1
|
Antonucci S, Caron G, Dikwella N, Krishnamurty SS, Harster A, Zarrin H, Tahanis A, Heuvel FO, Danner SM, Ludolph AC, Grycz K, Bączyk M, Zytnicki D, Roselli F. Spinal motoneuron excitability is homeostatically-regulated through β-adrenergic neuromodulation in wild-type and presymptomatic SOD1 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586570. [PMID: 38585891 PMCID: PMC10996613 DOI: 10.1101/2024.03.25.586570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Homeostatic feedback loops are essential to stabilize the activity of neurons and neuronal networks. It has been hypothesized that, in the context of Amyotrophic Lateral Sclerosis (ALS), an excessive gain in feedback loops might hyper- or hypo-excite motoneurons (MNs) and contribute to the pathogenesis. Here, we investigated how the neuromodulation of MN intrinsic properties is homeostatically controlled in presymptomatic adult SOD1(G93A) mice and in the age-matched control WT mice. First, we determined that β2 and β3- adrenergic receptors, which are Gs-coupled receptors and subject to tight and robust feedback loops, are specifically expressed in spinal MNs of both SOD1 and WT mice at P45. We then demonstrated that these receptors elicit a so-far overlooked neuromodulation of the firing and excitability properties of MNs. These electrical properties are homeostatically regulated following receptor engagement, which triggers ion channel transcriptional changes and downregulates those receptors. These homeostatic feedbacks are not dysregulated in presymptomatic SOD1 mice, and they set the MN excitability upon β-adrenergic neuromodulation.
Collapse
Affiliation(s)
| | - Guillaume Caron
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | | | - Anthony Harster
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | | | | | | | - Simon M. Danner
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, United States
| | - Albert C. Ludolph
- Dept. of Neurology, Ulm University, Ulm, DE
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, DE
| | - Kamil Grycz
- Dept. of Neurobiology, Poznań University of Physical Education, Poland
| | - Marcin Bączyk
- Dept. of Neurobiology, Poznań University of Physical Education, Poland
| | - Daniel Zytnicki
- Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Francesco Roselli
- Dept. of Neurology, Ulm University, Ulm, DE
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, DE
| |
Collapse
|
2
|
Hop Mice Display Synchronous Hindlimb Locomotion and a Ventrally Fused Lumbar Spinal Cord Caused by a Point Mutation in Ttc26. eNeuro 2022; 9:ENEURO.0518-21.2022. [PMID: 35210288 PMCID: PMC8925726 DOI: 10.1523/eneuro.0518-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 11/28/2022] Open
Abstract
Identifying the spinal circuits controlling locomotion is critical for unravelling the mechanisms controlling the production of gaits. Development of the circuits governing left-right coordination relies on axon guidance molecules such as ephrins and netrins. To date, no other class of proteins have been shown to play a role during this process. Here, we have analyzed hop mice, which walk with a characteristic hopping gait using their hindlimbs in synchrony. Fictive locomotion experiments suggest that a local defect in the ventral spinal cord contributes to the aberrant locomotor phenotype. Hop mutant spinal cords had severe morphologic defects, including the absence of the ventral midline and a poorly defined border between white and gray matter. The hop mice represent the first model where, exclusively found in the lumbar domain, the left and right components of the central pattern generators (CPGs) are fused with a synchronous hindlimb gait as a functional consequence. These defects were associated with abnormal developmental processes, including a misplaced notochord and reduced induction of ventral progenitor domains. Whereas the underlying mutation in hop mice has been suggested to lie within the Ttc26 gene, other genes in close vicinity have been associated with gait defects. Mouse embryos carrying a CRISPR replicated point mutation within Ttc26 displayed an identical morphologic phenotype. Thus, our data suggest that the assembly of the lumbar CPG network is dependent on fully functional TTC26 protein.
Collapse
|
3
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
4
|
Laflamme OD, Ibrahim M, Akay T. Crossed reflex responses to flexor nerve stimulation in mice. J Neurophysiol 2022; 127:493-503. [PMID: 34986055 PMCID: PMC8836714 DOI: 10.1152/jn.00385.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Motor responses in one leg to sensory stimulation of the contralateral leg have been named "crossed reflexes" and are extensively investigated in cats and humans. Despite this effort, a circuit-level understanding of the crossed reflexes has remained missing. In mice, advances in molecular genetics enabled insights into the "commissural spinal circuitry" that ensures coordinated leg movements during locomotion. Despite some common features between the commissural spinal circuitry and the circuit for the crossed reflexes, the degree to which they overlap has remained obscure. Here, we describe excitatory crossed reflex responses elicited by electrically stimulating the common peroneal nerve that mainly innervates ankle flexor muscles and the skin on anterolateral aspect of the hind leg. Stimulation of the peroneal nerve with low current intensity evoked low-amplitude motor responses in the contralateral flexor and extensor muscles. At higher current strengths, stimulation of the same nerve evoked stronger and more synchronous responses in the same contralateral muscles. In addition to the excitatory crossed reflex pathway indicated by muscle activation, we demonstrate the presence of an inhibitory crossed reflex pathway, which was modulated when the motor pools were active during walking. The results are compared with the crossed reflex responses initiated by stimulating proprioceptors from extensor muscles and cutaneous afferents from the posterior part of the leg. We anticipate that these findings will be essential for future research combining the in vivo experiments presented here with mouse genetics to understand crossed reflex pathways at the network level in vivo.NEW & NOTEWORTHY Insights into the mechanisms of crossed reflexes are essential for understanding coordinated leg movements that maintain stable locomotion. Advances in mouse genetics allow for the selective manipulation of spinal interneurons and provide opportunities to understand crossed reflexes. Crossed reflexes in mice, however, are poorly described. Here, we describe crossed reflex responses in mice initiated by stimulation of the common peroneal nerve, which serves as a starting point for investigating crossed reflexes at the cellular level.
Collapse
Affiliation(s)
- Olivier D. Laflamme
- Atlantic Mobility Action Project, Department of Medical Neuroscience, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marwan Ibrahim
- Atlantic Mobility Action Project, Department of Medical Neuroscience, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Department of Medical Neuroscience, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Haimson B, Hadas Y, Bernat N, Kania A, Daley MA, Cinnamon Y, Lev-Tov A, Klar A. Spinal lumbar dI2 interneurons contribute to stability of bipedal stepping. eLife 2021; 10:62001. [PMID: 34396953 PMCID: PMC8448531 DOI: 10.7554/elife.62001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral and intraspinal feedback is required to shape and update the output of spinal networks that execute motor behavior. We report that lumbar dI2 spinal interneurons in chicks receive synaptic input from afferents and premotor neurons. These interneurons innervate contralateral premotor networks in the lumbar and brachial spinal cord, and their ascending projections innervate the cerebellum. These findings suggest that dI2 neurons function as interneurons in local lumbar circuits, are involved in lumbo-brachial coupling, and that part of them deliver peripheral and intraspinal feedback to the cerebellum. Silencing of dI2 neurons leads to destabilized stepping in P8 hatchlings, with occasional collapses, variable step profiles and a wide-base walking gait, suggesting that dI2 neurons may contribute to the stabilization of the bipedal gait.
Collapse
Affiliation(s)
- Baruch Haimson
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, jerusalem, Israel
| | - Yoav Hadas
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, Jerusalem, Israel
| | - Nimrod Bernat
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, jerusalem, Israel
| | - Artur Kania
- Anatomy and Cell Biology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Canada
| | - Monica A Daley
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuval Cinnamon
- Institute of Animal Science Poultry and Aquaculture Sci. Dept, Institute of Animal Science Poultry and Aquaculture Sci. Dept. Agricultural Research Organization, The Volcani Center, Israel, Rehovot, Israel
| | - Aharon Lev-Tov
- Department of Medical Neurobiology,, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, 91120, Israel, Jerisalem, Israel
| | - Avihu Klar
- Medical Neurobiology, Hebrew University, Jerusalem, Israel
| |
Collapse
|
7
|
Merlet AN, Harnie J, Frigon A. Inhibition and Facilitation of the Spinal Locomotor Central Pattern Generator and Reflex Circuits by Somatosensory Feedback From the Lumbar and Perineal Regions After Spinal Cord Injury. Front Neurosci 2021; 15:720542. [PMID: 34393721 PMCID: PMC8355562 DOI: 10.3389/fnins.2021.720542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 02/03/2023] Open
Abstract
Somatosensory feedback from peripheral receptors dynamically interacts with networks located in the spinal cord and brain to control mammalian locomotion. Although somatosensory feedback from the limbs plays a major role in regulating locomotor output, those from other regions, such as lumbar and perineal areas also shape locomotor activity. In mammals with a complete spinal cord injury, inputs from the lumbar region powerfully inhibit hindlimb locomotion, while those from the perineal region facilitate it. Our recent work in cats with a complete spinal cord injury shows that they also have opposite effects on cutaneous reflexes from the foot. Lumbar inputs increase the gain of reflexes while those from the perineal region decrease it. The purpose of this review is to discuss how somatosensory feedback from the lumbar and perineal regions modulate the spinal locomotor central pattern generator and reflex circuits after spinal cord injury and the possible mechanisms involved. We also discuss how spinal cord injury can lead to a loss of functional specificity through the abnormal activation of functions by somatosensory feedback, such as the concurrent activation of locomotion and micturition. Lastly, we discuss the potential functions of somatosensory feedback from the lumbar and perineal regions and their potential for promoting motor recovery after spinal cord injury.
