1
|
Cheng M, Zheng Y, Fan Y, Yan P, Zhao W. The contribution of IL-17A-dependent low LCN2 levels to Helicobacter pylori infection: Insights from clinical and experimental studies. Int Immunopharmacol 2023; 124:110960. [PMID: 37722259 DOI: 10.1016/j.intimp.2023.110960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is a common bacterial infection that is widespread globally. It is crucial to comprehend the molecular mechanisms that underlie the infection caused by H. pylori in order to devise successful therapeutic approaches. The objective of this study was to examine the involvement of Lipocalin-2 (LCN2) in the development of H. pylori infection. METHODS LCN2 expression levels in human gastric mucosa and H. pylori-infected mouse models were analyzed using quantitative PCR and immunohistochemistry methods. The effects of LCN2 on the attachment of H. pylori to gastric mucosa cells were assessed using bacterial culture and fluorescence intensity tests. To investigate the correlation between LCN2, CCL20, and IL-17A, we performed gene expression analysis and measured serum levels. RESULTS The findings indicated an increase in LCN2 levels in the gastric mucosa of both patients and mice infected with H. pylori. Blocking the natural LCN2 resulted in an increased attachment of H. pylori to cells in the gastric mucosa. In addition, we noticed that reduced levels of LCN2 promoted the attachment of H. pylori to cells in the gastric mucosa. Furthermore, H. pylori-infected patients exhibited increased expression of both LCN2 and CCL20, and there was a positive correlation between serum levels of CCL20 and LCN2. LCN2 expression was found to depend on the presence of IL-17A, and inhibiting IL-17A led to a higher H. pylori colonization. CONCLUSION The persistence of H. pylori infection is facilitated by the presence of low levels of LCN2, which is dependent on IL-17A. This finding offers valuable perspectives for the development of novel therapeutic approaches for H. pylori infection.
Collapse
Affiliation(s)
- Mingjing Cheng
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Yong Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Yujuan Fan
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Ping Yan
- Department of Gastroenterology, First Affiliated Hospital of Dali University, Dali, Yunnan, China.
| | - Weidong Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, Yunnan, China; Department of Clinical Laboratory, Second Infectious Disease Hospital of Yunnan Province, Dali, Yunnan, China.
| |
Collapse
|
2
|
Domínguez-Martínez DA, Fontes-Lemus JI, García-Regalado A, Juárez-Flores Á, Fuentes-Pananá EM. IL-8 Secreted by Gastric Epithelial Cells Infected with Helicobacter pylori CagA Positive Strains Is a Chemoattractant for Epstein-Barr Virus Infected B Lymphocytes. Viruses 2023; 15:651. [PMID: 36992360 PMCID: PMC10054738 DOI: 10.3390/v15030651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Helicobacter pylori and EBV are considered the main risk factors in developing gastric cancer. Both pathogens establish life-lasting infections and both are considered carcinogenic in humans. Different lines of evidence support that both pathogens cooperate to damage the gastric mucosa. Helicobacter pylori CagA positive virulent strains induce the gastric epithelial cells to secrete IL-8, which is a potent chemoattractant for neutrophils and one of the most important chemokines for the bacterium-induced chronic gastric inflammation. EBV is a lymphotropic virus that persists in memory B cells. The mechanism by which EBV reaches, infects and persists in the gastric epithelium is not presently understood. In this study, we assessed whether Helicobacter pylori infection would facilitate the chemoattraction of EBV-infected B lymphocytes. We identified IL-8 as a powerful chemoattractant for EBV-infected B lymphocytes, and CXCR2 as the main IL-8 receptor whose expression is induced by the EBV in infected B lymphocytes. The inhibition of expression and/or function of IL-8 and CXCR2 reduced the ERK1/2 and p38 MAPK signaling and the chemoattraction of EBV-infected B lymphocytes. We propose that IL-8 at least partially explains the arrival of EBV-infected B lymphocytes to the gastric mucosa, and that this illustrates a mechanism of interaction between Helicobacter pylori and EBV.
