1
|
Toya A, Fukada M, Aoki E, Matsuki T, Ueda M, Eda S, Hashizume Y, Iio A, Masaki S, Nakayama A. The distribution of neuroligin4, an autism-related postsynaptic molecule, in the human brain. Mol Brain 2023; 16:20. [PMID: 36747195 PMCID: PMC9903511 DOI: 10.1186/s13041-023-00999-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
NLGN4X was identified as a single causative gene of rare familial nonsyndromic autism for the first time. It encodes the postsynaptic membrane protein Neuroligin4 (NLGN4), the functions and roles of which, however, are not fully understood due to the lack of a closely homologous gene in rodents. It has been confirmed only recently that human NLGN4 is abundantly expressed in the cerebral cortex and is localized mainly to excitatory synapses. However, the detailed histological distribution of NLGN4, which may have important implications regarding the relationships between NLGN4 and autistic phenotypes, has not been clarified. In this study, we raised specific monoclonal and polyclonal antibodies against NLGN4 and examined the distribution of NLGN4 in developing and developed human brains by immunohistochemistry. We found that, in the brain, NLGN4 is expressed almost exclusively in neurons, in which it has a widespread cytoplasmic pattern of distribution. Among various types of neurons with NLGN4 expression, we identified consistently high expression of NLGN4 in hypothalamic oxytocin (OXT)/vasopressin (AVP)-producing cells. Quantitative analyses revealed that the majority of OXT/AVP-producing neurons expressed NLGN4. NLGN4 signals in other large neurons, such as pyramidal cells in the cerebral cortex and hippocampus as well as neurons in the locus coeruleus and the raphe nucleus, were also remarkable, clearly contrasting with no or scarce signals in Purkinje cells. These data suggest that NLGN4 functions in systems involved in intellectual abilities, social abilities, and sleep and wakefulness, impairments of which are commonly seen in autism.
Collapse
Affiliation(s)
- Akie Toya
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560 Japan
| | - Masahide Fukada
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Eiko Aoki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Masashi Ueda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Shima Eda
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Yoshio Hashizume
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute, 480-1195 Japan
| | - Akio Iio
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Shigeo Masaki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, 480-0392 Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560 Japan
| |
Collapse
|
2
|
Muñoz-Montecinos C, Romero A, Sepúlveda V, Vira MÁ, Fehrmann-Cartes K, Marcellini S, Aguilera F, Caprile T, Fuentes R. Turning the Curve Into Straight: Phenogenetics of the Spine Morphology and Coordinate Maintenance in the Zebrafish. Front Cell Dev Biol 2022; 9:801652. [PMID: 35155449 PMCID: PMC8826430 DOI: 10.3389/fcell.2021.801652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options. We here review current advances in zebrafish phenogenetics concerning AIS-like models and highlight the recently discovered biological processes leading to spine malformations. First, we focus on gene functions and phenotypes controlling critical aspects of postembryonic aspects that prime in spine architecture development and straightening. Second, we summarize how primary cilia assembly and biomechanical stimulus transduction, cerebrospinal fluid components and flow driven by motile cilia have been implicated in the pathogenesis of AIS-like phenotypes. Third, we highlight the inflammatory responses associated with scoliosis. We finally discuss recent innovations and methodologies for morphometrically characterize and analyze the zebrafish spine. Ongoing phenotyping projects are expected to identify novel and unprecedented postembryonic gene functions controlling spine morphology and mutant models of AIS. Importantly, imaging and gene editing technologies are allowing deep phenotyping studies in the zebrafish, opening new experimental paradigms in the morphometric and three-dimensional assessment of spinal malformations. In the future, fully elucidating the phenogenetic underpinnings of AIS etiology in zebrafish and humans will undoubtedly lead to innovative pharmacological treatments against spinal deformities.