Collapse
Affiliation(s)
- Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Maxwell DJ, Soteropoulos DS. The mammalian spinal commissural system: properties and functions. J Neurophysiol 2019; 123:4-21. [PMID: 31693445 DOI: 10.1152/jn.00347.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Commissural systems are essential components of motor circuits that coordinate left-right activity of the skeletomuscular system. Commissural systems are found at many levels of the neuraxis including the cortex, brainstem, and spinal cord. In this review we will discuss aspects of the mammalian spinal commissural system. We will focus on commissural interneurons, which project from one side of the cord to the other and form axonal terminations that are confined to the cord itself. Commissural interneurons form heterogeneous populations and influence a variety of spinal circuits. They can be defined according to a variety of criteria including, location in the spinal gray matter, axonal projections and targets, neurotransmitter phenotype, activation properties, and embryological origin. At present, we do not have a comprehensive classification of these cells, but it is clear that cells located within different areas of the gray matter have characteristic properties and make particular contributions to motor circuits. The contribution of commissural interneurons to locomotor function and posture is well established and briefly discussed. However, their role in other goal-orientated behaviors such as grasping, reaching, and bimanual tasks is less clear. This is partly because we only have limited information about the organization and functional properties of commissural interneurons in the cervical spinal cord of primates, including humans. In this review we shall discuss these various issues. First, we will consider the properties of commissural interneurons and subsequently examine what is known about their functions. We then discuss how they may contribute to restoration of function following spinal injury and stroke.
Collapse
Affiliation(s)
- David J Maxwell
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
9
|
Bucci D, Busceti CL, Calierno MT, Di Pietro P, Madonna M, Biagioni F, Ryskalin L, Limanaqi F, Nicoletti F, Fornai F. Systematic Morphometry of Catecholamine Nuclei in the Brainstem. Front Neuroanat 2017; 11:98. [PMID: 29163071 PMCID: PMC5666292 DOI: 10.3389/fnana.2017.00098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 01/08/2023] Open
Abstract
Catecholamine nuclei within the brainstem reticular formation (RF) play a pivotal role in a variety of brain functions. However, a systematic characterization of these nuclei in the very same experimental conditions is missing so far. Tyrosine hydroxylase (TH) immune-positive cells of the brainstem correspond to dopamine (DA)-, norepinephrine (NE)-, and epinephrine (E)-containing cells. Here, we report a systematic count of TH-positive neurons in the RF of the mouse brainstem by using stereological morphometry. All these nuclei were analyzed for anatomical localization, rostro-caudal extension, volume, neuron number, neuron density, and mean neuronal area for each nucleus. The present data apart from inherent informative value wish to represent a reference for neuronal mapping in those studies investigating the functional anatomy of the brainstem RF. These include: the sleep-wake cycle, movement control, muscle tone modulation, mood control, novelty orienting stimuli, attention, archaic responses to internal and external stressful stimuli, anxiety, breathing, blood pressure, and innumerable activities modulated by the archaic iso-dendritic hard core of the brainstem RF. Most TH-immune-positive cells fill the lateral part of the RF, which indeed possesses a high catecholamine content. A few nuclei are medial, although conventional nosography considers all these nuclei as part of the lateral column of the RF. Despite the key role of these nuclei in psychiatric and neurological disorders, only a few of them aspired a great attention in biomedical investigation, while most of them remain largely obscure although intense research is currently in progress. A simultaneous description of all these nuclei is not simply key to comprehend the variety of brainstem catecholamine reticular neurons, but probably represents an intrinsically key base for understanding brain physiology and physiopathology.
Collapse
Affiliation(s)
- Domenico Bucci
- Istituto Neurologico Mediterraneo (IRCCS), Neuromed, Pozzilli, Italy
| | - Carla L Busceti
- Istituto Neurologico Mediterraneo (IRCCS), Neuromed, Pozzilli, Italy
| | - Maria T Calierno
- Istituto Neurologico Mediterraneo (IRCCS), Neuromed, Pozzilli, Italy
| | - Paola Di Pietro
- Istituto Neurologico Mediterraneo (IRCCS), Neuromed, Pozzilli, Italy
| | - Michele Madonna
- Istituto Neurologico Mediterraneo (IRCCS), Neuromed, Pozzilli, Italy
| | | | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Ferdinando Nicoletti
- Istituto Neurologico Mediterraneo (IRCCS), Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy
| | - Francesco Fornai
- Istituto Neurologico Mediterraneo (IRCCS), Neuromed, Pozzilli, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Noga BR, Turkson RP, Xie S, Taberner A, Pinzon A, Hentall ID. Monoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region. Front Neural Circuits 2017; 11:59. [PMID: 28912689 PMCID: PMC5582069 DOI: 10.3389/fncir.2017.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/09/2017] [Indexed: 01/28/2023] Open
Abstract
Spinal cord neurons active during locomotion are innervated by descending axons that release the monoamines serotonin (5-HT) and norepinephrine (NE) and these neurons express monoaminergic receptor subtypes implicated in the control of locomotion. The timing, level and spinal locations of release of these two substances during centrally-generated locomotor activity should therefore be critical to this control. These variables were measured in real time by fast-cyclic voltammetry in the decerebrate cat's lumbar spinal cord during fictive locomotion, which was evoked by electrical stimulation of the mesencephalic locomotor region (MLR) and registered as integrated activity in bilateral peripheral nerves to hindlimb muscles. Monoamine release was observed in dorsal horn (DH), intermediate zone/ventral horn (IZ/VH) and adjacent white matter (WM) during evoked locomotion. Extracellular peak levels (all sites) increased above baseline by 138 ± 232.5 nM and 35.6 ± 94.4 nM (mean ± SD) for NE and 5-HT, respectively. For both substances, release usually began prior to the onset of locomotion typically earliest in the IZ/VH and peaks were positively correlated with net activity in peripheral nerves. Monoamine levels gradually returned to baseline levels or below at the end of stimulation in most trials. Monoamine oxidase and uptake inhibitors increased the release magnitude, time-to-peak (TTP) and decline-to-baseline. These results demonstrate that spinal monoamine release is modulated on a timescale of seconds, in tandem with centrally-generated locomotion and indicate that MLR-evoked locomotor activity involves concurrent activation of descending monoaminergic and reticulospinal pathways. These gradual changes in space and time of monoamine concentrations high enough to strongly activate various receptors subtypes on locomotor activated neurons further suggest that during MLR-evoked locomotion, monoamine action is, in part, mediated by extrasynaptic neurotransmission in the spinal cord.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Riza P Turkson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Songtao Xie
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Annette Taberner
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Alberto Pinzon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| |
Collapse
|
11
|
Jankowska E. Spinal control of motor outputs by intrinsic and externally induced electric field potentials. J Neurophysiol 2017; 118:1221-1234. [PMID: 28539396 DOI: 10.1152/jn.00169.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Despite numerous studies on spinal neuronal systems, several issues regarding their role in motor behavior remain unresolved. One of these issues is how electric fields associated with the activity of spinal neurons influence the operation of spinal neuronal networks and how effects of these field potentials are combined with other means of modulating neuronal activity. Another closely related issue is how external electric field potentials affect spinal neurons and how they can be used for therapeutic purposes such as pain relief or recovery of motor functions by transspinal direct current stimulation. Nevertheless, progress in our understanding of the spinal effects of electric fields and their mechanisms has been made over the last years, and the aim of the present review is to summarize the recent findings in this field.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
12
|
Nagel SJ, Wilson S, Johnson MD, Machado A, Frizon L, Chardon MK, Reddy CG, Gillies GT, Howard MA. Spinal Cord Stimulation for Spasticity: Historical Approaches, Current Status, and Future Directions. Neuromodulation 2017; 20:307-321. [PMID: 28370802 DOI: 10.1111/ner.12591] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Millions of people worldwide suffer with spasticity related to irreversible damage to the brain or spinal cord. Typical antecedent events include stroke, traumatic brain injury, and spinal cord injury, although insidious onset is also common. Regardless of the cause, the resulting spasticity leads to years of disability and reduced quality of life. Many treatments are available to manage spasticity; yet each is fraught with drawbacks including incomplete response, high cost, limited duration, dose-limiting side effects, and periodic maintenance. Spinal cord stimulation (SCS), a once promising therapy for spasticity, has largely been relegated to permanent experimental status. METHODS In this review, our goal is to document and critique the history and assess the development of SCS as a treatment of lower limb spasticity. By incorporating recent discoveries with the insights gained from the early pioneers in this field, we intend to lay the groundwork needed to propose testable hypotheses for future studies. RESULTS SCS has been tested in over 25 different conditions since a potentially beneficial effect was first reported in 1973. However, the lack of a fully formed understanding of the pathophysiology of spasticity, archaic study methodology, and the early technological limitations of implantable hardware limit the validity of many studies. SCS offers a measure of control for spasticity that cannot be duplicated with other interventions. CONCLUSIONS With improved energy-source miniaturization, tailored control algorithms, novel implant design, and a clearer picture of the pathophysiology of spasticity, we are poised to reintroduce and test SCS in this population.