Collapse
Affiliation(s)
- Diana A. Domínguez-Martínez
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - José I. Fontes-Lemus
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Alejandro García-Regalado
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Ángel Juárez-Flores
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
| | - Ezequiel M. Fuentes-Pananá
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
3
|
Ginger Extract Modulates the Production of Chemokines CCL17, CCL20, CCL22, and CXCL10 and the Gene Expression of Their Receptors in Peripheral Blood Mononuclear Cells from Peptic Ulcer Patients Infected with Helicobacter pylori. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The imbalanced expression of chemokines plays critical role in the development of Helicobacter pylori-mediated complications. Objectives: Our aim was to determine ginger extract (GE) effects on the expression of chemokines CCL17, CCL20, CCL22, and CXCL10, as well as CCR4, CCR6, and CXCR3 receptors by peripheral blood mononuclear cells (PBMCs) from H. pylori -infected patients with peptic ulcer (PU). Methods: Peripheral blood mononuclear cells were obtained from 20 patients with H. pylori-associated PU, 20 H. pylori-infected asymptomatic subjects (HAS), and 20 non-infected healthy subjects (NHS). The PBMCs were stimulated by 10 µg/mL of H. pylori-derived crude extract (HPCE) in the presence of 0, 10, 20, and 30 µg/mL of GE. After 36 hours, the supernatant and the RNA extracted from the cells were tested for chemokine concentration and chemokine receptor expression using ELISA and real-time PCR techniques, respectively. Results: In PU patients, treating HPCE-stimulated PBMCs with 10, 20, or 30 µg/mL GE reduced the production of CXCL10 (1.47, 1.5, and 1.53 folds, respectively, P < 0.001 for all), CCL20 (1.44, 1.62, and 1.65 folds, respectively, P < 0.003), and treatment with 30 µg/mL GE increased CCL17 (1.28-fold, P < 0.001) and CCL22 (1.59-fold, P < 0.001) production compared with untreated HPCE-stimulated PBMCs. In PU patients, the HPCE-stimulated PBMCs treated with 10, 20, or 30 µg/mL GE expressed lower levels of CXCR3 (1.9, 3, and 3.5 folds, respectively, P < 0.001) and CCR6 (2.3, 2.7, and 2.8 folds, respectively, P < 0.002) while treating with 10 µg/mL GE upregulated CCR4 (1.7 fold, P = 0.003) compared with untreated HPCE-stimulated PBMCs. Conclusions: Ginger extract modulated the expression of chemokines and their receptors in the PBMCs derived from H. pylori-infected PU patients. The therapeutic potentials of ginger for treating HP-related complications need to be further explored.
Collapse
|
4
|
Wen X, Su B, Gao M, Chen J, Zhou D, You H, Li N, Chang S, Cheng X, Qian C, Gao J, Yang P, Qu S, Bu L. Obesity-associated up-regulation of lipocalin 2 protects gastric mucosa cells from apoptotic cell death by reducing endoplasmic reticulum stress. Cell Death Dis 2021; 12:221. [PMID: 33637683 PMCID: PMC7910621 DOI: 10.1038/s41419-021-03512-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Gastric mucosal injury is a less well known complication of obesity. Its mechanism remains to be further elucidated. Here, we explored the protective role of lipocalin 2 (LCN2) against endoplasmic reticulum stress and cell apoptosis in gastric mucosa in patients and mice with obesity. Through molecular and genetic analyses in clinical species, LCN2 secreted by parietal cells expression is elevated in obese. Immunofluorescence, TUNEL, and colorimetry results show that a more significant upregulation of pro-inflammatory factors and increased amount of apoptotic cells in gastric tissue sections in obese groups. Loss- and gain-of-function experiments in gastric epithelial cells demonstrate that increased LCN2 protected against obesity associated gastric injury by inhibiting apoptosis and improving inflammatory state. In addition, this protective effect was mediated by repressing ER stress. Our findings identify LCN2 as a gastric hormone could be a compensatory protective factor against gastric injury in obese.
