol Biol Cell 2015; 26:2298-310. [PMID: 25904331 PMCID: PMC4462946 DOI: 10.1091/mbc.e14-02-0736] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
Absence of colonic keratin 8 causes intestinal inflammation and decreased levels of the ketogenic enzyme HMGCS2. Upstream, the butyrate transporter MCT1 is decreased, leading to increased luminal butyrate. Ketogenic conditions fail to induce HMGCS2 in the keratin 8–knockout colon, suggesting a role for keratins in colonocyte energy homeostasis. Simple-type epithelial keratins are intermediate filament proteins important for mechanical stability and stress protection. Keratin mutations predispose to human liver disorders, whereas their roles in intestinal diseases are unclear. Absence of keratin 8 (K8) in mice leads to colitis, decreased Na/Cl uptake, protein mistargeting, and longer crypts, suggesting that keratins contribute to intestinal homeostasis. We describe the rate-limiting enzyme of the ketogenic energy metabolism pathway, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), as a major down-regulated protein in the K8-knockout (K8−/−) colon. K8 absence leads to decreased quantity and activity of HMGCS2, and the down-regulation is not dependent on the inflammatory state, since HMGCS2 is not decreased in dextran sulfate sodium-induced colitis. Peroxisome proliferator–activated receptor α, a transcriptional activator of HMGCS2, is similarly down-regulated. Ketogenic conditions—starvation or ketogenic diet—increase K8+/+ HMGCS2, whereas this response is blunted in the K8−/− colon. Microbiota-produced short-chain fatty acids (SCFAs), substrates in the colonic ketone body pathway, are increased in stool, which correlates with decreased levels of their main transporter, monocarboxylate transporter 1 (MCT1). Microbial populations, including the main SCFA-butyrate producers in the colon, were not altered in the K8−/−. In summary, the regulation of the SCFA-MCT1-HMGCS2 axis is disrupted in K8−/− colonocytes, suggesting a role for keratins in colonocyte energy metabolism and homeostasis.
Collapse
Affiliation(s)
- Terhi O Helenius
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Julia O Misiorek
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Joel H Nyström
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Lina E Fortelius
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, CA 94305
| | | | - M Nadeem Asghar
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Haiyan Zhang
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, and Stanford University School of Medicine, Palo Alto, CA 94304
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, and Stanford University School of Medicine, Palo Alto, CA 94304
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 VA Ann Arbor Health Care System, Ann Arbor, MI 48105
| | - Diana M Toivola
- Cell Biology/Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| |
Collapse
|
11
|
Huang TL, Sung ML, Chen TY. 2D-DIGE proteome analysis on the platelet proteins of patients with major depression. Proteome Sci 2014; 12:1. [PMID: 24383611 PMCID: PMC3898786 DOI: 10.1186/1477-5956-12-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 12/04/2013] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Platelet activation is related to the psychopathology of major depression. We attempted to search and identify protein biomarkers from the platelets of patients with major depression. High resolution two-dimensional Differential Gel Electrophoresis (2D-DIGE), the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Western blot, and bioinformatic tools were applied to examine the platelet proteins of 10 patients with major depression and 10 healthy controls. RESULTS The levels of 8 proteins were significantly different between the patients with major depression in the acute phase and healthy controls. The levels of protein disulfide-isomerase A3 (PDIA3) and F-actin-capping protein subunit beta (CAPZB) were higher in patients with major depression than in healthy controls. The levels of fibrinogen beta chain (FIBB), fibrinogen gamma chain (FIBG), retinoic acid receptor beta (RARB), glutathione peroxidase 1 (GPX1), SH3 domain-containing protein 19 (SH319), and T-complex protein 1 subunit beta (TCPB) were lower in patients with major depression than in healthy controls. CONCLUSIONS Platelet provided valuable information about the pathways and processes of inflammation/immunity, oxidative stress, and neurogenesis, related to major depression.