Collapse
Affiliation(s)
- Sean J Nagel
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Saul Wilson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Michael D Johnson
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andre Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Leonardo Frizon
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | - Matthieu K Chardon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chandan G Reddy
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - George T Gillies
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
13
|
Cabaj AM, Majczyński H, Couto E, Gardiner PF, Stecina K, Sławińska U, Jordan LM. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT 7 receptors in adult rats. J Physiol 2016; 595:301-320. [PMID: 27393215 DOI: 10.1113/jp272271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Experiments on neonatal rodent spinal cord showed that serotonin (5-HT), acting via 5-HT7 receptors, is required for initiation of locomotion and for controlling the action of interneurons responsible for inter- and intralimb coordination, but the importance of the 5-HT system in adult locomotion is not clear. Blockade of spinal 5-HT7 receptors interfered with voluntary locomotion in adult rats and fictive locomotion in paralysed decerebrate rats with no afferent feedback, consistent with a requirement for activation of descending 5-HT neurons for production of locomotion. The direct control of coordinating interneurons by 5-HT7 receptors observed in neonatal animals was not found during fictive locomotion, revealing a developmental shift from direct control of locomotor interneurons in neonates to control of afferent input from the moving limb in adults. An understanding of the afferents controlled by 5-HT during locomotion is required for optimal use of rehabilitation therapies involving the use of serotonergic drugs. ABSTRACT Serotonergic pathways to the spinal cord are implicated in the control of locomotion based on studies using serotonin type 7 (5-HT7 ) receptor agonists and antagonists and 5-HT7 receptor knockout mice. Blockade of these receptors is thought to interfere with the activity of coordinating interneurons, a conclusion derived primarily from in vitro studies on isolated spinal cord of neonatal rats and mice. Developmental changes in the effects of serotonin (5-HT) on spinal neurons have recently been described, and there is increasing data on control of sensory input by 5-HT7 receptors on dorsal root ganglion cells and/or dorsal horn neurons, leading us to determine the effects of 5-HT7 receptor blockade on voluntary overground locomotion and on locomotion without afferent input from the moving limb (fictive locomotion) in adult animals. Intrathecal injections of the selective 5-HT7 antagonist SB269970 in adult intact rats suppressed locomotion by partial paralysis of hindlimbs. This occurred without a direct effect on motoneurons as revealed by an investigation of reflex activity. The antagonist disrupted intra- and interlimb coordination during locomotion in all intact animals but not during fictive locomotion induced by stimulation of the mesencephalic locomotor region (MLR). MLR-evoked fictive locomotion was transiently blocked, then the amplitude and frequency of rhythmic activity were reduced by SB269970, consistent with the notion that the MLR activates 5-HT neurons, leading to excitation of central pattern generator neurons with 5-HT7 receptors. Effects on coordination in adults required the presence of afferent input, suggesting a switch to 5-HT7 receptor-mediated control of sensory pathways during development.
Collapse
Affiliation(s)
- Anna M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland.,Department of Nerve-Muscle Engineering, Institute of Biocybernetics and Biomedical Engineering PAS, 02-109, Warsaw, Poland
| | - Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Erika Couto
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Phillip F Gardiner
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Katinka Stecina
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, 02-093, Warsaw, Poland
| | - Larry M Jordan
- Department of Physiology & Pathophysiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
14
|
Leszczyńska AN, Majczyński H, Wilczyński GM, Sławińska U, Cabaj AM. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn. PLoS One 2015; 10:e0143602. [PMID: 26606275 PMCID: PMC4659566 DOI: 10.1371/journal.pone.0143602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/06/2015] [Indexed: 11/18/2022] Open
Abstract
Lateral thoracic hemisection of the rodent spinal cord is a popular model of spinal cord injury, in which the effects of various treatments, designed to encourage locomotor recovery, are tested. Nevertheless, there are still inconsistencies in the literature concerning the details of spontaneous locomotor recovery after such lesions, and there is a lack of data concerning the quality of locomotion over a long time span after the lesion. In this study, we aimed to address some of these issues. In our experiments, locomotor recovery was assessed using EMG and CatWalk recordings and analysis. Our results showed that after hemisection there was paralysis in both hindlimbs, followed by a substantial recovery of locomotor movements, but even at the peak of recovery, which occurred about 4 weeks after the lesion, some deficits of locomotion remained present. The parameters that were abnormal included abduction, interlimb coordination and speed of locomotion. Locomotor performance was stable for several weeks, but about 3-4 months after hemisection secondary locomotor impairment was observed with changes in parameters, such as speed of locomotion, interlimb coordination, base of hindlimb support, hindlimb abduction and relative foot print distance. Histological analysis of serotonergic innervation at the lumbar ventral horn below hemisection revealed a limited restoration of serotonergic fibers on the ipsilateral side of the spinal cord, while on the contralateral side of the spinal cord it returned to normal. In addition, the length of these fibers on both sides of the spinal cord correlated with inter- and intralimb coordination. In contrast to data reported in the literature, our results show there is not full locomotor recovery after spinal cord hemisection. Secondary deterioration of certain locomotor functions occurs with time in hemisected rats, and locomotor recovery appears partly associated with reinnervation of spinal circuitry by serotonergic fibers.
Collapse
Affiliation(s)
| | | | | | | | - Anna M Cabaj
- Nencki Insitute of Experimental Biology, PAS, Warsaw, Poland.,Nałęcz Institute of Biocybernetics and Biomedical Engineering, PAS, Warsaw, Poland
| |
Collapse
|
15
|
Maratta R, Fenrich KK, Zhao E, Neuber-Hess MS, Rose PK. Distribution and density of contacts from noradrenergic and serotonergic boutons on the dendrites of neck flexor motoneurons in the adult cat. J Comp Neurol 2015; 523:1701-16. [PMID: 25728799 DOI: 10.1002/cne.23765] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Serotonergic (5-HT) and noradrenergic (NA) input to spinal motoneurons is essential for generating plateau potentials and self-sustained discharges. Extensor motoneurons are densely innervated by 5-HT and NA synapses and have robust plateau potentials and self-sustained discharges. Conversely, plateau potentials and self-sustained discharges are very rare in flexor motoneurons. The most likely reasons for this difference are that flexor motoneurons have few 5-HT and NA synapses and/or they are distributed distant to the channels responsible for plateau potentials and self-sustained discharges. However, the distribution of 5-HT and NA synapses on flexor motoneurons is unknown. Here we describe the distribution and density of 5-HT and NA synapses on motoneurons that innervate the flexor neck muscle, rectus capitis anterior (RCA), in the adult cat. Using a combination of intracellular staining, fluorescent immunohistochemistry, and 3D reconstruction techniques, we found that 5-HT and NA synapses are widely distributed throughout the dendritic trees of RCA motoneurons, albeit with a strong bias to small-diameter dendrites and to medial dendrites in the case of NA contacts. The number of 5-HT and NA contacts per motoneuron ranged, respectively, from 381 to 1,430 and from 642 to 1,382, which is 2.3- and 1.4-fold less than neck extensor motoneurons (Montague et al., J Comp Neurol 2013;521:638-656). These results suggest that 5-HT and NA synapses on flexor motoneurons may provide a powerful means of amplifying synaptic currents without incurring plateau potentials or self-sustained discharges. This feature is well suited to meet the biomechanical demands imposed on flexor muscles during different motor tasks.
Collapse
Affiliation(s)
- Robert Maratta
- Center for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Keith K Fenrich
- Center for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Ethan Zhao
- Center for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Monica S Neuber-Hess
- Center for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - P Ken Rose
- Center for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| |
Collapse
|
16
|
Changes in the Gene c-fos Expression in the Rat Spinal Cord after Suppression of Activity of the Cerebral Monoaminergic Systems. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Bolzoni F, Jankowska E. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations. J Physiol 2014; 593:947-66. [PMID: 25416625 DOI: 10.1113/jphysiol.2014.285940] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/11/2014] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Trans-spinal DC stimulation affects both postsynaptic neurons and the presynaptic axons providing input to these neurons. In the present study, we show that intraspinally applied cathodal current replicates the effects of trans-spinal direct current stimulation in deeply anaesthetized animals and affects spinal neurons both during the actual current application and during a post-polarization period. Presynaptic effects of local cathodal polarization were expressed in an increase in the excitability of skin afferents (in the dorsal horn) and group Ia afferents (in motor nuclei), both during and at least 30 min after DC application. However, although the postsynaptic facilitation (i.e. more effective) activation of motoneurons by stimuli applied in a motor nucleus was very potent during local DC application, it was only negligible once DC was discontinued. The results suggest that the prolonged effects of cathodal polarization are primarily associated with changes in synaptic transmission. ABSTRACT The present study aimed to compare presynaptic and postsynaptic actions of direct current polarization in the spinal cord, focusing on DC effects on primary afferents and motoneurons. To reduce the directly affected spinal cord region, a weak polarizing direct current (0.1-0.3 μA) was applied locally in deeply anaesthetized cats and rats; within the hindlimb motor nuclei in the caudal lumbar segments, or in the dorsal horn within the terminal projection area of low threshold skin afferents. Changes in the excitability of primary afferents activated by intraspinal stimuli (20-50 μA) were estimated using increases or decreases in compound action potentials recorded from the dorsal roots or peripheral nerves as their measure. Changes in the postsynaptic actions of the afferents were assessed from intracellularly recorded monosynaptic EPSPs in hindlimb motoneurons and monosynaptic extracellular field potentials (evoked by group Ia afferents in motor nuclei, or by low threshold cutaneous afferents in the dorsal horn). The excitability of motoneurons activated by intraspinal stimuli was assessed using intracellular records or motoneuronal discharges recorded from a ventral root or a muscle nerve. Cathodal polarization was found to affect motoneurons and afferents providing input to them to a different extent. The excitability of both was markedly increased during DC application, although post-polarization facilitation was found to involve presynaptic afferents and some of their postsynaptic actions, but only negligibly motoneurons themselves. Taken together, these results indicate that long-lasting post-polarization facilitation of spinal activity induced by locally applied cathodal current primarily reflects the facilitation of synaptic transmission.
Collapse
Affiliation(s)
- F Bolzoni
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Human Physiology Section of the DEPT, Università degli Studi di Milano, Milano, Italy
| | | |
Collapse
|
18
|
Sławińska U, Miazga K, Jordan LM. 5-HT₂ and 5-HT₇ receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons. Front Neural Circuits 2014; 8:95. [PMID: 25191231 PMCID: PMC4137449 DOI: 10.3389/fncir.2014.00095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/21/2014] [Indexed: 01/13/2023] Open
Abstract
There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OHDPAT) (acting on 5-HT1A/7 receptors) and quipazine (acting on 5-HT2 receptors), to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor central pattern generator (CPG). Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.