Collapse
Affiliation(s)
- Xin Wen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- National Metabolic Management Center, Shanghai, 200072, China
| | - Bin Su
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- National Metabolic Management Center, Shanghai, 200072, China
| | - Mingming Gao
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
| | - Jiaqi Chen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Endocrinology and Metabolism, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Donglei Zhou
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui You
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- National Metabolic Management Center, Shanghai, 200072, China
| | - Nannan Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- National Metabolic Management Center, Shanghai, 200072, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaoyun Cheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- National Metabolic Management Center, Shanghai, 200072, China
| | - Chunhua Qian
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- National Metabolic Management Center, Shanghai, 200072, China
| | - Jingyang Gao
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- National Metabolic Management Center, Shanghai, 200072, China
| | - Peng Yang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- National Metabolic Management Center, Shanghai, 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- National Metabolic Management Center, Shanghai, 200072, China.
| | - Le Bu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- National Metabolic Management Center, Shanghai, 200072, China.
| |
Collapse
|
5
|
Sanaei MJ, Shirzad H, Soltani A, Abdollahpour-Alitappeh M, Shafigh MH, Rahimian G, Mirzaei Y, Bagheri N. Up-regulated CCL18, CCL28 and CXCL13 Expression is Associated with the Risk of Gastritis and Peptic Ulcer Disease in Helicobacter Pylori infection. Am J Med Sci 2021; 361:43-54. [PMID: 32928496 DOI: 10.1016/j.amjms.2020.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/17/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection causes inflammation and increases the risk of developing peptic ulcer disease (PUD); however, the exact molecular mechanisms of PUD development remain unclear. The aim of this study was to investigate the expression of CCL18, CCL28, and CXCL13 in H. pylori-positive subjects in comparison with H. pylori-negative subjects, and to determine its association with different clinical outcomes and virulence factors. METHODS In total, 55 H. pylori-positive subjects with gastritis, 47 H. pylori-positive subjects with PUD, and 48 H. pylori-negative subjects were enrolled in this study. CCL18, CCL28, and CXCL13 expression were determined using real time polymerase chain reaction (PCR). The virulence factors of H. pylori such as cytotoxin-associated gene A (cagA), outer inflammatory protein A (oipA), blood group antigen-binding adhesin (babA), and vacuolating cytotoxin A (VacA) genes were evaluated using PCR. RESULTS CCL18, CCL28, and CXCL13 expression in H. pylori-positive subjects were significantly higher than H. pylori-negative subjects. CCL18 and CXCL13 expression in H. pylori-positive subjects with oipA+ and babA2+were significantly higher than H. pylori-positive subjects with oipA¯ and babA2¯. CCL18 and CXCL13 expression were found to be significantly elevated in H. pylori-positive subjects with gastritis compared with H. pylori-positive subjects with PUD. CCL28 expression was significantly higher in H. pylori-positive subjects with PUD compared with H. pylori-positive subjects with gastritis. CONCLUSIONS The increased of CCL18 and CXCL13 may be involved in the pathogenesis of H. pylori-associated gastritis, while the increased of CCL28 may be involved in the pathogenesis of H. pylori-associated PUD.