Collapse
Affiliation(s)
- Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123 Ta-Pei Road, Niao-Sung, Kaohsiung 833, Taiwan.
| | | | | |
Collapse
|
12
|
Han NY, Kim EH, Choi J, Lee H, Hahm KB. Quantitative proteomic approaches in biomarker discovery of inflammatory bowel disease. J Dig Dis 2012; 13:497-503. [PMID: 22988922 DOI: 10.1111/j.1751-2980.2012.00625.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteomics offers considerable opportunities for either enhancing our biological understanding or discovering biomarkers, blood and biopsied specimen-based proteomic approaches, provide reproducible and quantitative tools that can complement clinical assessments and aid clinicians in the diagnosis and treatment of inflammatory bowel disease (IBD). Sometimes a differential diagnosis of Crohn's disease (CD) and ulcerative colitis (UC) and the prediction of treatment response can be deduced by finding meaningful biomarkers, for which the central platform for proteomics is tandem mass spectrometry (MS/MS). A range of workflows are available for protein (or peptide) separation prior to MS/MS as well as bioinformatics analysis to achieve protein identification, for which two-dimensional electrophoresis (2-DE) and subsequent mass spectrometry (MS), liquid chromatography-MS, difference gel electrophoresis following 2-DE, isobaric tags for relative and absolute quantification (iTRAQ), stable isotope labeling by amino acids and label-free quantification are under development. In this article, the current status and perspective of these advanced proteomic technologies are introduced, with examples of recent biomarkers focused on the diagnosis, treatment response, prognosis of IBD, and even colitis-associated carcinogenesis in both animal models and human patients.
Collapse
Affiliation(s)
- Na-Young Han
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | | | | | | | | |
Collapse
|
13
|
Iizuka M, Nakagomi O, Nanjo H, Chiba M, Fukushima T, Sugita A, Sagara S, Horie Y, Watanabe S. Molecular cloning reveals nearly half of patients with Crohn's disease have an antibody to peroxiredoxin 6-like protein. J Gastroenterol Hepatol 2012; 27:1388-1394. [PMID: 22497500 DOI: 10.1111/j.1440-1746.2012.07147.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Crohn's disease (CD) is a chronic inflammatory bowel disease (IBD) of unknown etiology. We aimed to identify the etiological agent of CD using a molecular cloning strategy that was particularly focused on identifying agents causing immune abnormalities and infectious agents. METHODS We constructed a cDNA library derived from the inflamed intestinal tissue of a CD patient, and screened 1.5 million clones in this library with the serum from another typical CD patient. The expressed cDNA clones that positively reacted with the serum were then expressed as fusion proteins with glutathione S-transferase, and western blotting was performed using the sera of 22 CD, 13 ulcerative colitis (UC), and 16 non-IBD patients. RESULTS We identified nine positive clones that did not contain any viral or bacterial genomic DNA. Of these, we selected one clone (clone 50) with which the typical CD patient's serum most strongly reacted. Clone 50 is highly homologous to the antioxidant protein peroxiredoxin 6. In western blotting, the sera of 47.6% CD patients (small intestine type 80%, large and small intestine type 43%, large intestine type 0%) showed strong reactivity to clone 50, none of the UC patients were reactive to clone 50, and 18.8% of non-IBD patients were very weakly reactive to it. We also found that the expression of peroxiredoxin 6 was significantly increased in inflamed intestinal epithelia of CD. CONCLUSION The present study first showed that some CD patients have an antibody against peroxiredoxin 6-like protein, which may be involved in the pathogenesis of CD.
Collapse
Affiliation(s)
- Masahiro Iizuka
- Akita Health Care Center, Akita Red Cross Hospital, Akita University School of Medicine, Akita, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang XJ, Leung FP, Hsiao WWL, Tan S, Li S, Xu HX, Sung JJY, Bian ZX. Proteome profiling of spinal cord and dorsal root ganglia in rats with trinitrobenzene sulfonic acid-induced colitis. World J Gastroenterol 2012; 18:2914-28. [PMID: 22736915 PMCID: PMC3380319 DOI: 10.3748/wjg.v18.i23.2914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/24/2011] [Accepted: 04/12/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate proteomic changes in spinal cord and dorsal root ganglia (DRG) of rats with trinitrobenzene sulfonic acid (TNBS)-induced colitis.
METHODS: The colonic myeloperoxidase (MPO) activity and tumor necrosis factor-α (TNF-α) level were determined. A two-dimensional electrophoresis (2-DE)-based proteomic technique was used to profile the global protein expression changes in the DRG and spinal cord of the rats with acute colitis induced by intra-colonic injection of TNBS.
RESULTS: TNBS group showed significantly elevated colonic MPO activity and increased TNF-α level. The proteins derived from lumbosacral enlargement of the spinal cord and DRG were resolved by 2-DE; and 26 and 19 proteins that displayed significantly different expression levels in the DRG and spinal cord were identified respectively. Altered proteins were found to be involved in a number of biological functions, such as inflammation/immunity, cell signaling, redox regulation, sulfate transport and cellular metabolism. The overexpression of the protein similar to potassium channel tetramerisation domain containing protein 12 (Kctd 12) and low expression of proteasome subunit α type-1 (psma) were validated by Western blotting analysis.
