1
|
Palacios ER, Houghton C, Chadderton P. GlyT2-Positive Interneurons Regulate Timing and Variability of Information Transfer in a Cerebellar-Behavioral Loop. J Neurosci 2025; 45:e1568242024. [PMID: 39658258 PMCID: PMC11780355 DOI: 10.1523/jneurosci.1568-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
GlyT2-positive interneurons, Golgi and Lugaro cells, reside in the input layer of the cerebellar cortex in a key position to influence information processing. Here, we examine the contribution of GlyT2-positive interneurons to network dynamics in Crus 1 of mouse lateral cerebellar cortex during free whisking. We recorded neuronal population activity using Neuropixels probes before and after chemogenetic downregulation of GlyT2-positive interneurons in male and female mice. Under resting conditions, cerebellar population activity reliably encoded whisker movements. Reductions in the activity of GlyT2-positive cells produced mild increases in neural activity which did not significantly impair these sensorimotor representations. However, reduced Golgi and Lugaro cell inhibition did increase the temporal alignment of local population network activity at the initiation of movement. These network alterations had variable impacts on behavior, producing both increases and decreases in whisking velocity. Our results suggest that inhibition mediated by GlyT2-positive interneurons primarily governs the temporal patterning of population activity, which in turn is required to support downstream cerebellar dynamics and behavioral coordination.
Collapse
Affiliation(s)
- Ensor Rafael Palacios
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
- School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Conor Houghton
- School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Paul Chadderton
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
2
|
Orser BA. Discovering the Intriguing Properties of Extrasynaptic γ-Aminobutyric Acid Type A Receptors. Anesthesiology 2024; 140:1192-1200. [PMID: 38624275 DOI: 10.1097/aln.0000000000004949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. Reprinted with permission. In this Classic Paper Revisited, the author recounts the scientific journey leading to a report published in the Proceedings of the National Academy of Sciences (PNAS) and shares several personal stories from her formative years and "research truths" that she has learned along the way. Briefly, the principal inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), was conventionally thought to regulate cognitive processes by activating synaptic GABA type A (GABAA) receptors and generating transient inhibitory synaptic currents. However, the author's laboratory team discovered a novel nonsynaptic form of tonic inhibition in hippocampal pyramidal neurons, mediated by extrasynaptic GABAA receptors that are pharmacologically distinct from synaptic GABAA receptors. This tonic current is highly sensitive to most general anesthetics, including sevoflurane and propofol, and likely contributes to the memory-blocking properties of these drugs. Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.
Collapse
Affiliation(s)
- Beverley A Orser
- Department of Anesthesiology and Pain Medicine, and Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
The GABA and GABA-Receptor System in Inflammation, Anti-Tumor Immune Responses, and COVID-19. Biomedicines 2023; 11:biomedicines11020254. [PMID: 36830790 PMCID: PMC9953446 DOI: 10.3390/biomedicines11020254] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
GABA and GABAA-receptors (GABAA-Rs) play major roles in neurodevelopment and neurotransmission in the central nervous system (CNS). There has been a growing appreciation that GABAA-Rs are also present on most immune cells. Studies in the fields of autoimmune disease, cancer, parasitology, and virology have observed that GABA-R ligands have anti-inflammatory actions on T cells and antigen-presenting cells (APCs), while also enhancing regulatory T cell (Treg) responses and shifting APCs toward anti-inflammatory phenotypes. These actions have enabled GABAA-R ligands to ameliorate autoimmune diseases, such as type 1 diabetes (T1D), multiple sclerosis (MS), and rheumatoid arthritis, as well as type 2 diabetes (T2D)-associated inflammation in preclinical models. Conversely, antagonism of GABAA-R activity promotes the pro-inflammatory responses of T cells and APCs, enhancing anti-tumor responses and reducing tumor burden in models of solid tumors. Lung epithelial cells also express GABA-Rs, whose activation helps maintain fluid homeostasis and promote recovery from injury. The ability of GABAA-R agonists to limit both excessive immune responses and lung epithelial cell injury may underlie recent findings that GABAA-R agonists reduce the severity of disease in mice infected with highly lethal coronaviruses (SARS-CoV-2 and MHV-1). These observations suggest that GABAA-R agonists may provide off-the-shelf therapies for COVID-19 caused by new SARS-CoV-2 variants, as well as novel beta-coronaviruses, which evade vaccine-induced immune responses and antiviral medications. We review these findings and further advance the notions that (1) immune cells possess GABAA-Rs to limit inflammation in the CNS, and (2) this natural "braking system" on inflammatory responses may be pharmacologically engaged to slow the progression of autoimmune diseases, reduce the severity of COVID-19, and perhaps limit neuroinflammation associated with long COVID.
Collapse
|
4
|
Dumontier D, Mailhes-Hamon C, Supplisson S, Dieudonné S. Neurotransmitter content heterogeneity within an interneuron class shapes inhibitory transmission at a central synapse. Front Cell Neurosci 2023; 16:1060189. [PMID: 36687523 PMCID: PMC9846633 DOI: 10.3389/fncel.2022.1060189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Neurotransmitter content is deemed the most basic defining criterion for neuronal classes, contrasting with the intercellular heterogeneity of many other molecular and functional features. Here we show, in the adult mouse brain, that neurotransmitter content variegation within a neuronal class is a component of its functional heterogeneity. Golgi cells (GoCs), the well-defined class of cerebellar interneurons inhibiting granule cells (GrCs), contain cytosolic glycine, accumulated by the neuronal transporter GlyT2, and GABA in various proportions. By performing acute manipulations of cytosolic GABA and glycine supply, we find that competition of glycine with GABA reduces the charge of IPSC evoked in GrCs and, more specifically, the amplitude of a slow component of the IPSC decay. We then pair GrCs recordings with optogenetic stimulations of single GoCs, which preserve the intracellular transmitter mixed content. We show that the strength and decay kinetics of GrCs IPSCs, which are entirely mediated by GABAA receptors, are negatively correlated to the presynaptic expression of GlyT2 by GoCs. We isolate a slow spillover component of GrCs inhibition that is also affected by the expression of GlyT2, leading to a 56% decrease in relative charge. Our results support the hypothesis that presynaptic loading of glycine negatively impacts the GABAergic transmission in mixed interneurons, most likely through a competition for vesicular filling. We discuss how the heterogeneity of neurotransmitter supply within mixed interneurons like the GoC class may provide a presynaptic mechanism to tune the gain of microcircuits such as the granular layer, thereby expanding the realm of their possible dynamic behaviors.
Collapse
|
5
|
Kossack ME, Manz KE, Martin NR, Pennell KD, Plavicki J. Environmentally relevant uptake, elimination, and metabolic changes following early embryonic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish. CHEMOSPHERE 2023; 310:136723. [PMID: 36241106 PMCID: PMC9835613 DOI: 10.1016/j.chemosphere.2022.136723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 06/03/2023]
Abstract
Dioxin and dioxin-like compounds are ubiquitous environmental contaminants that induce toxicity by binding to the aryl hydrocarbon receptor (AHR), a ligand activated transcription factor. The zebrafish model has been used to define the developmental toxicity observed following exposure to exogenous AHR ligands such as the potent agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin, TCDD). While the model has successfully identified cellular targets of TCDD and molecular mechanisms mediating TCDD-induced phenotypes, fundamental information such as the body burden produced by standard exposure models is still unknown. We performed targeted gas chromatography (GC) high-resolution mass spectrometry (HRMS) in tandem with non-targeted liquid chromatography (LC) HRMS to quantify TCDD uptake, model the elimination dynamics of TCDD, and determine how TCDD exposure affects the zebrafish metabolome. We found that 50 ppt, 10 ppb, and 1 ppb waterborne exposures to TCDD during early embryogenesis produced environmentally relevant body burdens: 38 ± 4.34, 26.6 ± 1.2, and 8.53 ± 0.341 pg/embryo, respectively, at 24 hours post fertilization. TCDD exposure was associated with the dysregulation of metabolic pathways that are associated with the AHR signaling pathway as well as pathways shown to be affected in mammals following TCDD exposure. In addition, we discovered that TCDD exposure affected several metabolic pathways that are critical for brain development and function including glutamate metabolism, chondroitin sulfate biosynthesis, and tyrosine metabolism. Together, these data demonstrate that existing exposure methods produce environmentally relevant body burdens of TCDD in zebrafish and provide insight into the biochemical pathways impacted by toxicant-induced AHR activation.
Collapse
Affiliation(s)
- Michelle E Kossack
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Katherine E Manz
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Nathan R Martin
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, 184 Hope St, Box D, Providence, RI, 02903, USA
| | - Jessica Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship St, Providence, RI, 02903, USA.
| |
Collapse
|
6
|
Hyperammonemia Enhances GABAergic Neurotransmission in Hippocampus: Underlying Mechanisms and Modulation by Extracellular cGMP. Mol Neurobiol 2022; 59:3431-3448. [PMID: 35320456 DOI: 10.1007/s12035-022-02803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Rats with chronic hyperammonemia reproduce the cognitive and motor impairment present in patients with hepatic encephalopathy. It has been proposed that enhanced GABAergic neurotransmission in hippocampus may contribute to impaired learning and memory in hyperammonemic rats. However, there are no direct evidences of the effects of hyperammonemia on GABAergic neurotransmission in hippocampus or on the underlying mechanisms. The aims of this work were to assess if chronic hyperammonemia enhances the function of GABAA receptors in hippocampus and to identify the underlying mechanisms. Activation of GABAA receptors is enhanced in hippocampus of hyperammonemic rats, as analyzed in a multielectrode array system. Hyperammonemia reduces membrane expression of the GABA transporters GAT1 and GAT3, which is associated with increased extracellular GABA concentration. Hyperammonemia also increases gephyrin levels and phosphorylation of the β3 subunit of GABAA receptor, which are associated with increased membrane expression of the GABAA receptor subunits α1, α2, γ2, β3, and δ. Enhanced levels of extracellular GABA and increased membrane expression of GABAA receptors would be responsible for the enhanced GABAergic neurotransmission in hippocampus of hyperammonemic rats. Increasing extracellular cGMP reverses the increase in GABAA receptors activation by normalizing the membrane expression of GABA transporters and GABAA receptors. The increased GABAergic neurotransmission in hippocampus would contribute to cognitive impairment in hyperammonemic rats. The results reported suggest that reducing GABAergic tone in hippocampus by increasing extracellular cGMP or by other means may be useful to improve cognitive function in hyperammonemia and in cirrhotic patients with minimal or clinical hepatic encephalopathy.