Collapse
Affiliation(s)
- Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Krzysztof Miazga
- Department of Neurophysiology, Nencki Institute of Experimental Biology PAS Warsaw, Poland
| | - Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|
19
|
Sharples SA, Koblinger K, Humphreys JM, Whelan PJ. Dopamine: a parallel pathway for the modulation of spinal locomotor networks. Front Neural Circuits 2014; 8:55. [PMID: 24982614 PMCID: PMC4059167 DOI: 10.3389/fncir.2014.00055] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/11/2014] [Indexed: 12/24/2022] Open
Abstract
The spinal cord contains networks of neurons that can produce locomotor patterns. To readily respond to environmental conditions, these networks must be flexible yet at the same time robust. Neuromodulators play a key role in contributing to network flexibility in a variety of invertebrate and vertebrate networks. For example, neuromodulators contribute to altering intrinsic properties and synaptic weights that, in extreme cases, can lead to neurons switching between networks. Here we focus on the role of dopamine in the control of stepping networks in the spinal cord. We first review the role of dopamine in modulating rhythmic activity in the stomatogastric ganglion (STG) and the leech, since work from these preparations provides a foundation to understand its role in vertebrate systems. We then move to a discussion of dopamine’s role in modulation of swimming in aquatic species such as the larval xenopus, lamprey and zebrafish. The control of terrestrial walking in vertebrates by dopamine is less studied and we review current evidence in mammals with a focus on rodent species. We discuss data suggesting that the source of dopamine within the spinal cord is mainly from the A11 area of the diencephalon, and then turn to a discussion of dopamine’s role in modulating walking patterns from both in vivo and in vitro preparations. Similar to the descending serotonergic system, the dopaminergic system may serve as a potential target to promote recovery of locomotor function following spinal cord injury (SCI); evidence suggests that dopaminergic agonists can promote recovery of function following SCI. We discuss pharmacogenetic and optogenetic approaches that could be deployed in SCI and their potential tractability. Throughout the review we draw parallels with both noradrenergic and serotonergic modulatory effects on spinal cord networks. In all likelihood, a complementary monoaminergic enhancement strategy should be deployed following SCI.
Collapse
Affiliation(s)
- Simon A Sharples
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Kathrin Koblinger
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Jennifer M Humphreys
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada ; Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada ; Department of Clinical Neurosciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
20
|
Motoneuron intrinsic properties, but not their receptive fields, recover in chronic spinal injury. J Neurosci 2014; 33:18806-13. [PMID: 24285887 DOI: 10.1523/jneurosci.2609-13.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proper movement execution relies on precise input processing by spinal motoneurons (MNs). Spinal MNs are activated by limb joint rotations. Typically, their movement-related receptive fields (MRRFs) are sharply focused and joint-specific. After acute spinal transection MRRFs become wide, but their manifestation is not apparent, as intrinsic excitability, primarily resulting from the loss of persistent inward currents (PICs), dramatically decreases. PICs undergo a remarkable recovery with time after injury. Here we investigate whether MRRFs undergo a recovery that parallels that of the PIC. Using the chronic spinal cat in acute terminal decerebrate preparations, we found that MRRFs remain expanded 1 month after spinal transaction, whereas PICs recovered to >80% of their preinjury amplitudes. These recovered PICs substantially amplified the expanded inputs underlying the MRRFs. As a result, we show that single joint rotations lead to the activation of muscles across the entire limb. These results provide a potential mechanism for the propagation of spasms throughout the limb.
Collapse
|
21
|
Spinal inhibitory circuits and their role in motor neuron degeneration. Neuropharmacology 2013; 82:101-7. [PMID: 24157492 DOI: 10.1016/j.neuropharm.2013.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022]
Abstract
In the spinal cord neuronal activity is controlled by the balance between excitatory and inhibitory neurotransmission, mediated mainly by the neurotransmitters glutamate and GABA/glycine, respectively. Alterations of this equilibrium have been associated with spinal motor neuron hyperexcitability and degeneration, which can be induced by excitotoxicity or by decreasing inhibitory neurotransmission. Here we review the ventral horn neuronal network and the possible involvement of inhibitory circuits in the mechanisms of degeneration of motor neurons characteristic of amyotrophic lateral sclerosis (ALS). Whereas glutamate mediated excitotoxicity seems to be an important factor, recent experimental and histopathological evidence argue in favor of a decreased activity of the inhibitory circuits controlling motor neuron excitability, mainly the recurrent inhibition exerted by Renshaw cells. A decreased Renshaw cell activity may be caused by cell loss or by a reduction of its inhibitory action secondary to a decreased excitation from cholinergic interneurons. Ultimately, inhibitory failure by either mechanism might lead to motor neuron degeneration, and this suggests inhibitory circuits and Renshaw cells as pharmacologic targets for ALS treatment.
Collapse
|
22
|
Rybak IA, Shevtsova NA, Kiehn O. Modelling genetic reorganization in the mouse spinal cord affecting left-right coordination during locomotion. J Physiol 2013; 591:5491-508. [PMID: 24081162 DOI: 10.1113/jphysiol.2013.261115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The spinal neural circuit contains inhibitory (CINi) and excitatory (CINe) commissural interneurons with axons crossing the mid-line. Direction of these axons to the other side of the cord is controlled by axon guidance molecules, such as Netrin-1 and DCC. The cord also contains glutamatergic interneurons, whose axon guidance involves the EphA4 receptor. In EphA4 knockout (KO) and Netrin-1 KO mice, the normal left-right alternating pattern is replaced with a synchronized hopping gait, and the cord of DCC KO mice exhibits uncoordinated left and right oscillations. To investigate the effects of these genetic transformations, we used a computational model of the spinal circuits containing left and right rhythm-generating neuron populations (RGs), each with a subpopulation of EphA4-positive neurons, and CINi and CINe populations mediating mutual inhibition and excitation between the left and right RGs. In the EphA4 KO circuits, half of the EphA4-positive axons crossed the mid-line and excited the contralateral RG neurons. In the Netrin-1 KO model, the number of contralateral CINi projections was significantly reduced, while in the DCC KO model, the numbers of both CINi and CINe connections were reduced. In our simulations, the EphA4 and Netrin-1 KO circuits switched from the left-right alternating pattern to a synchronized hopping pattern, and the DCC KO network exhibited uncoordinated left-right activity. The amplification of inhibitory interactions re-established an alternating pattern in the EphA4 and DCC KO circuits, but not in the Netrin-1 KO network. The model reproduces the genetic transformations and provides insights into the organization of the spinal locomotor network.
Collapse
Affiliation(s)
- Ilya A Rybak
- I. A. Rybak: Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| | | | | |
Collapse
|
23
|
Abstract
Left-right coordination is essential for locomotor movements and is partly mediated by spinal commissural systems. Such coordination is also essential for reaching and manipulation in primates, but the role of spinal commissural systems here has not been studied. We investigated commissural connectivity to motoneurons innervating forelimb muscles using intracellular recordings in acutely anesthetized macaque monkeys. In 57 of 81 motoneurons, synaptic responses (52 of 57 excitatory) were evoked after contralateral intraspinal microstimulation in the gray matter (cISMS; 300 μA maximum current intensity). Some responses (15 of 57) occurred at latencies compatible with a monosynaptic linkage, including in motoneurons projecting to intrinsic hand muscles (9 cells). Three pieces of evidence suggest that these effects reflected the action of commissural interneurons. In two cells, preceding cISMS with stimulation of the contralateral medial brainstem descending pathways facilitated the motoneuron responses, suggesting that cISMS acted on cell bodies whose excitability was increased by descending inputs. Pairing cISMS with stimulation of the contralateral corticospinal tract yielded no evidence of response occlusion in 16 cells tested, suggesting that the effects were not merely axon reflexes generated by stimulation of corticospinal axon branches, which cross the midline. Finally, stimulation of contralateral peripheral nerves evoked responses in 28 of 52 motoneurons (7 of 9 projecting to the hand). Our results demonstrate the existence of commissural neurons with access to spinal motoneurons in primate cervical spinal cord that receive inputs from the periphery as well as descending pathways. Most importantly, commissural neurons also innervate motoneurons of intrinsic hand muscles.
Collapse
|
24
|
Montague SJ, Fenrich KK, Mayer-Macaulay C, Maratta R, Neuber-Hess MS, Rose PK. Nonuniform distribution of contacts from noradrenergic and serotonergic boutons on the dendrites of cat splenius motoneurons. J Comp Neurol 2013; 521:638-56. [PMID: 22821606 DOI: 10.1002/cne.23196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 07/15/2012] [Accepted: 07/19/2012] [Indexed: 12/23/2022]
Abstract
The input-output properties of motoneurons are dynamically regulated. This regulation depends, in part, on the relative location of excitatory and inhibitory synapses, voltage-dependent and -independent channels, and neuromodulatory synapses on the dendritic tree. The goal of the present study was to quantify the number and distribution of synapses from two powerful neuromodulatory systems that originate from noradrenergic (NA) and serotonergic (5-HT) neurons. Here we show that the dendritic trees of motoneurons innervating a dorsal neck extensor muscle, splenius, in the adult cat are densely, but not uniformly innervated by both NA and 5-HT boutons. Identified splenius motoneurons were intracellularly stained with Neurobiotin. Using 3D reconstruction techniques we mapped the distributions of contacts formed by NA and 5-HT boutons on the reconstructed dendritic trees of these motoneurons. Splenius motoneurons received an average of 1,230 NA contacts (range = 647-1,507) and 1,582 5-HT contacts (range = 1,234-2,143). The densities of these contacts were 10 (NA) to 6 (5-HT)-fold higher on small compared to large-diameter dendrites. This relationship largely accounts for the bias of NA and 5-HT contacts on distal dendrites and is partially responsible for the higher density of NA contacts on dendrites located more than 200 μm dorsal to the soma. These results suggest that the neuromodulatory actions of NA and 5-HT are compartmentalized and regulate the input-output properties of motoneurons according to precisely arranged interactions with voltage-dependent and -independent channels that are primarily located on small-diameter dendrites.