CONCLUSION: TNBS-induced colitis has a profound impact on protein profiling in the nervous system. This result helps understand the neurological pathogenesis of inflammatory bowel disease.
Collapse
|
15
|
Uchiyama K, Naito Y, Takagi T, Mizushima K, Hirai Y, Hayashi N, Harusato A, Inoue K, Fukumoto K, Yamada S, Handa O, Ishikawa T, Yagi N, Kokura S, Yoshikawa T. Serpin B1 protects colonic epithelial cell via blockage of neutrophil elastase activity and its expression is enhanced in patients with ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1163-70. [PMID: 22421620 DOI: 10.1152/ajpgi.00292.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Serpin B1 is a monocyte neutrophil elastase (NE) inhibitor and is one of the most efficient inhibitors of NE. In the present study, we investigated the role of serpin B1 in the pathogenesis of ulcerative colitis by using clinical samples and an experimental model. The colonic expression of serpin B1 was determined by real-time polymerase chain reaction (PCR), Western blot analysis, and immunohistological studies in both normal and inflamed mucosa from patients with ulcerative colitis. Serpin B1 mRNA expression was determined by real-time PCR in the mouse dextran sodium sulfate (DSS)-induced colitis model. Young adult mouse colonic epithelial (YAMC) cells were used to determine the role of serpin B1. Serpin B1 gene transfected YAMC cells were treated with H(2)O(2) to measure cell viability. The expression of NE was determined in YAMC cells treated with H(2)O(2). NE-silenced YAMC cells were also treated with H(2)O(2) and then measured for viability. Upregulated expression of serpin B1 in colonic mucosa was confirmed from patients with active ulcerative colitis. Immunohistochemical studies showed that serpin B1 expression was localized not only in inflammatory infiltration cells but also in epithelial cells. Serpin B1 mRNA expression was also increased in colonic mucosa of mouse DSS-induced colitis. Serpin B1-transfected YAMC cells were resistant against the treatment of H(2)O(2). H(2)O(2) treatment significantly induced NE in YAMC cells, and NE-silenced YAMC cells were also resistant against the treatment of H(2)O(2). These results suggest that serpin B1 may be a novel marker of active ulcerative colitis and may play an important role in the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Laurindo FRM, Pescatore LA, Fernandes DDC. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic Biol Med 2012; 52:1954-69. [PMID: 22401853 DOI: 10.1016/j.freeradbiomed.2012.02.037] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, 05403-000 São Paulo, Brazil.
| | | | | |
Collapse
|
17
|
Takagi T, Naito Y, Okada H, Takaoka M, Oya-Ito T, Yamada S, Hirai Y, Mizushima K, Yoshida N, Kamada K, Katada K, Uchiyama K, Ishikawa T, Handa O, Yagi N, Konishi H, Kokura S, Ichikawa H, Yoshikawa T. Hemopexin is upregulated in rat intestinal mucosa injured by indomethacin. J Gastroenterol Hepatol 2012; 27 Suppl 3:70-75. [PMID: 22486875 DOI: 10.1111/j.1440-1746.2012.07076.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Recent advancements in capsule endoscopy and double-balloon endoscopy have revealed that non-steroidal anti-inflammatory drugs (NSAIDs), such as indomethacin, can induce small intestinal mucosal damage. However, the precise pathogenesis and therapeutic strategy have not been fully revealed. The aim of the present study was to determine the upregulated proteins in the small intestine exposed to indomethacin. METHODS Indomethacin (10 mg/kg) was administered subcutaneously to male Wistar rats to induce small intestinal damage and the severity of the intestinal injury was evaluated by measuring the area of visible ulcerative lesions. The intestinal mucosal tissue samples were collected and then analyzed by two-dimensional gel electrophoresis, with matrix-assisted laser desorption/ionization time-of-flight spectrometer peptide mass fingerprinting being used to determine the differentially expressed proteins between normal and injured intestinal mucosa. RESULTS Among several protein spots showing differential expression, one, hemopexin (HPX), was identified as upregulated in indomethacin-induced injured intestinal mucosa using the MASCOT search engine. CONCLUSION HPX was identified as upregulated protein in the small intestine exposed to indomethacin. HPX may be responsible for the development of the intestinal inflammation induced by NSAIDs.
Collapse
Affiliation(s)
- Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|