Collapse
Affiliation(s)
- Mohammad-Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mohammad-Hadi Shafigh
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Biology, Faculty of Sciences, Soran University, Soran, Kurdistan Region, Iraq
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
George S, Lucero Y, Torres JP, Lagomarcino AJ, O'Ryan M. Gastric Damage and Cancer-Associated Biomarkers in Helicobacter pylori-Infected Children. Front Microbiol 2020; 11:90. [PMID: 32117120 PMCID: PMC7029740 DOI: 10.3389/fmicb.2020.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is well-known to be involved in gastric carcinogenesis, associated with deregulation of cell proliferation and epigenetic changes in cancer-related genes. H. pylori infection is largely acquired during childhood, persisting long-term in about half of infected individuals, a subset of whom will go on to develop peptic ulcer disease and eventually gastric cancer, however, the sequence of events leading to disease is not completely understood. Knowledge on carcinogenesis and gastric damage-related biomarkers is abundant in adult populations, but scarce in children. We performed an extensive literature review focusing on gastric cancer related biomarkers identified in adult populations, which have been detected in children infected with H. pylori. Biomarkers were related to expression levels (RNA or protein) and/or methylation levels (DNA) in gastric tissue or blood of infected children as compared to non-infected controls. In this review, we identified 37 biomarkers of which 24 are over expressed, three are under expressed, and ten genes are significantly hypermethylated in H. pylori-infected children compared to healthy controls in at least 1 study. Only four of these biomarkers (pepsinogen I, pepsinogen II, gastrin, and SLC5A8) have been studied in asymptomatically infected children. Importantly, 13 of these biomarkers (β-catenin, C-MYC, GATA-4, DAPK1, CXCL13, DC-SIGN, TIMP3, EGFR, GRIN2B, PIM2, SLC5A8, CDH1, and VCAM-1.) are consistently deregulated in infected children and in adults with gastric cancer. Future studies should be designed to determine the clinical significance of these changes in infection-associated biomarkers in children and their persistence over time. The effect of eradication therapy over these biomarkers in children if proven significant, could lead to modifications in treatment guidelines for younger populations, and eventually promote the development of preventive strategies, such as vaccination, in the near future.
Collapse
Affiliation(s)
- Sergio George
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yalda Lucero
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Roberto del Río Hospital, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Torres
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Pediatrics and Pediatric Surgery, Dr. Luis Calvo Mackenna Hospital, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Anne J Lagomarcino
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Miguel O'Ryan
- Host-Pathogen Interaction Laboratory, Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy (IMII), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Jafarzadeh A, Nemati M, Jafarzadeh S. The important role played by chemokines influence the clinical outcome of Helicobacter pylori infection. Life Sci 2019; 231:116688. [PMID: 31348950 DOI: 10.1016/j.lfs.2019.116688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The extended infection with Helicobacter pylori (H. pylori), one of the most frequent infectious agents in humans, may cause gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. During H. pylori infection, different kinds of inflammatory cells such as dendritic cells, macrophages, neutrophils, mast cells, eosinophils, T cells and B cells are accumulated into the stomach. The interactions between chemokines and their respective receptors recruit particular types of the leukocytes that ultimately determine the nature of immune response and therefore, have a main influence on the consequence of infection. The suitable production of chemokines especially in the early stages of H. pylori infection shapes appropriate immune responses that contribute to the H. pylori elimination. The unbalanced expression of the chemokines can contribute in the induction of inappropriate responses that result in the tissue damage or malignancy. Thus, chemokines and their receptors may be promising potential targets for designing the therapeutic strategies against various types H. pylori-related gastrointestinal disorders. In this review, a comprehensive explanation regarding the roles played by chemokines in H. pylori-mediated peptic ulcer, gastritis and gastric malignancies was provided while presenting the potential utilization of these chemoattractants as therapeutic elements.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Ikuse T, Ohtsuka Y, Obayashi N, Jimbo K, Aoyagi Y, Kudo T, Asaoka D, Hojo M, Nagahara A, Watanabe S, Blanchard TG, Czinn SJ, Shimizu T. Host response genes associated with nodular gastritis in Helicobacter pylori infection. Pediatr Int 2018; 60:446-454. [PMID: 29415337 DOI: 10.1111/ped.13527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/19/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic Helicobacter pylori infection in children induces lymphoid hyperplasia called nodular gastritis (NG) at the antral gastric mucosa. The aim of this study was to evaluate genes in gastric biopsy on microarray analysis, to identify molecules associated with NG on comparison with NG-negative pediatric corpus tissue and with H. pylori-infected adult tissue with atrophic gastritis (AG). METHODS Eight pediatric and six adult H. pylori-infected patients, as well as six pediatric and six adult uninfected patients were evaluated. All infected adults had AG. NG was observed in the antrum of all eight pediatric patients and in the corpus of three patients. Adult and uninfected patients were free of NG; that is, only pediatric H. pylori-infected patients had NG. Total RNA was purified from gastric biopsy, and microarray analysis was performed to compare gene expression between groups. The three infected children with NG in both the antrum and corpus were excluded from analysis of corpus samples. RESULTS The number of genes significantly up- or downregulated (fold change >3, P < 0.01) compared with uninfected controls varied widely: 72 in pediatric antrum, 45 in pediatric corpus, 103 in adult antrum and 71 in adult corpus. Nineteen genes had significantly altered expression in the antrum of NG tissue compared with NG-negative pediatric corpus tissue and adult AG tissue. The CD20 B-cell specific differentiation antigen had the most pronounced increase. Previously described regulators of NG development were not predominantly upregulated in the NG mucosa. CONCLUSIONS CD20 overexpression may play an important role in lymphoid follicle enlargement and NG.