Collapse
Affiliation(s)
- Steven J Montague
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Ziskind-Conhaim L. Neuronal correlates of the dominant role of GABAergic transmission in the developing mouse locomotor circuitry. Ann N Y Acad Sci 2013; 1279:43-53. [PMID: 23531001 DOI: 10.1111/nyas.12064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GABA and glycine are the primary fast inhibitory neurotransmitters in the mammalian spinal cord, but they differ in their regulatory functions, balancing neuronal excitation in the locomotor circuitry in the mammalian spinal cord. This review focuses on the unique role of GABAergic transmission during the assembly of the locomotor circuitry, from early embryonic stages when GABA(A) receptor-activated membrane depolarizations increase network excitation, to the period of early postnatal development, when GABAergic inhibition plays a primary role in coordinating the patterns of locomotor-like motor activity. To gain insight into the mechanisms that underlie the dominant contribution of GABAergic transmission to network activity during that period, we examined the morphological and electrophysiological properties of a subpopulation of GABAergic commissural interneurons that fit well with their putative function as integrated components of the rhythm-coordinating networks in the mouse spinal cord.
Collapse
Affiliation(s)
- Lea Ziskind-Conhaim
- Department of Neuroscience, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
26
|
Humphreys JM, Whelan PJ. Dopamine exerts activation-dependent modulation of spinal locomotor circuits in the neonatal mouse. J Neurophysiol 2012; 108:3370-81. [PMID: 22993259 DOI: 10.1152/jn.00482.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoamines can modulate the output of a variety of invertebrate and vertebrate networks, including the spinal cord networks that control walking. Here we examined the multiple changes in the output of locomotor networks induced by dopamine (DA). We found that DA can depress the activation of locomotor networks in the neonatal mouse spinal cord following ventral root stimulation. By examining disinhibited rhythms, where the Renshaw cell pathway was blocked, we found that DA depresses a putative recurrent excitatory pathway that projects onto rhythm-generating circuitry of the spinal cord. This depression was D(2) but not D(1) receptor dependent and was not due exclusively to depression of excitatory drive to motoneurons. Furthermore, the depression in excitation was not dependent on network activity. We next compared the modulatory effects of DA on network function by focusing on a serotonin and a N-methyl-dl-aspartate-evoked rhythm. In contrast to the depressive effects on a ventral root-evoked rhythm, we found that DA stabilized a drug-evoked rhythm, reduced the frequency of bursting, and increased amplitude. Overall, these data demonstrate that DA can potentiate network activity while at the same time reducing the gain of recurrent excitatory feedback loops from motoneurons onto the network.
Collapse
Affiliation(s)
- Jennifer M Humphreys
- Hotchkiss Brain Institute, Departments of Comparative Biology and Experimental Medicine, Physiology and Pharmacology, and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
27
|
Pilyavskii AI, Maisky VA, Maznychenko AV, Kostyukov AI. 7-Nitroindazole potentiates c-fos expression induced by muscle tendon vibration in the spinal cord. Muscle Nerve 2012; 45:597-602. [PMID: 22431094 DOI: 10.1002/mus.23230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Expression of c-fos initiated by muscle proprioceptive signaling was studied in rats after inhibition of neuronal nitric oxide synthase (nNOS) with administration of 7-nitroindazole (7-NI). METHODS Fos-immunoreactive (Fos-ir) neurons were visualized immunohistochemically in the lumbar cord after vibration of the Achilles tendon and/or 7-NI systemic injections. RESULTS The total number of Fos-ir interneurons and motoneurons (per slice) was significantly greater in the 7-NI-pretreated and tendon-vibrated (7-NI + Tv) group than in the isolated tendon vibration group (Tv group). The greatest increases in the number of Fos-ir neurons were found in the L4 (+100%) and L5 (+105%) segments (P < 0.05). CONCLUSIONS Suppression of NO release after introduction of 7-NI was associated with potentiation of Fos immunoreactivity induced by muscle proprioceptive signaling within distinctive regions of the spinal cord.
Collapse
Affiliation(s)
- Alexander I Pilyavskii
- Department of Movement Physiology, Bogomoletz Institute of Physiology, National Academy of Sciences, Bogomoletz Str. 4, Kiev 01024, Ukraine.
| | | | | | | |
Collapse
|
28
|
Frigon A, Johnson MD, Heckman CJ. Differential modulation of crossed and uncrossed reflex pathways by clonidine in adult cats following complete spinal cord injury. J Physiol 2012; 590:973-89. [PMID: 22219338 DOI: 10.1113/jphysiol.2011.222208] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Clonidine, an α-noradrenergic agonist, facilitates hindlimb locomotor recovery after complete spinal transection (i.e. spinalization) in adult cats. However, the mechanisms involved in clonidine-induced functional recovery are poorly understood. Sensory feedback from the legs is critical for hindlimb locomotor recovery in spinalized mammals and clonidine could alter how spinal neurons respond to peripheral inputs in adult spinalized cats. To test this hypothesis we evaluated the effect of clonidine on the responses of hindlimb muscles, primarily in the left hindlimb, evoked by stretching the left triceps surae muscles and by stimulating the right tibial and superficial peroneal nerves in eight adult decerebrate cats that were spinalized 1 month before the terminal experiment. Cats were not trained following spinalization. Clonidine had no consistent effect on responses of ipsilateral muscles evoked by triceps surae muscle stretch. However, clonidine consistently potentiated the amplitude and duration of crossed extensor responses. Moreover, following clonidine injection, stretch and tibial nerve stimulation triggered episodes of locomotor-like activity in approximately one-third of trials. Differential effects of clonidine on crossed reflexes and on ipsilateral responses to muscle stretch indicate an action at a pre-motoneuronal site. We conclude that clonidine facilitates hindlimb locomotor recovery following spinalization in untrained cats by enhancing the excitability of central pattern generating spinal neurons that also participate in crossed extensor reflex transmission.
Collapse
Affiliation(s)
- Alain Frigon
- Université de Sherbrooke, 3001, 12e Avenue Nord, Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Sherbrooke, Quebec, J1H 5N4, Canada.
| | | | | |
Collapse
|
29
|
Miles GB, Sillar KT. Neuromodulation of Vertebrate Locomotor Control Networks. Physiology (Bethesda) 2011; 26:393-411. [DOI: 10.1152/physiol.00013.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate locomotion must be adaptable in light of changing environmental, organismal, and developmental demands. Much of the underlying flexibility in the output of central pattern generating (CPG) networks of the spinal cord and brain stem is endowed by neuromodulation. This review provides a synthesis of current knowledge on the way that various neuromodulators modify the properties of and connections between CPG neurons to sculpt CPG network output during locomotion.
Collapse
Affiliation(s)
- Gareth B. Miles
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Keith T. Sillar
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| |
Collapse
|
30
|
Properties of a distinct subpopulation of GABAergic commissural interneurons that are part of the locomotor circuitry in the neonatal spinal cord. J Neurosci 2011; 31:4821-33. [PMID: 21451020 DOI: 10.1523/jneurosci.4764-10.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Commissural inhibitory interneurons (INs) are integral components of the locomotor circuitry that coordinate left-right motor activity during movements. We have shown that GABA-mediated synaptic transmission plays a key role in generating alternating locomotor-like activity in the mouse spinal cord (Hinckley et al., 2005a). The primary objective of our study was to determine whether properties of lamina VIII (LVIII) GABAergic INs in the spinal cord of GAD67::GFP transgenic mice fit the classification of rhythm-coordinating neurons in the locomotor circuitry. The relatively large green fluorescent protein-expressing (GFP(+)) INs had comparable morphological and electrophysiological properties, suggesting that they comprised a homogenous neuronal population. They displayed multipolar and complex dendritic arbors in ipsilateral LVII-LVIII, and their axonal projections crossed the ventral commissure and branched into contralateral ventral, medial, and dorsal laminae. Putative synaptic contacts evident as bouton-like varicosities were detected in close apposition to lateral motoneurons, Renshaw cells, other GFP(+) INs, and unidentified neurons. Exposure to a rhythmogenic mixture triggered locomotor-like rhythmic firing in the majority of LVIII GFP(+) INs. Their induced oscillatory activity was out-of-phase with bursts of contralateral motoneurons and in-phase with bouts of ipsilateral motor activity. Membrane voltage oscillations were elicited by rhythmic increases in excitatory synaptic drive and might have been augmented by three types of voltage-activated cationic currents known to increase neuronal excitability. Based on their axonal projections and activity pattern, we propose that this population of GABAergic INs forms a class of local commissural inhibitory interneurons that are integral component of the locomotor circuitry.
