1
|
Cholecystokinin in the central nervous system of the sea lamprey Petromyzon marinus: precursor identification and neuroanatomical relationships with other neuronal signalling systems. Brain Struct Funct 2019; 225:249-284. [PMID: 31807925 DOI: 10.1007/s00429-019-01999-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/27/2019] [Indexed: 12/23/2022]
Abstract
Cholecystokinin (CCK) is a neuropeptide that modulates processes such as digestion, satiety, and anxiety. CCK-type peptides have been characterized in jawed vertebrates and invertebrates, but little is known about CCK-type signalling in the most ancient group of vertebrates, the agnathans. Here, we have cloned and sequenced a cDNA encoding a sea lamprey (Petromyzon marinus L.) CCK-type precursor (PmCCK), which contains a CCK-type octapeptide sequence (PmCCK-8) that is highly similar to gnathostome CCKs. Using mRNA in situ hybridization, the distribution of PmCCK-expressing neurons was mapped in the CNS of P. marinus. This revealed PmCCK-expressing neurons in the hypothalamus, posterior tubercle, prethalamus, nucleus of the medial longitudinal fasciculus, midbrain tegmentum, isthmus, rhombencephalic reticular formation, and the putative nucleus of the solitary tract. Some PmCCK-expressing neuronal populations were only observed in adults, revealing important differences with larvae. We generated an antiserum to PmCCK-8 to enable immunohistochemical analysis of CCK expression, which revealed that GABA or glutamate, but not serotonin, tyrosine hydroxylase or neuropeptide Y, is co-expressed in some PmCCK-8-immunoreactive (ir) neurons. Importantly, this is the first demonstration of co-localization of GABA and CCK in neurons of a non-mammalian vertebrate. We also characterized extensive cholecystokinergic fibre systems of the CNS, including innervation of habenular subnuclei. A conspicuous PmCCK-8-ir tract ascending in the lateral rhombencephalon selectively innervates a glutamatergic population in the dorsal isthmic grey. Interestingly, this tract is reminiscent of the secondary gustatory/visceral tract of teleosts. In conclusion, this study provides important new information on the evolution of the cholecystokinergic system in vertebrates.
Collapse
|
2
|
Neural Cotransmission in Spinal Circuits Governing Locomotion. Trends Neurosci 2018; 41:540-550. [DOI: 10.1016/j.tins.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/06/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023]
|
3
|
Romaus-Sanjurjo D, Valle-Maroto SM, Barreiro-Iglesias A, Fernández-López B, Rodicio MC. Anatomical recovery of the GABAergic system after a complete spinal cord injury in lampreys. Neuropharmacology 2018; 131:389-402. [PMID: 29317225 DOI: 10.1016/j.neuropharm.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/26/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
Lampreys recover locomotion spontaneously several weeks after a complete spinal cord injury. Dysfunction of the GABAergic system following SCI has been reported in mammalian models. So, it is of great interest to understand how the GABAergic system of lampreys adapts to the post-injury situation and how this relates to spontaneous recovery. The spinal cord of lampreys contains 3 populations of GABAergic neurons and most of the GABAergic innervation of the spinal cord comes from these local cells. GABAB receptors are expressed in the spinal cord of lampreys and they play important roles in the control of locomotion. The aims of the present study were to quantify: 1) the changes in the number of GABAergic neurons and innervation of the spinal cord and 2) the changes in the expression of the gabab receptor subunits b1 and b2 in the spinal cord of the sea lamprey after SCI. We performed complete spinal cord transections at the level of the fifth gill of mature larval lampreys and GABA immunohistochemistry or gabab in situ hybridization experiments. Animals were analysed up to 10 weeks post-lesion (wpl), when behavioural analyses showed that they recovered normal appearing locomotion (stage 6 in the Ayer's scale of locomotor recovery). We observed a significant decrease in the number of GABA-ir cells and fibres 1 h after lesion both rostral and caudal to the lesion site. GABA-ir cell numbers and innervation were recovered to control levels 1 to 2 wpl. At 1, 4 and 10 wpl the expression of gabab1 and gabab2 transcripts was significantly decreased in the spinal cord compared to control un-lesioned animals. This is the first study reporting the quantitative long-term changes in the number of GABAergic cells and fibres and in the expression of gabab receptors in the spinal cord of any vertebrate following a traumatic SCI. Our results show that in lampreys there is a full recovery of the GABAergic neurons and a decrease in the expression of gabab receptors when functional recovery is achieved.
Collapse
Affiliation(s)
- D Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - S M Valle-Maroto
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - B Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M C Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Romaus-Sanjurjo D, Fernández-López B, Sobrido-Cameán D, Barreiro-Iglesias A, Rodicio MC. Cloning of the GABA B Receptor Subunits B1 and B2 and their Expression in the Central Nervous System of the Adult Sea Lamprey. Front Neuroanat 2016; 10:118. [PMID: 28008311 PMCID: PMC5143684 DOI: 10.3389/fnana.2016.00118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
In vertebrates, γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the central nervous system (CNS) acting through ionotropic (GABAA) and metabotropic (GABAB) receptors. The GABAB receptor produces a slow inhibition since it activates second messenger systems through the binding and activation of guanine nucleotide-binding proteins [G-protein-coupled receptors (GPCRs)]. Lampreys are a key reference to understand molecular evolution in vertebrates. The importance of the GABAB receptor for the modulation of the circuits controlling locomotion and other behaviors has been shown in pharmacological/physiological studies in lampreys. However, there is no data about the sequence of the GABAB subunits or their expression in the CNS of lampreys. Our aim was to identify the sea lamprey GABAB1 and GABAB2 transcripts and study their expression in the CNS of adults. We cloned two partial sequences corresponding to the GABAB1 and GABAB2 cDNAs of the sea lamprey as confirmed by sequence analysis and comparison with known GABAB sequences of other vertebrates. In phylogenetic analyses, the sea lamprey GABAB sequences clustered together with GABABs sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. We observed a broad and overlapping expression of both transcripts in the entire CNS. Expression was mainly observed in neuronal somas of the periventricular regions including the identified reticulospinal cells. No expression was observed in identifiable fibers. Comparison of our results with those reported in other vertebrates indicates that a broad and overlapping expression of the GABAB subunits in the CNS is a conserved character shared by agnathans and gnathostomes.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Blanca Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela Santiago de Compostela, Spain
| |
Collapse
|
5
|
Neishabouri A, Faisal AA. Axonal noise as a source of synaptic variability. PLoS Comput Biol 2014; 10:e1003615. [PMID: 24809823 PMCID: PMC4014398 DOI: 10.1371/journal.pcbi.1003615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/26/2014] [Indexed: 11/19/2022] Open
Abstract
Post-synaptic potential (PSP) variability is typically attributed to mechanisms inside synapses, yet recent advances in experimental methods and biophysical understanding have led us to reconsider the role of axons as highly reliable transmission channels. We show that in many thin axons of our brain, the action potential (AP) waveform and thus the Ca++ signal controlling vesicle release at synapses will be significantly affected by the inherent variability of ion channel gating. We investigate how and to what extent fluctuations in the AP waveform explain observed PSP variability. Using both biophysical theory and stochastic simulations of central and peripheral nervous system axons from vertebrates and invertebrates, we show that channel noise in thin axons (<1 µm diameter) causes random fluctuations in AP waveforms. AP height and width, both experimentally characterised parameters of post-synaptic response amplitude, vary e.g. by up to 20 mV and 0.5 ms while a single AP propagates in C-fibre axons. We show how AP height and width variabilities increase with a ¾ power-law as diameter decreases and translate these fluctuations into post-synaptic response variability using biophysical data and models of synaptic transmission. We find for example that for mammalian unmyelinated axons with 0.2 µm diameter (matching cerebellar parallel fibres) axonal noise alone can explain half of the PSP variability in cerebellar synapses. We conclude that axonal variability may have considerable impact on synaptic response variability. Thus, in many experimental frameworks investigating synaptic transmission through paired-cell recordings or extracellular stimulation of presynaptic neurons, causes of variability may have been confounded. We thereby show how bottom-up aggregation of molecular noise sources contributes to our understanding of variability observed at higher levels of biological organisation.