Collapse
|
7
|
Field M, Lukacs IP, Hunter E, Stacey R, Plaha P, Livermore L, Ansorge O, Somogyi P. Tonic GABA A Receptor-Mediated Currents of Human Cortical GABAergic Interneurons Vary Amongst Cell Types. J Neurosci 2021; 41:9702-9719. [PMID: 34667071 PMCID: PMC8612645 DOI: 10.1523/jneurosci.0175-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/03/2022] Open
Abstract
Persistent anion conductances through GABAA receptors (GABAARs) are important modulators of neuronal excitability. However, it is currently unknown how the amplitudes of these currents vary among different cell types in the human neocortex, particularly among diverse GABAergic interneurons. We have recorded 101 interneurons in and near layer 1 from cortical tissue surgically resected from both male and female patients, visualized 84 of them and measured tonic GABAAR currents in 48 cells with an intracellular [Cl-] of 65 mm and in the presence of 5 μm GABA. We compare these tonic currents among five groups of interneurons divided by firing properties and four types of interneuron defined by axonal distributions; rosehip, neurogliaform, stalked-bouton, layer 2-3 innervating and a pool of other cells. Interestingly, the rosehip cell, a type of interneuron only described thus far in human tissue, and layer 2-3 innervating cells exhibit larger tonic currents than other layer 1 interneurons, such as neurogliaform and stalked-bouton cells; the latter two groups showing no difference. The positive allosteric modulators of GABAARs allopregnanolone and DS2 also induced larger current shifts in the rosehip and layer 2-3 innervating cells, consistent with higher expression of the δ subunit of the GABAAR in these neurons. We have also examined how patient parameters, such as age, seizures, type of cancer and anticonvulsant treatment may alter tonic inhibitory currents in human neurons. The cell type-specific differences in tonic inhibitory currents could potentially be used to selectively modulate cortical circuitry.SIGNIFICANCE STATEMENT Tonic currents through GABAA receptors (GABAARs) are a potential therapeutic target for a number of neurologic and psychiatric conditions. Here, we show that these currents in human cerebral cortical GABAergic neurons display cell type-specific differences in their amplitudes which implies differential modulation of their excitability. Additionally, we examine whether the amplitudes of the tonic currents measured in our study show any differences between patient populations, finding some evidence that age, seizures, type of cancer, and anticonvulsant treatment may alter tonic inhibition in human tissue. These results advance our understanding of how pathology affects neuronal excitability and could potentially be used to selectively modulate cortical circuitry.
Collapse
Affiliation(s)
- Martin Field
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Istvan P Lukacs
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Emily Hunter
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Laurent Livermore
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
8
|
Guo C, Rudolph S, Neuwirth ME, Regehr WG. Purkinje cell outputs selectively inhibit a subset of unipolar brush cells in the input layer of the cerebellar cortex. eLife 2021; 10:e68802. [PMID: 34369877 PMCID: PMC8352585 DOI: 10.7554/elife.68802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Circuitry of the cerebellar cortex is regionally and functionally specialized. Unipolar brush cells (UBCs), and Purkinje cell (PC) synapses made by axon collaterals in the granular layer, are both enriched in areas that control balance and eye movement. Here, we find a link between these specializations in mice: PCs preferentially inhibit metabotropic glutamate receptor type 1 (mGluR1)-expressing UBCs that respond to mossy fiber (MF) inputs with long lasting increases in firing, but PCs do not inhibit mGluR1-lacking UBCs. PCs inhibit about 29% of mGluR1-expressing UBCs by activating GABAA receptors (GABAARs) and inhibit almost all mGluR1-expressing UBCs by activating GABAB receptors (GABABRs). PC to UBC synapses allow PC output to regulate the input layer of the cerebellar cortex in diverse ways. Based on optogenetic studies and a small number of paired recordings, GABAAR-mediated feedback is fast and unreliable. GABABR-mediated inhibition is slower and is sufficiently large to strongly influence the input-output transformations of mGluR1-expressing UBCs.
Collapse
Affiliation(s)
- Chong Guo
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Stephanie Rudolph
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Morgan E Neuwirth
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
9
|
Electrophysiology of ionotropic GABA receptors. Cell Mol Life Sci 2021; 78:5341-5370. [PMID: 34061215 PMCID: PMC8257536 DOI: 10.1007/s00018-021-03846-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 10/30/2022]
Abstract
GABAA receptors are ligand-gated chloride channels and ionotropic receptors of GABA, the main inhibitory neurotransmitter in vertebrates. In this review, we discuss the major and diverse roles GABAA receptors play in the regulation of neuronal communication and the functioning of the brain. GABAA receptors have complex electrophysiological properties that enable them to mediate different types of currents such as phasic and tonic inhibitory currents. Their activity is finely regulated by membrane voltage, phosphorylation and several ions. GABAA receptors are pentameric and are assembled from a diverse set of subunits. They are subdivided into numerous subtypes, which differ widely in expression patterns, distribution and electrical activity. Substantial variations in macroscopic neural behavior can emerge from minor differences in structure and molecular activity between subtypes. Therefore, the diversity of GABAA receptors widens the neuronal repertoire of responses to external signals and contributes to shaping the electrical activity of neurons and other cell types.
Collapse
|
10
|
Integrative opioid-GABAergic neuronal mechanisms regulating dopamine efflux in the nucleus accumbens of freely moving animals. Pharmacol Rep 2021; 73:971-983. [PMID: 33743175 DOI: 10.1007/s43440-021-00249-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 01/14/2023]
Abstract
The nucleus accumbens (NAc) is a terminal region of mesocorticolimbic dopamine (DA) neuronal projections from the ventral tegmental area. Accumbal DA release is integrated by afferents from other brain regions and by interneurons, which involve a diversity of neurotransmitters and neuropeptides. These integrative processes, implicated in the pathobiology of neuropsychiatric disorders, are mediated via receptor subtypes whose relative roles in the regulation of accumbal DA release are poorly understood. Such complex interactions are exemplified by how selective activation of opioid receptor subtypes enhances accumbal DA efflux in a manner that is modulated by changes in neural activity through GABA receptor subtypes. This review delineates the roles of GABAA and GABAB receptors in GABAergic neural mechanisms in NAc that participate in delta- and mu-opioid receptor-mediated increases in accumbal DA efflux in freely moving rats, focusing on studies using in vivo brain microdialysis. First, we consider how endogenous GABA exerts inhibition of accumbal DA efflux through GABA receptor subtypes. We also consider possible intra-neuronal source of the endogenous GABA that inhibits accumbal DA efflux. As NAc contains GABAergic neurons that express delta- or mu-opioid receptors, inhibition of accumbal GABAergic neurons is a candidate for mediating delta- or mu-opioid receptor-mediated increases in accumbal DA efflux. Therefore, we provide a detailed analysis of the effects of GABA receptor subtype ligands on delta- and mu-opioid receptor-mediated accumbal DA efflux. Finally, we present an integrative model to explain the mechanisms of interaction among delta- and mu-opioid receptors, GABAergic neurons and DAergic neurons in NAc.
Collapse
|
11
|
Tossell K, Dodhia RA, Galet B, Tkachuk O, Ungless MA. Tonic GABAergic inhibition, via GABA A receptors containing αβƐ subunits, regulates excitability of ventral tegmental area dopamine neurons. Eur J Neurosci 2021; 53:1722-1737. [PMID: 33522050 PMCID: PMC8651010 DOI: 10.1111/ejn.15133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
The activity of midbrain dopamine neurons is strongly regulated by fast synaptic inhibitory γ‐Aminobutyric acid (GABA)ergic inputs. There is growing evidence in other brain regions that low concentrations of ambient GABA can persistently activate certain subtypes of GABAA receptor to generate a tonic current. However, evidence for a tonic GABAergic current in midbrain dopamine neurons is limited. To address this, we conducted whole‐cell recordings from ventral tegmental area (VTA) dopamine neurons in brain slices from mice. We found that application of GABAA receptor antagonists decreased the holding current, indicating the presence of a tonic GABAergic input. Global increases in GABA release, induced by either a nitric oxide donor or inhibition of GABA uptake, further increased this tonic current. Importantly, prolonged inhibition of the firing activity of local GABAergic neurons abolished the tonic current. A combination of pharmacology and immunohistochemistry experiments suggested that, unlike common examples of tonic inhibition, this current may be mediated by a relatively unusual combination of α4βƐ subunits. Lastly, we found that the tonic current reduced excitability in dopamine neurons suggesting a subtractive effect on firing activity.
Collapse
Affiliation(s)
- Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Rakesh A Dodhia
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Benjamin Galet
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Olga Tkachuk
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
12
|
Gorski K, Spoljaric A, Nyman TA, Kaila K, Battersby BJ, Lehesjoki AE. Quantitative Changes in the Mitochondrial Proteome of Cerebellar Synaptosomes From Preclinical Cystatin B-Deficient Mice. Front Mol Neurosci 2020; 13:570640. [PMID: 33281550 PMCID: PMC7691638 DOI: 10.3389/fnmol.2020.570640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a neurodegenerative disorder caused by loss-of-function mutations in the cystatin B (CSTB) gene. Progression of the clinical symptoms in EPM1 patients, including stimulus-sensitive myoclonus, tonic-clonic seizures, and ataxia, are well described. However, the cellular dysfunction during the presymptomatic phase that precedes the disease onset is not understood. CSTB deficiency leads to alterations in GABAergic signaling, and causes early neuroinflammation followed by progressive neurodegeneration in brains of a mouse model, manifesting as progressive myoclonus and ataxia. Here, we report the first proteome atlas from cerebellar synaptosomes of presymptomatic Cstb-deficient mice, and propose that early mitochondrial dysfunction is important to the pathogenesis of altered synaptic function in EPM1. A decreased sodium- and chloride dependent GABA transporter 1 (GAT-1) abundance was noted in synaptosomes with CSTB deficiency, but no functional difference was seen between the two genotypes in electrophysiological experiments with pharmacological block of GAT-1. Collectively, our findings provide novel insights into the early onset and pathogenesis of CSTB deficiency, and reveal greater complexity to the molecular pathogenesis of EPM1.