Collapse
|
31
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. II. Noradrenergic innervation and colocalization with NEα 1a or NEα 2b receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2011; 105:1835-49. [PMID: 21307324 DOI: 10.1152/jn.00342.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) is a strong modulator and/or activator of spinal locomotor networks. Thus noradrenergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the noradrenergic innervation of functionally related, locomotor-activated neurons within the thoraco-lumbar spinal cord. This was accomplished by immunohistochemical colocalization of noradrenergic fibers using dopamine-β-hydroxylase or NEα(1A) and NEα(2B) receptors with cells expressing the c-fos gene activity-dependent marker Fos. Experiments were performed on paralyzed, precollicular-postmamillary decerebrate cats, in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. The majority of Fos labeled neurons, especially abundant in laminae VII and VIII throughout the thoraco-lumbar (T13-L7) region of locomotor animals, showed close contacts with multiple noradrenergic boutons. A small percentage (10-40%) of Fos neurons in the T7-L7 segments showed colocalization with NEα(1A) receptors. In contrast, NEα(2B) receptor immunoreactivity was observed in 70-90% of Fos cells, with no obvious rostrocaudal gradient. In comparison with results obtained from our previous study on the same animals, a significantly smaller proportion of Fos labeled neurons were innervated by noradrenergic than serotonergic fibers, with significant differences observed for laminae VII and VIII in some segments. In lamina VII of the lumbar segments, the degree of monoaminergic receptor subtype/Fos colocalization examined statistically generally fell into the following order: NEα(2B) = 5-HT(2A) ≥ 5-HT(7) = 5-HT(1A) > NEα(1A). These results suggest that noradrenergic modulation of locomotion involves NEα(1A)/NEα(2B) receptors on noradrenergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments. Further study of the functional role of these receptors in locomotion is warranted.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
32
|
Liu TT, Bannatyne BA, Maxwell DJ. Organization and neurochemical properties of intersegmental interneurons in the lumbar enlargement of the adult rat. Neuroscience 2010; 171:461-84. [PMID: 20849930 DOI: 10.1016/j.neuroscience.2010.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 02/05/2023]
Abstract
Intersegmental interneurons with relatively short axons perform an important role in the coordination of limb movement but surprisingly little is known about their organization and how they contribute to neuronal networks in the adult rat. We undertook a series of anatomical tract-tracing studies to label cell bodies and axons of intersegmental neurons in the lumbar cord and characterized their neurochemical properties by using immunocytochemistry. The b-subunit of cholera toxin was injected into L1 or L3 segments of seven rats in the vicinity of lateral or medial motor nuclei. In L5 lumbar segments, cells were found to be concentrated in contralateral lamina VIII, and in ipsilateral lamina VII and laminae V-VI following injections into the lateral and medial motor nuclei respectively. About 25% of labelled cells contained calbindin or calretinin or a combination of both. Calbindin positive cells were mainly distributed within the ipsilateral side of the L5 segment, especially within the ipsilateral dorsal horn whereas there was a concentration of calretinin cells in contralateral lamina VIII. A small population of cells around the central canal were cholinergic. We also examined axon terminals that projected from L1/3 to the L5 contralateral lateral motor nucleus. The majority of these axons were excitatory (75%) and made direct contacts with motoneurons. However, most inhibitory axons in L5 contained a mixture of GABA and glycine (20%) and about 22% of the total population of axons contained calbindin. In contrast, 19% of all intra-segmental axons in the L3 contralateral lateral motor nucleus were found to be purely glycinergic and 17% contained a mixture of GABA and glycine. This study shows that short range interneurons form extensive ipsi- and contralateral projections within the lumbar enlargement and that many of them contain calcium binding proteins. Those projecting contralaterally to motor nuclei are predominantly excitatory.
Collapse
Affiliation(s)
- T T Liu
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
33
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2009; 102:1560-76. [PMID: 19571190 DOI: 10.1152/jn.91179.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical co-localization of serotonin (5-HT) fibers or 5-HT(7)/5-HT2A/5-HT1A receptors with cells expressing the activity-dependent marker c-fos. Experiments were performed on paralyzed, decerebrate cats in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. Abundant c-fos immunoreactive cells were observed in laminae VII and VIII throughout the thoraco-lumbar segments of locomotor animals. Control sections from the same segments showed significantly fewer labeled neurons, mostly within the dorsal horn. Multiple serotonergic boutons were found in close apposition to the majority (80-100%) of locomotor cells, which were most abundant in lumbar segments L3-7. 5-HT7 receptor immunoreactivity was observed on cells across the thoraco-lumbar segments (T7-L7), in a dorsoventral gradient. Most locomotor-activated cells co-localized with 5-HT7, 5-HT2A, and 5-HT1A receptors, with largest numbers in laminae VII and VIII. Co-localization of c-fos and 5-HT7 receptor was highest in the L5-L7 segments (>90%) and decreased rostrally (to approximately 50%) due to the absence of receptors on cells within the intermediolateral nucleus. In contrast, 60-80 and 35-80% of c-fos immunoreactive cells stained positive for 5-HT2A and 5-HT1A receptors, respectively, with no rostrocaudal gradient. These results indicate that serotonergic modulation of locomotion likely involves 5-HT(7)/5-HT2A/5-HT1A receptors located on the soma and proximal dendrites of serotonergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
34
|
Cowley KC, Zaporozhets E, Joundi RA, Schmidt BJ. Contribution of Commissural Projections to Bulbospinal Activation of Locomotion in the In Vitro Neonatal Rat Spinal Cord. J Neurophysiol 2009; 101:1171-8. [DOI: 10.1152/jn.91212.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Commissural projections are required for left-right coordination during locomotion. However, their role, if any, in rhythm production is unknown. This study uses the neonatal rat in vitro brain stem–spinal cord model to examine the rostrocaudal distribution of locomotor-related commissural projections and study whether commissural connections are needed for the generation of hindlimb rhythmic activity in response to electrical stimulation of the brain stem. Midsagittal lesions were made at a wide range of rostrocaudal levels. Locomotor-like activity persisted in some preparations despite midsagittal lesions extending from C1 to the mid-L1 level or from the conus medullaris to the T12/13 junction. In some preparations, midsagittal lesions throughout the entire spinal cord had no effect on locomotor-like activity if two or three contiguous segments remained intact. Those bridging segments had to include the T13 and/or L1 levels. These observations suggested that commissural projections in the thoracolumbar junction region were critical. However, locomotor-like activity was also elicited in preparations with limited midsagittal lesions focused on the thoracolumbar junction (T12 through L1 or L2 inclusive). In other experiments, locomotor-like activity was evoked by bath-applied 5-hydroxytryptamine (5-HT) and N-methyl-d-aspartate (NMDA). Appropriate side-to-side coordination was observed, even when only one segment remained bilaterally intact. Commissural projections traversing the thoracolumbar junction region were most effective. In combination, these results suggest that locomotor-related commissural projections are redundantly distributed along a bi-directional gradient that centers on the thoracolumbar junction. This commissural system not only provides a robust left-right coordinating mechanism but also supports locomotor rhythm generation in response to brain stem stimulation.
Collapse
|
35
|
Delivet-Mongrain H, Leblond H, Rossignol S. Effects of Localized Intraspinal Injections of a Noradrenergic Blocker on Locomotion of High Decerebrate Cats. J Neurophysiol 2008; 100:907-21. [DOI: 10.1152/jn.90454.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Previous studies demonstrated that neuronal networks located in midlumbar segments (L3–L4) are critical for the expression of locomotion in cats following complete spinalization. In the present study the importance of several thoracolumbar segments (T8–L7) for the generation of spontaneous hindlimb locomotion in decerebrate cats was evaluated. Experiments were performed in high decerebrate cats ( n = 18) walking spontaneously. Yohimbine, an alpha2-noradrenergic antagonist, was microinjected intraspinally in various thoracolumbar segments. Locomotor performance was evaluated with kinematics and electromyographic (EMG) recordings before and after each injection. When and if spontaneous locomotion (SL) was abolished, skin or perineal stimuli (exteroceptive stimuli) were used to trigger locomotion (exteroceptive-induced locomotion [EL]). Yohimbine injections at L3 or L4 completely inhibited SL and EL. In contrast, injections at T8 did not interfere with SL or EL. Injections at T10, T11, T12, L5, L6, and L7 inhibited SL but EL could still be evoked. Injections at T13, L1, and L2 had similar effects except that the quality of locomotion evoked by exteroceptive stimulation declined. Combined injections at T13, L1, and L2 abolished SL and EL, in contrast to injections restricted to the same individual segments. Simultaneous injections at L5, L6, and L7 also abolished SL but EL could still be induced. These results suggest that noradrenergic mechanisms in L3–L4 segments are involved in the expression of locomotion in decerebrate cats, whereas antagonizing noradrenergic inputs in individual rostral or caudal segments may alter the expression and overall quality of the locomotor pattern without abolishing locomotion.
Collapse
|
36
|
Yamanaka Y, Kitamura N, Shibuya I. Chick spinal accessory lobes contain functional neurons expressing voltagegated sodium channels generating action potentials. Biomed Res 2008; 29:205-11. [DOI: 10.2220/biomedres.29.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Stecina K, Jankowska E, Cabaj A, Pettersson LG, Bannatyne BA, Maxwell DJ. Premotor interneurones contributing to actions of feline pyramidal tract neurones on ipsilateral hindlimb motoneurones. J Physiol 2007; 586:557-74. [PMID: 18006578 DOI: 10.1113/jphysiol.2007.145466] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of the study was to analyse the potential contribution of excitatory and inhibitory premotor interneurones in reflex pathways from muscle afferents to actions of pyramidal tract (PT) neurones on ipsilateral hindlimb motoneurones. Disynaptic EPSPs and IPSPs evoked in motoneurones in deeply anaesthetized cats by group Ia, Ib and II muscle afferents were found to be facilitated by stimulation of the ipsilateral, as well as of contralateral, PT. The ipsilateral actions were evoked by either uncrossed or double-crossed pathways. The results show that interneurones mediating reflex actions of muscle afferents may be activated strongly enough by PT stimulation to contribute to movements initiated by ipsilateral PT neurones and that PT actions relayed by them might be enhanced by muscle stretches and/or contractions. However, in some motoneurones disynaptic IPSPs and EPSPs evoked from group Ib or II afferents were depressed by PT stimulation. In order to analyse the basis of this depression, the transmitter content in terminals of 11 intracellularly labelled interneurones excited by PT stimulation was defined immunohistochemically and their axonal projections were reconstructed. The interneurones included 9 glycinergic and 2 glutamatergic neurones. All but one of these neurones were mono- or disynaptically excited by group I and/or II afferents. Several projected to motor nuclei and formed contacts with motoneurones. However, all had terminal projections to areas outside the motor nuclei. Therefore both inhibitory and excitatory interneurones could modulate responses of other premotor interneurones in parallel with direct actions on motoneurones.