Collapse
Affiliation(s)
- Carlos Muñoz-Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Adrián Romero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Ángela Vira
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karen Fehrmann-Cartes
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Concepción, Chile
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
3
|
Torrillas de la Cal A, Paniagua-Torija B, Arevalo-Martin A, Faulkes CG, Jiménez AJ, Ferrer I, Molina-Holgado E, Garcia-Ovejero D. The Structure of the Spinal Cord Ependymal Region in Adult Humans Is a Distinctive Trait among Mammals. Cells 2021; 10:2235. [PMID: 34571884 PMCID: PMC8469235 DOI: 10.3390/cells10092235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
In species that regenerate the injured spinal cord, the ependymal region is a source of new cells and a prominent coordinator of regeneration. In mammals, cells at the ependymal region proliferate in normal conditions and react after injury, but in humans, the central canal is lost in the majority of individuals from early childhood. It is replaced by a structure that does not proliferate after damage and is formed by large accumulations of ependymal cells, strong astrogliosis and perivascular pseudo-rosettes. We inform here of two additional mammals that lose the central canal during their lifetime: the Naked Mole-Rat (NMR, Heterocephalus glaber) and the mutant hyh (hydrocephalus with hop gait) mice. The morphological study of their spinal cords shows that the tissue substituting the central canal is not similar to that found in humans. In both NMR and hyh mice, the central canal is replaced by tissue reminiscent of normal lamina X and may include small groups of ependymal cells in the midline, partially resembling specific domains of the former canal. However, no features of the adult human ependymal remnant are found, suggesting that this structure is a specific human trait. In order to shed some more light on the mechanism of human central canal closure, we provide new data suggesting that canal patency is lost by delamination of the ependymal epithelium, in a process that includes apical polarity loss and the expression of signaling mediators involved in epithelial to mesenchymal transitions.
Collapse
Affiliation(s)
- Alejandro Torrillas de la Cal
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Christopher Guy Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Antonio Jesús Jiménez
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus de Teatinos, 29071 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Malaga, Spain
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei d’Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, 08908 L’Hospitalet de Llobregat, Spain;
| | - Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, 45071 Toledo, Spain; (A.T.d.l.C.); (B.P.-T.); (A.A.-M.); (E.M.-H.)
| |
Collapse
|
4
|
Becker CG, Becker T, Hugnot JP. The spinal ependymal zone as a source of endogenous repair cells across vertebrates. Prog Neurobiol 2018; 170:67-80. [DOI: 10.1016/j.pneurobio.2018.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
5
|
Mao Y, Mathews K, Gorrie CA. Temporal Response of Endogenous Neural Progenitor Cells Following Injury to the Adult Rat Spinal Cord. Front Cell Neurosci 2016; 10:58. [PMID: 27013972 PMCID: PMC4783397 DOI: 10.3389/fncel.2016.00058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/25/2016] [Indexed: 11/13/2022] Open
Abstract
A pool of endogenous neural progenitor cells (NPCs) found in the ependymal layer and the sub-ependymal area of the spinal cord are reported to upregulate Nestin in response to traumatic spinal cord injury (SCI). These cells could potentially be manipulated within a critical time period offering an innovative approach to the repair of SCI. However, little is known about the temporal response of endogenous NPCs following SCI. This study used a mild contusion injury in rat spinal cord and immunohistochemistry to determine the temporal response of ependymal NPCs following injury and their correlation to astrocyte activation at the lesion edge. The results from the study demonstrated that Nestin staining intensity at the central canal peaked at 24 h post-injury and then gradually declined over time. Reactive astrocytes double labeled by Nestin and glial fibrillary acidic protein (GFAP) were found at the lesion edge and commenced to form the glial scar from 1 week after injury. We conclude that the critical time period for manipulating endogenous NPCs following a spinal cod injury in rats is between 24 h when Nestin expression in ependymal cells is increased and 1 week when astrocytes are activated in large numbers.
Collapse
Affiliation(s)
- Yilin Mao
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney, NSW, Australia
| | - Kathryn Mathews
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney, NSW, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney, NSW, Australia
| |
Collapse
|
6
|
Cawsey T, Duflou J, Weickert CS, Gorrie CA. Nestin-Positive Ependymal Cells Are Increased in the Human Spinal Cord after Traumatic Central Nervous System Injury. J Neurotrauma 2015; 32:1393-402. [PMID: 25599268 DOI: 10.1089/neu.2014.3575] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endogenous neural progenitor cell niches have been identified in adult mammalian brain and spinal cord. Few studies have examined human spinal cord tissue for a neural progenitor cell response in disease or after injury. Here, we have compared cervical spinal cord sections from 14 individuals who died as a result of nontraumatic causes (controls) with 27 who died from injury with evidence of trauma to the central nervous system. Nestin immunoreactivity was used as a marker of neural progenitor cell response. There were significant increases in the percentage of ependymal cells that were nestin positive between controls and trauma cases. When sections from lumbar and thoracic spinal cord were available, nestin positivity was seen at all three spinal levels, suggesting that nestin reactivity is not simply a localized reaction to injury. There was a positive correlation between the percentage of ependymal cells that were nestin positive and post-injury survival time but not for age, postmortem delay, or glial fibrillary acidic protein (GFAP) immunoreactivity. No double-labelled nestin and GFAP cells were identified in the ependymal, subependymal, or parenchymal regions of the spinal cord. We need to further characterize this subset of ependymal cells to determine their role after injury, whether they are a population of neural progenitor cells with the potential for proliferation, migration, and differentiation for spinal cord repair, or whether they have other roles more in line with hypothalamic tanycytes, which they closely resemble.