Collapse
Affiliation(s)
- Katarin Gorski
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Albert Spoljaric
- Molecular and Integrative Biosciences, and Neuroscience Center (HiLIFE), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kai Kaila
- Molecular and Integrative Biosciences, and Neuroscience Center (HiLIFE), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Celli R, Wall MJ, Santolini I, Vergassola M, Di Menna L, Mascio G, Cannella M, van Luijtelaar G, Pittaluga A, Ciruela F, Bruno V, Nicoletti F, Ngomba RT. Pharmacological activation of mGlu5 receptors with the positive allosteric modulator VU0360172, modulates thalamic GABAergic transmission. Neuropharmacology 2020; 178:108240. [PMID: 32768418 DOI: 10.1016/j.neuropharm.2020.108240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Previous studies have shown that injection of the mGlu5 receptor positive allosteric modulator (PAM) VU0360172 into either the thalamus or somatosensory cortex markedly reduces the frequency of spike-and-wave discharges (SWDs) in the WAG/Rij model of absence epilepsy. Here we have investigated the effects of VU0360172 on GABA transport in the thalamus and somatosensory cortex, as possible modes of action underlying the suppression of SWDs. Systemic VU0360172 injections increase GABA uptake in thalamic synaptosomes from epileptic WAG/Rij rats. Consistent with this observation, VU0360172 could also enhance thalamic GAT-1 protein expression, depending on the dosing regimen. This increase in GAT-1 expression was also observed in the thalamus from non-epileptic rats (presymptomatic WAG/Rij and Wistar) and appeared to occur selectively in neurons. The tonic GABAA receptor current present in ventrobasal thalamocortical neurons was significantly reduced by VU0360172 consistent with changes in GAT-1 and GABA uptake. The in vivo effects of VU0360172 (reduction in tonic GABA current and increase in GAT-1 expression) could be reproduced in vitro by treating thalamic slices with VU0360172 for at least 1 h and appeared to be dependent on the activation of PLC. Thus, the effects of VU0360172 do not require an intact thalamocortical circuit. In the somatosensory cortex, VU0360172 reduced GABA uptake but did not cause significant changes in GAT-1 protein levels. These findings reveal a novel mechanism of regulation mediated by mGlu5 receptors, which could underlie the powerful anti-absence effect of mGlu5 receptor enhancers in animal models.
Collapse
Affiliation(s)
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | | | | | | | - Francisco Ciruela
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Valeria Bruno
- I.R.C.C.S. Neuromed, Pozzilli, Italy; Departments of Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Ferdinando Nicoletti
- I.R.C.C.S. Neuromed, Pozzilli, Italy; Departments of Physiology and Pharmacology, University Sapienza, Rome, Italy.
| | | |
Collapse
|
14
|
Krishna G, Beitchman JA, Bromberg CE, Currier Thomas T. Approaches to Monitor Circuit Disruption after Traumatic Brain Injury: Frontiers in Preclinical Research. Int J Mol Sci 2020; 21:ijms21020588. [PMID: 31963314 PMCID: PMC7014469 DOI: 10.3390/ijms21020588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) often results in pathophysiological damage that can manifest as both acute and chronic neurological deficits. In an attempt to repair and reconnect disrupted circuits to compensate for loss of afferent and efferent connections, maladaptive circuitry is created and contributes to neurological deficits, including post-concussive symptoms. The TBI-induced pathology physically and metabolically changes the structure and function of neurons associated with behaviorally relevant circuit function. Complex neurological processing is governed, in part, by circuitry mediated by primary and modulatory neurotransmitter systems, where signaling is disrupted acutely and chronically after injury, and therefore serves as a primary target for treatment. Monitoring of neurotransmitter signaling in experimental models with technology empowered with improved temporal and spatial resolution is capable of recording in vivo extracellular neurotransmitter signaling in behaviorally relevant circuits. Here, we review preclinical evidence in TBI literature that implicates the role of neurotransmitter changes mediating circuit function that contributes to neurological deficits in the post-acute and chronic phases and methods developed for in vivo neurochemical monitoring. Coupling TBI models demonstrating chronic behavioral deficits with in vivo technologies capable of real-time monitoring of neurotransmitters provides an innovative approach to directly quantify and characterize neurotransmitter signaling as a universal consequence of TBI and the direct influence of pharmacological approaches on both behavior and signaling.
Collapse
Affiliation(s)
- Gokul Krishna
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Joshua A. Beitchman
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Caitlin E. Bromberg
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix VA Healthcare System, Phoenix, AZ 85012, USA
- Correspondence: ; Tel.: +1-602-827-2348
| |
Collapse
|
15
|
Mechanisms of GABA B receptor enhancement of extrasynaptic GABA A receptor currents in cerebellar granule cells. Sci Rep 2019; 9:16683. [PMID: 31723152 PMCID: PMC6853962 DOI: 10.1038/s41598-019-53087-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022] Open
Abstract
Many neurons, including cerebellar granule cells, exhibit a tonic GABA current mediated by extrasynaptic GABAA receptors. This current is a critical regulator of firing and the target of many clinically relevant compounds. Using a combination of patch clamp electrophysiology and photolytic uncaging of RuBi-GABA we show that GABAB receptors are tonically active and enhance extrasynaptic GABAA receptor currents in cerebellar granule cells. This enhancement is not associated with meaningful changes in GABAA receptor potency, mean channel open-time, open probability, or single-channel current. However, there was a significant (~40%) decrease in the number of channels participating in the GABA uncaging current and an increase in receptor desensitization. Furthermore, we find that adenylate cyclase, PKA, CaMKII, and release of Ca2+ from intracellular stores are necessary for modulation of GABAA receptors. Overall, this work reveals crosstalk between postsynaptic GABAA and GABAB receptors and identifies the signaling pathways and mechanisms involved.
Collapse
|
16
|
Prestori F, Mapelli L, D'Angelo E. Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit. Front Mol Neurosci 2019; 12:267. [PMID: 31787879 PMCID: PMC6854908 DOI: 10.3389/fnmol.2019.00267] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022] Open
Abstract
Neuronal inhibition can be defined as a spatiotemporal restriction or suppression of local microcircuit activity. The importance of inhibition relies in its fundamental role in shaping signal processing in single neurons and neuronal circuits. In this context, the activity of inhibitory interneurons proved the key to endow networks with complex computational and dynamic properties. In the last 50 years, the prevailing view on the functional role of cerebellar cortical inhibitory circuits was that excitatory and inhibitory inputs sum spatially and temporally in order to determine the motor output through Purkinje cells (PCs). Consequently, cerebellar inhibition has traditionally been conceived in terms of restricting or blocking excitation. This assumption has been challenged, in particular in the cerebellar cortex where all neurons except granule cells (and unipolar brush cells in specific lobules) are inhibitory and fire spontaneously at high rates. Recently, a combination of electrophysiological recordings in vitro and in vivo, imaging, optogenetics and computational modeling, has revealed that inhibitory interneurons play a much more complex role in regulating cerebellar microcircuit functions: inhibition shapes neuronal response dynamics in the whole circuit and eventually regulate the PC output. This review elaborates current knowledge on cerebellar inhibitory interneurons [Golgi cells, Lugaro cells (LCs), basket cells (BCs) and stellate cells (SCs)], starting from their ontogenesis and moving up to their morphological, physiological and plastic properties, and integrates this knowledge with that on the more renown granule cells and PCs. We will focus on the circuit loops in which these interneurons are involved and on the way they generate feed-forward, feedback and lateral inhibition along with complex spatio-temporal response dynamics. In this perspective, inhibitory interneurons emerge as the real controllers of cerebellar functioning.
Collapse
Affiliation(s)
- Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
17
|
Maniezzi C, Talpo F, Spaiardi P, Toselli M, Biella G. Oxytocin Increases Phasic and Tonic GABAergic Transmission in CA1 Region of Mouse Hippocampus. Front Cell Neurosci 2019; 13:178. [PMID: 31133808 PMCID: PMC6516053 DOI: 10.3389/fncel.2019.00178] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/12/2019] [Indexed: 11/17/2022] Open
Abstract
Oxytocin is a neuropeptide that plays important peripheral and central neuromodulatory functions. Our data show that, following activation of oxytocin receptors (OtRs) with the selective agonist TGOT (Thr4,Gly7-oxytocin), a significant increase in frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSC) occurred in hippocampal CA1 pyramidal neurons (PYR) in mice. TGOT affected also sIPSC deactivation kinetics, suggesting the involvement of perisynaptic GABAA receptors (GABAARs) as well. By contrast, TGOT did not cause significant changes in frequency, amplitude or deactivation kinetics of miniature IPSC, suggesting that the effects elicited by the agonist are strictly dependent on the firing activity of presynaptic neurons. Moreover, TGOT was able to modulate tonic GABAergic current mediated by extrasynaptic GABAARs expressed by PYRs. Consistently, at spike threshold TGOT induced in most PYRs a significant membrane hyperpolarization and a decrease in firing rate. The source of increased inhibition onto PYRs was represented by stuttering fast-spiking GABAergic interneurons (INs) that directly respond to TGOT with a depolarization and an increase in their firing rate. One putative ionic mechanism underlying this effect could be represented by OtR activation-induced up-modulation of L-type Ca2+ channels. In conclusion, our results indicate that oxytocin can influence the activity of a subclass of hippocampal GABAergic INs and therefore regulate the operational modes of the downstream PYRs by increasing phasic and tonic GABAergic transmission in CA1 region of mouse hippocampus.
Collapse
Affiliation(s)
- Claudia Maniezzi
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesca Talpo
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Paolo Spaiardi
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Mauro Toselli
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Gerardo Biella
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
McLaughlin C, Clements J, Oprişoreanu AM, Sylantyev S. The role of tonic glycinergic conductance in cerebellar granule cell signalling and the effect of gain-of-function mutation. J Physiol 2019; 597:2457-2481. [PMID: 30875431 DOI: 10.1113/jp277626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/14/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A T258F mutation of the glycine receptor increases the receptor affinity to endogenous agonists, modifies single-channel conductance and shapes response decay kinetics. Glycine receptors of cerebellar granule cells play their functional role not continuously, but when the granule cell layer starts receiving a high amount of excitatory inputs. Despite their relative scarcity, tonically active glycine receptors of cerebellar granule cells make a significant impact on action potential generation and inter-neuronal crosstalk, and modulate synaptic plasticity in neural networks; extracellular glycine increases probability of postsynaptic response occurrence acting at NMDA receptors and decreases this probability acting at glycine receptors. Tonic conductance through glycine receptors of cerebellar granule cells is a yet undiscovered element of the biphasic mechanism that regulates processing of sensory inputs in the cerebellum. A T258F point mutation disrupts this biphasic mechanism, thus illustrating the possible role of the gain-of-function mutations of the glycine receptor in development of neural pathologies. ABSTRACT Functional glycine receptors (GlyRs) have been repeatedly detected in cerebellar granule cells (CGCs), where they deliver exclusively tonic inhibitory signals. The functional role of this signalling, however, remains unclear. Apart from that, there is accumulating evidence of the important role of GlyRs in cerebellar structures in development of neural pathologies such as hyperekplexia, which can be triggered by GlyR gain-of-function mutations. In this research we initially tested functional properties of GlyRs, carrying the yet understudied T258F gain-of-function mutation, and found that this mutation makes significant modifications in GlyR response to endogenous agonists. Next, we clarified the role of tonic GlyR conductance in neuronal signalling generated by single CGCs and by neural networks in cell cultures and in living cerebellar tissue of C57Bl-6J mice. We found that GlyRs of CGCs deliver a significant amount of tonic inhibition not continuously, but when the cerebellar granule layer starts receiving substantial excitatory input. Under these conditions tonically active GlyRs become a part of neural signalling machinery allowing generation of action potential (AP) bursts of limited length in response to sensory-evoked signals. GlyRs of CGCs support a biphasic modulatory mechanism which enhances AP firing when excitatory input intensity is low, but suppresses it when excitatory input rises to a certain critical level. This enables one of the key functions of the CGC layer: formation of sensory representations and their translation into motor output. Finally, we have demonstrated that the T258F mutation in CGC GlyRs modifies single-cell and neural network signalling, and breaks a biphasic modulation of the AP-generating machinery.
