1
|
Tuffaha S, Lee EB. Growth Factors to Enhance Nerve Regeneration: Approaching Clinical Translation. Hand Clin 2024; 40:399-408. [PMID: 38972684 DOI: 10.1016/j.hcl.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Following nerve injury, growth factors (GFs) are transiently upregulated in injured neurons, proliferating Schwann cells, and denervated muscle and skin. They act on these same cells and tissues to promote nerve regeneration and end-organ reinnervation. Consequently, much attention has been focused on developing GF-based therapeutics. A major barrier to clinical translation of GFs is their short half-life. To provide sustained GF treatment to the affected nerve, muscle, and skin in a safe and practical manner, engineered drug delivery systems are needed. This review highlights recent advancements in GF-based therapeutics and discusses the remaining hurdles for clinical translation.
Collapse
Affiliation(s)
- Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Erica B Lee
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
2
|
Okamoto Y, Takashima H. The Current State of Charcot-Marie-Tooth Disease Treatment. Genes (Basel) 2023; 14:1391. [PMID: 37510296 PMCID: PMC10379063 DOI: 10.3390/genes14071391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) and associated neuropathies are the most predominant genetically transmitted neuromuscular conditions; however, effective pharmacological treatments have not established. The extensive genetic heterogeneity of CMT, which impacts the peripheral nerves and causes lifelong disability, presents a significant barrier to the development of comprehensive treatments. An estimated 100 loci within the human genome are linked to various forms of CMT and its related inherited neuropathies. This review delves into prospective therapeutic strategies used for the most frequently encountered CMT variants, namely CMT1A, CMT1B, CMTX1, and CMT2A. Compounds such as PXT3003, which are being clinically and preclinically investigated, and a broad array of therapeutic agents and their corresponding mechanisms are discussed. Furthermore, the progress in established gene therapy techniques, including gene replacement via viral vectors, exon skipping using antisense oligonucleotides, splicing modification, and gene knockdown, are appraised. Each of these gene therapies has the potential for substantial advancements in future research.
Collapse
Affiliation(s)
- Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| |
Collapse
|
3
|
Puhl DL, Funnell JL, Fink TD, Swaminathan A, Oudega M, Zha RH, Gilbert RJ. Electrospun fiber-mediated delivery of neurotrophin-3 mRNA for neural tissue engineering applications. Acta Biomater 2023; 155:370-385. [PMID: 36423820 DOI: 10.1016/j.actbio.2022.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Aligned electrospun fibers provide topographical cues and local therapeutic delivery to facilitate robust peripheral nerve regeneration. mRNA delivery enables transient expression of desired proteins that promote axonal regeneration. However, no prior work delivers mRNA from electrospun fibers for peripheral nerve regeneration applications. Here, we developed the first aligned electrospun fibers to deliver pseudouridine-modified (Ψ) neurotrophin-3 (NT-3) mRNA (ΨNT-3mRNA) to primary Schwann cells and assessed NT-3 secretion and bioactivity. We first electrospun aligned poly(L-lactic acid) (PLLA) fibers and coated them with the anionic substrates dextran sulfate sodium salt (DSS) or poly(3,4-dihydroxy-L-phenylalanine) (pDOPA). Cationic lipoplexes containing ΨNT-3mRNA complexed to JetMESSENGER® were then immobilized to the fibers, resulting in detectable ΨNT-3mRNA release for 28 days from all fiber groups investigated (PLLA+mRNA, 0.5DSS4h+mRNA, and 2pDOPA4h+mRNA). The 2pDOPA4h+mRNA group significantly increased Schwann cell secretion of NT-3 for 21 days compared to control PLLA fibers (p < 0.001-0.05) and, on average, increased Schwann cell secretion of NT-3 by ≥ 2-fold compared to bolus mRNA delivery from the 1µgBolus+mRNA and 3µgBolus+mRNA groups. The 2pDOPA4h+mRNA fibers supported Schwann cell secretion of NT-3 at levels that significantly increased dorsal root ganglia (DRG) neurite extension by 44% (p < 0.0001) and neurite area by 64% (p < 0.001) compared to control PLLA fibers. The data show that the 2pDOPA4h+mRNA fibers enhance the ability of Schwann cells to promote neurite growth from DRG, demonstrating this platform's potential capability to improve peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers enhance axonal regeneration by providing structural support and guidance cues, but further therapeutic stimulation is necessary to improve functional outcomes. mRNA delivery enables the transient expression of therapeutic proteins, yet achieving local, sustained delivery remains challenging. Previous work shows that genetic material delivery from electrospun fibers improves regeneration; however, mRNA delivery has not been explored. Here, we examine mRNA delivery from aligned electrospun fibers to enhance neurite outgrowth. We show that immobilization of NT-3mRNA/JetMESSENGER® lipoplexes to aligned electrospun fibers functionalized with pDOPA enables local, sustained NT-3mRNA delivery to Schwann cells, increasing Schwann cell secretion of NT-3 and enhancing DRG neurite outgrowth. This study displays the potential benefits of electrospun fiber-mediated mRNA delivery platforms for neural tissue engineering.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jessica L Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Tanner D Fink
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Anuj Swaminathan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Department of Neuroscience, Northwestern University, Chicago, IL, USA; Edward Hines Jr VA Hospital, Hines, IL, USA
| | - R Helen Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
4
|
Guedan-Duran A, Jemni-Damer N, Orueta-Zenarruzabeitia I, Guinea GV, Perez-Rigueiro J, Gonzalez-Nieto D, Panetsos F. Biomimetic Approaches for Separated Regeneration of Sensory and Motor Fibers in Amputee People: Necessary Conditions for Functional Integration of Sensory-Motor Prostheses With the Peripheral Nerves. Front Bioeng Biotechnol 2020; 8:584823. [PMID: 33224936 PMCID: PMC7670549 DOI: 10.3389/fbioe.2020.584823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
The regenerative capacity of the peripheral nervous system after an injury is limited, and a complete function is not recovered, mainly due to the loss of nerve tissue after the injury that causes a separation between the nerve ends and to the disorganized and intermingled growth of sensory and motor nerve fibers that cause erroneous reinnervations. Even though the development of biomaterials is a very promising field, today no significant results have been achieved. In this work, we study not only the characteristics that should have the support that will allow the growth of nerve fibers, but also the molecular profile necessary for a specific guidance. To do this, we carried out an exhaustive study of the molecular profile present during the regeneration of the sensory and motor fibers separately, as well as of the effect obtained by the administration and inhibition of different factors involved in the regeneration. In addition, we offer a complete design of the ideal characteristics of a biomaterial, which allows the growth of the sensory and motor neurons in a differentiated way, indicating (1) size and characteristics of the material; (2) necessity to act at the microlevel, on small groups of neurons; (3) combination of molecules and specific substrates; and (4) temporal profile of those molecules expression throughout the regeneration process. The importance of the design we offer is that it respects the complexity and characteristics of the regeneration process; it indicates the appropriate temporal conditions of molecular expression, in order to obtain a synergistic effect; it takes into account the importance of considering the process at the group of neuron level; and it gives an answer to the main limitations in the current studies.
Collapse
Affiliation(s)
- Atocha Guedan-Duran
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Nahla Jemni-Damer
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Irune Orueta-Zenarruzabeitia
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Gustavo Víctor Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - José Perez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| | - Fivos Panetsos
- Neuro-computing and Neuro-robotics Research Group, Complutense University of Madrid, Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Silk Biomed SL, Madrid, Spain
| |
Collapse
|
5
|
Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin 2020; 41:1289-1300. [PMID: 32123299 PMCID: PMC7608263 DOI: 10.1038/s41401-019-0338-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury (PNI), one of the most common concerns following trauma, can result in a significant loss of sensory or motor function. Restoration of the injured nerves requires a complex cellular and molecular response to rebuild the functional axons so that they can accurately connect with their original targets. However, there is no optimized therapy for complete recovery after PNI. Supplementation with exogenous growth factors (GFs) is an emerging and versatile therapeutic strategy for promoting nerve regeneration and functional recovery. GFs activate the downstream targets of various signaling cascades through binding with their corresponding receptors to exert their multiple effects on neurorestoration and tissue regeneration. However, the simple administration of GFs is insufficient for reconstructing PNI due to their short half‑life and rapid deactivation in body fluids. To overcome these shortcomings, several nerve conduits derived from biological tissue or synthetic materials have been developed. Their good biocompatibility and biofunctionality made them a suitable vehicle for the delivery of multiple GFs to support peripheral nerve regeneration. After repairing nerve defects, the controlled release of GFs from the conduit structures is able to continuously improve axonal regeneration and functional outcome. Thus, therapies with growth factor (GF) delivery systems have received increasing attention in recent years. Here, we mainly review the therapeutic capacity of GFs and their incorporation into nerve guides for repairing PNI. In addition, the possible receptors and signaling mechanisms of the GF family exerting their biological effects are also emphasized.