Collapse
Affiliation(s)
- Ali Neishabouri
- Department of Bioengineering, Imperial College London, London, United Kingdom
- * E-mail:
| | - A. Aldo Faisal
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Computing, Imperial College London, London, United Kingdom
- MRC Clinical Sciences Centre, London, United Kingdom
| |
Collapse
|
6
|
Pérez-Fernández J, Megías M, Pombal MA. Cloning, phylogeny, and regional expression of a Y5 receptor mRNA in the brain of the sea lamprey (Petromyzon marinus). J Comp Neurol 2014; 522:1132-54. [PMID: 24127055 DOI: 10.1002/cne.23481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
The NPY receptors known as Y receptors are classified into three subfamilies, Y1, Y2, and Y5, and are involved in different physiological functions. The Y5 receptor is the only member of the Y5 subfamily, and it is present in all vertebrate groups, except for teleosts. Both molecular and pharmacological studies show that Y5 receptor is highly conserved during vertebrate evolution. Furthermore, this receptor is widely expressed in the mammalian brain, including the hypothalamus, where it is thought to take part in feeding and homeostasis regulation. Lampreys belong to the agnathan lineage, and they are thought to have branched out between the two whole-genome duplications that occurred in vertebrates. Therefore, they are in a key position for studies on the evolution of gene families in vertebrates. Here we report the cloning, phylogeny, and brain expression pattern of the sea lamprey Y5 receptor. In phylogenetic studies, the lamprey Y5 receptor clusters in a basal position, together with Y5 receptors of other vertebrates. The mRNA of this receptor is broadly expressed in the lamprey brain, being especially abundant in hypothalamic areas. Its expression pattern is roughly similar to that reported for other vertebrates and parallels the expression pattern of the Y1 receptor subtype previously described by our group, as it occurs in mammals. Altogether, these results confirm that a Y5 receptor is present in lampreys, thus being highly conserved during the evolution of vertebrates, and suggest that it is involved in many brain functions, the only known exception being teleosts.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, 36310-Vigo, Spain
| | | | | |
Collapse
|
7
|
Acevedo JM, Díaz-Ríos M. Removing sensory input disrupts spinal locomotor activity in the early postnatal period. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1105-16. [PMID: 24043359 DOI: 10.1007/s00359-013-0853-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/30/2013] [Accepted: 09/01/2013] [Indexed: 01/01/2023]
Abstract
Motor patterns driving rhythmic movements of our lower limbs during walking are generated by groups of neurons within the spinal cord, called central pattern generators (CPGs). After suffering a spinal cord injury (SCI), many descending fibers from our brain are severed or become nonfunctional, leaving the spinal CPG network without its initiating drive. Recent studies have focused on the importance of maintaining sensory stimulation to the limbs of SCI patients as a way to initiate and control the CPG locomotor network. We began assessing the role of sensory feedback to the locomotor CPG network using a neonatal mouse spinal cord preparation where the hindlimbs are still attached. Removing sensory feedback coming from the hindlimbs by way of a lower lumbar transection or by ventral root denervation revealed a positive correlation in the ability of sensory input deprivation to disrupt ongoing locomotor activity on older versus younger animals. The differences in the motor responses as a function of age could be correlated with the loss of excitatory activity from sensory afferents. Continued studies on this field could eventually provide key information that translates into the design of novel therapeutic strategies to treat patients who have suffered a SCI.