Collapse
Affiliation(s)
- Catherine McLaughlin
- Gene Therapy Group, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - John Clements
- The John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia
| | - Ana-Maria Oprişoreanu
- Center for Discovery Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sergiy Sylantyev
- Center for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| |
Collapse
|
19
|
Pathway-Specific Drive of Cerebellar Golgi Cells Reveals Integrative Rules of Cortical Inhibition. J Neurosci 2018; 39:1169-1181. [PMID: 30587539 DOI: 10.1523/jneurosci.1448-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022] Open
Abstract
Cerebellar granule cells (GrCs) constitute over half of all neurons in the vertebrate brain and are proposed to decorrelate convergent mossy fiber (MF) inputs in service of learning. Interneurons within the GrC layer, Golgi cells (GoCs), are the primary inhibitors of this vast population and therefore play a major role in influencing the computations performed within the layer. Despite this central function for GoCs, few studies have directly examined how GoCs integrate inputs from specific afferents, which vary in density to regulate GrC population activity. We used a variety of methods in mice of either sex to study feedforward inhibition recruited by identified MFs, focusing on features that would influence integration by GrCs. Comprehensive 3D reconstruction and quantification of GoC axonal boutons revealed tightly clustered boutons that focus feedforward inhibition in the neighborhood of GoC somata. Acute whole-cell patch-clamp recordings from GrCs in brain slices showed that, despite high GoC bouton density, fast phasic inhibition was very sparse relative to slow spillover mediated inhibition. Dynamic-clamp simulating inhibition combined with optogenetic MF activation at moderate rates supported a predominant role of slow spillover mediated inhibition in reducing GrC activity. Whole-cell recordings from GoCs revealed a role for the density of active MFs in preferentially driving them. Thus, our data provide empirical confirmation of predicted rules by which MFs activate GoCs to regulate GrC activity levels.SIGNIFICANCE STATEMENT A unifying framework in neural circuit analysis is identifying circuit motifs that subserve common computations. Wide-field inhibitory interneurons globally inhibit neighbors and have been studied extensively in the insect olfactory system and proposed to serve pattern separation functions. Cerebellar Golgi cells (GoCs), a type of mammalian wide-field inhibitory interneuron observed in the granule cell layer, are well suited to perform normalization or pattern separation functions, but the relationship between spatial characteristics of input patterns to GoC-mediated inhibition has received limited attention. This study provides unprecedented quantitative structural details of GoCs and identifies a role for population input activity levels in recruiting inhibition using in vitro electrophysiology and optogenetics.
Collapse
|
20
|
Developmental pattern and structural factors of dendritic survival in cerebellar granule cells in vivo. Sci Rep 2018; 8:17561. [PMID: 30510282 PMCID: PMC6277421 DOI: 10.1038/s41598-018-35829-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
Granule cells (GCs) in the cerebellar cortex are important for sparse encoding of afferent sensorimotor information. Modeling studies show that GCs can perform their function most effectively when they have four dendrites. Indeed, mature GCs have four short dendrites on average, each terminating in a claw-like ending that receives both excitatory and inhibitory inputs. Immature GCs, however, have significantly more dendrites—all without claws. How these redundant dendrites are refined during development is largely unclear. Here, we used in vivo time-lapse imaging and immunohistochemistry to study developmental refinement of GC dendritic arbors and its relation to synapse formation. We found that while the formation of dendritic claws stabilized the dendrites, the selection of surviving dendrites was made before claw formation, and longer immature dendrites had a significantly higher chance of survival than shorter dendrites. Using immunohistochemistry, we show that glutamatergic and GABAergic synapses are transiently formed on immature GC dendrites, and the number of GABAergic, but not glutamatergic, synapses correlates with the length of immature dendrites. Together, these results suggest a potential role of transient GABAergic synapses on dendritic selection and show that preselected dendrites are stabilized by the formation of dendritic claws—the site of mature synapses.
Collapse
|
21
|
Fleming E, Hull C. Serotonin regulates dynamics of cerebellar granule cell activity by modulating tonic inhibition. J Neurophysiol 2018; 121:105-114. [PMID: 30281395 DOI: 10.1152/jn.00492.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding how afferent information is integrated by cortical structures requires identifying the factors shaping excitation and inhibition within their input layers. The input layer of the cerebellar cortex integrates diverse sensorimotor information to enable learned associations that refine the dynamics of movement. Specifically, mossy fiber afferents relay sensorimotor input into the cerebellum to excite granule cells, whose activity is regulated by inhibitory Golgi cells. To test how this integration can be modulated, we have used an acute brain slice preparation from young adult rats and found that encoding of mossy fiber input in the cerebellar granule cell layer can be regulated by serotonin (5-hydroxytryptamine, 5-HT) via a specific action on Golgi cells. We find that 5-HT depolarizes Golgi cells, likely by activating 5-HT2A receptors, but does not directly act on either granule cells or mossy fibers. As a result of Golgi cell depolarization, 5-HT significantly increases tonic inhibition onto both granule cells and Golgi cells. 5-HT-mediated Golgi cell depolarization is not sufficient, however, to alter the probability or timing of mossy fiber-evoked feed-forward inhibition onto granule cells. Together, increased granule cell tonic inhibition paired with normal feed-forward inhibition acts to reduce granule cell spike probability without altering spike timing. Hence, these data provide a circuit mechanism by which 5-HT can reduce granule cell activity without altering temporal representations of mossy fiber input. Such changes in network integration could enable flexible, state-specific suppression of cerebellar sensorimotor input that should not be learned or enable reversal learning for unwanted associations. NEW & NOTEWORTHY Serotonin (5-hydroxytryptamine, 5-HT) regulates synaptic integration at the input stage of cerebellar processing by increasing tonic inhibition of granule cells. This circuit mechanism reduces the probability of granule cell spiking without altering spike timing, thus suppressing cerebellar input without altering its temporal representation in the granule cell layer.
Collapse
Affiliation(s)
- Elizabeth Fleming
- Department of Neurobiology, Duke University Medical School , Durham, North Carolina
| | - Court Hull
- Department of Neurobiology, Duke University Medical School , Durham, North Carolina
| |
Collapse
|
22
|
Seino Y, Ohashi N, Kohno T. The endogenous agonist, β-alanine, activates glycine receptors in rat spinal dorsal neurons. Biochem Biophys Res Commun 2018; 500:897-901. [DOI: 10.1016/j.bbrc.2018.04.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/23/2018] [Indexed: 11/26/2022]
|
23
|
Trujeque-Ramos S, Castillo-Rolón D, Galarraga E, Tapia D, Arenas-López G, Mihailescu S, Hernández-López S. Insulin Regulates GABA A Receptor-Mediated Tonic Currents in the Prefrontal Cortex. Front Neurosci 2018; 12:345. [PMID: 29904337 PMCID: PMC5990629 DOI: 10.3389/fnins.2018.00345] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/04/2018] [Indexed: 11/14/2022] Open
Abstract
Recent studies, have shown that insulin increases extrasynaptic GABAA receptor-mediated currents in the hippocampus, causing alterations of neuronal excitability. The prefrontal cortex (PFC) is another brain area which is involved in cognition functions and expresses insulin receptors. Here, we used electrophysiological, molecular, and immunocytochemical techniques to examine the effect of insulin on the extrasynaptic GABAA receptor-mediated tonic currents in brain slices. We found that insulin (20–500 nM) increases GABAA-mediated tonic currents. Our results suggest that insulin promotes the trafficking of extrasynaptic GABAA receptors from the cytoplasm to the cell membrane. Western blot analysis and immunocytochemistry showed that PFC extrasynaptic GABAA receptors contain α-5 and δ subunits. Insulin effect on tonic currents decreased the firing rate and neuronal excitability in layer 5–6 PFC cells. These effects of insulin were dependent on the activation of the PI3K enzyme, a key mediator of the insulin response within the brain. Taken together, these results suggest that insulin modulation of the GABAA-mediated tonic currents can modify the activity of neural circuits within the PFC. These actions could help to explain the alterations of cognitive processes associated with changes in insulin signaling.
Collapse
Affiliation(s)
- Saraí Trujeque-Ramos
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Diego Castillo-Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Gabina Arenas-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Stefan Mihailescu
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salvador Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| |
Collapse
|
24
|
Control of motor coordination by astrocytic tonic GABA release through modulation of excitation/inhibition balance in cerebellum. Proc Natl Acad Sci U S A 2018; 115:5004-5009. [PMID: 29691318 DOI: 10.1073/pnas.1721187115] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tonic inhibition in the brain is mediated through an activation of extrasynaptic GABAA receptors by the tonically released GABA, resulting in a persistent GABAergic inhibitory action. It is one of the key regulators for neuronal excitability, exerting a powerful action on excitation/inhibition balance. We have previously reported that astrocytic GABA, synthesized by monoamine oxidase B (MAOB), mediates tonic inhibition via GABA-permeable bestrophin 1 (Best1) channel in the cerebellum. However, the role of astrocytic GABA in regulating neuronal excitability, synaptic transmission, and cerebellar brain function has remained elusive. Here, we report that a reduction of tonic GABA release by genetic removal or pharmacological inhibition of Best1 or MAOB caused an enhanced neuronal excitability in cerebellar granule cells (GCs), synaptic transmission at the parallel fiber-Purkinje cell (PF-PC) synapses, and motor performance on the rotarod test, whereas an augmentation of tonic GABA release by astrocyte-specific overexpression of MAOB resulted in a reduced neuronal excitability, synaptic transmission, and motor performance. The bidirectional modulation of astrocytic GABA by genetic alteration of Best1 or MAOB was confirmed by immunostaining and in vivo microdialysis. These findings indicate that astrocytes are the key player in motor coordination through tonic GABA release by modulating neuronal excitability and could be a good therapeutic target for various movement and psychiatric disorders, which show a disturbed excitation/inhibition balance.