Collapse
Affiliation(s)
- Rui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Duo-Hui Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong-Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jian Wang
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China
| | - Xiao-Kun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Peripheral Neurosurgery, The First Affiliated Hospital, Wenzhou, Medical University, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Prautsch KM, Schmidt A, Paradiso V, Schaefer DJ, Guzman R, Kalbermatten DF, Madduri S. Modulation of Human Adipose Stem Cells' Neurotrophic Capacity Using a Variety of Growth Factors for Neural Tissue Engineering Applications: Axonal Growth, Transcriptional, and Phosphoproteomic Analyses In Vitro. Cells 2020; 9:E1939. [PMID: 32839392 PMCID: PMC7565501 DOI: 10.3390/cells9091939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
We report on a potential strategy involving the exogenous neurotrophic factors (NTF) for enhancing the neurotrophic capacity of human adipose stem cells (ASC) in vitro. For this, ASC were stimulated for three days using NTF, i.e., nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), NT4, glial cell-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF). The resulting conditioned medium (CM) as well as individual NTF exhibited distinct effects on axonal outgrowth from dorsal root ganglion (DRG) explants. In particular, CM derived from NT3-stimulated ASC (CM-NT3-ASC) promoted robust axonal outgrowth. Subsequent transcriptional analysis of DRG cultures in response to CM-NT3-ASC displayed significant upregulation of STAT-3 and GAP-43. In addition, phosphoproteomic analysis of NT3-stimulated ASC revealed significant changes in the phosphorylation state of different proteins that are involved in cytokine release, growth factors signaling, stem cell maintenance, and differentiation. Furthermore, DRG cultures treated with CM-NT3-ASC exhibited significant changes in the phosphorylation levels of proteins involved in tubulin and actin cytoskeletal pathways, which are crucial for axonal growth and elongation. Thus, the results obtained at the transcriptional, proteomic, and cellular level reveal significant changes in the neurotrophic capacity of ASC following NT3 stimulation and provide new options for improving the axonal growth-promoting potential of ASC in vitro.
Collapse
Affiliation(s)
- Katharina M. Prautsch
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Spitalstrasse 21, 4021 Basel, Switzerland; (K.M.P.); (D.J.S.); (D.F.K.)
- Department of Pathology, University Hospital Basel, Hebelstrasse 20, 4021 Basel, Switzerland;
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland;
| | - Viola Paradiso
- Department of Pathology, University Hospital Basel, Hebelstrasse 20, 4021 Basel, Switzerland;
| | - Dirk J. Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Spitalstrasse 21, 4021 Basel, Switzerland; (K.M.P.); (D.J.S.); (D.F.K.)
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4021 Basel, Switzerland;
| | - Raphael Guzman
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4021 Basel, Switzerland;
- Department of Neurosurgery, University Hospital Basel, Spitalstrasse 21, 4021 Basel, Switzerland
| | - Daniel F. Kalbermatten
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Spitalstrasse 21, 4021 Basel, Switzerland; (K.M.P.); (D.J.S.); (D.F.K.)
- Department of Pathology, University Hospital Basel, Hebelstrasse 20, 4021 Basel, Switzerland;
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| | - Srinivas Madduri
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Spitalstrasse 21, 4021 Basel, Switzerland; (K.M.P.); (D.J.S.); (D.F.K.)
- Department of Pathology, University Hospital Basel, Hebelstrasse 20, 4021 Basel, Switzerland;
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4021 Basel, Switzerland;
| |
Collapse
|
7
|
Wang G, Yang S, Sun S, Si Q, Wang L, Zhang Q, Wu G, Zhao J, Zhang H, Chen W. Lactobacillus rhamnosus Strains Relieve Loperamide-Induced Constipation via Different Pathways Independent of Short-Chain Fatty Acids. Front Cell Infect Microbiol 2020; 10:423. [PMID: 32974216 PMCID: PMC7466723 DOI: 10.3389/fcimb.2020.00423] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing researches have confirmed the relationship between slow-transit constipation and gut microbiota dysbiosis. Many population and animal experiments have identified probiotics as effectors for the relief of constipation symptoms, but the specific mechanism remains unclear. In this intervention study, Lactobacillus rhamnosus strains isolated from five different sources were administered to mice with loperamide-induced constipation, and the impacts of these strains on constipation-related indicators were evaluated. All five strains of L. rhamnosus were found to improve constipation to various degrees. However, contrary to previous studies, the abilities of L. rhamnosus strains to improve constipation symptoms were not associated with the levels of short-chain fatty acids (SCFAs) in the colon. The effects of different strains of L. rhamnosus on constipation relief were associated with different aspects of the GI tract, including gastrointestinal regulatory peptides, neurotransmitters, neurotrophic factors, and gut microbiota. The findings of this study demonstrate that L. rhamnosus strains can alleviate constipation-related symptoms via different pathways independent of SCFAs regulation. This study yields a new perspective for clinical use of probiotics to better improve constipation symptoms, by combining strains with different mechanisms for alleviation of constipation.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shurong Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shanshan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qian Si
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gaojue Wu
- Department of Gastroenterology, The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
Donsante A, Xue J, Poth KM, Hardcastle NS, Diniz B, O'Connor DM, Xia Y, Boulis NM. Controlling the Release of Neurotrophin-3 and Chondroitinase ABC Enhances the Efficacy of Nerve Guidance Conduits. Adv Healthc Mater 2020; 9:e2000200. [PMID: 32548984 PMCID: PMC7751830 DOI: 10.1002/adhm.202000200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Nerve guidance conduits (NGCs) have the potential to replace autografts in repairing peripheral nerve injuries, but their efficacy still needs to be improved. The efficacy of NGCs is augmented by neurotrophic factors that promote axon growth and by enzymes capable of degrading molecules that inhibit axon growth. In the current study, two types of NGCs loaded with factors (both neurotrophin-3 and chondroitinase ABC) are constructed and their abilities to repair an 8 mm gap in the rat sciatic nerve are examined. The factors are encapsulated in microparticles made of a phase-change material (PCM) or collagen and then sandwiched between two layers of electrospun fibers. The use of PCM allows to achieve pulsed release of the factors upon irradiation with a near-infrared laser. The use of collagen enables slow, continuous release via diffusion. The efficacy is evaluated by measuring compound muscle action potentials (CMAP) in the gastrocnemius muscle and analyzing the nerve histology. Continuous release of the factors from collagen results in enhanced CMAP amplitude and increased axon counts in the distal nerve relative to the plain conduit. In contrast, pulsed release of the same factors from PCM shows a markedly adverse impact on the efficacy, possibly by inhibiting axon growth.
Collapse
Affiliation(s)
- Anthony Donsante
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Kelly M Poth
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | | | - Bruna Diniz
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | | | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
9
|
Functionalized nerve conduits for peripheral nerve regeneration: A literature review. HAND SURGERY & REHABILITATION 2020; 39:343-351. [PMID: 32485240 DOI: 10.1016/j.hansur.2020.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Functionalized neurotube are a third-generation of conduits with chemical or architectural bioactivity developed for axonal proliferation. The goal of this review is to provide a synopsis of the functionalized nerve conduits described in the literature according to their chemical and architectural properties and answer two questions: what are their mechanisms of action? Has their efficacy been proven compared to the autologous nerve graft? Our literature review relates all kind of conduits corresponding to functionalized neurotubes in peripheral nerve regeneration found in Medline and PubMed Central. Studies developing nerve gaps, chemotactic or structural features promoting each conduit, results, efficiency were selected. Fifty-five studies were selected and classified in: (a) intraluminal neurotrophic factors; (b) cell-based therapy (combined-in-vein muscles, amniotic membrane, Schwann cells, stem cells); (c) extracellular matrix proteins; (d) tissue engineering; (e) bioimplants. Functionalized neurotubes showed significantly better functional results than after end-to-end nerve suture. No studies can be able to show that neurotube results were better than autologous nerve graft results. We included all studies regardless of effectives to evaluate quality of reinnervation with modern tubulization. Functionalized neurotubes promote basic conduits for peripheral nerve regeneration. Thanks to bioengineering and microsurgery improvement, further neurotubes could promote best level of regeneration and functional recovery to successfully bridge a critical nerve gap.