Collapse
Affiliation(s)
- Jean Marie Acevedo
- Institute of Neurobiology and Department of Anatomy and Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Boulevard del Valle, San Juan, 00901, Puerto Rico
| | | |
Collapse
|
8
|
Pérez-Fernández J, Megías M, Pombal MA. Distribution of a Y1 receptor mRNA in the brain of two Lamprey species, the sea lamprey (Petromyzon marinus) and the river Lamprey (Lampetra fluviatilis). J Comp Neurol 2013; 521:426-47. [PMID: 22740099 DOI: 10.1002/cne.23180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/23/2012] [Accepted: 06/22/2012] [Indexed: 11/09/2022]
Abstract
The neuropeptide Y system consists of several neuropeptides acting through a broad number of receptor subtypes, the NPY family of receptors. NPY receptors are divided into three subfamilies (Y1, Y2, and Y5) that display a complex evolutionary history due to local and large-scale gene duplication events and gene losses. Lampreys emerged from a basal branch of the tree of vertebrates and they are in a key position to shed light on the evolutionary history of the NPY system. One member of the Y1 subfamily has been reported in agnathans, but the phylogenetic tree of the Y1 subfamily is not yet clear. We cloned the sequences of the Y1-subtype receptor of Petromyzon marinus and Lampetra fluviatilis to study the expression pattern of this receptor in lampreys by in situ hybridization and to analyze the phylogeny of the Y1-subfamily receptors in vertebrates. The phylogenetic study showed that the Y1 receptor of lampreys is basal to the Y1/6 branch of the Y1-subfamily receptors. In situ hybridization showed that the Y1 receptor is widely expressed throughout the brain of lampreys, with some regions showing numerous positive neurons, as well as the presence of numerous cerebrospinal fluid-contacting cells in the spinal cord. This broad distribution of the lamprey Y1 receptor is more similar to that found in other vertebrates for the Y1 receptor than that of the other members of the Y1 subfamily: Y4, Y8, and Y6 receptors. Both phylogenetic relationship and expression pattern suggest that this receptor is a Y1 receptor.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | | | | |
Collapse
|
9
|
Barreiro-Iglesias A, Anadón R, Rodicio M. New insights on the neuropeptide Y system in the larval lamprey brain: neuropeptide Y immunoreactive neurons, descending spinal projections and comparison with tyrosine hydroxylase and GABA immunoreactivities. Neuroscience 2010; 167:396-413. [DOI: 10.1016/j.neuroscience.2010.02.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 01/07/2023]
|
10
|
Sorra KE, Mishra A, Kirov SA, Harris KM. Dense core vesicles resemble active-zone transport vesicles and are diminished following synaptogenesis in mature hippocampal slices. Neuroscience 2006; 141:2097-106. [PMID: 16797135 DOI: 10.1016/j.neuroscience.2006.05.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/24/2006] [Accepted: 05/06/2006] [Indexed: 11/28/2022]
Abstract
Large dense core vesicles (approximately 100 nm) contain neuroactive peptides and other co-transmitters. Smaller dense core vesicles (approximately 80 nm) are known to contain components of the presynaptic active zone and thought to transport and deliver these components during developmental synaptogenesis. It is not known whether excitatory axons in area CA1 contain such dense core vesicles, and whether they contribute to synaptic plasticity of mature hippocampus. Serial section electron microscopy was used to identify dense core vesicles in presynaptic axons in s. radiatum of area CA1 in adult rat hippocampus. Comparisons were made among perfusion-fixed hippocampus and hippocampal slices that undergo synaptogenesis during recovery in vitro. Dense core vesicles occurred in 26.1+/-3.6% of axonal boutons in perfusion fixed hippocampus, and in only 17.6+/-4.5% of axonal boutons in hippocampal slices (P<0.01). Most of the dense core vesicle positive boutons contained only one dense core vesicle, and no reconstructed axonal bouton had more than a total of 10 dense core vesicles in either condition. Overall the dense core vesicles had average diameters of 79+/-11 nm. These small dense core vesicles were usually located near nonsynaptic membranes and rarely occurred near the edge of a presynaptic active zone. Their size, low frequency, locations, and decrease following recuperative synaptogenesis in slices are novel findings that merit further study with respect to small dense core vesicle content and possible contributions to synapse assembly and plasticity in the mature hippocampus.
Collapse
Affiliation(s)
- K E Sorra
- Synapses and Cognitive Neuroscience Center, Medical College of Georgia, 1120 15th Street, CB-3731, Augusta, GA 30912-2630, USA
| | | | | | | |
Collapse
|
11
|
Pombal MA, López JM, de Arriba MC, Megías M, González A. Distribution of neuropeptide FF-like immunoreactive structures in the lamprey central nervous system and its relation to catecholaminergic neuronal structures. Peptides 2006; 27:1054-72. [PMID: 16487629 DOI: 10.1016/j.peptides.2005.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/22/2005] [Indexed: 11/16/2022]
Abstract
The neuropeptide FF (NPFF) is an octapeptide of the RFamide-related peptides (FaRPs) that was primarily isolated from the bovine brain. Its distribution in the CNS has been reported in several mammalian species, as well as in some amphibians. Therefore, in order to gain insight in the evolution on the expression pattern of this neuropeptide in vertebrates, we carried out an immunohistochemical study in the sea lamprey, Petromyzon marinus. The distribution of NPFF-like-immunoreactive (NPFF-ir) structures in the lamprey brain is, in general, comparable to that previously described in other vertebrate species. In lamprey, most of the NPFF-ir cells were found in the hypothalamus, particularly in two large populations, the bed nucleus of the tract of the postoptic commissure and the tuberomammillary area. Numerous NPFF-ir cells were also observed in the rostral rhombencephalon, including a population in the dorsal isthmic gray and the reticular formation. Additional labeled neurons were found inside the preoptic region, the parapineal vesicle, the periventricular mesencephalic tegmentum, the descending trigeminal tract, the nucleus of the solitary tract, as well as in the gray matter of the spinal cord. The NPFF-ir fibers were widely distributed in the brain and the spinal cord, being, in general, more concentrated throughout the basal plate. The presence of NPFF-ir fibers in the lamprey neurohypophysis suggests that the involvement of NPFF-like substances in the hypothalamo-hypophyseal system had emerged early during evolution.
Collapse
Affiliation(s)
- Manuel A Pombal
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, 36310 Vigo, Spain.
| | | | | | | | | |
Collapse
|
12
|
LeBeau FEN, El Manira A, Griller S. Tuning the network: modulation of neuronal microcircuits in the spinal cord and hippocampus. Trends Neurosci 2005; 28:552-61. [PMID: 16112755 DOI: 10.1016/j.tins.2005.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 07/14/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Adaptation of an organism to its changing environment ultimately depends on the modification of neuronal activity. The dynamic interaction between cellular components within neuronal networks relies on fast synaptic interaction via ionotropic receptors. However, neuronal networks are also subject to modulation mediated by various metabotropic G-protein-coupled receptors that modify synaptic and neuronal function. Modulation increases the functional complexity of a network, because the same cellular components can produce different outputs depending on the behavioural state of the animal. This review, which is part of the TINS Microcircuits Special Feature, provides an overview of neuromodulation in two neuronal circuits that both produce oscillatory activity but differ fundamentally in function. Hippocampal circuits are compared with the spinal networks generating locomotion, with a view to exploring common principles of neuromodulatory activity.
Collapse
Affiliation(s)
- Fiona E N LeBeau
- School of Neurology, Neurobiology and Psychiatry, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, UK.
| | | | | |
Collapse
|
13
|
Kwak SE, Kim JE, Kim DS, Won MH, Choi HC, Kim YI, Song HK, Choi SY, Kang TC. Differential effects of vigabatrin and zonisamide on the neuropeptide Y system in the hippocampus of seizure prone gerbil. Neuropeptides 2005; 39:507-13. [PMID: 16194568 DOI: 10.1016/j.npep.2005.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
Changed neuropeptide Y (NPY) system in the hippocampus has been reported in various experimental epileptic models. However, there have been little data concerning the alteration in the NPY system in the epileptic hippocampus following treatment of anti-epileptic drugs (AEDs). In the present study, therefore, we performed analyses of effects of vigabatrin (VGB) and zonisamide (ZNS) treatment on the NPY system in the hippocampus of the seizure sensitive (SS) gerbils. In SS gerbil, NPY immunoreactivity in the hippocampus was lower than that in seizure resistant gerbil. Following VGB treatment, the number of NPY immunoreactive neurons and NPY mRNA expression were increased in the hilus and the hippocampus proper. In contrast, ZNS treatment markedly elevated only the density of NPY immunoreactive fibers in the dentate gyrus, not in the hippocampus proper, as compared with saline-treated animals. These patterns were observed in the dose-dependent manners. These findings suggest that AEDs treatments may distinctly affect the NPY system in the SS gerbil hippocampus.