Collapse
|
25
|
Stradecki-Cohan HM, Cohan CH, Raval AP, Dave KR, Reginensi D, Gittens RA, Youbi M, Perez-Pinzon MA. Cognitive Deficits after Cerebral Ischemia and Underlying Dysfunctional Plasticity: Potential Targets for Recovery of Cognition. J Alzheimers Dis 2018; 60:S87-S105. [PMID: 28453486 DOI: 10.3233/jad-170057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia affects millions of people worldwide and survivors suffer from long-term functional and cognitive deficits. While stroke and cardiac arrest are typically considered when discussing ischemic brain injuries, there is much evidence that smaller ischemic insults underlie neurodegenerative diseases, including Alzheimer's disease. The "regenerative" capacity of the brain relies on several aspects of plasticity that are crucial for normal functioning; less affected brain areas may take over function previously performed by irreversibly damaged tissue. To harness the endogenous plasticity mechanisms of the brain to provide recovery of cognitive function, we must first understand how these mechanisms are altered after damage, such as cerebral ischemia. In this review, we discuss the long-term cognitive changes that result after cerebral ischemia and how ischemia alters several plasticity processes. We conclude with a discussion of how current and prospective therapies may restore brain plasticity and allow for recovery of cognitive function, which may be applicable to several disorders that have a disruption of cognitive processing, including traumatic brain injury and Alzheimer's disease.
Collapse
Affiliation(s)
- Holly M Stradecki-Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Charles H Cohan
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Ami P Raval
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Kunjan R Dave
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Diego Reginensi
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Rolando A Gittens
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama, Republic of Panama
| | - Mehdi Youbi
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology Cerebral Vascular Disease Research Laboratories, Miami, FL, USA.,Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
The Cerebellar GABA AR System as a Potential Target for Treating Alcohol Use Disorder. Handb Exp Pharmacol 2018; 248:113-156. [PMID: 29736774 DOI: 10.1007/164_2018_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the brain, fast inhibitory neurotransmission is mediated primarily by the ionotropic subtype of the gamma-aminobutyric acid (GABA) receptor subtype A (GABAAR). It is well established that the brain's GABAAR system mediates many aspects of neurobehavioral responses to alcohol (ethanol; EtOH). Accordingly, in both preclinical studies and some clinical scenarios, pharmacologically targeting the GABAAR system can alter neurobehavioral responses to acute and chronic EtOH consumption. However, many of the well-established interactions of EtOH and the GABAAR system have been identified at concentrations of EtOH ([EtOH]) that would only occur during abusive consumption of EtOH (≥40 mM), and there are still inadequate treatment options for prevention of or recovery from alcohol use disorder (AUD, including abuse and dependence). Accordingly, there is a general acknowledgement that more research is needed to identify and characterize: (1) neurobehavioral targets of lower [EtOH] and (2) associated brain structures that would involve such targets in a manner that may influence the development and maintenance of AUDs.Nearly 15 years ago it was discovered that the GABAAR system of the cerebellum is highly sensitive to EtOH, responding to concentrations as low as 10 mM (as would occur in the blood of a typical adult human after consuming 1-2 standard units of EtOH). This high sensitivity to EtOH, which likely mediates the well-known motor impairing effects of EtOH, combined with recent advances in our understanding of the role of the cerebellum in non-motor, cognitive/emotive/reward processes has renewed interest in this system in the specific context of AUD. In this chapter we will describe recent advances in our understanding of cerebellar processing, actions of EtOH on the cerebellar GABAAR system, and the potential relationship of such actions to the development of AUD. We will finish with speculation about how cerebellar specific GABAAR ligands might be effective pharmacological agents for treating aspects of AUD.
Collapse
|
27
|
Brown DA. Norman Bowery's discoveries about extrasynaptic and asynaptic GABA systems and their significance. Neuropharmacology 2017; 136:3-9. [PMID: 29128306 DOI: 10.1016/j.neuropharm.2017.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/04/2017] [Indexed: 11/26/2022]
Abstract
Before discovering the GABA-B receptor, Norman Bowery completed a series of studies on an extrasynaptic or asynaptic "GABA system" in the rat superior cervical sympathetic ganglion. First, he discovered an uptake system for GABA in neuroglial cells in the ganglia and in peripheral nerves, with a different substrate specificity than that in neurons. Second, he showed that accumulated GABA in sympathetic glial cells was metabolized to succinate by a transaminase enzyme. Third, he provided detailed structure-activity information about compounds activating an extrasynaptic GABA-A receptor on neurons in the rat sympathetic ganglion. Fourth, he showed that some amino acid substrates for the neuroglial transporter could indirectly stimulate neurons by releasing GABA from adjacent glial cells, and that GABA could also be released from neuroglial cells by membrane depolarization. In this review, these discoveries are briefly described and updated and some of their implications assessed. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- David A Brown
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
28
|
Hull C. Cellular and Synaptic Properties of Local Inhibitory Circuits. Cold Spring Harb Protoc 2017; 2017:2017/5/pdb.top095281. [PMID: 28461682 DOI: 10.1101/pdb.top095281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhibitory interneurons play a key role in sculpting the information processed by neural circuits. Despite the wide range of physiologically and morphologically distinct types of interneurons that have been identified, common principles have emerged that have shed light on how synaptic inhibition operates, both mechanistically and functionally, across cell types and circuits. This introduction summarizes how electrophysiological approaches have been used to illuminate these key principles, including basic interneuron circuit motifs, the functional properties of inhibitory synapses, and the main roles for synaptic inhibition in regulating neural circuit function. It also highlights how some key electrophysiological methods and experiments have advanced our understanding of inhibitory synapse function.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University, Durham, North Carolina 27710
| |
Collapse
|
29
|
Purkinje Cells Directly Inhibit Granule Cells in Specialized Regions of the Cerebellar Cortex. Neuron 2016; 91:1330-1341. [PMID: 27593180 DOI: 10.1016/j.neuron.2016.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 01/19/2023]
Abstract
Inhibition of granule cells plays a key role in gating the flow of signals into the cerebellum, and it is thought that Golgi cells are the only interneurons that inhibit granule cells. Here we show that Purkinje cells, the sole output neurons of the cerebellar cortex, also directly inhibit granule cells via their axon collaterals. Anatomical and optogenetic studies indicate that this non-canonical feedback is region specific: it is most prominent in lobules that regulate eye movement and process vestibular information. Collaterals provide fast, slow, and tonic inhibition to granule cells, and thus allow Purkinje cells to regulate granule cell excitability on multiple timescales. We propose that this feedback mechanism could regulate excitability of the input layer, contribute to sparse coding, and mediate temporal integration.
Collapse
|
30
|
Kaplan JS, Mohr C, Hostetler CM, Ryabinin AE, Finn DA, Rossi DJ. Alcohol Suppresses Tonic GABAA Receptor Currents in Cerebellar Granule Cells in the Prairie Vole: A Neural Signature of High-Alcohol-Consuming Genotypes. Alcohol Clin Exp Res 2016; 40:1617-26. [PMID: 27426857 DOI: 10.1111/acer.13136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/21/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Evidence indicates that the cerebellum plays a role in genetic predilection to excessive alcohol (ethanol [EtOH]) consumption in rodents and humans, but the molecular mechanisms mediating such predilection are not understood. We recently determined that EtOH has opposite actions (enhancement or suppression) on tonic GABAA receptor (GABAA R) currents in cerebellar granule cells (GCs) in low- and high-EtOH-consuming rodents, respectively, and proposed that variation in GC tonic GABAA R current responses to EtOH contributes to genetic variation in EtOH consumption phenotype. METHODS Voltage-clamp recordings of GCs in acutely prepared slices of cerebellum were used to evaluate the effect of EtOH on GC tonic GABAA R currents in another high-EtOH-consuming rodent, prairie voles (PVs). RESULTS EtOH (52 mM) suppressed the magnitude of the tonic GABAA R current in 57% of cells, had no effect in 38% of cells, and enhanced the tonic GABAA R current in 5% of cells. This result is similar to GCs from high-EtOH-consuming C57BL/6J (B6) mice, but it differs from the enhancement of tonic GABAA R currents by EtOH in low-EtOH-consuming DBA/2J (D2) mice and Sprague Dawley (SD) rats. EtOH suppression of tonic GABAA R currents was not affected by the sodium channel blocker, tetrodotoxin (500 nM), and was independent of the frequency of phasic GABAA R-mediated currents, suggesting that suppression is mediated by postsynaptic actions on GABAA Rs, rather than a reduction of GABA release. Finally, immunohistochemical analysis of neuronal nitric oxide synthase (nNOS; which can mediate EtOH enhancement of GABA release) demonstrated that nNOS expression in the GC layer of PV cerebellum was similar to the levels seen in B6 mice, both being significantly reduced relative to D2 mice and SD rats. CONCLUSIONS Combined, these data highlight the GC GABAA R response to EtOH in another species, the high-EtOH-consuming PV, which correlates with EtOH consumption phenotype and further implicates the GC GABAA R system as a contributing mechanism to high EtOH consumption.
Collapse
Affiliation(s)
- Joshua S Kaplan
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,VA Portland Health Care System, Portland, Oregon
| | - Claudia Mohr
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Caroline M Hostetler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,VA Portland Health Care System, Portland, Oregon
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,VA Portland Health Care System, Portland, Oregon
| | - David J Rossi
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
31
|
Valenzuela CF, Jotty K. Mini-Review: Effects of Ethanol on GABAA Receptor-Mediated Neurotransmission in the Cerebellar Cortex--Recent Advances. THE CEREBELLUM 2016; 14:438-46. [PMID: 25575727 DOI: 10.1007/s12311-014-0639-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Studies from several laboratories have shown that ethanol impairs cerebellar function, in part, by altering GABAergic transmission. Here, we discuss recent advances in our understanding of the acute effects of ethanol on GABA(A) receptor-mediated neurotransmission at cerebellar cortical circuits, mainly focusing on electrophysiological studies with slices from laboratory animals. These studies have shown that acute ethanol exposure increases GABA release at molecular layer interneuron-to-Purkinje cell synapses and also at reciprocal synapses between molecular layer interneurons. In granule cells, studies with rat cerebellar slices have consistently shown that acute ethanol exposure both potentiates tonic currents mediated by extrasynaptic GABA(A) receptors and also increases the frequency of spontaneous inhibitory postsynaptic currents mediated by synaptic GABA(A) receptors. These effects have been also documented in some granule cells from mice and nonhuman primates. Currently, there are two distinct models on how ethanol produces these effects. In one model, ethanol primarily acts by directly potentiating extrasynaptic GABA(A) receptors, including a population that excites granule cell axons and stimulates glutamate release onto Golgi cells. In the other model, ethanol acts indirectly by increasing spontaneous Golgi cell firing via inhibition of the Na(+)/K(+) ATPase, a quinidine-sensitive K(+) channel, and neuronal nitric oxide synthase. It was also demonstrated that a direct inhibitory effect of ethanol on tonic currents can be unmasked under conditions of low protein kinase C activity. In the last section, we briefly discuss studies on the chronic effect of ethanol on cerebellar GABA(A) receptor-mediated transmission and highlight potential areas where future research is needed.