Collapse
|
10
|
Grijalvo S, Nieto‐Díaz M, Maza RM, Eritja R, Díaz DD. Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Biotechnol J 2019; 14:e1900275. [DOI: 10.1002/biot.201900275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - Manuel Nieto‐Díaz
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection GroupResearch Unit, National Hospital for Paraplegics (SESCAM) E‐45071 Toledo Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC, CSIC) Jordi Girona 18–26 E‐08034 Barcelona Spain
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN) Jordi Girona 18–26 E‐08034 Barcelona Spain
| | - David Díaz Díaz
- Institut für Organische ChemieUniversität Regensburg, Universitätsstr. 31 93053 Regensburg Germany
- Institute of Natural Products and Abrobiology of the CSIC Avda. Astrofísico Francisco Sánchez 3 E‐3826 La Laguna Tenerife Spain
| |
Collapse
|
11
|
Sahenk Z, Ozes B. Gene therapy to promote regeneration in Charcot-Marie-Tooth disease. Brain Res 2019; 1727:146533. [PMID: 31669284 DOI: 10.1016/j.brainres.2019.146533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The molecular pathogenesis underlying Charcot-Marie-Tooth (CMT) neuropathy subtypes is becoming increasingly variable and identification of common approaches for treatment, independently of the disease causing gene defect, is therefore much desirable. Gene therapy approach from the clinical translational view point is particularly challenging for the most common "demyelinating" CMT1 subtypes, caused by primary Schwann cell genetic defects. Studies have shown that impaired regenerative capacity of distal axons is major contributing factor to distal axonal loss in primary Schwann cell genetic defects and neurotrophin 3 (NT-3) improves impaired regeneration in CMT1 mouse models. This review surveys the evidence supporting the rationale for AAV1.NT-3 surrogate gene therapy to improve nerve regeneration in CMT1A. The translational process, from proof of principal studies to the design of the phase I/IIa trial evaluating scAAV1.tMCK.NTF3 gene therapy for treatment of CMT1A is summarized.
Collapse
Affiliation(s)
- Zarife Sahenk
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, United States; Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States; Department of Neurology, The Ohio State University, United States.
| | - Burcak Ozes
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
12
|
Controlling the dose-dependent, synergistic and temporal effects of NGF and GDNF by encapsulation in PLGA microparticles for use in nerve guidance conduits for the repair of large peripheral nerve defects. J Control Release 2019; 304:51-64. [DOI: 10.1016/j.jconrel.2019.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
|
13
|
Hassanzadeh P, Atyabi F, Dinarvand R. Tissue engineering: Still facing a long way ahead. J Control Release 2018; 279:181-197. [DOI: 10.1016/j.jconrel.2018.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023]
|
14
|
AAV1.NT-3 gene therapy increases muscle fiber diameter through activation of mTOR pathway and metabolic remodeling in a CMT mouse model. Gene Ther 2018. [PMID: 29523879 DOI: 10.1038/s41434-018-0009-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurotrophin 3 (NT-3) has well-recognized effects on peripheral nerve and Schwann cells, promoting axonal regeneration and associated myelination. In this study, we assessed the effects of AAV.NT-3 gene therapy on the oxidative state of the neurogenic muscle from the TremblerJ (Tr J ) mice at 16 weeks post-gene injection and found that the muscle fiber size increase was associated with a change in the oxidative state of muscle fibers towards normalization of the fiber type ratio seen in the wild type. NT-3-induced fiber size increase was most prominent for the fast twitch glycolytic fiber population. These changes in the Tr J muscle were accompanied by increased phosphorylation levels of 4E-BP1 and S6 proteins as evidence of mTORC1 activation. In parallel, the expression levels of the mitochondrial biogenesis regulator PGC1α, and the markers of glycolysis (HK1 and PK1) increased in the TrJ muscle. In vitro studies showed that recombinant NT-3 can directly induce Akt/mTOR pathway activation in the TrkC expressing myotubes but not in myoblasts. In addition, myogenin expression levels were increased in myotubes while p75 NTR expression was downregulated compared to myoblasts, indicating that NT-3 induced myoblast differentiation is associated with mTORC1 activation. These studies for the first time have shown that NT-3 increases muscle fiber diameter in the neurogenic muscle through direct activation of mTOR pathway and that the fiber size increase is more prominent for fast twitch glycolytic fibers.
Collapse
|
15
|
Newman KD, McLaughlin CR, Carlsson D, Li F, Liu Y, Griffith M. Bioactive Hydrogel-Filament Scaffolds for Nerve Repair and Regeneration. Int J Artif Organs 2018; 29:1082-91. [PMID: 17160966 DOI: 10.1177/039139880602901109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design of novel biomaterials is crucial for the advancement of tissue engineering in nerve regeneration. In this study we developed and evaluated novel biosynthetic scaffolds comprising collagen crosslinked with a terpolymer of poly(N-isopropylacrylamide) (PNiPAAm) as conduits for nerve growth. These collagen-terpolymer (collagen-TERP) scaffolds grafted with the laminin pentapeptide YIGSR were previously used as corneal substitutes in pigs and demonstrated enhanced nerve regeneration compared to allografts. The purpose of this project was to enhance neuronal growth on the collagen-TERP scaffolds through the incorporation of supporting fibers. Neuronal growth on these matrices was assessed in vitro using isolated dorsal root ganglia as a nerve source. Statistical significance was assessed using a one-way ANOVA. The incorporation of fibers into the collagen-TERP scaffolds produced a significant increase in neurite extension (p<0.05). The growth habit of the nerves varied with the type of fiber and included directional growth of the neurites along the surface of certain fiber types. Furthermore, the presence of fibers in the collagen-TERP scaffolds appeared to influence neurite morphology and function; neurites grown on fibers-incorporated collagen-TERP scaffolds expressed higher levels of Na channels compared to the scaffolds without fiber. Overall, our results suggest that incorporation of supporting fibers enhanced neurite outgrowth and that surface properties of the scaffold play an important role in promoting and guiding nerve regeneration. More importantly, this study demonstrates the potential value of tissue engineered collagen-TERP hybrid scaffolds as conduits in peripheral nerve repair.
Collapse
Affiliation(s)
- K D Newman
- University of Ottawa Eye Institute, Ottawa Hospital, General Campus, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Oh SH, Kang JG, Kim TH, Namgung U, Song KS, Jeon BH, Lee JH. Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient. J Biomed Mater Res A 2017; 106:52-64. [DOI: 10.1002/jbm.a.36216] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Se Heang Oh
- Department of Nanobiomedical Science; Dankook University; Cheonan 31116 Republic of Korea
- Department of Pharmaceutical Engineering; Dankook University; Cheonan 31116 Republic of Korea
| | - Jun Goo Kang
- Department of Advanced Materials and Chemical Engineering; Hannam University; Daejeon 34054 Republic of Korea
| | - Tae Ho Kim
- Department of Advanced Materials and Chemical Engineering; Hannam University; Daejeon 34054 Republic of Korea
| | - Uk Namgung
- Department of Oriental Medicine; Daejeon University; Daejeon 34520 Republic of Korea
| | - Kyu Sang Song
- Department of Pathology, School of Medicine; Chungnam National University; Daejeon 35015 Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine; Chungnam National University; Daejeon 35015 Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering; Hannam University; Daejeon 34054 Republic of Korea
| |
Collapse
|
17
|
Oses C, Olivares B, Ezquer M, Acosta C, Bosch P, Donoso M, Léniz P, Ezquer F. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy. PLoS One 2017; 12:e0178011. [PMID: 28542352 PMCID: PMC5438173 DOI: 10.1371/journal.pone.0178011] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/06/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when evaluated in an in vitro model of DN. Altogether, our findings suggest that DFX preconditioning of AD-MSCs improves their therapeutic potential and should be considered as a potential strategy for the generation of new alternatives for DN treatment.