Collapse
Affiliation(s)
- Sung-Eun Kwak
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pombal MA, Ruiz Y, Rodríguez-Alonso M, de Arriba MC, Costas V, Alvarez R, Megías M. Developmental changes of the GABA-immunoreactive fibers in the lamprey spinal cord. Brain Res Bull 2005; 66:371-5. [PMID: 16144617 DOI: 10.1016/j.brainresbull.2005.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 11/22/2022]
Abstract
The changes in distribution and number of GABA immunoreactive (GABA-ir) fibers from postembryonic stages to adulthood in the lamprey spinal cord white matter were studied by using immunocytochemical techniques. From prolarvae to adult spawning animals there was an increase of the number of GABA-ir fibers. Three phases can be distinguished: (a) from prolarvae to middle size larvae (around 50 mm in body length) an increase in the number of GABA-ir fibers per section is observed. Furthermore, an adult-like pattern of GABA-ir fibers distribution is established during this phase. (b) Then, the number of GABA-ir fibers remains stable until metamorphosis, the end of the larval period. (c) Finally, in young postmetamorphic and adult animals the number of GABA-ir fibers is higher than in larvae. These observations, joined to the changes previously reported in the GABA-ir neurons, indicate that at least parts of the GABA inhibitory component of the spinal locomotor network is reorganized during the lamprey life cycle and it may indicate different inhibitory requirements in the locomotor network.
Collapse
Affiliation(s)
- M A Pombal
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Torrealba F, Carrasco MA. A review on electron microscopy and neurotransmitter systems. ACTA ACUST UNITED AC 2005; 47:5-17. [PMID: 15572159 DOI: 10.1016/j.brainresrev.2004.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this article is to review the contributions of transmission electron microscopy studies to the understanding of brain circuits and neurotransmitter systems. Our views on the microstructure of connections between neurons have gradually changed, and now we recognize that the classical mental image we had on a chemical synapse is no longer applicable to every neuronal connection. We highlight studies that converge to point out that, while the most prevalent fast transmitters in the brain, glutamate and GABA, are stored in small, clear synaptic vesicles (SSV) and released at synapses, neuropeptides are exclusively stored in large dense core vesicles (LDCV) and released extrasynaptically. Amine transmitters are preferentially, but not exclusively, accumulated in LDCV and may be released at synaptic or extrasynaptic sites. We discuss evidence suggesting that axon terminals from pyramidal cortical neurons and dorsal thalamic neurons lack LDCV and therefore could not use neuropeptides as transmitters. This idea fits with the fast, high temporal resolution information processing that characterizes cortical and thalamic function.
Collapse
Affiliation(s)
- Fernando Torrealba
- Departamento de Ciencias Fisiológicas, Fac. Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | |
Collapse
|
16
|
Guedes RP, Marchi MI, Achaval M, Partata WA. Complete sciatic nerve transection induces increase of neuropeptide Y-like immunoreactivity in primary sensory neurons and spinal cord of frogs. Comp Biochem Physiol A Mol Integr Physiol 2004; 139:461-7. [PMID: 15596391 DOI: 10.1016/j.cbpb.2004.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2004] [Revised: 10/02/2004] [Accepted: 10/03/2004] [Indexed: 01/06/2023]
Abstract
Neuropeptide Y (NPY) was immunohistochemically investigated in the frog spinal cord and dorsal root ganglia after axotomy. In normal ganglia, moderate NPY-like immunoreactivity (NPY-IR) prevailed in large and medium cells. In the spinal cord, the NPY-IR was densest in the dorsal part of the lateral funiculus. Other fibers and neurons NPY-IR were observed in the dorsal and ventral terminal fields and mediolateral band. NPY-IR fibers were also found in the ventral horn and in the ventral and lateral funiculi. The sciatic nerve transection increased the NPY-IR in large and medium neurons of the ipsilateral and contralateral dorsal root ganglia at 3 and 7 days, but no clear change was found at 15 days. In the spinal cord, there was a bilateral increase in the NPY-IR of the dorsal part of the lateral funiculus. In the ipsilateral side, the NPY-IR was increased at 3 and 7 days but was decreased at 15 days. In the contralateral side, a significant reduction at 15 days occurred. These findings seem to favor the role of NPY in the modulation of pain-related information in frogs, suggesting that this role of NPY may have appeared early in vertebrate evolution.
Collapse
Affiliation(s)
- Renata P Guedes
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
17
|
Abstract
Hypocretinergic (orexinergic) neurons in the lateral hypothalamus project to motor columns in the lumbar spinal cord. Consequently, we sought to determine whether the hypocretinergic system modulates the electrical activity of motoneurons. Using in vivo intracellular recording techniques, we examined the response of spinal motoneurons in the cat to electrical stimulation of the lateral hypothalamus. In addition, we examined the membrane potential response to orthodromic stimulation and intracellular current injection before and after both hypothalamic stimulation and the juxtacellular application of hypocretin-1. It was found that (1) hypothalamic stimulation produced a complex sequence of depolarizing- hyperpolarizing potentials in spinal motoneurons; (2) the depolarizing potentials decreased in amplitude after the application of SB-334867, a hypocretin type 1 receptor antagonist; (3) the EPSP induced by dorsal root stimulation was not affected by the application of SB-334867; (4) subthreshold stimulation of dorsal roots and intracellular depolarizing current steps produced spike potentials when applied in concert to stimulation of the hypothalamus or after the local application of hypocretin-1; (5) the juxtacellular application of hypocretin-1 induced motoneuron depolarization and, frequently, high-frequency discharge; (6) hypocretin-1 produced a significant decrease in rheobase (36%), membrane time constant (16.4%), and the equalizing time constant (23.3%); (7) in a small number of motoneurons, hypocretin-1 produced an increase in the synaptic noise; and (8) the input resistance was not affected after hypocretin-1. The juxtacellular application of vehicle (saline) and denatured hypocretin-1 did not produce changes in the preceding electrophysiological properties. We conclude that hypothalamic hypocretinergic neurons are capable of modulating the activity of lumbar motoneurons through presynaptic and postsynaptic mechanisms. The lack of hypocretin-induced facilitation of motoneurons may be a critical component of the pathophysiology of cataplexy.