Collapse
Affiliation(s)
- C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA,
| | | |
Collapse
|
32
|
Pangratz-Fuehrer S, Sieghart W, Rudolph U, Parada I, Huguenard JR. Early postnatal switch in GABAA receptor α-subunits in the reticular thalamic nucleus. J Neurophysiol 2015; 115:1183-95. [PMID: 26631150 DOI: 10.1152/jn.00905.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 01/25/2023] Open
Abstract
The GABAergic neurons of the thalamic reticular nucleus (nRt) provide the primary source of inhibition within the thalamus. Using physiology, pharmacology, and immunohistochemistry in mice, we characterized postsynaptic developmental changes in these inhibitory projection neurons. First, at postnatal days 3-5 (P3-5), inhibitory postsynaptic currents (IPSCs) decayed very slowly, followed by a biphasic developmental progression, becoming faster at P6-8 and then slower again at P9-11 before stabilizing in a mature form around P12. Second, the pharmacological profile of GABA(A) receptor (GABA(A)R)-mediated IPSCs differed between neonatal and mature nRt neurons, and this was accompanied by reciprocal changes in α3 (late) and α5 (early) subunit expression in nRt. Zolpidem, selective for α1- and α3-containing GABA(A)Rs, augmented only mature IPSCs, whereas clonazepam enhanced IPSCs at all stages. This effect was blocked by the α5-specific inverse agonist L-655,708, but only in immature neurons. In α3(H126R) mice, in which α3-subunits were mutated to become benzodiazepine insensitive, IPSCs were enhanced compared with those in wild-type animals in early development. Third, tonic GABA(A)R activation in nRt is age dependent and more prominent in immature neurons, which correlates with early expression of α5-containing GABA(A)Rs. Thus neonatal nRt neurons show relatively high expression of α5-subunits, which contributes to both slow synaptic and tonic extrasynaptic inhibition. The postnatal switch in GABA(A)R subunits from α5 to α3 could facilitate spontaneous network activity in nRt that occurs at this developmental time point and which is proposed to play a role in early circuit development.
Collapse
Affiliation(s)
- Susanne Pangratz-Fuehrer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Werner Sieghart
- Brain Research Institute Vienna, University of Vienna, Vienna, Austria; and
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Mailman Research Center, Harvard Medical School, Belmont, Massachusetts
| | - Isabel Parada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California;
| |
Collapse
|
33
|
Schipper S, Aalbers MW, Rijkers K, Swijsen A, Rigo JM, Hoogland G, Vles JSH. Tonic GABAA Receptors as Potential Target for the Treatment of Temporal Lobe Epilepsy. Mol Neurobiol 2015; 53:5252-65. [PMID: 26409480 PMCID: PMC5012145 DOI: 10.1007/s12035-015-9423-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
Tonic GABAA receptors are a subpopulation of receptors that generate long-lasting inhibition and thereby control network excitability. In recent years, these receptors have been implicated in various neurological and psychiatric disorders, including Parkinson’s disease, schizophrenia, and epilepsy. Their distinct subunit composition and function, compared to phasic GABAA receptors, opens the possibility to specifically modulate network properties. In this review, the role of tonic GABAA receptors in epilepsy and as potential antiepileptic target will be discussed.
Collapse
Affiliation(s)
- S Schipper
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - M W Aalbers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Rijkers
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery and Orthopedic Surgery, Atrium Hospital Heerlen, Heerlen, The Netherlands
| | - A Swijsen
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - J M Rigo
- BIOMED Research Institute, Hasselt University/Transnational University Limburg, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - G Hoogland
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J S H Vles
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences, School of Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
34
|
α6-Containing GABAA Receptors Are the Principal Mediators of Inhibitory Synapse Strengthening by Insulin in Cerebellar Granule Cells. J Neurosci 2015; 35:9676-88. [PMID: 26134650 DOI: 10.1523/jneurosci.0513-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent strengthening of central synapses is a key factor driving neuronal circuit behavior in the vertebrate CNS. At fast inhibitory synapses, strengthening is thought to occur by increasing the number of GABAA receptors (GABARs) of the same subunit composition to preexisting synapses. Here, we show that strengthening of mouse cerebellar granule cell GABAergic synapses occurs by a different mechanism. Specifically, we show that the neuropeptide hormone, insulin, strengthens inhibitory synapses by recruiting α6-containing GABARs rather than accumulating more α1-containing receptors that are resident to the synapse. Because α6-receptors are targeted to functionally distinct postsynaptic sites from α1-receptors, we conclude that only a subset of all inhibitory synapses are strengthened. Together with our recent findings on stellate cells, we propose a general mechanism by which mature inhibitory synapses are strengthened. In this scenario, α1-GABARs resident to inhibitory synapses form the hardwiring of neuronal circuits with receptors of a different composition fulfilling a fundamental, but unappreciated, role in synapse strengthening.
Collapse
|
35
|
Spanne A, Jörntell H. Questioning the role of sparse coding in the brain. Trends Neurosci 2015; 38:417-27. [PMID: 26093844 DOI: 10.1016/j.tins.2015.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 01/27/2023]
Abstract
Coding principles are central to understanding the organization of brain circuitry. Sparse coding offers several advantages, but a near-consensus has developed that it only has beneficial properties, and these are partially unique to sparse coding. We find that these advantages come at the cost of several trade-offs, with the lower capacity for generalization being especially problematic, and the value of sparse coding as a measure and its experimental support are both questionable. Furthermore, silent synapses and inhibitory interneurons can permit learning speed and memory capacity that was previously ascribed to sparse coding only. Combining these properties without exaggerated sparse coding improves the capacity for generalization and facilitates learning of models of a complex and high-dimensional reality.
Collapse
Affiliation(s)
- Anton Spanne
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Center F10, Tornavägen 10, 221 84 Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Biomedical Center F10, Tornavägen 10, 221 84 Lund, Sweden.
| |
Collapse
|
36
|
Pandit S, Jo JY, Lee SU, Lee YJ, Lee SY, Ryu PD, Lee JU, Kim HW, Jeon BH, Park JB. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure. J Neurophysiol 2015; 114:914-26. [PMID: 26063771 DOI: 10.1152/jn.00080.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023] Open
Abstract
γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure.
Collapse
Affiliation(s)
- Sudip Pandit
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Yoon Jo
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Ung Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - Young Jae Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jung Un Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - Hyun-Woo Kim
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Bong Park
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea;
| |
Collapse
|
37
|
Abstract
Gamma-amino butyric acid (GABA) is the major inhibitory neurotransmitter that is known to be synthesized and released from GABAergic neurons in the brain. However, recent studies have shown that not only neurons but also astrocytes contain a considerable amount of GABA that can be released and activate GABA receptors in neighboring neurons. These exciting new findings for glial GABA raise further interesting questions about the source of GABA, its mechanism of release and regulation and the functional role of glial GABA. In this review, we highlight recent studies that identify the presence and release of GABA in glial cells, we show several proposed potential pathways for accumulation and modulation of glial intracellular and extracellular GABA content, and finally we discuss functional roles for glial GABA in the brain.
Collapse
Affiliation(s)
- Bo-Eun Yoon
- Department of Nanobiomedical Science, Dankook University Chungnam, South Korea
| | - C Justin Lee
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST) Seoul, South Korea ; Center for Neural Science and Center for Functional Connectomics, Korea Institute of Science and Technology (KIST) Seoul, South Korea
| |
Collapse
|
38
|
Yoon BE, Woo J, Chun YE, Chun H, Jo S, Bae JY, An H, Min JO, Oh SJ, Han KS, Kim HY, Kim T, Kim YS, Bae YC, Lee CJ. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J Physiol 2014; 592:4951-68. [PMID: 25239459 DOI: 10.1113/jphysiol.2014.278754] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABA is the major inhibitory transmitter in the brain and is released not only from a subset of neurons but also from glia. Although neuronal GABA is well known to be synthesized by glutamic acid decarboxylase (GAD), the source of glial GABA is unknown. After estimating the concentration of GABA in Bergmann glia to be around 5-10 mM by immunogold electron microscopy, we demonstrate that GABA production in glia requires MAOB, a key enzyme in the putrescine degradation pathway. In cultured cerebellar glia, both Ca(2+)-induced and tonic GABA release are significantly reduced by both gene silencing of MAOB and the MAOB inhibitor selegiline. In the cerebellum and striatum of adult mice, general gene silencing, knock out of MAOB or selegiline treatment resulted in elimination of tonic GABA currents recorded from granule neurons and medium spiny neurons. Glial-specific rescue of MAOB resulted in complete rescue of tonic GABA currents. Our results identify MAOB as a key synthesizing enzyme of glial GABA, which is released via bestrophin 1 (Best1) channel to mediate tonic inhibition in the brain.