Collapse
Affiliation(s)
- Carolina Oses
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
| | - Belén Olivares
- Centro de Química Médica, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
| | - Cristian Acosta
- Instituto de Histología y Embriología de Mendoza (IHEM-CONICET), Facultad de Medicina, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paul Bosch
- Facultad de Ingeniería, Universidad del Desarrollo. Av. Plaza, Santiago, Chile
| | - Macarena Donoso
- Facultad de Ingeniería, Universidad del Desarrollo. Av. Plaza, Santiago, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana. Av. Vitacura, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo. Av. Las Condes, Santiago, Chile
- * E-mail:
| |
Collapse
|
18
|
Meng L, Huang T, Sun C, Hill DL, Krimm R. BDNF is required for taste axon regeneration following unilateral chorda tympani nerve section. Exp Neurol 2017; 293:27-42. [PMID: 28347764 DOI: 10.1016/j.expneurol.2017.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/18/2022]
Abstract
Taste nerves readily regenerate to reinnervate denervated taste buds; however, factors required for regeneration have not yet been identified. When the chorda tympani nerve is sectioned, expression of brain-derived neurotrophic factor (BDNF) remains high in the geniculate ganglion and lingual epithelium, despite the loss of taste buds. These observations suggest that BDNF is present in the taste system after nerve section and may support taste nerve regeneration. To test this hypothesis, we inducibly deleted Bdnf during adulthood in mice. Shortly after Bdnf gene recombination, the chorda tympani nerve was unilaterally sectioned causing a loss of both taste buds and neurons, irrespective of BDNF levels. Eight weeks after nerve section, however, regeneration was differentially affected by Bdnf deletion. In control mice, there was regeneration of the chorda tympani nerve and taste buds reappeared with innervation. In contrast, few taste buds were reinnervated in mice lacking normal Bdnf expression such that taste bud number remained low. In all genotypes, taste buds that were reinnervated were normal-sized, but non-innervated taste buds remained small and atrophic. On the side of the tongue contralateral to the nerve section, taste buds for some genotypes became larger and all taste buds remained innervated. Our findings suggest that BDNF is required for nerve regeneration following gustatory nerve section.
Collapse
Affiliation(s)
- Lingbin Meng
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Tao Huang
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Chengsan Sun
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - David L Hill
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - Robin Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
19
|
Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors. Int J Mol Sci 2016; 18:ijms18010065. [PMID: 28036084 PMCID: PMC5297700 DOI: 10.3390/ijms18010065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/28/2016] [Accepted: 12/24/2016] [Indexed: 11/29/2022] Open
Abstract
After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation.
Collapse
|
20
|
Focal release of neurotrophic factors by biodegradable microspheres enhance motor and sensory axonal regeneration in vitro and in vivo. Brain Res 2016; 1636:93-106. [DOI: 10.1016/j.brainres.2016.01.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 11/23/2022]
|
21
|
Dadaci M, Karagülle N, Sönmez E, Dadaci Z, İşci ET, İnce B, Vargel İ, Pişkin E, Erk AY. Evaluation of the effectiveness of biodegradable electrospun caprolactoneand poly(lactic acid-ε-caprolactone) nerve conduits for peripheral nerveregenerations in a rat sciatic nerve defect model. Turk J Med Sci 2016; 46:539-48. [PMID: 27511522 DOI: 10.3906/sag-1412-110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 07/02/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM The aim of this study was to compare electrospun caprolactone (EC) and poly(lactic acid-ε-caprolactone) (PLCL) nerve conduits with nerve graft in a rat sciatic nerve defect model. MATERIALS AND METHODS A total of 32 male Wistar albino rats were divided into 4 groups, with 8 rats in each group. A nerve defect of 1 cm was constructed in the left sciatic nerve of the rats. These defects were left denuded in the sham group, and reconstructed with nerve grafts, PLCL, and EC nerve conduits in the other groups. After 3 months, nerve regenerations were evaluated macroscopically, microscopically, and electrophysiologically. The numbers of myelinated axons in the cross-sections of the nerves were compared between the groups. RESULTS Macroscopically, all nerve coaptations were intact and biodegradation was detected in nerve conduits. Electromyographic assessment and count of myelinated axons in the cross-sections of the nerves displayed the best regeneration in the nerve graft group (P < 0.001) and similar results were obtained in the PLCL and EC nerve conduit groups (P = 0.79). Light and electron microscopy studies demonstrated nerve regeneration in both nerve conduit groups. CONCLUSION EC nerve conduits and PLCL nerve conduits yielded similar results and may be alternatives to nerve grafts as they biodegrade.
Collapse
Affiliation(s)
- Mehmet Dadaci
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Nimet Karagülle
- Department of Chemical Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Erhan Sönmez
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, İzmir Katip Çelebi University, İzmir, Turkey
| | - Zeynep Dadaci
- Department of Ophthalmology, Faculty of Medicine, Mevlana University, Konya, Turkey
| | - Evren Tevfik İşci
- Reconstructive and Aesthetic Surgery, Clinic of Plastic, Acıbadem Family Hospital, İstanbul, Turkey
| | - Bilsev İnce
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - İbrahim Vargel
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erhan Pişkin
- Department of Chemical Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Ali Yücel Erk
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
22
|
Belanger K, Dinis TM, Taourirt S, Vidal G, Kaplan DL, Egles C. Recent Strategies in Tissue Engineering for Guided Peripheral Nerve Regeneration. Macromol Biosci 2016; 16:472-81. [PMID: 26748820 DOI: 10.1002/mabi.201500367] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/19/2015] [Indexed: 11/10/2022]
Abstract
The repair of large crushed or sectioned segments of peripheral nerves remains a challenge in regenerative medicine due to the complexity of the biological environment and the lack of proper biomaterials and architecture to foster reconstruction. Traditionally such reconstruction is only achieved by using fresh human tissue as a surrogate for the absence of the nerve. However, recent focus in the field has been on new polymer structures and specific biofunctionalization to achieve the goal of peripheral nerve regeneration by developing artificial nerve prostheses. This review presents various tested approaches as well their effectiveness for nerve regrowth and functional recovery.
Collapse
Affiliation(s)
- Kayla Belanger
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Tony M Dinis
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Sami Taourirt
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - Guillaume Vidal
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Christopher Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS, UMR 7338 Biomechanics and Bioengineering, Centre de Recherches Royallieu - CS 60 3019, 60203, Compiègne cedex, France.,Department of Oral and Maxillofacial Pathology, Tufts University, School of Dental Medicine, 55 Kneeland Street, Boston, MA, 02111, USA
| |
Collapse
|
23
|
Ahmed FJ, Junior GMR, Shinohara AL, De Souza Melo CG, Buchaim RL, Andreo JC, De Castro Rodrigues A. Comparison of results obtained with standard and inside out vein graft techniques and their implication on neurotrophin expression in repair of nerve defect: an experimental study. Microsurgery 2015; 35:227-234. [PMID: 25445241 DOI: 10.1002/micr.22355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 11/03/2014] [Accepted: 11/07/2014] [Indexed: 08/12/2024]
Abstract
Standard vein graft (SVG) and inside out vein graft (IOVG) techniques to promote peripheral nerve regeneration have been widely studied since last two decades. In this experimental study, we attempted to compare these two techniques and analyze the differences in the expression of the neurotrophins during peripheral nerve regeneration. Thirty-six male Wistar rats were used in this sciatic nerve transection model and were divided into two experimental groups (SVG and IOVG) and one sham operated control group. An overall defect of 10 mm was made in the sciatic nerve of the animals in the experimental groups. Each group consisted of two time intervals of 6 and 12 weeks (n = 6). After each experimental interval, sciatic functional index (SFI) along with area and diameter of the axons and fibers of each group were calculated. Muscle mass measurements were also evaluated to see any functional recovery in the groups. Expression of neurotrophins in the graft and distal stump were analyzed with the help of RT-PCR. SFI obtained from walking track analysis showed poor motor recovery in the experimental groups during both time intervals. No significant differences in the histological, morphometric (P > 0.05), and muscle mass measurements (P > 0.05) between the two experimental groups were observed. Analysis of RT-PCR data exhibited an increase in the expression of NT-3 with time in both the grafts (6 weeks 0.428 ± 0.392, 12 weeks 1.089 ± 0.455, P < 0.05) and distal stump (6 weeks 0.411 ± 0.306, 12 weeks 0.807 ± 0.303, P < 0.05) of the SVG group. The study concludes that there is no substantial difference in the nerve regeneration ability between both the techniques. Also, the difference in the level of NT-3 between SVG and IOVG suggests a distinct regulation of NT-3 in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Farooque Jamaluddin Ahmed
- Department of Biological Sciences, Anatomy, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
M F G, M M, S H, Khan WS. Peripheral nerve injury: principles for repair and regeneration. Open Orthop J 2014; 8:199-203. [PMID: 25067975 PMCID: PMC4110386 DOI: 10.2174/1874325001408010199] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/01/2014] [Accepted: 04/02/2014] [Indexed: 01/24/2023] Open
Abstract
Peripheral Nerve Injuries are one of the most common causes of hand dysfunction caused by upper limb trauma but still current management has remained suboptimal. This review aims to explain the traditional view of pathophysiology of nerve repair and also describe why surgical management is still inadequate in using the new biological research that has documented the changes that occur after the nerve injury, which, could cause suboptimal clinical outcomes. Subsequently presentation and diagnosis will be described for peripheral nerve injuries. When traditional surgical repair using end-to-end anastomosis is not adequate nerve conduits are required with the gold standard being the autologous nerve. Due to associated donor site morbidity and poor functional outcome documented with autologous nerve repair several new advancements for alternatives to bridge the gap are being investigated. We will summarise the new and future advancements of non-biological and biological replacements as well as gene therapy, which are being considered as the alternatives for peripheral nerve repair.