Collapse
Affiliation(s)
- Jack Yamuy
- Department of Physiology, University of California Los Angeles School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
18
|
Schmitt DE, Hill RH, Grillner S. The spinal GABAergic system is a strong modulator of burst frequency in the lamprey locomotor network. J Neurophysiol 2004; 92:2357-67. [PMID: 15190090 DOI: 10.1152/jn.00233.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spinal network coordinating locomotion is comprised of a core of glutamate and glycine interneurons. This network is modulated by several transmitter systems including spinal GABA interneurons. The purpose of this study is to explore the contribution of GABAergic neurons to the regulation of locomotor burst frequency in the lamprey model. Using gabazine, a competitive GABAA antagonist more specific than bicuculline, the goal was to provide a detailed analysis of the influence of an endogenous activation of GABAA receptors on fictive locomotion, as well as their possible interaction with GABAB and involvement of GABAC receptors. During N-methyl-D-aspartate (NMDA)-induced fictive locomotion (ventral root recordings in the isolated spinal cord), gabazine (0.1-100 microM) significantly increased the burst rate up to twofold, without changes in regularity or "burst quality." Gabazine had a proportionately greater effect at higher initial burst rates. Picrotoxin (1-7.5 microM), a less selective GABAA antagonist, also produced a pronounced increase in frequency, but at higher concentrations, the rhythm deteriorated, likely due to the unspecific effects on glycine receptors. The selective GABAB antagonist CGP55845 also increased the frequency, and this effect was markedly enhanced when combined with the GABAA antagonist gabazine. The GABAC antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA) had no effect on locomotor bursting. Thus the spinal GABA system does play a prominent role in burst frequency regulation in that it reduces the burst frequency by < or =50%, presumably due to presynaptic and soma-dendritic effects documented previously. It is not required for burst generation, but acts as a powerful modulator.
Collapse
Affiliation(s)
- David E Schmitt
- Nobel Inst. for Neurophysiology, Dept. of Neuroscience, Karolinska Institutet, SE 17177 Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Ruiz Y, Pombal MA, Megías M. Development of GABA-immunoreactive cells in the spinal cord of the sea lamprey,P. marinus. J Comp Neurol 2004; 470:151-63. [PMID: 14750158 DOI: 10.1002/cne.11032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The lamprey spinal cord increases in length and size during all its life cycle; thus, it is expected that new cells will be generated. This expectation suggests that the locomotor circuits must be continuously remodeled. Key elements in the cellular network controlling locomotor behavior are inhibitory cells. Here, we studied the gamma-aminobutyric acid-immunoreactive (GABA-ir) cells in the lamprey spinal cord during postembryonic development. Three major populations of GABA-ir cells were identified according to their distribution: those located in the gray matter, those contacting the cerebrospinal liquid (LC cells), and those located in the white matter. The results show (1). the number of GABA-ir cells per segment increase from prolarvae (<10 mm) to adulthood; (2). the lower number of GABA-ir cells in 100 microm of spinal cord is 66 +/- 7, found in premetamorphic larvae, and the highest is 107 +/- 6, found in postmetamorphic animals; (3). the gray matter and LC GABA-ir cells show different variations in number depending on the developmental period. Thus, in the 10-mm larvae, the gray matter GABA-ir cells are more abundant than LC cells, whereas in the young postmetamorphic specimens, the contrary occurs. Most of the GABA-ir cells located in the white matter were classified as edge cells. They increase in number from the beginning of the prolarval period, where there are not white matter-positive cells, to the middle larval period, where there are 9 +/- 4 GABA-ir edge cells per segment. This value was unaltered in later periods, where GABA-ir edge cells represent 20-30% of the total number of edge cells per segment. The increase in number of GABA-ir cells in these populations during a specific point of the lamprey life cycle may indicate different inhibitory requirements of the locomotor circuit at different developmental periods.
Collapse
Affiliation(s)
- Y Ruiz
- Department of Functional Biology and Health Sciences, Faculty of Sciences, University of Vigo, 36200 Vigo, Spain
| | | | | |
Collapse
|
20
|
Castro A, Manso MJ, Anadón R. Distribution of neuropeptide Y immunoreactivity in the central and peripheral nervous systems of amphioxus (Branchiostoma lanceolatum Pallas). J Comp Neurol 2003; 461:350-61. [PMID: 12746873 DOI: 10.1002/cne.10694] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immunocytochemistry techniques were employed to investigate the distribution of neuropeptide Y-like-immunoreactive (NPY-ir) cells and fibers in the central and peripheral nervous systems of adult amphioxus. NPY-ir neurons of the commissural type were abundant in the brain and present but more scarce in the spinal cord. These neurons gave rise to conspicuous NPY-ir tracts that coursed along the entire length of the nerve cord. Some fibers exhibited conspicuous Herring body-like swellings. In the peripheral nervous system, small NPY-ir neurons and a large number of thin, beaded NPY-ir fibers were observed in the atrial region, indicating the involvement of this substance in visceral regulation. A few NPY-ir fibers, possibly afferent to the spinal cord, coursed in the ventral branches of the spinal nerves of this region, whereas no NPY-ir fibers coursed in the preoral or velar nerves or in the dorsal branches of the other spinal nerves. These results indicate that NPY is widely used as a neuroregulator/neurotransmitter in the central and peripheral nervous systems of this primitive chordate. In addition, this study demonstrates the presence of tall, thin NPY-ir cells in the putative adenohypophyseal homologue, the Hatschek's pit organ, which is located in the roof of the preoral cavity (vestibule).
Collapse
Affiliation(s)
- Antonio Castro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071 A Coruña, Spain
| | | | | |
Collapse
|
21
|
Oh SJ, D'Angelo I, Lee EJ, Chun MH, Brecha NC. Distribution and synaptic connectivity of neuropeptide Y-immunoreactive amacrine cells in the rat retina. J Comp Neurol 2002; 446:219-34. [PMID: 11932938 DOI: 10.1002/cne.10184] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuropeptide Y (NPY) is a potent bioactive peptide that is widely expressed in the nervous system, including the retina. Here we show that specific NPY immunoreactivity was localized to amacrine and displaced amacrine cells in the rat retina. Immunoreactive cells had a regular distribution across the retina and an overall cell density of 280 cells/mm(2) in the inner nuclear layer (INL) and 90 cells/mm(2) in the ganglion cell layer (GCL). In the INL, most immunoreactive cells were characterized by small cell bodies and fine processes that appeared to ramify primarily in stratum 1 of the inner plexiform layer (IPL). A few cells in the INL also ramified in stratum 3 of the IPL. In the GCL, small to medium immunoreactive cells appeared to ramify primarily in stratum 5 of the IPL. A few immunoreactive processes, originating from somata in the INL and processes in the IPL, ramified in the OPL. NPY-immunoreactive cells contained GABA immunoreactivity, and some amacrine cells also contained tyrosine hydroxylase immunoreactivity. NPY-immunostained processes were most frequently presynaptic to nonimmunostained amacrine and ganglion cell processes and postsynaptic to nonimmunostained amacrine cell processes and cone bipolar cell axonal terminals. These findings indicate that NPY immunoreactivity is present in two populations of amacrine cells, one located in the INL and the other in the GCL, and that these cells mainly form synaptic contacts with other amacrine cells. These observations suggest that NPY-immunoreactive cells participate in multiple circuits mediating visual information processing in the inner retina.