Collapse
Affiliation(s)
- Bo-Eun Yoon
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea Department of Nanobiomedical Science, Dankook University, Chungnam, 330-714, Korea
| | - Junsung Woo
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea
| | - Ye-Eun Chun
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea
| | - Heejung Chun
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Seonmi Jo
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| | - Jin Young Bae
- Department of Oral Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu, 700-412, Republic of Korea
| | - Heeyoung An
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea KU-KIST School of Converging Science and Technology, Korea University, Seoul, 136-701, Korea
| | - Joo Ok Min
- Department of Nanobiomedical Science, Dankook University, Chungnam, 330-714, Korea
| | - Soo-Jin Oh
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Kyung-Seok Han
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea
| | - Hye Yun Kim
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Taekeun Kim
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Young Soo Kim
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University, Daegu, 700-412, Republic of Korea
| | - C Justin Lee
- WCI Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Center for Neural Science, Korea Institute of Science and Technology (KIST), Seoul, 136-791, Korea Neuroscience Program, University of Science and Technology (UST), Daejeon, 305-350, Korea
| |
Collapse
|
39
|
Neuner J, Ovsepian SV, Dorostkar M, Filser S, Gupta A, Michalakis S, Biel M, Herms J. Pathological α-synuclein impairs adult-born granule cell development and functional integration in the olfactory bulb. Nat Commun 2014; 5:3915. [PMID: 24867427 PMCID: PMC4050256 DOI: 10.1038/ncomms4915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/18/2014] [Indexed: 12/21/2022] Open
Abstract
Although the role of noxious α-synuclein (α-SYN) in the degeneration of midbrain dopaminergic
neurons and associated motor deficits of Parkinson’s disease is
recognized, its impact on non-motor brain circuits and related symptoms remains
elusive. Through combining in vivo two-photon imaging with time-coded
labelling of neurons in the olfactory bulb of A30P α-SYN transgenic mice, we show impaired growth and
branching of dendrites of adult-born granule cells (GCs), with reduced gain and
plasticity of dendritic spines. The spine impairments are especially pronounced
during the critical phase of integration of new neurons into existing circuits.
Functionally, retarded dendritic expansion translates into reduced electrical
capacitance with enhanced intrinsic excitability and responsiveness of GCs to
depolarizing inputs, while the spine loss correlates with decreased frequency of
AMPA-mediated miniature EPSCs.
Changes described here are expected to interfere with the functional integration and
survival of new GCs into bulbar networks, contributing towards olfactory deficits
and related behavioural impairments. Aggregation-prone forms of α-synuclein lead to
degeneration of midbrain dopaminergic neurons, as seen in Parkinson’s
disease, but less is known about the effects that the noxious protein has in other brain
regions. Here, the authors investigate the effect of a pathological form of
α-synuclein on the functional integration of new neurons into the olfactory
bulb of adult mice.
Collapse
Affiliation(s)
- Johanna Neuner
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Saak V Ovsepian
- German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| | - Mario Dorostkar
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Severin Filser
- German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| | - Aayush Gupta
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich, (CiPSM) and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich, (CiPSM) and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Jochen Herms
- 1] German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany [2] Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| |
Collapse
|
40
|
Christensen RK, Petersen AV, Schmitt N, Perrier JF. Fast detection of extrasynaptic GABA with a whole-cell sniffer. Front Cell Neurosci 2014; 8:133. [PMID: 24860433 PMCID: PMC4030185 DOI: 10.3389/fncel.2014.00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/28/2014] [Indexed: 11/16/2022] Open
Abstract
Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a “sniffer” allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.
Collapse
Affiliation(s)
- Rasmus K Christensen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Anders V Petersen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
41
|
Mapelli L, Solinas S, D'Angelo E. Integration and regulation of glomerular inhibition in the cerebellar granular layer circuit. Front Cell Neurosci 2014; 8:55. [PMID: 24616663 PMCID: PMC3933946 DOI: 10.3389/fncel.2014.00055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/06/2014] [Indexed: 11/26/2022] Open
Abstract
Inhibitory synapses can be organized in different ways and be regulated by a multitude of mechanisms. One of the best known examples is provided by the inhibitory synapses formed by Golgi cells onto granule cells in the cerebellar glomeruli. These synapses are GABAergic and inhibit granule cells through two main mechanisms, phasic and tonic. The former is based on vesicular neurotransmitter release, the latter on the establishment of tonic γ-aminobutyric acid (GABA) levels determined by spillover and regulation of GABA uptake. The mechanisms of post-synaptic integration have been clarified to a considerable extent and have been shown to differentially involve α1 and α6 subunit-containing GABA-A receptors. Here, after reviewing the basic mechanisms of GABAergic transmission in the cerebellar glomeruli, we examine how inhibition controls signal transfer at the mossy fiber-granule cell relay. First of all, we consider how vesicular release impacts on signal timing and how tonic GABA levels control neurotransmission gain. Then, we analyze the integration of these inhibitory mechanisms within the granular layer network. Interestingly, it turns out that glomerular inhibition is just one element in a large integrated signaling system controlled at various levels by metabotropic receptors. GABA-B receptor activation by ambient GABA regulates glutamate release from mossy fibers through a pre-synaptic cross-talk mechanisms, GABA release through pre-synaptic auto-receptors, and granule cell input resistance through post-synaptic receptor activation and inhibition of a K inward-rectifier current. Metabotropic glutamate receptors (mGluRs) control GABA release from Golgi cell terminals and Golgi cell input resistance and autorhythmic firing. This complex set of mechanisms implements both homeostatic and winner-take-all processes, providing the basis for fine-tuning inhibitory neurotransmission and for optimizing signal transfer through the cerebellar cortex.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Sergio Solinas
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy
- Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| |
Collapse
|
42
|
Lee V, Maguire J. The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits 2014; 8:3. [PMID: 24550784 PMCID: PMC3909947 DOI: 10.3389/fncir.2014.00003] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 01/08/2014] [Indexed: 01/19/2023] Open
Abstract
The diversity of GABAA receptor (GABAAR) subunits and the numerous configurations during subunit assembly give rise to a variety of receptors with different functional properties. This heterogeneity results in variations in GABAergic conductances across numerous brain regions and cell types. Phasic inhibition is mediated by synaptically-localized receptors with a low affinity for GABA and results in a transient, rapidly desensitizing GABAergic conductance; whereas, tonic inhibition is mediated by extrasynaptic receptors with a high affinity for GABA and results in a persistent GABAergic conductance. The specific functions of tonic versus phasic GABAergic inhibition in different cell types and the impact on specific neural circuits are only beginning to be unraveled. Here we review the diversity in the magnitude of tonic GABAergic inhibition in various brain regions and cell types, and highlight the impact on neuronal excitability in different neuronal circuits. Further, we discuss the relevance of tonic inhibition in various physiological and pathological contexts as well as the potential of targeting these receptor subtypes for treatment of diseases, such as epilepsy.
Collapse
Affiliation(s)
- Vallent Lee
- Medical Scientist Training Program and Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine Boston, MA, USA
| |
Collapse
|
43
|
GABAergic tonic inhibition is regulated by developmental age and epilepsy in the dentate gyrus. Neuroreport 2014; 24:515-9. [PMID: 23681488 DOI: 10.1097/wnr.0b013e32836205bc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
γ-Aminobutyric acid (GABA) spillover from synaptic cleft activates extrasynaptic GABAA receptor and results in a tonic inhibition, which induces a background inhibitory effect to stabilize the membrane potential of the neuronal cells. However, the role of tonic inhibition and how it can be regulated during brain development and epileptic state remain elusive. By whole-cell patch-clamp recording on the granule cell in the dentate gyrus, we recorded tonic conductance to investigate the level of tonic inhibition in these two critical periods. According to our observation, an age-dependent increase in tonic conductance was observed. Furthermore, a change in tonic inhibition was also found in a chronic epileptic animal model, indicating that the alteration in tonic inhibition after epilepsy induction persists for a long duration to modulate neuronal activities. The present results show that tonic inhibition is altered during brain development and a chronic epileptic condition, indicating a role of the tonic inhibitory effect in both the critical periods.
Collapse
|
44
|
Diniz PHC, Guatimosim C, Binda NS, Costa FLP, Gomez MV, Gomez RS. The effects of volatile anesthetics on the extracellular accumulation of [(3)H]GABA in rat brain cortical slices. Cell Mol Neurobiol 2014; 34:71-81. [PMID: 24081560 PMCID: PMC11488923 DOI: 10.1007/s10571-013-9988-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/14/2013] [Indexed: 12/13/2022]
Abstract
GABA is an inhibitory neurotransmitter that appears to be associated with the action of volatile anesthetics. These anesthetics potentiate GABA-induced postsynaptic currents by synaptic GABAA receptors, although recent evidence suggests that these agents also significantly affect extrasynaptic GABA receptors. However, the effect of volatile anesthetics on the extracellular concentration of GABA in the central nervous system has not been fully established. In the present study, rat brain cortical slices loaded with [(3)H]GABA were used to investigate the effect of halothane and sevoflurane on the extracellular accumulation of this neurotransmitter. The accumulation of [(3)H]GABA was significantly increased by sevoflurane (0.058, 0.11, 0.23, 0.46, and 0.93 mM) and halothane (0.006, 0.012, 0.024, 0.048, 0072, and 0.096 mM) with an EC50 of 0.26 mM and 35 μM, respectively. TTX (blocker of voltage-dependent Na(+) channels), EGTA (an extracellular Ca(2+) chelator) and BAPTA-AM (an intracellular Ca(2+) chelator) did not interfere with the accumulation of [(3)H]GABA induced by 0.23 mM sevoflurane and 0.048 mM halothane. SKF 89976A, a GABA transporter type 1 (GAT-1) inhibitor, reduced the sevoflurane- and halothane-induced increase in the accumulation of GABA by 57 and 63 %, respectively. Incubation of brain cortical slices at low temperature (17 °C), a condition that inhibits GAT function and reduces GABA release through reverse transport, reduced the sevoflurane- and halothane-induced increase in the accumulation of [(3)H]GABA by 82 and 75 %, respectively, relative to that at normal temperature (37 °C). Ouabain, a Na(+)/K(+) ATPase pump inhibitor, which is known to induce GABA release through reverse transport, abolished the sevoflurane and halothane effects on the accumulation of [(3)H]GABA. The effect of sevoflurane and halothane did not involve glial transporters because β-alanine, a blocker of GAT-2 and GAT-3, did not inhibit the effect of the anesthetics. In conclusion, the present study suggests that sevoflurane and halothane increase the accumulation of GABA by inducing the reverse transport of this neurotransmitter. Therefore, volatile anesthetics could interfere with neuronal excitability by increasing the action of GABA on synaptic and extrasynaptic GABA receptors.