Collapse
Affiliation(s)
- Griffin M F
- Plastic Surgery Department, Good Hope Hospital, West Midlands, B75 7RR, UK
| | - Malahias M
- Plastic Surgery Department, Good Hope Hospital, West Midlands, B75 7RR, UK
| | - Hindocha S
- Plastic Surgery Department, Whiston Hospital, Liverpool, L35 5DR, UK
| | - Wasim S Khan
- University College London Institute of Orthopaedics & Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, London, HA7 4LP, UK
| |
Collapse
|
25
|
Mukhatyar V, Pai B, Clements I, Srinivasan A, Huber R, Mehta A, Mukhopadaya S, Rudra S, Patel G, Karumbaiah L, Bellamkonda R. Molecular sequelae of topographically guided peripheral nerve repair. Ann Biomed Eng 2013; 42:1436-55. [PMID: 24356852 DOI: 10.1007/s10439-013-0960-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/07/2013] [Indexed: 12/17/2022]
Abstract
Peripheral nerve injuries cause severe disability with decreased nerve function often followed by neuropathic pain that impacts the quality of life. Even though use of autografts is the current gold standard, nerve conduits fabricated from electrospun nanofibers have shown promise to successfully bridge critical length nerve gaps. However, in depth analysis of the role of topographical cues in the context of spatio-temporal progression of the regenerative sequence has not been elucidated. Here, we explored the influence of topographical cues (aligned, random, and smooth films) on the regenerative sequence and potential to successfully support nerve regeneration in critical size gaps. A number of key findings emerged at the cellular, cytokine and molecular levels from the study. Higher quantities of IL-1α and TNF-α were detected in aligned fiber based scaffolds. Differential gene expression of BDNF, NGFR, ErbB2, and ErbB3 were observed suggesting a role for these genes in influencing Schwann cell migration, myelination, etc. that impact the regeneration in various topographies. Fibrin matrix stabilization and arrest of nerve-innervated muscle atrophy was also evident. Taken together, our data shed light on the cascade of events that favor regeneration in aligned topography and should stimulate research to further refine the strategy of nerve regeneration using topographical cues.
Collapse
Affiliation(s)
- Vivek Mukhatyar
- Neurological Biomaterials and Cancer Therapeutics Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University School of Medicine, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA, 30332-0535, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lavasani M, Pollett JB, Usas A, Thompson SD, Pollett AF, Huard J. The microenvironment-specific transformation of adult stem cells models malignant triton tumors. PLoS One 2013; 8:e82173. [PMID: 24349213 PMCID: PMC3857244 DOI: 10.1371/journal.pone.0082173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/31/2013] [Indexed: 11/25/2022] Open
Abstract
Here, we demonstrated the differentiation potential of murine muscle-derived stem/progenitor cells (MDSPCs) toward myogenic, neuronal, and glial lineages. MDSPCs, following transplantation into a critical-sized sciatic nerve defect in mice, showed full regeneration with complete functional recovery of the injured peripheral nerve at 6 weeks post-implantation. However, several weeks after regeneration of the sciatic nerve, neoplastic growths were observed. The resulting tumors were malignant peripheral nerve sheath tumors (MPNSTs) with rhabdomyoblastic differentiation, expressing myogenic, neurogenic, and glial markers, common markers of human malignant triton tumors (MTTs). No signs of tumorigenesis were observed 17 weeks post-implantation of MDSPCs into the gastrocnemius muscles of dystrophic/mdx mice, or 1 year following subcutaneous or intravenous injection. While MDSPCs were not oncogenic in nature, the neoplasias were composed almost entirely of donor cells. Furthermore, cells isolated from the tumors were serially transplantable, generating tumors when reimplanted into mice. However, this transformation could be abrogated by differentiation of the cells toward the neurogenic lineage prior to implantation. These results establish that MDSPCs participated in the regeneration of the injured peripheral nerve but transformed in a microenvironment- and time-dependent manner, when they likely received concomitant neurogenic and myogenic differentiation signals. This microenvironment-specific transformation provides a useful mouse model for human MTTs and potentially some insight into the origins of this disease.
Collapse
Affiliation(s)
- Mitra Lavasani
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JH); (ML)
| | - Jonathan B. Pollett
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Arvydas Usas
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Seth D. Thompson
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aaron F. Pollett
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Johnny Huard
- Stem Cell Research Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (JH); (ML)
| |
Collapse
|
27
|
AAV1.NT-3 gene therapy for charcot-marie-tooth neuropathy. Mol Ther 2013; 22:511-521. [PMID: 24162799 PMCID: PMC3944324 DOI: 10.1038/mt.2013.250] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/17/2013] [Indexed: 12/28/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) neuropathies represent a heterogeneous group of peripheral nerve disorders affecting 1 in 2,500 persons. One variant, CMT1A, is a primary Schwann cell (SC) disorder, and represents the single most common variant. In previous studies, we showed that neurotrophin-3 (NT-3) improved the tremblerJ (TrJ) mouse and also showed efficacy in CMT1A patients. Long-term treatment with NT-3 was not possible related to its short half-life and lack of availability. This led to considerations of NT-3 gene therapy via adenoassociated virus (AAV) delivery to muscle, acting as secretory organ for widespread distribution of this neurotrophic agent. In the TrJ model of demyelinating CMT, rAAV1.NT-3 therapy resulted in measurable NT-3 secretion levels in blood sufficient to provide improvement in motor function, histopathology, and electrophysiology of peripheral nerves. Furthermore, we showed that the compound muscle action potential amplitude can be used as surrogate for functional improvement and established the therapeutic dose and a preferential muscle-specific promoter to achieve sustained NT-3 levels. These studies of intramuscular (i.m.) delivery of rAAV1.NT-3 serve as a template for future CMT1A clinical trials with a potential to extend treatment to other nerve diseases with impaired nerve regeneration.
Collapse
|
28
|
Chéret J, Lebonvallet N, Carré JL, Misery L, Le Gall-Ianotto C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair Regen 2013; 21:772-88. [PMID: 24134750 DOI: 10.1111/wrr.12101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/01/2013] [Indexed: 12/01/2022]
Abstract
Due to the close interactions between the skin and peripheral nervous system, there is increasing evidence that the cutaneous innervation is an important modulator of the normal wound healing process. The communication between sensory neurons and skin cells involves a variety of molecules (neuropeptides, neurohormones, and neurotrophins) and their specific receptors expressed by both neuronal and nonneuronal skin cells. It is well established that neurotransmitters and nerve growth factors released in skin have immunoregulatory roles and can exert mitogenic actions; they could also influence the functions of the different skin cell types during the wound healing process.