Collapse
Affiliation(s)
- K Stecina
- Department of Physiology, Sahlgrenska Academy, Göteborg University, 405 30 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Kiehn O, Quinlan KA, Restrepo CE, Lundfald L, Borgius L, Talpalar AE, Endo T. Excitatory components of the mammalian locomotor CPG. ACTA ACUST UNITED AC 2007; 57:56-63. [PMID: 17988744 DOI: 10.1016/j.brainresrev.2007.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 07/01/2007] [Indexed: 12/01/2022]
Abstract
Locomotion in mammals is to a large degree controlled directly by intrinsic spinal networks, called central pattern generators (CPGs). The overall function of these networks is governed by interaction between inhibitory and excitatory neurons. In the present review, we will discuss recent findings addressing the role of excitatory synaptic transmission for network function including the role of specific excitatory neuronal populations in coordinating muscle activity and in generating rhythmic activity.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lewek MD, Hornby TG, Dhaher YY, Schmit BD. Prolonged quadriceps activity following imposed hip extension: a neurophysiological mechanism for stiff-knee gait? J Neurophysiol 2007; 98:3153-62. [PMID: 17898135 PMCID: PMC3293654 DOI: 10.1152/jn.00726.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biomechanical characteristics of stiff knee gait following neurological injury include decreased knee flexion velocity at toe-off, which may be due to exaggerated quadriceps activity. The neuromuscular mechanism underlying this abnormal activity is unclear, although hyperexcitable heteronymous reflexes may be a source of impaired coordination. The present study examines the contribution of reflex activity from hip flexors on knee extensors following stroke and its association with reduced swing-phase knee flexion during walking. Twelve individuals poststroke and six control subjects were positioned in supine on a Biodex dynamometer with the ankle and knee held in a static position. Isolated hip extension movements were imposed at 60, 90, and 120 degrees /s through a 50 degrees excursion to end-range hip extension. Reflexive responses of the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) were quantified during and after the imposed hip rotation. Gait analysis was also performed for all subjects in the stroke group. In subjects with stroke, imposed hip extension evoked a brief reflexive response in the quadriceps, followed by a heightened level of sustained activity. The initial response was velocity dependent and was larger in the stroke group than in the control group. In contrast, the prolonged response was not velocity dependent, was significantly greater in the VL and RF in subjects with stroke, and, importantly, was correlated to decreased swing-phase knee flexion. Hyperexcitable heteronymous connections from hip flexors to knee extensors appear to elicit prolonged quadriceps activity and may contribute to altered swing-phase knee kinematics following stroke.
Collapse
Affiliation(s)
- Michael D Lewek
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA.
| | | | | | | |
Collapse
|
40
|
Hammar I, Stecina K, Jankowska E. Differential modulation by monoamine membrane receptor agonists of reticulospinal input to lamina VIII feline spinal commissural interneurons. Eur J Neurosci 2007; 26:1205-12. [PMID: 17767499 DOI: 10.1111/j.1460-9568.2007.05764.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noradrenaline and serotonin have previously been demonstrated to facilitate the transmission between descending reticulospinal tracts fibres and commissural interneurons coordinating left-right hindlimb muscle activity. The aim of the present study was to investigate the contribution of subclasses of monoaminergic membrane receptors to this facilitation. The neurons were located in Rexed lamina VIII in midlumbar segments and identified by their projections to the contralateral gastrocnemius-soleus motor nuclei and by lack of projections rostral to the lumbosacral enlargement. The effects of ionophoretically applied membrane receptor agonists [phenylephrine (noradrenergic alpha(1)), clonidine (noradrenergic alpha(2)), 8-OH-DPAT (5-HT(1A), 5-HT(7)), 2-me-5-HT (5-HT(3)), 5-me-5-HT (5-HT(2)) and alpha-me-5-HT (5-HT(2))] were examined on extracellularly recorded spikes evoked monosynaptically by electric stimulation of descending reticulospinal fibres in the medial longitudinal fascicle. Application of alpha(1) and 5-HT(2) agonists resulted in a facilitation of responses in all investigated neurons while application of alpha(2), 5-HT(1A/7) and 5-HT(3) agonists resulted in a depression. These opposite modulatory effects of different agonists suggest that the facilitatory actions of noradrenaline and serotonin on responses of commissural interneurons reported previously following ionophoretic application are the net outcome of the activation of different subclasses of monoaminergic membrane receptors. As these receptors may be distributed predominantly, or even selectively, at either pre- or postsynaptic sites their differential modulatory actions could be compatible with a presynaptically induced depression and a postsynaptically evoked enhancement of synaptic transmission between reticulospinal neurons and commissural interneurons.
Collapse
Affiliation(s)
- Ingela Hammar
- Department of Physiology, Göteborg University, Box 432, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
41
|
Jankowska E. Spinal interneuronal networks in the cat: elementary components. ACTA ACUST UNITED AC 2007; 57:46-55. [PMID: 17884173 PMCID: PMC2683333 DOI: 10.1016/j.brainresrev.2007.06.022] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 06/18/2007] [Indexed: 01/14/2023]
Abstract
This review summarises features of networks of commissural interneurones co-ordinating muscle activity on both sides of the body as an example of feline elementary spinal interneuronal networks. The main feature of these elementary networks is that they are interconnected and incorporated into more complex networks as their building blocks. Links between networks of commissural interneurones and other networks are quite direct, with mono- and disynaptic input from the reticulospinal and vestibulospinal neurones, disynaptic from the contralateral and ipsilateral corticospinal neurones and fastigial neurones, di- or oligosynaptic from the mesencephalic locomotor region and mono-, di- or oligosynaptic from muscle afferents. The most direct links between commissural interneurones and motoneurones are likewise simple: monosynaptic and disynaptic via premotor interneurones with input from muscle afferents. By such connections, a particular elementary interneuronal network may subserve a wide range of movements, from simple reflex and postural adjustments to complex centrally initiated phasic and rhythmic movements, including voluntary movements and locomotion. Other common features of the commissural and other interneuronal networks investigated so far is that input from several sources is distributed to their constituent neurones in a semi-random fashion and that there are several possibilities of interactions between neurones both within and between various populations. Neurones of a particular elementary network are located at well-defined sites but intermixed with neurones of other networks and distributed over considerable lengths of the spinal cord, which precludes the topography to be used as their distinguishing feature.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Göteborg University, Medicinaregatan 11, Box 432, 405 30 Göteborg, Sweden.
| |
Collapse
|
42
|
Choi JT, Bastian AJ. Adaptation reveals independent control networks for human walking. Nat Neurosci 2007; 10:1055-62. [PMID: 17603479 DOI: 10.1038/nn1930] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 05/21/2007] [Indexed: 11/08/2022]
Abstract
Human walking is remarkably adaptable on short and long timescales. We can immediately transition between directions and gait patterns, and we can adaptively learn accurate calibrations for different walking contexts. Here we studied the degree to which different motor patterns can adapt independently. We used a split-belt treadmill to adapt the right and left legs to different speeds and in different directions (forward versus backward). To our surprise, adults could easily walk with their legs moving in opposite directions. Analysis of aftereffects showed that walking adaptations are stored independently for each leg and do not transfer across directions. Thus, there are separate functional networks controlling forward and backward walking in humans, and the circuits controlling the right and left legs can be trained individually. Such training could provide a new therapeutic approach for correcting various walking asymmetries.
Collapse
Affiliation(s)
- Julia T Choi
- The Kennedy Krieger Institute, 707 North Broadway, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
43
|
Quinlan KA, Kiehn O. Segmental, synaptic actions of commissural interneurons in the mouse spinal cord. J Neurosci 2007; 27:6521-30. [PMID: 17567813 PMCID: PMC6672441 DOI: 10.1523/jneurosci.1618-07.2007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 05/03/2007] [Accepted: 05/04/2007] [Indexed: 01/08/2023] Open
Abstract
Left-right alternation depends on activity in commissural interneurons (CINs) that have axons crossing in the midline. In this study, we investigate the CIN connectivity to local motor neurons using a newly developed preparation of the in vitro neonatal mouse spinal cord that allows us to identify all classes of CINs. Nineteen of 29 short-range CINs with axonal projections <1.5 segments (sCINs) directly excited, directly inhibited, or indirectly inhibited contralateral motor neurons in the quiescent spinal cord. Excitation was glutamatergic and inhibition was mixed glycinergic and/or GABAergic. Long-range CINs were also found to have input to local, contralateral motor neurons. Thirteen of 29 descending CINs had similar synaptic connectivity to contralateral motor neurons as the sCINs, including direct excitation and direct and indirect inhibition. Some (9 of 23) rostrally projecting ascending CINs, and a few (2 of 10) CINs with bifurcating axons that both ascend and descend, indirectly inhibited local, contralateral motor neurons. Rhythmic firing during locomotor-like activity was observed in a number of CINs with segmental synaptic effects on contralateral motor neurons. This study outlines the basic connectivity pattern of CINs in the mouse spinal cord on a segmental level. Our study suggests that, based on observed synaptic connectivity, both short- and long-range CINs are likely involved in segmental left-right coordination and that the CIN system is organized into a dual-inhibitory and single-excitatory system. These systems are organized in a way that they could provide appropriate coordination during locomotion.