Collapse
Affiliation(s)
- Su-Ja Oh
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | | | |
Collapse
|
22
|
Batueva IV, Buchanan JT, Veselkin NP, Suderevskaya EI, Tsvetkov EA. The effects of serotonin on functionally diverse isolated lamprey spinal cord neurons. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:89-101. [PMID: 11838562 DOI: 10.1023/a:1012960711757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The experiments reported here showed that application of serotonin (5-hydroxytryptamine, 5-HT) (100 microM) did not induce any significant current through the membranes of any of the spinal neurons studied (n = 62). At the same time, the membranes of most motoneurons and interneurons (15 of 18) underwent slight depolarization (2-6 mV) in the presence of 5-HT, which was not accompanied by any change in the input resistance of the cells. Depolarization to 10-20 mV occurred in some cells (3 of 18) of these functional groups, this being accompanied by 20-60% decreases in input resistance. The same concentration of 5-HT induced transient low-amplitude depolarization of most sensory spinal neurons (dorsal sensory cells), this changing smoothly to long-term hyperpolarization by 2-7 mV. The input resistance of the cell membranes in these cases showed no significant change (n = 8). Data were obtained which provided a better understanding of the mechanism by which 5-HT modulates the activity of spinal neurons. Thus, 5-HT facilitates chemoreceptive currents induced by application of NMDA to motoneurons and interneurons, while the NMDA responses of dorsal sensory cells were decreased by 5-HT. 5-HT affected the post-spike afterresponses of neurons. 5-HT significantly decreased the amplitude of afterhyperpolarization arising at the end of the descending phase of action potentials in motoneurons and interneurons and increased the amplitude of afterdepolarization in these types of cells. In sensory spinal neurons, 5-HT had no great effect on post-spike afterresponses. The results obtained here support the suggestion that 5-HT significantly modulates the activity of spinal neurons of different functional types. 5-HT facilitates excitation induced by subthreshold depolarization in motoneurons and some interneurons, facilitating the generation of rhythmic discharges by decreasing afterhyperpolarization. In sensory cells, 5-HT enhances inhibition due to hyperpolarization, suppressing NMDA currents. The differences in the effects of 5-HT on functionally diverse neurons are presumed to be associated with the combination of different types of 5-HT receptors on the membranes of these types of spinal neurons.
Collapse
Affiliation(s)
- I V Batueva
- Laboratory for the Evolution of Intercellular Interactions, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg
| | | | | | | | | |
Collapse
|
23
|
Parker D, Grillner S. Neuronal mechanisms of synaptic and network plasticity in the lamprey spinal cord. PROGRESS IN BRAIN RESEARCH 2001; 125:381-98. [PMID: 11098674 DOI: 10.1016/s0079-6123(00)25027-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- D Parker
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
24
|
Naveilhan P, Hassani H, Lucas G, Blakeman KH, Hao JX, Xu XJ, Wiesenfeld-Hallin Z, Thorén P, Ernfors P. Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor. Nature 2001; 409:513-7. [PMID: 11206547 DOI: 10.1038/35054063] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2000] [Accepted: 11/13/2000] [Indexed: 11/08/2022]
Abstract
Neuropeptide Y (NPY) is believed to exert antinociceptive actions by inhibiting the release of substance P and other 'pain neurotransmitters' in the spinal cord dorsal horn. However, the physiological significance and potential therapeutic value of NPY remain obscure. It is also unclear which receptor subtype(s) are involved. To identify a possible physiological role for the NPY Y1 receptor in pain transmission, we generated NPY Y1 receptor null mutant (Y1-/-) mice by homologous recombination techniques. Here we show that Y1-/- mice develop hyperalgesia to acute thermal, cutaneous and visceral chemical pain, and exhibit mechanical hypersensitivity. Neuropathic pain is increased, and the mice show a complete absence of the pharmacological analgesic effects of NPY. In the periphery, Y1 receptor activation is sufficient and required for substance P release and the subsequent development of neurogenic inflammation and plasma leakage. We conclude that the Y1 receptor is required for central physiological and pharmacological NPY-induced analgesia and that its activation is both sufficient and required for the release of substance P and initiation of neurogenic inflammation.
Collapse
Affiliation(s)
- P Naveilhan
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Martire M, Altobelli D, Maurizi S, Preziosi P, Fuxe K. K(+)-Evoked [(3)H]D-aspartate release in rat spinal cord synaptosomes: modulation by neuropeptide Y and calcium channel antagonists. J Neurosci Res 2000; 62:722-9. [PMID: 11104511 DOI: 10.1002/1097-4547(20001201)62:5<722::aid-jnr12>3.0.co;2-o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was conducted to investigate mechanisms regulating the release of [(3)H]D-aspartate (or endogenous glutamate) in the rat spinal cord. Presynaptic modulation of glutamate release was studied in superfused synaptosomes depolarized with 20 mM KCl. Calcium-channel antagonists, omega-conotoxin GVIA (omega-CgTx GVIA; N-type), nifedipine (L-type), and omega-conotoxin MVIIC (omega-CmTx MVIIC; P/Q type), were used to characterize the voltage-operated Ca(2+) channels (VOCCs) involved in this release. Nifedipine had no significant effect on the K(+)-evoked release of [(3)H]D-aspartate, but the omega-conotoxins GVIA and MVIIC produced dose-dependent inhibitory effects that were additive. The most substantial reduction (54.30% +/- 4.40%) was seen with omega-CgTx GVIA, indicating that N-type channels play a major role in the release of glutamate in this tissue. We investigated the effects of neuropeptide Y (NPY), NPY(13-36), and [Leu(31)][Pro(34)]NPY on Ca(2+)-dependent, K(+)-evoked [(3)H]D-aspartate release. NPY and NPY(13-36) equipotently inhibited the release of glutamate in a concentration-dependent manner. The half-maximal response was observed at about 12 nM; maximal inhibition of 44.22% +/- 4.60% was achieved with 0.3 microM. The selective GABA(B) agonist (-)baclofen inhibited K(+)-evoked [(3)H]D-aspartate release from superfused spinal cord synaptosomes by 50.00% +/- 4.80% at 10 microM. When NPY(13-36) and (-)baclofen were used together at maximal doses, their release-inhibiting effects were not additive. In addition, neither of the agonists was able to enhance the inhibition produced by pretreating the synaptosomes with the selective inhibitor of N-type VOCCs omega-CgTx GVIA. These results are consistent with the hypothesis that presynaptic Y(2)-like and GABA(B) receptors regulate glutamate release by blocking Ca(2+) currents through N-type VOCCs. Characterization of the receptors that can inhibit the release of glutamate may provide useful information for treatment of conditions characterized by excessive glutamatergic transmission in the spinal cord.