Collapse
Affiliation(s)
- Jérémy Chéret
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | | | | | | | | |
Collapse
|
29
|
Yao L, Daly W, Newland B, Yao S, Wang W, Chen BKK, Madigan N, Windebank A, Pandit A. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene. Gene Ther 2013; 20:1149-57. [DOI: 10.1038/gt.2013.42] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/16/2013] [Accepted: 06/17/2013] [Indexed: 11/09/2022]
|
30
|
St John Smith E, Purfürst B, Grigoryan T, Park TJ, Bennett NC, Lewin GR. Specific paucity of unmyelinated C-fibers in cutaneous peripheral nerves of the African naked-mole rat: comparative analysis using six species of Bathyergidae. J Comp Neurol 2013; 520:2785-803. [PMID: 22528859 PMCID: PMC3410526 DOI: 10.1002/cne.23133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In mammalian peripheral nerves, unmyelinated C-fibers usually outnumber myelinated A-fibers. By using transmission electron microscopy, we recently showed that the saphenous nerve of the naked mole-rat (Heterocephalus glaber) has a C-fiber deficit manifested as a substantially lower C:A-fiber ratio compared with other mammals. Here we determined the uniqueness of this C-fiber deficit by performing a quantitative anatomical analysis of several peripheral nerves in five further members of the Bathyergidae mole-rat family: silvery (Heliophobius argenteocinereus), giant (Fukomys mechowii), Damaraland (Fukomys damarensis), Mashona (Fukomys darlingi), and Natal (Cryptomys hottentotus natalensis) mole-rats. In the largely cutaneous saphenous and sural nerves, the naked mole-rat had the lowest C:A-fiber ratio (∼1.5:1 compared with ∼3:1), whereas, in nerves innervating both skin and muscle (common peroneal and tibial) or just muscle (lateral/medial gastrocnemius), this pattern was mostly absent. We asked whether lack of hair follicles alone accounts for the C-fiber paucity by using as a model a mouse that loses virtually all its hair as a consequence of conditional deletion of the β-catenin gene in the skin. These β-catenin loss-of function mice (β-cat LOF mice) displayed only a mild decrease in C:A-fiber ratio compared with wild-type mice (4.42 compared with 3.81). We suggest that the selective cutaneous C-fiber deficit in the cutaneous nerves of naked mole-rats is unlikely to be due primarily to lack of skin hair follicles. Possible mechanisms contributing to this unique peripheral nerve anatomy are discussed.
Collapse
Affiliation(s)
- Ewan St John Smith
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, D 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Platelet-rich plasma enhances autograft revascularization and reinnervation in a dog model of anterior cruciate ligament reconstruction. J Surg Res 2013; 183:214-22. [PMID: 23472861 DOI: 10.1016/j.jss.2013.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/10/2012] [Accepted: 01/10/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Autologous platelet-rich plasma (PRP) has been investigated as a potential promoter of tendon healing that affects the anterior cruciate ligament (ACL) graft maturation process. However, the influence of PRP on revascularization and reinnervation during the ACL graft remodeling has never been investigated. MATERIALS AND METHODS We randomly assigned healthy and mature beagles to one of four groups. In group 1 (PRP group), we treated the ACL grafts with PRP. In group 2 (control group), we treated the ACL grafts with saline. In group 3 (sham group), we exposed only the knee joints. In group 4 (normal control group), no surgery was performed on the knees. We dissected the ligament tissue at 2, 6, and 12 wk after surgery and performed real-time polymerase chain reaction using primers for cluster of differentiation molecule 31, vascular endothelial growth factor, thrombospondin-1 (TSP-1), neurotrophin-3, growth-associated protein-43 (GAP-43), and nerve growth factor. RESULTS We observed the increased expression of vascular endothelial growth factor, TSP-1, neurotrophin-3, GAP-43, and nerve growth factor mRNA in group 1 at 2, 6, and 12 wk after surgery, compared with that in group 2 (P < 0.05). We also detected increased levels of cluster of differentiation molecule 31 expression in group 1 (P < 0.05) at 2 and 6 wk after surgery. The levels of TSP-1 and GAP-43 mRNA were significantly increased in group 3 compared with those in group 4 at 2 wk after surgery (P < 0.05). CONCLUSIONS During graft remodeling, we observed a time-dependent change in gene expression after ACL reconstruction surgery. In addition, these results demonstrate that PRP alters the expression of some target genes at certain times, particularly during the early stages of graft remodeling. Platelet-rich plasma could promote revascularization and reinnervation, which might explain the enhancing effect of PRP on ACL graft maturation.
Collapse
|
32
|
Quigley AF, Bulluss KJ, Kyratzis ILB, Gilmore K, Mysore T, Schirmer KSU, Kennedy EL, O'Shea M, Truong YB, Edwards SL, Peeters G, Herwig P, Razal JM, Campbell TE, Lowes KN, Higgins MJ, Moulton SE, Murphy MA, Cook MJ, Clark GM, Wallace GG, Kapsa RMI. Engineering a multimodal nerve conduit for repair of injured peripheral nerve. J Neural Eng 2013; 10:016008. [DOI: 10.1088/1741-2560/10/1/016008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Gambarotta G, Fregnan F, Gnavi S, Perroteau I. Neuregulin 1 role in Schwann cell regulation and potential applications to promote peripheral nerve regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:223-56. [PMID: 24083437 DOI: 10.1016/b978-0-12-410499-0.00009-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuregulin 1 (NRG1) is a multifunctional and versatile protein: its numerous isoforms can signal in a paracrine, autocrine, or juxtacrine manner, playing a fundamental role during the development of the peripheral nervous system and during the process of nerve repair, suggesting that the treatment with NRG1 could improve functional outcome following injury. Accordingly, the use of NRG1 in vivo has already yielded encouraging results. The aim of this review is to focus on the role played by the different NRG1 isoforms during peripheral nerve regeneration and remyelination and to identify good candidates to be used for the development of tissue engineered medical devices delivering NRG1, with the objective of promoting better nerve repair.
Collapse
Affiliation(s)
- Giovanna Gambarotta
- Nerve Regeneration Group, Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | | | | | | |
Collapse
|
34
|
Lin S, Wang Y, Zhang C, Xu J. Modification of the Neurotrophin-3 Gene Promotes Cholinergic Neuronal Differentiation and Survival of Neural Stem Cells Derived from Rat Embryonic Spinal Cord In Vitro and In Vivo. J Int Med Res 2012; 40:1449-58. [PMID: 22971496 DOI: 10.1177/147323001204000423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE: To investigate the effects of the neurotrophin-3 ( NTF3) gene on the survival and differentiation of neural stem cells (NSCs) in vitro and in vivo. METHODS: The NTF3 gene was isolated from rats, amplified by polymerase chain reaction (PCR) and subcloned into the lentiviral vector pWPXL-MOD to construct a lentiviral expression vector pWPXL-MOD— NTF3. Reverse transcription—PCR and Western blotting were used to analyse NTF3 mRNA and protein levels, respectively. Adult rats with sectioned tibial nerves received implants of NSCs transfected with either pWPXL-MOD— NTF3 ( n = 30) or an empty expression vector ( n = 30). In vitro and in vivo cell differentiation and survival were determined by fluorescence immunohistochemistry. RESULTS: Expression of NTF3 significantly increased the differentiation of NSCs into cholinergic neurons both in vitro and in vivo. NTF3-expressing NSCs implanted into the tibial nerve also survived longer than cells without NTF3 gene modification. CONCLUSIONS: The NTF3 gene promoted differentiation of NSCs into cholinergic neurons and enhanced neuronal cell survival. These findings may have clinical implications for cell transplantation therapy in patients with nerve injury.
Collapse
Affiliation(s)
- S Lin
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Y Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical Centre, Fudan University, Shanghai, China
| | - C Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Xie GM, Huang fu XQ, Zhao JZ. The Effect of Remnant Preservation on Patterns of Gene Expression in a Rabbit Model of Anterior Cruciate Ligament Reconstruction. J Surg Res 2012; 176:510-6. [DOI: 10.1016/j.jss.2011.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 11/29/2022]
|
36
|
Specificity of peripheral nerve regeneration: interactions at the axon level. Prog Neurobiol 2012; 98:16-37. [PMID: 22609046 DOI: 10.1016/j.pneurobio.2012.05.005] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/12/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. The significance of axonal regeneration is to replace the degenerated distal nerve segment, and achieve reinnervation of target organs and restitution of their functions. However, axonal regeneration does not always allows for adequate functional recovery, so that after a peripheral nerve injury, patients do not recover normal motor control and fine sensibility. The lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. Key factors for successful axonal regeneration include the intrinsic changes that neurons suffer to switch their transmitter state to a pro-regenerative state and the environment that the axons find distal to the lesion site. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. The aim of this review is to look at those interactions, trying to understand if some of these molecular factors are specific for motor and sensory neuron growth, and provide the basic knowledge for potential strategies to enhance and guide axonal regeneration and reinnervation of adequate target organs.