Collapse
Affiliation(s)
- Tamaki Ikuse
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yoshikazu Ohtsuka
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naho Obayashi
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keisuke Jimbo
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yo Aoyagi
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiro Kudo
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Asaoka
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mariko Hojo
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Toshiaki Shimizu
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Caldwell JM, Collins MH, Kemme KA, Sherrill JD, Wen T, Rochman M, Stucke EM, Amin L, Tai H, Putnam PE, Jiménez-Dalmaroni MJ, Wormald MR, Porollo A, Abonia JP, Rothenberg ME. Cadherin 26 is an alpha integrin-binding epithelial receptor regulated during allergic inflammation. Mucosal Immunol 2017; 10:1190-1201. [PMID: 28051089 PMCID: PMC5496811 DOI: 10.1038/mi.2016.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
Abstract
Cadherins (CDH) mediate diverse processes critical in inflammation, including cell adhesion, migration, and differentiation. Herein, we report that the uncharacterized cadherin 26 (CDH26) is highly expressed by epithelial cells in human allergic gastrointestinal tissue. In vitro, CDH26 promotes calcium-dependent cellular adhesion of cells lacking endogenous CDHs by a mechanism involving homotypic binding and interaction with catenin family members (alpha, beta, and p120), as assessed by biochemical assays. Additionally, CDH26 enhances cellular adhesion to recombinant integrin α4β7 in vitro; conversely, recombinant CDH26 binds αE and α4 integrins in biochemical and cellular functional assays, respectively. Interestingly, CDH26-Fc inhibits activation of human CD4+ T cells in vitro including secretion of IL-2. Taken together, we have identified a novel functional CDH regulated during allergic responses with unique immunomodulatory properties, as it binds α4 and αE integrins and regulates leukocyte adhesion and activation, and may thus represent a novel checkpoint for immune regulation and therapy via CDH26-Fc.
Collapse
Affiliation(s)
- Julie M. Caldwell
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Margaret H. Collins
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Katherine A. Kemme
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Joseph D. Sherrill
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Ting Wen
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Emily M. Stucke
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Lissa Amin
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Haitong Tai
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Philip E. Putnam
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - Maximiliano J. Jiménez-Dalmaroni
- Department of Biological Chemistry, John Innes Centre, The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Mark R. Wormald
- The Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - J. Pablo Abonia
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA
| | - ME Rothenberg
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Ave., Cincinnati, OH 45229 USA,To whom correspondence should be addressed: Marc Rothenberg, M.D., Ph.D., Cincinnati Children’s Hospital Medical Center, Division of Allergy and Immunology, 3333 Burnet Ave. ML7028, Cincinnati, Ohio 45229 USA. Phone: 513.802.0257; Fax: 513.636.3310;
| |
Collapse
|
10
|
Abstract
Lipocalin 2 (Lcn2), an innate immune protein, has emerged as a critical iron regulatory protein during physiological and inflammatory conditions. As a bacteriostatic factor, Lcn2 obstructs the siderophore iron-acquiring strategy of bacteria and thus inhibits bacterial growth. As part of host nutritional immunity, Lcn2 facilitates systemic, cellular, and mucosal hypoferremia during inflammation, in addition to stabilizing the siderophore-bound labile iron pool. In this review, we summarize recent advances in understanding the interaction between Lcn2 and iron, and its effects in various inflammatory diseases. Lcn2 exerts mostly a protective role in infectious and inflammatory bowel diseases, whereas both beneficial and detrimental functions have been documented in neurodegenerative diseases, metabolic syndrome, renal disorders, skin disorders, and cancer. Further animal and clinical studies are necessary to unveil the multifaceted roles of Lcn2 in iron dysregulation during inflammation and to explore its therapeutic potential for treating inflammatory diseases.