Collapse
Affiliation(s)
- M Martire
- Institute of Pharmacology, Catholic University of S. Heart, School of Medicine, Rome, Italy.
| | | | | | | | | |
Collapse
|
26
|
Vesselkin NP, Rio JP, Adanina VO, Repérant J. GABA- and glycine-immunoreactive terminals contacting motoneurons in lamprey spinal cord. J Chem Neuroanat 2000; 19:69-80. [PMID: 10936743 DOI: 10.1016/s0891-0618(00)00054-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Double postembedding GABA- and glycine-immunostaining was performed on the lamprey (Lampetra fluviatilis) spinal cord after previous HRP labeling of motoneurons. Immunopositive boutons contacting motoneurons were counted and distinguished as GABA (39%), glycine (30%) and both GABA+glycine-immunopositive (31%). Densely-packed, flattened synaptic vesicles were only observed in glycine-immunopositive boutons while GABA-immunoreactive and GABA+glycine-immunoreactive boutons contained rounded or oval synaptic vesicles. Dense-core vesicles of different diameters were associated with conventional synaptic vesicles in 74% of GABA-only-immunopositive boutons, 50% of double GABA+glycine-immunopositive boutons, but were only observed in 9% of glycine-only-immunopositive boutons. The presence of terminals immunoreactive to either GABA or glycine contacting the motoneurons suggests that there is a morphological substrate for both GABAergic and glycinergic postsynaptic inhibition of motoneurons in the lamprey spinal cord.
Collapse
Affiliation(s)
- N P Vesselkin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | |
Collapse
|
27
|
Parker D. Presynaptic and interactive peptidergic modulation of reticulospinal synaptic inputs in the lamprey. J Neurophysiol 2000; 83:2497-507. [PMID: 10805651 DOI: 10.1152/jn.2000.83.5.2497] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The modulatory effects of neuropeptides on descending inputs to the spinal cord have been examined by making paired recordings from reticulospinal axons and spinal neurons in the lamprey. Four peptides were examined; peptide YY (PYY) and cholecystokinin (CCK), which are contained in brain stem reticulospinal neurons, and calcitonin-gene-related peptide (CGRP) and neuropeptide Y (NPY), which are contained in primary afferents and sensory interneurons, respectively. Each of the peptides reduced the amplitude of monosynaptic reticulospinal-evoked excitatory postsynaptic potentials (EPSPs). The modulation appeared to be presynaptic, because postsynaptic input resistance and membrane potential, the amplitude of the electrical component of the EPSP, postsynaptic responses to glutamate, and spontaneous miniature EPSP amplitudes were unaffected. In addition, none of the peptides affected the pattern of N-methyl-D-aspartate (NMDA)-evoked locomotor activity in the isolated spinal cord. Potential interactions between the peptides were also examined. The "brain stem peptides" CCK and PYY had additive inhibitory effects on reticulospinal inputs, as did the "sensory peptides" CGRP and NPY. Brain stem peptides also had additive inhibitory effects when applied with sensory peptides. However, sensory peptides increased or failed to affect the amplitude of reticulospinal inputs in the presence of the brain stem peptides. These interactive effects also appear to be mediated presynaptically. The functional consequence of the peptidergic modulation was investigated by examining spinal ventral root responses elicited by brain stem stimulation. CCK and CGRP both reduced ventral root responses, although in interaction both increased the response. These results thus suggest that neuropeptides presynaptically influence the descending activation of spinal locomotor networks, and that they can have additive or novel interactive effects depending on the peptides examined and the order of their application.
Collapse
Affiliation(s)
- D Parker
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, S-17177 Stockholm, Sweden
| |
Collapse
|
28
|
Trabucchi M, Chartrel N, Pelletier G, Vallarino M, Vaudry H. Distribution of GAD-immunoreactive neurons in the diencephalon of the african lungfish Protopterus annectens: colocalization of GAD and NPY in the preoptic area. J Comp Neurol 2000; 419:223-32. [PMID: 10723000 DOI: 10.1002/(sici)1096-9861(20000403)419:2<223::aid-cne6>3.0.co;2-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The distribution of GABAergic neurons was investigated in the diencephalon of the African lungfish, Protopterus annectens, by using specific antibodies directed against glutamic acid decarboxylase (GAD). A dense population of immunoreactive perikarya was observed in the periventricular preoptic nucleus, whereas the caudal hypothalamus and the dorsal thalamus contained only scattered positive cell bodies. Clusters of GAD-positive cells were found in the intermediate lobe of the pituitary. The diencephalon was richly innervated by GAD-immunoreactive fibers that were particularly abundant in the hypothalamus. In the periventricular nucleus, GAD-positive fibers exhibited a radial orientation, and a few neurons extended processes toward the third ventricle. More caudally, a dense bundle of GAD-immunoreactive fibers coursing along the ventral wall of the hypothalamus terminated into the median eminence and the neural lobe of the pituitary. Double-labeling immunocytochemistry revealed that GAD and neuropeptide tyrosine (NPY)-like immunoreactivity was colocalized in a subpopulation of perikarya in the periventricular preoptic nucleus. The proportion of neurons that coexpressed GAD and NPY was higher in the caudal region of the preoptic nucleus. The distribution of GAD-immunoreactive elements in the diencephalon and pituitary of the African lungfish indicates that GABA may act as a hypophysiotropic neurohormone in Dipnoans. The coexistence of GAD and NPY in a subset of neurons of the periventricular preoptic nucleus suggests that GABA and NPY may interact at the synaptic level.