Collapse
Affiliation(s)
- Katharina A. Quinlan
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
44
|
Nordstrom MA, Gorman RB, Laouris Y, Spielmann JM, Stuart DG. Does motoneuron adaptation contribute to muscle fatigue? Muscle Nerve 2007; 35:135-58. [PMID: 17195169 DOI: 10.1002/mus.20712] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To help reduce the gap between the cellular physiology of motoneurons (MNs) as studied "bottom-up" in animal preparations and the "top-down" study of the firing patterns of human motor units (MUs), this article addresses the question of whether motoneuron adaptation contributes to muscle fatigue. Findings are reviewed on the intracellularly recorded electrophysiology of spinal MNs as studied in vivo and in vitro using animal preparations, and the extracellularly recorded discharge of MUs as studied in conscious humans. The latter "top-down" approach, combined with kinetic measurements, has provided most of what is currently known about the neurobiology of muscle fatigue, including its task and context dependencies. It is argued that although the question addressed is still open, it should now be possible to design new "bottom-up" research paradigms using animal preparations that take advantage of what has been learned with the use of relatively noninvasive quantitative procedures in conscious humans.
Collapse
Affiliation(s)
- Michael A Nordstrom
- Discipline of Physiology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
45
|
Gordon IT, Whelan PJ. Monoaminergic control of cauda-equina-evoked locomotion in the neonatal mouse spinal cord. J Neurophysiol 2006; 96:3122-9. [PMID: 16956991 DOI: 10.1152/jn.00606.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoaminergic projections are among the first supraspinal inputs to innervate spinal networks. Little is known regarding the role of monoamines in modulating ongoing locomotor patterns evoked by endogenous release of neurotransmitter. Here we activate a locomotor-like rhythm by electrical stimulation of afferents and then test the modulatory effects of monoamines on the frequency, pattern, and quality of the rhythm. Stimulation of the cauda equina induced a rhythm consisting of left-right and ipsilateral alternation indicative of locomotor-like activity. First, we examined the effects of noradrenaline (NA), serotonin (5-HT), or dopamine (DA) at dose levels that did not elicit locomotor activity. Bath application of NA and DA resulted in a depression of the cauda-equina-evoked rhythm. Conversely, bath-applied 5-HT increased both the amplitude and cycle period of the evoked rhythm, an effect that was mimicked by the addition of 5-HT(2) agonists to the bath. Application of 5-HT(7) agonists disrupted the evoked rhythmic behavior. Next, we examined the effects of NA alpha(1) and alpha(2) agonists and found that the suppressive effects of NA on the rhythm could be reproduced by adding the alpha(2) agonist, clonidine, to the bath. In contrast, bath applying the alpha(1) agonist, phenylephrine, increased the amplitude and duration of the cycle period. Finally, the suppressive effects of DA were not replicated by the administration of D(1), D(2), or D(3) agonists although application of NA alpha(2) antagonists reversed the effects of DA. Application of D(1) agonists, increased the amplitude of the bursts but did not affect the cycle period. Our results indicate that monoamines can control the expression, pattern, and timing of cauda-equina-evoked locomotor patterns in developing mice.
Collapse
Affiliation(s)
- Ian T Gordon
- HSC 2119, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N4N1, Canada
| | | |
Collapse
|
46
|
Hentall ID, Pinzon A, Noga BR. Spatial and temporal patterns of serotonin release in the rat's lumbar spinal cord following electrical stimulation of the nucleus raphe magnus. Neuroscience 2006; 142:893-903. [PMID: 16890366 PMCID: PMC2709461 DOI: 10.1016/j.neuroscience.2006.06.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 01/15/2023]
Abstract
The monoamine neurotransmitter serotonin is released from spinal terminals of nucleus raphe magnus (NRM) neurons and important in sensory and motor control, but its pattern of release has remained unclear. Serotonin was measured by the high-resolution method of fast cyclic voltammetry (2 Hz) with carbon-fiber microelectrodes in lumbar segments (L3-L6) of halothane-anesthetized rats during electrical stimulation of the NRM. Because sites of serotonin release are often histologically remote from membrane transporters and receptors, rapid emergence into aggregate extracellular space was expected. Increased monoamine oxidation currents were found in 94% of trials of 50-Hz, 20-s NRM stimulation across all laminae. The estimated peak serotonin concentration averaged 37.8 nM (maximum 287 nM), and was greater in dorsal and ventral laminae (I-III and VIII-IX) than in intermediate laminae (IV-VI). When measured near NRM-evoked changes, basal monoamine levels (relative to dorsal white matter) were highest in intermediate laminae, while changes in norepinephrine level produced by locus ceruleus (LC) stimulation were lowest in laminae II/III and VII. The NRM-evoked monoamine peak was linearly proportional to stimulus frequency (10-100 Hz). The peak often occurred before the stimulus ended (mean 15.6 s at 50 Hz, range 4-35 s) regardless of frequency, suggesting that release per impulse was constant during the rise but fell later. The latency from stimulus onset to electrochemical signal detection (mean 4.2 s, range 1-23 s) was inversely correlated with peak amplitude and directly correlated with time-to-peak. Quantitative modeling suggested that shorter latencies mostly reflected the time below detection threshold (5-10 nM), so that extrasynaptic serotonin was significantly elevated well within 1 s. Longer latencies (>5 s), which were confined to intermediate laminae, appeared mainly to be due to diffusion from distant sources. In conclusion, except possibly in intermediate laminae, serotonergic volume transmission is a significant mode of spinal control by the NRM.
Collapse
Affiliation(s)
| | | | - B. R. Noga
- Corresponding author. Tel: +305-243-6155; fax: +305-243-3921. E-mail address: (B. R. Noga)
| |
Collapse
|
47
|
Abstract
Intrinsic spinal networks, known as central pattern generators (CPGs), control the timing and pattern of the muscle activity underlying locomotion in mammals. This review discusses new advances in understanding the mammalian CPGs with a focus on experiments that address the overall network structure as well as the identification of CPG neurons. I address the identification of excitatory CPG neurons and their role in rhythm generation, the organization of flexor-extensor networks, and the diverse role of commissural interneurons in coordinating left-right movements. Molecular and genetic approaches that have the potential to elucidate the function of populations of CPG interneurons are also discussed.
Collapse
Affiliation(s)
- Ole Kiehn
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm S17177, Sweden.
| |
Collapse
|
48
|
Nishimaru H, Restrepo CE, Kiehn O. Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice. J Neurosci 2006; 26:5320-8. [PMID: 16707784 PMCID: PMC6675298 DOI: 10.1523/jneurosci.5127-05.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 04/09/2006] [Accepted: 04/09/2006] [Indexed: 11/21/2022] Open
Abstract
In the present study, we examine the activity patterns of and synaptic inputs to Renshaw cells (RCs) during fictive locomotion in the newborn mouse using visually guided recordings from GABAergic cells expressing glutamic acid decarboxylase 67-green fluorescent protein (GFP). Among the GFP-positive neurons in the lumbar ventral horn, RCs were uniquely identified as receiving ventral root-evoked short-latency EPSPs that were markedly reduced in amplitude by nicotinic receptor blockers mecamylamine or tubocurarine. During locomotor-like rhythmic activity evoked by bath application of 5-HT and NMDA, 50% of the recorded RCs fired in-phase with the ipsilateral L2 flexor-related rhythm, whereas the rest fired in the extensor phase. Each population of RCs fired throughout the corresponding locomotor phase. All RCs received both excitatory and inhibitory synaptic inputs during the locomotor-like rhythmic activity. Blocking nicotinic receptors with mecamylamine markedly reduced the rhythmic excitatory drive, indicating that these rhythmic inputs originate mainly from motor neurons (MNs). Inhibitory synaptic inputs persisted in the presence of the nicotinic blocker. Part of this inhibitory drive and remaining excitatory drive could be from commissural interneurons because the present study also shows that RCs receive direct crossed inhibitory and excitatory synaptic inputs. However, rhythmic synaptic inputs in RCs were also observed in hemicord preparations in the presence of mecamylamine. These results show that, during locomotor activity, RC firing properties are modulated not only by MNs but also by the ipsilateral and contralateral locomotor networks.
Collapse
|
49
|
Jankowska E, Edgley SA. How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions. Neuroscientist 2006; 12:67-79. [PMID: 16394194 PMCID: PMC1890027 DOI: 10.1177/1073858405283392] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this review, the authors discuss some recent findings that bear on the issue of recovery of function after corticospinal tract lesions. Conventionally the corticospinal tract is considered to be a crossed pathway, in keeping with the clinical findings that damage to one hemisphere, for example, in stroke, leads to a contralateral paresis and, if the lesion is large, a paralysis. However, there has been great interest in the possibility of compensatory recovery of function using the undamaged hemisphere. There are several substrates for this including ipsilaterally descending corticospinal fibers and bilaterally operating neuronal networks. Recent studies provide important evidence bearing on both of these issues. In particular, they reveal networks of neurons interconnecting two sides of the gray matter at both brainstem and spinal levels, as well as intrahemispheric transcallosal connections. These may form "detour circuits" for recovery of function, and here the authors will consider some possibilities for exploiting these networks for motor control, even though their analysis is still at an early stage.
Collapse
|
50
|
Necker R. Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:439-48. [PMID: 16450117 DOI: 10.1007/s00359-006-0105-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 11/02/2005] [Accepted: 01/13/2006] [Indexed: 11/30/2022]
Abstract
Birds are bipedal animals with a center of gravity rostral to the insertion of the hindlimbs. This imposes special demands on keeping balance when moving on the ground. Recently, specializations in the lumbosacral region have been suggested to function as a sense organ of equilibrium which is involved in the control of walking. Morphological, electrophysiological, behavioral and embryological evidence for such a function is reviewed. Birds have two nearly independent kinds of locomotion and it is suggested that two different sense organs play an important role in their respective control: the vestibular organ during flight and the lumbosacral system during walking.
Collapse
Affiliation(s)
- Reinhold Necker
- Lehrstuhl für Tierphysiologie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|