Collapse
Affiliation(s)
- Xia Xiao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Beng San Yeoh
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802; .,Department of Medicine, The Pennsylvania State University Medical Center, Hershey, Pennsylvania 17033
| |
Collapse
|
11
|
Obayashi N, Ohtsuka Y, Hosoi K, Ikuse T, Jimbo K, Aoyagi Y, Fujii T, Kudo T, Asaoka D, Hojo M, Nagahara A, Watanabe S, Shimizu T. Comparison of Gene Expression Between Pediatric and Adult Gastric Mucosa with Helicobacter pylori Infection. Helicobacter 2016; 21:114-23. [PMID: 26140656 DOI: 10.1111/hel.12245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Although Helicobacter pylori infection among adults is a major risk factor for the development of gastric cancer and initial infection with H. pylori may occur before 5 years of age, the direct effects of H. pylori infection since childhood on gastric mucosa are unknown. The aim of this study was to evaluate gene expression in the H. pylori-infected gastric mucosa of children. METHODS Gastric mucosal samples were obtained from 24 patients (12 adults and 12 children) who had undergone endoscopic evaluation of chronic abdominal complaints and were examined by the adult and pediatric gastroenterologists at Juntendo University Hospital. Six adult and pediatric patients with and six without H. pylori infection were enrolled. Their gastric mucosal samples obtained from the antrum and corpus were used for microarray, real-time polymerase chain reaction, and immunohistochemical analyses to examine the expression of inflammatory carcinogenic molecules. RESULTS The expression of inflammatory molecules was upregulated in the H. pylori-infected gastric mucosa from both adults and children. The expression of olfactomedin-4 was only upregulated in adult patients, while that of pim-2, regenerating islet-derived 3 alpha, lipocalin-2, and C-X-C motif chemokine ligand 13 was equally upregulated in the infected gastric mucosa of both adults and children. CONCLUSIONS Because several carcinogenic molecules are upregulated in H. pylori-infected gastric mucosa even in children, early eradication therapy from childhood may be beneficial to decrease the incidence of gastric cancer. Although increased expression of olfactomedin-4 can be important in suppressing gastric cancer in adults, the increase was not detected in children.
Collapse
Affiliation(s)
- Naho Obayashi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Ohtsuka
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenji Hosoi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tamaki Ikuse
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Keisuke Jimbo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yo Aoyagi
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Fujii
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiro Kudo
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Asaoka
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mariko Hojo
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sumio Watanabe
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Abstract
This review concerned the important pediatric studies published between April 2012 and March 2013. Symptomatology in Helicobacter pylori-positive children is nonspecific, except for those suffering from peptic ulcer diseases. Investigation of H. pylori status in children and adolescents with sideropenic anemia is recommended, and it is the aim of several studies worldwide. Associations of H. pylori with plasma ghrelin levels as well as the negative association of H. pylori with atopic disease were interesting objectives for several studies this year. Success rates of sequential therapy tended to be lower in recent studies than in previous trials, which probably reflects the increase in macrolide resistance. A beneficial effect of probiotics was reported although not all trials supported this result in children. Intrafamilial transmission and young age could be major risk factors associated with reinfection in children.
Collapse
Affiliation(s)
- Teresa Alarcón
- Department of Microbiology, Hospital Universitario de La Princesa, Madrid, Spain
| | | | | |
Collapse
|