Collapse
Affiliation(s)
- Thomas Cawsey
- 1 School of Medical and Molecular Biosciences, University of Technology , Sydney, Australia
| | - Johan Duflou
- 2 Department of Forensic Medicine, NSW Health Pathology , Sydney, Australia
| | - Cynthia Shannon Weickert
- 3 Neuroscience Research Australia , Sydney, Australia .,4 Schizophrenia Research Institute , Sydney, Australia .,5 School of Psychiatry, University of New South Wales , Sydney, Australia
| | - Catherine Anne Gorrie
- 1 School of Medical and Molecular Biosciences, University of Technology , Sydney, Australia
| |
Collapse
|
7
|
Garcia-Ovejero D, Arevalo-Martin A, Paniagua-Torija B, Florensa-Vila J, Ferrer I, Grassner L, Molina-Holgado E. The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features. Brain 2015; 138:1583-97. [PMID: 25882650 DOI: 10.1093/brain/awv089] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/30/2015] [Indexed: 12/20/2022] Open
Abstract
Several laboratories have described the existence of undifferentiated precursor cells that may act like stem cells in the ependyma of the rodent spinal cord. However, there are reports showing that this region is occluded and disassembled in humans after the second decade of life, although this has been largely ignored or interpreted as a post-mortem artefact. To gain insight into the patency, actual structure, and molecular properties of the adult human spinal cord ependymal region, we followed three approaches: (i) with MRI, we estimated the central canal patency in 59 control subjects, 99 patients with traumatic spinal cord injury, and 26 patients with non-traumatic spinal cord injuries. We observed that the central canal is absent from the vast majority of individuals beyond the age of 18 years, gender-independently, throughout the entire length of the spinal cord, both in healthy controls and after injury; (ii) with histology and immunohistochemistry, we describe morphological properties of the non-lesioned ependymal region, which showed the presence of perivascular pseudorosettes, a common feature of ependymoma; and (iii) with laser capture microdissection, followed by TaqMan® low density arrays, we studied the gene expression profile of the ependymal region and found that it is mainly enriched in genes compatible with a low grade or quiescent ependymoma (53 genes); this region is enriched only in 14 genes related to neurogenic niches. In summary, we demonstrate here that the central canal is mainly absent in the adult human spinal cord and is replaced by a structure morphologically and molecularly different from that described for rodents and other primates. The presented data suggest that the ependymal region is more likely to be reminiscent of a low-grade ependymoma. Therefore, a direct translation to adult human patients of an eventual therapeutic potential of this region based on animal models should be approached with caution.
Collapse
Affiliation(s)
- Daniel Garcia-Ovejero
- 1 Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Angel Arevalo-Martin
- 1 Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Beatriz Paniagua-Torija
- 1 Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - José Florensa-Vila
- 2 Radiology Unit, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Isidro Ferrer
- 3 Institut de Neuropatologia, Servei d'Anatomia Patolo`gica, IDIBELL-Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Spain
| | - Lukas Grassner
- 4 Center for Spinal Cord Injuries, Trauma Center Murnau, Germany 5 Institute of Molecular Regenerative Medicine, SCI-TReCS (Spinal Cord Injury and Tissue Regeneration Center Salzburg), Paracelsus Medical University, Salzburg, Austria
| | - Eduardo Molina-Holgado
- 1 Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
8
|
Marichal N, García G, Radmilovich M, Trujillo-Cenóz O, Russo RE. Spatial domains of progenitor-like cells and functional complexity of a stem cell niche in the neonatal rat spinal cord. Stem Cells 2013; 30:2020-31. [PMID: 22821702 DOI: 10.1002/stem.1175] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During spinal cord development, progenitors in the neural tube are arranged within spatial domains that generate specific cell types. The ependyma of the postnatal spinal cord seems to retain cells with properties of the primitive neural stem cells, some of which are able to react to injury with active proliferation. However, the functional complexity and organization of this stem cell niche in mammals remains poorly understood. Here, we combined immunohistochemistry for cell-specific markers with patch-clamp recordings to test the hypothesis that the ependyma of the neonatal rat spinal cord contains progenitor-like cells functionally segregated within specific domains. Cells on the lateral aspects of the ependyma combined morphological and molecular traits of ependymocytes and radial glia (RG) expressing S100β and vimentin, displayed passive membrane properties and were electrically coupled via Cx43. Cells contacting the ventral and dorsal poles expressed the neural stem cell markers nestin and/or vimentin, had the typical morphology of RG, and appeared uncoupled displaying various combinations of K(+) and Ca(2+) voltage-gated currents. Although progenitor-like cells were mitotically active around the entire ependyma, the proliferative capacity seemed higher on lateral domains. Our findings represent the first evidence that the ependyma of the rat harbors progenitor-like cells with heterogeneous electrophysiological phenotypes organized in spatial domains. The manipulation of specific functional properties in the heterogeneous population of progenitor-like cells contacting the ependyma may in future help to regulate their behavior and lineage potential, providing the cell types required for the endogenous repair of the injured spinal cord.