Collapse
Affiliation(s)
- Paulo H. C. Diniz
- Programa de Pós-graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Nancy S. Binda
- Programa de Pós-graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Flávia L. P. Costa
- Programa de Pós-graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Marcus V. Gomez
- Programa de Pós-Graduação em Biomedicina, Santa Casa de Belo Horizonte, Belo Horizonte, MG Brazil
| | - Renato S. Gomez
- Departmento de Cirurgia, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Sala 203, Bairro Santa Efigênia, Belo Horizonte, MG CEP 31340-300 Brazil
| |
Collapse
|
45
|
Diaz MR, Vollmer CC, Zamudio-Bulcock PA, Vollmer W, Blomquist SL, Morton RA, Everett JC, Zurek AA, Yu J, Orser BA, Valenzuela CF. Repeated intermittent alcohol exposure during the third trimester-equivalent increases expression of the GABA(A) receptor δ subunit in cerebellar granule neurons and delays motor development in rats. Neuropharmacology 2013; 79:262-74. [PMID: 24316160 DOI: 10.1016/j.neuropharm.2013.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 10/17/2013] [Accepted: 11/25/2013] [Indexed: 02/01/2023]
Abstract
Exposure to ethanol (EtOH) during fetal development can lead to long-lasting alterations, including deficits in fine motor skills and motor learning. Studies suggest that these are, in part, a consequence of cerebellar damage. Cerebellar granule neurons (CGNs) are the gateway of information into the cerebellar cortex. Functionally, CGNs are heavily regulated by phasic and tonic GABAergic inhibition from Golgi cell interneurons; however, the effect of EtOH exposure on the development of GABAergic transmission in immature CGNs has not been investigated. To model EtOH exposure during the 3rd trimester-equivalent of human pregnancy, neonatal pups were exposed intermittently to high levels of vaporized EtOH from postnatal day (P) 2 to P12. This exposure gradually increased pup serum EtOH concentrations (SECs) to ∼60 mM (∼0.28 g/dl) during the 4 h of exposure. EtOH levels gradually decreased to baseline 8 h after the end of exposure. Surprisingly, basal tonic and phasic GABAergic currents in CGNs were not significantly affected by postnatal alcohol exposure (PAE). However, PAE increased δ subunit expression at P28 as detected by immunohistochemical and western blot analyses. Also, electrophysiological studies with an agonist that is highly selective for δ-containing GABA(A) receptors, 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol (THIP), showed an increase in THIP-induced tonic current. Behavioral studies of PAE rats did not reveal any deficits in motor coordination, except for a delay in the acquisition of the mid-air righting reflex that was apparent at P15 to P18. These findings demonstrate that repeated intermittent exposure to high levels of EtOH during the equivalent of the last trimester of human pregnancy has significant but relatively subtle effects on motor coordination and GABAergic transmission in CGNs in rats.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cyndel C Vollmer
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Paula A Zamudio-Bulcock
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - William Vollmer
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Samantha L Blomquist
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julie C Everett
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Agnieszka A Zurek
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jieying Yu
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
46
|
Mohr C, Kolotushkina O, Kaplan JS, Welsh J, Daunais JB, Grant KA, Rossi DJ. Primate cerebellar granule cells exhibit a tonic GABAAR conductance that is not affected by alcohol: a possible cellular substrate of the low level of response phenotype. Front Neural Circuits 2013; 7:189. [PMID: 24324408 PMCID: PMC3840389 DOI: 10.3389/fncir.2013.00189] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/08/2013] [Indexed: 11/13/2022] Open
Abstract
In many rodent brain regions, alcohol increases vesicular release of GABA, resulting in an increase in the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and the magnitude of tonic GABAA receptor (GABAAR) currents. A neglected issue in translating the rodent literature to humans is the possibility that phylogenetic differences alter the actions of alcohol. To address this issue we made voltage-clamp recordings from granule cells (GCs) in cerebellar slices from the non-human primate (NHP), Macaca fascicularis. We found that similar to Sprague Dawley rats (SDRs), NHP GCs exhibit a tonic conductance generated by α6δ subunit containing GABAARs, as evidenced by its blockade by the broad spectrum GABAAR antagonist, GABAzine (10 μM), inhibition by α6 selective antagonist, furosemide (100 μM), and enhancement by THDOC (10-20 nM) and THIP (500 nM). In contrast to SDR GCs, in most NHP GCs (~60%), application of EtOH (25-105 mM) did not increase sIPSC frequency or the tonic GABAAR current. In a minority of cells (~40%), EtOH did increase sIPSC frequency and the tonic current. The relative lack of response to EtOH was associated with reduced expression of neuronal nitric oxide synthase (nNOS), which we recently reported mediates EtOH-induced enhancement of vesicular GABA release in rats. The EtOH-induced increase in tonic GABAAR current was significantly smaller in NHPs than in SDRs, presumably due to less GABA release, because there were no obvious differences in the density of GABAARs or GABA transporters between SDR and NHP GCs. Thus, EtOH does not directly modulate α6δ subunit GABAARs in NHPs. Instead, EtOH enhanced GABAergic transmission is mediated by enhanced GABA release. Further, SDR GC responses to alcohol are only representative of a subpopulation of NHP GCs. This suggests that the impact of EtOH on NHP cerebellar physiology will be reduced compared to SDRs, and will likely have different computational and behavioral consequences.
Collapse
Affiliation(s)
- Claudia Mohr
- Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Li ZX, Yu HM, Jiang KW. Tonic GABA inhibition in hippocampal dentate granule cells: its regulation and function in temporal lobe epilepsies. Acta Physiol (Oxf) 2013; 209:199-211. [PMID: 23865761 DOI: 10.1111/apha.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 01/06/2023]
Abstract
Both human and experimental evidence strongly supports the view of brain region- and cell-specific changes in tonic GABA inhibition in temporal lobe epilepsies (TLE). This 'tonic' form of signalling is not time-locked to presynaptic action potentials, which depends upon detection of ambient GABA by extrasynaptic GABAA receptors (GABAA Rs). Extrasynaptic GABAA Rs have distinct physiological and pharmacological features, including high GABA-binding affinity and low desensitization and a variety of the specific subunit combinations (α4δ-,α6δ-,α5γ-,ε-containing receptors). These features closely contribute to the function of tonic GABA current, which is preserved properly or increased in dentate gyrus in models of TLE, even in the face of a loss of synaptic inhibition and inhibitory interneurones. Markedly reduced tonic GABA inhibition may facilitate an episode of epilepsy, while persistent elevated tonic inhibition may contribute to the onset of spontaneous recurrent seizures. In dentate granule cells, tonic GABA inhibition is positively modulated by endogenous neurosteroids and other factors, which undergo changes related to hormonal status after TLE. Tonic inhibition regulates neuronal excitability through its effects on membrane potential by both offsetting the threshold and reducing the frequency of action potentials and input resistance. Therefore, extrasynaptic GABAA Rs are expected to be the most important pharmacological targets in TLE. It is likely that both elevate the ambient GABA concentration and potentiate the tonic currents, contributing to the antiepileptic effects.
Collapse
Affiliation(s)
- Z.-X. Li
- Department of Neurology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | - H.-M. Yu
- Department of Neonatology; The Children's Hospital Zhejiang University School of Medicine; Hangzhou; China
| | | |
Collapse
|
48
|
Connelly WM, Errington AC, Di Giovanni G, Crunelli V. Metabotropic regulation of extrasynaptic GABAA receptors. Front Neural Circuits 2013; 7:171. [PMID: 24298239 PMCID: PMC3829460 DOI: 10.3389/fncir.2013.00171] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/03/2013] [Indexed: 01/28/2023] Open
Abstract
A large body of work now shows the importance of GABAA receptor-mediated tonic inhibition in regulating CNS function. However, outside of pathological conditions, there is relatively little evidence that the magnitude of tonic inhibition is itself under regulation. Here we review the mechanisms by which tonic inhibition is known to be modulated, and outline the potential behavioral consequences of this modulation. Specifically, we address the ability of protein kinase A and C to phosphorylate the extrasynaptic receptors responsible for the tonic GABAA current, and how G-protein coupled receptors can regulate tonic inhibition through these effectors. We then speculate about the possible functional consequences of regulating the magnitude of the tonic GABAA current.
Collapse
Affiliation(s)
- William M Connelly
- Neuroscience Division, Cardiff School of Biosciences, Cardiff University Cardiff, UK
| | | | | | | |
Collapse
|
49
|
GABAA receptor-mediated tonic depolarization in developing neural circuits. Mol Neurobiol 2013; 49:702-23. [PMID: 24022163 DOI: 10.1007/s12035-013-8548-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
The activation of GABAA receptors (the type A receptors for γ-aminobutyric acid) produces two distinct forms of responses, phasic (i.e., transient) and tonic (i.e., persistent), that are mediated by synaptic and extrasynaptic GABAA receptors, respectively. During development, the intracellular chloride levels are high so activation of these receptors causes a net outward flow of anions that leads to neuronal depolarization rather than hyperpolarization. Therefore, in developing neural circuits, tonic activation of GABAA receptors may provide persistent depolarization. Recently, it became evident that GABAA receptor-mediated tonic depolarization alters the structure of patterned spontaneous activity, a feature that is common in developing neural circuits and is important for neural circuit refinement. Thus, this persistent depolarization may lead to a long-lasting increase in intracellular calcium level that modulates network properties via calcium-dependent signaling cascades. This article highlights the features of GABAA receptor-mediated tonic depolarization, summarizes the principles for discovery, reviews the current findings in diverse developing circuits, examines the underlying molecular mechanisms and modulation systems, and discusses their functional specializations for each developing neural circuit.
Collapse
|
50
|
Santhakumar V, Meera P, Karakossian MH, Otis TS. A reinforcing circuit action of extrasynaptic GABAA receptor modulators on cerebellar granule cell inhibition. PLoS One 2013; 8:e72976. [PMID: 23977374 PMCID: PMC3747091 DOI: 10.1371/journal.pone.0072976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 07/23/2013] [Indexed: 01/04/2023] Open
Abstract
GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR function, also increase GABA release. Electrophysiological recordings in cerebellar slices from rats homozygous for the ethanol-hypersensitive (α6100Q) allele show that modulators and agonists selective for δ-containing GABARs such as THDOC, ethanol and THIP (gaboxadol) increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in granule cells. Ethanol fails to augment granule cell sIPSC frequency in the presence of glutamate receptor antagonists, indicating that circuit mechanisms involving granule cell output contribute to ethanol-enhancement of synaptic inhibition. Additionally, GABAR antagonists decrease ethanol-induced enhancement of Golgi cell firing. Consistent with a role for glutamatergic inputs, THIP-induced increases in Golgi cell firing are abolished by glutamate receptor antagonists. Moreover, THIP enhances the frequency of spontaneous excitatory postsynaptic currents in Golgi cells. Analyses of knockout mice indicate that δ subunit-containing GABARs are required for enhancing GABA release in the presence of ethanol and THIP. The limited expression of the GABAR δ subunit protein within the cerebellar cortex suggests that an indirect, circuit mechanism is responsible for stimulating Golgi cell GABA release by drugs selective for extrasynaptic isoforms of GABARs. Such circuit effects reinforce direct actions of these positive modulators on tonic GABAergic inhibition and are likely to contribute to the potent effect of these compounds as nervous system depressants.
Collapse
Affiliation(s)
- Vijayalakshmi Santhakumar
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | |
Collapse
|