Collapse
Affiliation(s)
- M Trabucchi
- European Institute for Peptide Research (IFRMP 23), Laboratory of Cellular and Molecular Neuroendocrinology, INSERM U413, UA CNRS, University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | |
Collapse
|
29
|
Stornetta RL, Akey PJ, Guyenet PG. Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat medulla. J Comp Neurol 1999; 415:482-500. [PMID: 10570457 DOI: 10.1002/(sici)1096-9861(19991227)415:4<482::aid-cne5>3.0.co;2-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The objective of this study was to characterize the projection pattern and electrophysiological properties of the rostral medullary adrenergic neurons (C(1)) that express neuropeptide Y (NPY) mRNA in rat. NPY mRNA was found in a variable fraction of tyrosine hydroxylase immunoreactive (TH-IR) neurons depending on the medullary level. By retrograde labeling (Fast Blue, FluoroGold), NPY mRNA was detected in virtually all C(1) cells (96%) and C(3) cells (100%) with hypothalamic projections but in only 9% of C(1) cells and 58% of C(3) cells projecting to thoracic segment 3 (T(3)) or T(6) of the spinal cord. To identify the electrophysiological properties of the C(1) cells that express NPY mRNA, we recorded from baroinhibited neurons within the C(1) region of the ventrolateral medulla (RVLM) and tested for projections to segment T(3), the hypothalamus, or both. By using the juxtacellular method, we labeled these cells with biotinamide and determined whether the recorded neurons were TH-IR and contained NPY mRNA. At rostral levels (Bregma -11.8 mm), barosensitive neurons had a wide range of conduction velocities (0.4-6.0 m/second) and discharge rates (2-28 spikes/second). Most projected to T(3) only (27 of 31 cells), and 4 projected to both the hypothalamus and the spinal cord. Most of the baroinhibited cells with spinal projections but with no hypothalamic projections had TH-IR but no NPY mRNA (11 of 17 cells). Only 1 cell had both (1 of 17 cells), and 5 cells had neither (5 of 17 cells). Both TH-IR and NPY mRNA were found in neurons with dual projections (2 of 2 cells). At level Bregma -12.5 mm, baroinhibited neurons had projections to the hypothalamus only (13 of 13 cells) and had unmyelinated axons and a low discharge rate. Four of five neurons contained both TH-IR and NPY mRNA, and 1 neuron contained neither. In short, NPY is expressed mostly by C(1) cells with projection to the hypothalamus. NPY-positive C(1) neurons are barosensitive, have unmyelinated axons, and have a very low rate of discharge. Most bulbospinal C(1) cells with a putative sympathoexcitatory role do not make NPY.
Collapse
Affiliation(s)
- R L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
30
|
GABAergic neurons that contain neuropeptide Y selectively target cells with the neurokinin 1 receptor in laminae III and IV of the rat spinal cord. J Neurosci 1999. [PMID: 10087077 DOI: 10.1523/jneurosci.19-07-02637.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide Y (NPY) is contained in a population of GABAergic interneurons in the spinal dorsal horn and, when administered intrathecally, can produce analgesia. We previously identified a strong monosynaptic link between substance P-containing primary afferents and cells in lamina III or IV with the neurokinin 1 (NK1) receptor. Because some of these cells belong to the spinothalamic tract, they are likely to have an important role in pain mechanisms. In this study, we used confocal microscopy to examine the input to lamina III/IV NK1 receptor-immunoreactive neurons from NPY-containing axons. All of the cells studied received a dense innervation from NPY-immunoreactive axons, and electron microscopy revealed that synapses were often present at points of contact. Most NPY-immunoreactive boutons were also GABAergic, which supports the suggestion that they are derived from local neurons. The association between NPY-containing axons and NK1 receptor-immunoreactive neurons was specific, because postsynaptic dorsal column neurons (which were located in laminae III-V but did not possess NK1 receptors) and lamina I neurons with the NK1 receptor received significantly fewer contacts from NPY-immunoreactive axons. In addition, the NK1 receptor-immunoreactive lamina III/IV cells received few contacts from nitric oxide synthase-containing axons (which belong to a different population of GABAergic dorsal horn neurons). The NPY-containing axons appeared to be targeted to the NK1 receptor-immunoreactive neurons themselves rather than to their associated substance P-immunoreactive inputs. The dense innervation of these cells by NPY-containing axons suggests that they may possess receptors for NPY and that activation of these receptors may contribute to NPY-mediated analgesia.
Collapse
|
31
|
Ullström M, Parker D, Svensson E, Grillner S. Neuropeptide-mediated facilitation and inhibition of sensory inputs and spinal cord reflexes in the lamprey. J Neurophysiol 1999; 81:1730-40. [PMID: 10200208 DOI: 10.1152/jn.1999.81.4.1730] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of neuromodulators present in the dorsal horn [tachykinins, neuropeptide Y (NPY), bombesin, and GABAB agonists] were studied on reflex responses evoked by cutaneous stimulation in the lamprey. Reflex responses were elicited in an isolated spinal cord preparation by electrical stimulation of the attached tail fin. To be able to separate modulator-induced effects at the sensory level from that at the motor or premotor level, the spinal cord was separated into three pools with Vaseline barriers. The caudal pool contained the tail fin. Neuromodulators were added to this pool to modulate sensory inputs evoked by tail fin stimulation. The middle pool contained high divalent cation or low calcium Ringer to block polysynaptic transmission and thus limit the input to the rostral pool to that from ascending axons that project through the middle pool. Ascending inputs and reflex responses were monitored by making intracellular recordings from motor neurons and extracellular recordings from ventral roots in the rostral pool. The tachykinin neuropeptide substance P, which has previously been shown to potentiate sensory input at the cellular and synaptic levels, facilitated tail fin-evoked synaptic inputs to neurons in the rostral pool and concentration dependently facilitated rostral ventral root activity. Substance P also facilitated the modulatory effects of tail fin stimulation on ongoing locomotor activity in the rostral pool. In contrast, NPY and the GABAB receptor agonist baclofen, both of which have presynaptic inhibitory effects on sensory afferents, reduced the strength of ascending inputs and rostral ventral root responses. We also examined the effects of the neuropeptide bombesin, which is present in sensory axons, at the cellular, synaptic, and reflex levels. As with substance P, bombesin increased tail fin stimulation-evoked inputs and ventral root responses in the rostral pool. These effects were associated with the increased excitability of slowly adapting mechanosensory neurons and the potentiation of glutamatergic synaptic inputs to spinobulbar neurons. These results show the possible behavioral relevance of neuropeptide-mediated modulation of sensory inputs at the cellular and synaptic levels. Given that the types and locations of neuropeptides in the dorsal spinal cord of the lamprey show strong homologies to that of higher vertebrates, these results are presumably relevant to other vertebrate systems.
Collapse
Affiliation(s)
- M Ullström
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
32
|
Grillner S, El Manira A, Lansner A, Parker D, Tegnér J, Wallén P. Intrinsic function of a neuronal network - a vertebrate central pattern generator. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:184-97. [PMID: 9651523 DOI: 10.1016/s0165-0173(98)00002-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cellular bases of vertebrate locomotor behaviour is reviewed using the lamprey as a model system. Forebrain and brainstem cell populations initiate locomotor activity via reticulospinal fibers activating a spinal network comprised of glutamatergic and glycinergic interneurons. The role of different subtypes of Ca2+ channels, Ca2+ dependent K+ channels and voltage dependent NMDA channels at the neuronal and network level is in focus as well as the effects of different metabotropic, aminergic and peptidergic modulators that target these ion channels. This is one of the few vertebrate networks that is understood at a cellular level.
Collapse
Affiliation(s)
- S Grillner
- Nobel institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|