Collapse
Affiliation(s)
- Nicolás Marichal
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP11600, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
9
|
A novel classification of quiescent and transit amplifying adult neural stem cells by surface and metabolic markers permits a defined simultaneous isolation. Stem Cell Res 2010; 5:131-43. [DOI: 10.1016/j.scr.2010.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 05/04/2010] [Accepted: 05/11/2010] [Indexed: 11/22/2022] Open
|
10
|
Quartu M, Serra MP, Boi M, Ibba V, Melis T, Del Fiacco M. Polysialylated-neural cell adhesion molecule (PSA-NCAM) in the human trigeminal ganglion and brainstem at prenatal and adult ages. BMC Neurosci 2008; 9:108. [PMID: 18990213 PMCID: PMC2612005 DOI: 10.1186/1471-2202-9-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 11/06/2008] [Indexed: 12/15/2022] Open
Abstract
Background The polysialylated neuronal cell adhesion molecule (PSA-NCAM) is considered a marker of developing and migrating neurons and of synaptogenesis in the immature vertebrate nervous system. However, it persists in the mature normal brain in some regions which retain a capability for morphofunctional reorganization throughout life. With the aim of providing information relevant to the potential for dynamic changes of specific neuronal populations in man, this study analyses the immunohistochemical occurrence of PSA-NCAM in the human trigeminal ganglion (TG) and brainstem neuronal populations at prenatal and adult age. Results Western blot analysis in human and rat hippocampus supports the specificity of the anti-PSA-NCAM antibody and the immunodetectability of the molecule in postmortem tissue. Immunohistochemical staining for PSA-NCAM occurs in TG and several brainstem regions during prenatal life and in adulthood. As a general rule, it appears as a surface staining suggestive of membrane labelling on neuronal perikarya and proximal processes, and as filamentous and dot-like elements in the neuropil. In the TG, PSA-NCAM is localized to neuronal perikarya, nerve fibres, pericellular networks, and satellite and Schwann cells; further, cytoplasmic perikaryal staining and positive pericellular fibre networks are detectable with higher frequency in adult than in newborn tissue. In the adult tissue, positive neurons are mostly small- and medium-sized, and amount to about 6% of the total ganglionic population. In the brainstem, PSA-NCAM is mainly distributed at the level of the medulla oblongata and pons and appears scarce in the mesencephalon. Immunoreactivity also occurs in discretely localized glial structures. At all ages examined, PSA-NCAM occurs in the spinal trigeminal nucleus, solitary nuclear complex, vestibular and cochlear nuclei, reticular formation nuclei, and most of the precerebellar nuclei. In specimens of different age, the distribution pattern remains fairly steady, whereas the density of immunoreactive structures and the staining intensity may change and are usually higher in newborn than in adult specimens. Conclusion The results obtained show that, in man, the expression of PSA-NCAM in selective populations of central and peripheral neurons occurs not only during prenatal life, but also in adulthood. They support the concept of an involvement of this molecule in the structural and functional neural plasticity throughout life. In particular, the localization of PSA-NCAM in TG primary sensory neurons likely to be involved in the transmission of protopathic stimuli suggests the possible participation of this molecule in the processing of the relevant sensory neurotransmission.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato (Cagliari), Italy.
| | | | | | | | | | | |
Collapse
|