Collapse
|
37
|
HUANG YICHENG, HUANG YIYOU. TISSUE ENGINEERING FOR NERVE REPAIR. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s101623720600018x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nerve regeneration is a complex biological phenomenon. Once the nervous system is impaired, its recovery is difficult and malfunctions in other parts of the body may occur because mature neurons don't undergo cell division. To increase the prospects of axonal regeneration and functional recovery, researches have focused on designing “nerve guidance channels” or “nerve conduits”. For developing tissue engineered nerve conduits, four components come to mind, including a scaffold for axonal proliferation, supporting cells such as Schwann cells, growth factors, and extracelluar matrix. This article reviews the nervous system physiology, the factors that are critical for nerve repair, and the advanced technologies that are explored to fabricate nerve conduits. Furthermore, we also introduce a new method we developed to create longitudinally oriented channels within biodegradable polymers, Chitosan and PLGA, using a combined lyophilizing and wire-heating process. This innovative method using Ni-Cr wires as mandrels to create nerve guidance channels. The process is easy, straightforward, highly reproducible, and could easily be tailored to other polymer and solvent systems. These scaffolds could be useful for guided regeneration after transection injury in either the peripheral nerve or spinal cord.
Collapse
Affiliation(s)
- YI-CHENG HUANG
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan
| | - YI-YOU HUANG
- Institute of Biomedical Engineering, College of Medicine and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Bell JHA, Haycock JW. Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. TISSUE ENGINEERING PART B-REVIEWS 2011; 18:116-28. [PMID: 22010760 DOI: 10.1089/ten.teb.2011.0498] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nerve guides are increasingly being used surgically to repair acute peripheral nerve injuries. This is not only due to an increase in the number of commercially available devices, but also clinical acceptance. However, regeneration distance is typically limited to 20-25 mm, in part due to the basic tubular design. A number of experimental studies have shown improvements in nerve regeneration distance when conduits incorporate coatings, internal scaffolds, topographical cues, or the delivery of support cells. Current studies on designing nerve guides for maximizing nerve regeneration focus both on cell-containing and cell-free devices, the latter being clinically attractive as "off the shelf" products. Arguably better results are obtained when conduits are used in conjunction with support cells (e.g., Schwann cells or stem cells) that can improve regeneration distance and speed of repair, and provide informative experimental data on how Schwann and neuronal cells respond in regenerating injured nerves. In this review we discuss the range of current nerve guides commercially available and appraise experimental studies in the context of the future design of nerve guides for clinical use.
Collapse
Affiliation(s)
- Juliet H A Bell
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
39
|
Muscle recovery after repair of short and long peripheral nerve gaps using fibrin conduits. Neurosci Lett 2011; 500:41-6. [DOI: 10.1016/j.neulet.2011.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/18/2011] [Accepted: 06/01/2011] [Indexed: 02/07/2023]
|
40
|
Kuo LT, Tsai SY, Groves MJ, An SF, Scaravilli F. Gene expression profile in rat dorsal root ganglion following sciatic nerve injury and systemic neurotrophin-3 administration. J Mol Neurosci 2011; 43:503-15. [PMID: 21061088 DOI: 10.1007/s12031-010-9473-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022]
Abstract
Following sciatic nerve transection in adult rats, a proportion of injured dorsal root ganglion (DRG) neurons die, through apoptosis, over the following 6 months. Previous studies showed that axotomy and neurotrophin-3 administration may have effects on expression of neurotrophins and their receptors in DRG. In the current study, the fourth and fifth lumbar DRGs of rats were examined 2 weeks after right sciatic nerve transection and ligation. The effects of axotomy and systemic NT-3 treatment on neuronal genes were investigated by microarray. The results demonstrated that bone morphogenetic protein (BMP) and Janus protein tyrosine kinase signaling pathways are induced in axotomized DRG, and PI-3 kinase and BMP pathways and genes controlling various cellular functions were induced after axotomy and NT-3 administration.
Collapse
Affiliation(s)
- Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Yun-lin branch, No.579, Sec. 2, Yun-lin Rd., Dou-liou City, Yun-lin County, 640, Taiwan.
| | | | | | | | | |
Collapse
|
41
|
Inducible nerve growth factor delivery for peripheral nerve regeneration in vivo. Plast Reconstr Surg 2011; 126:1874-1889. [PMID: 21124128 DOI: 10.1097/prs.0b013e3181f5274e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HEK-293 cells can be genetically modified to release and regulate nerve growth factor (NGF) in vitro. The aim of this study was to evaluate the impact of this NGF delivery system on peripheral nerve regeneration in vivo. METHODS HEK-293 cells were transfected with an ecdysone receptor, NGF cDNA, and herpes simplex virus-thymidine kinase suicide vector. NGF production is induced by ponasterone A and stopped by ganciclovir. A 13-mm sciatic nerve gap was bridged with Silastic conduits in 120 nude rats, and transfected HEK-293 cells were added, induced, and boostered to secrete bioactive NGF. RESULTS The induction of the cell line and additional booster with ponasterone A demonstrated significantly higher levels of bioactive NGF, enhanced macroscopic nerve growth, improved functional recovery, and histologic regeneration when compared with control groups after 7, 14, and 21 days, and 2 and 4 months. The treatment with ganciclovir resulted in suppression of the NGF production and decreased functional and histologic outcomes. CONCLUSIONS Transfected HEK-293 cells can be regulated to inducibly produce bioactive NGF in vivo over prolonged periods. This tissue-engineered nerve construct including the NGF delivery system is able to improve peripheral nerve regeneration and functional recovery and appears to be superior to nerve isografts.
Collapse
|
42
|
|
43
|
Ramer MS. Endogenous neurotrophins and plasticity following spinal deafferentation. Exp Neurol 2010; 235:70-7. [PMID: 21195072 DOI: 10.1016/j.expneurol.2010.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/03/2010] [Accepted: 12/22/2010] [Indexed: 01/10/2023]
Abstract
Neurons intrinsic to the spinal cord dorsal horn receive input from various classes of long-distance projection systems. Two of the best known of these are primary afferent and descending monoaminergic axons. Together with intrinsic interneurons, activity in these axonal populations shapes the early part of the sensory experience before it is transmitted to supraspinal structures via ascending projection axons. Injury to dorsal roots, which contain the centrally projecting branches of primary afferent axons, results in their permanent disconnection from the spinal cord, as well as sensory dysfunction such as pain. In animals, experimental dorsal root injuries affecting a small number of roots produce dynamic behavioural changes, providing evidence for the now familiar concept that sensory processing at the level of the spinal cord is not hard-wired. Changes in behaviour following rhizotomy suggest changes in spinal sensory circuitry, and we and others have shown that the density of spinal serotonergic axons as well as processes of inhibitory interneurons increases following rhizotomy. Intact primary afferent axons are less apt to sprout into denervated territory. Recent work from our group has asked (1) what is the stimulus that induces sprouting of serotonergic (and other) axons and (2) what prevents spared primary afferent axons from occupying the territory of those lost to injury. This article will review the evidence that a single factor upregulated by dorsal root injury, brain-derived neurotrophic factor (BDNF), underpins both serotonergic sprouting and a lack of primary afferent plasticity. BDNF also differentially modulates some of the behavioural consequences of dorsal root injury: antagonizing endogenous BDNF improves spontaneous mechanosensory recovery but prevents recovery from rhizotomy-induced hypersensitivity to cold. These findings reinforce the notion that in disease states as complex and variable as spinal cord injury, single pharmacological interventions are unlikely to produce meaningful results. However, understanding the differences in capacity for plasticity among different systems, as well as their triggers, should allow for more patient-tailored therapies.
Collapse
Affiliation(s)
- Matt S Ramer
- Zoology and International Collaboration on Repair Discoveries, 818 W. 10th Ave., Vancouver, BC, Canada.
| |
Collapse
|
44
|
Gu X, Ding F, Yang Y, Liu J. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol 2010; 93:204-30. [PMID: 21130136 DOI: 10.1016/j.pneurobio.2010.11.002] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/02/2010] [Accepted: 11/23/2010] [Indexed: 01/01/2023]
Abstract
Surgical repair of severe peripheral nerve injuries represents not only a pressing medical need, but also a great clinical challenge. Autologous nerve grafting remains a golden standard for bridging an extended gap in transected nerves. The formidable limitations related to this approach, however, have evoked the development of tissue engineered nerve grafts as a promising alternative to autologous nerve grafts. A tissue engineered nerve graft is typically constructed through a combination of a neural scaffold and a variety of cellular and molecular components. The initial and basic structure of the neural scaffold that serves to provide mechanical guidance and optimal environment for nerve regeneration was a single hollow nerve guidance conduit. Later there have been several improvements to the basic structure, especially introduction of physical fillers into the lumen of a hollow nerve guidance conduit. Up to now, a diverse array of biomaterials, either of natural or of synthetic origin, together with well-defined fabrication techniques, has been employed to prepare neural scaffolds with different structures and properties. Meanwhile different types of support cells and/or growth factors have been incorporated into the neural scaffold, producing unique biochemical effects on nerve regeneration and function restoration. This review attempts to summarize different nerve grafts used for peripheral nerve repair, to highlight various basic components of tissue engineered nerve grafts in terms of their structures, features, and nerve regeneration-promoting actions, and finally to discuss current clinical applications and future perspectives of tissue engineered nerve grafts.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, JS 226001, PR China.
| | | | | | | |
Collapse
|
45
|
Lin S, Xu J, Hu S, Xu L, Zhang C, Wang Y, Gu Y. Combined application of neutrophin-3 gene and neural stem cells is ameliorative to delay of denervated skeletal muscular atrophy after tibial nerve transection in rats. Cell Transplant 2010; 20:381-90. [PMID: 20719088 DOI: 10.3727/096368910x524773] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Examination of the therapeutic efficacy of neural stem cells (NSCs) has recently become the focus of much investigation. In this study we present an insight of the effects of combined application with neurotrophin-3 (NT-3) and NSCs that derived from rat embryo spinal cord on delaying denervated skeletal muscular atrophy after tibial nerve was severed. NT-3 gene was amplified by PCR and subcloned into lentiviral vector pWPXL-MOD to construct a lentiviral expression vector pWPXL-MOD-NT-3. A positive clone expressing NT-3 (named NSCs-NT-3) was obtained and used for differentiation in vitro and transplantation. Sixty adult rats, whose tibial nerves were sectioned, were divided into two groups: one grafted with NSCs-NT-3 (experimental group, n = 30) and the other with NSCs transfected by pWPXL-MOD (control group, n = 30). The cell survival and differentiation, NT-3 gene expression, and effect of delaying denervated skeletal muscular atrophy were examined through immunohistostaining, RT-PCR, Western blot, electrophysiological analysis, and mean cross-sectional area (CSA) of gastrocnemius, respectively. The results show that the NT-3 gene, which is comprised of 777 bp, was cloned and significantly different expression were detected between NSCs and NSCs-NT-3 in vitro. Quantitative analysis of the choline acetyltransferase (ChAT) immunopositive cells revealed a significant increase in experimental group compared to the control group 4 weeks after implantation (p < 0.01). Twelve weeks after transplantation, the ChAT immunopositive cells were detected near the engrafted region only in experimental group. Furthermore, the effect in delaying denervated skeletal muscular atrophy is indicated in the EMG examination and mean CSA of gastrocnemius. These findings suggest that the neural stem cells expressing NT-3 endogenously would be a better graft candidate for the delay of denervated skeletal muscular atrophy.
Collapse
Affiliation(s)
- Sen Lin
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Jiang X, Lim SH, Mao HQ, Chew SY. Current applications and future perspectives of artificial nerve conduits. Exp Neurol 2009; 223:86-101. [PMID: 19769967 DOI: 10.1016/j.expneurol.2009.09.009] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 12/27/2022]
Abstract
Artificial nerve guide conduits have the advantage over autografts in terms of their availability and ease of fabrication. However, clinical outcomes associated with the use of artificial nerve conduits are often inferior to that of autografts, particularly over long lesion gaps. There have been significant advances in the designs of artificial nerve conduits over the years. In terms of materials selection and design, a wide variety of new synthetic polymers and biopolymers have been evaluated. The inclusion of nerve conduit lumen fillers has also been demonstrated as essential to enable nerve regeneration across large defect gaps. These lumen filler designs have involved the integration of physical cues for contact guidance and biochemical signals to control cellular function and differentiation. Novel conduit architectural designs using porous and fibrous substrates have also been developed. This review highlights the recent advances in synthetic nerve guide designs for peripheral nerve regeneration, and the in vivo applicability and future prospects of these nerve guide conduits.
Collapse
Affiliation(s)
- Xu Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Block N1.2-B2-20, Singapore 637459, Singapore
| | | | | | | |
Collapse
|
47
|
Wilson ADH, Hart A, Wiberg M, Terenghi G. Acetyl-l-carnitine increases nerve regeneration and target organ reinnervation - a morphological study. J Plast Reconstr Aesthet Surg 2009; 63:1186-95. [PMID: 19664977 DOI: 10.1016/j.bjps.2009.05.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/04/2009] [Accepted: 05/21/2009] [Indexed: 11/19/2022]
Abstract
Peripheral nerve injury frequently results in functional morbidity since standard management fails to adequately address many of the neurobiological hurdles to optimal regeneration. Neuronal survival and regeneration are neurotrophin dependent and require increased aerobic capacity. Acetyl-l-carnitine (ALCAR) facilitates this need and prevents neuronal loss. ALCAR is clinically safe and is shown here to significantly improve nerve regeneration and target organ reinnervation. Two groups of five rats underwent sciatic nerve division followed by immediate repair. One group received parenteral ALCAR (50mg/kg/day) from time of operation until termination at 12 weeks. A 'sham treatment' group received normal saline. A third group was left unoperated and did not receive any treatment. A segment of nerve was harvested between 5mm proximal and 10mm distal to the repair in operated groups, and at the corresponding level in the unoperated group. Mean axonal count in normal, non-axotomised nerve was 14,720 (SD 2378). That of the saline group (17,217 SD 1808) was not significantly different from normal nerve (P=0.0985). Mean number of myelinated axons in the ALCAR group (24,460 SD 3750) was significantly greater than both sham group (P<0.01) and normal nerve (P=0.0012). Mean myelin thickness in the saline treated group (0.408 microm SD 0.067 microm) was less than normal nerve (0.770 microm SD 0.143 microm) (P<0.001). Mean myelin thickness in the ALCAR group (0.627 microm SD 0.052 microm) was greater than the sham (saline) group (P<0.01) and not statistically different from normal nerve (P=0.07). ALCAR increased dermal PGP9.5 staining by 210% compared to sham treatment (P<0.0001) and significantly reduced the mean percentage weight loss in gastrocnemius muscle (ALCAR group 0.203% vs. 0.312% in sham group P=0.015). ALCAR not only increases the number of regenerating nerve fibres but also morphologically improves the quality of regeneration and target organ reinnervation. Adjuvant ALCAR treatment may improve both sensory and motor outcomes and merits further investigation.
Collapse
Affiliation(s)
- Andrew D H Wilson
- Blond McIndoe Research Laboratories, Tissue Injury and Repair Group, University of Manchester, Room 3.106 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
48
|
de Ruiter GCW, Malessy MJA, Yaszemski MJ, Windebank AJ, Spinner RJ. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 2009; 26:E5. [PMID: 19435445 DOI: 10.3171/foc.2009.26.2.e5] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nerve tubes, guides, or conduits are a promising alternative for autologous nerve graft repair. The first biodegradable empty single lumen or hollow nerve tubes are currently available for clinical use and are being used mostly in the repair of small-diameter nerves with nerve defects of < 3 cm. These nerve tubes are made of different biomaterials using various fabrication techniques. As a result these tubes also differ in physical properties. In addition, several modifications to the common hollow nerve tube (for example, the addition of Schwann cells, growth factors, and internal frameworks) are being investigated that may increase the gap that can be bridged. This combination of chemical, physical, and biological factors has made the design of a nerve conduit into a complex process that demands close collaboration of bioengineers, neuroscientists, and peripheral nerve surgeons. In this article the authors discuss the different steps that are involved in the process of the design of an ideal nerve conduit for peripheral nerve repair.
Collapse
|
49
|
Basics and Current Approaches to Tissue Engineering in Peripheral Nerve Reconstruction. ACTA ACUST UNITED AC 2009. [DOI: 10.1097/wnq.0b013e3181a361c6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
de Ruiter GCW, Spinner RJ, Yaszemski MJ, Windebank AJ, Malessy MJA. Nerve tubes for peripheral nerve repair. Neurosurg Clin N Am 2009; 20:91-105, vii. [PMID: 19064182 DOI: 10.1016/j.nec.2008.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The concept of the nerve tube has been a major topic of research in the field of peripheral nerve regeneration for more than 25 years. The first nerve tubes are currently available for clinical use. This article gives an overview of the experimental and clinical data on nerve tubes for peripheral nerve repair and critically analyzes the data on which the step from laboratory to clinical use is based. In addition, it briefly discusses the different modifications to the common single lumen nerve tubes that may improve the results of generation.
Collapse
Affiliation(s)
- Godard C W de Ruiter
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|