1
|
Lynton Z, Suárez R, Fenlon LR. Brain plasticity following corpus callosum agenesis or loss: a review of the Probst bundles. Front Neuroanat 2023; 17:1296779. [PMID: 38020213 PMCID: PMC10657877 DOI: 10.3389/fnana.2023.1296779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The corpus callosum is the largest axonal tract in the human brain, connecting the left and right cortical hemipheres. This structure is affected in myriad human neurodevelopmental disorders, and can be entirely absent as a result of congenital or surgical causes. The age when callosal loss occurs, for example via surgical section in cases of refractory epilepsy, correlates with resulting brain morphology and neuropsychological outcomes, whereby an earlier loss generally produces relatively improved interhemispheric connectivity compared to a loss in adulthood (known as the "Sperry's paradox"). However, the mechanisms behind these age-dependent differences remain unclear. Perhaps the best documented and most striking of the plastic changes that occur due to developmental, but not adult, callosal loss is the formation of large, bilateral, longitudinal ectopic tracts termed Probst bundles. Despite over 100 years of research into these ectopic tracts, which are the largest and best described stereotypical ectopic brain tracts in humans, much remains unclear about them. Here, we review the anatomy of the Probst bundles, along with evidence for their faciliatory or detrimental function, the required conditions for their formation, patterns of etiology, and mechanisms of development. We provide hypotheses for many of the remaining mysteries of the Probst bundles, including their possible relationship to preserved interhemispheric communication following corpus callosum absence. Future research into naturally occurring plastic tracts such as Probst bundles will help to inform the general rules governing axon plasticity and disorders of brain miswiring.
Collapse
Affiliation(s)
- Zorana Lynton
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Rodrigo Suárez
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Laura R. Fenlon
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
2
|
Szczupak D, Iack PM, Rayêe D, Liu C, Lent R, Tovar-Moll F, Silva AC. The relevance of heterotopic callosal fibers to interhemispheric connectivity of the mammalian brain. Cereb Cortex 2023; 33:4752-4760. [PMID: 36178137 PMCID: PMC10110439 DOI: 10.1093/cercor/bhac377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
The corpus callosum (CC) is the largest white matter structure and the primary pathway for interhemispheric brain communication. Investigating callosal connectivity is crucial to unraveling the brain's anatomical and functional organization in health and disease. Classical anatomical studies have characterized the bulk of callosal axonal fibers as connecting primarily homotopic cortical areas. Whenever detected, heterotopic callosal fibers were ascribed to altered sprouting and pruning mechanisms in neurodevelopmental diseases such as CC dysgenesis (CCD). We hypothesized that these heterotopic connections had been grossly underestimated due to their complex nature and methodological limitations. We used the Allen Mouse Brain Connectivity Atlas and high-resolution diffusion-weighted imaging to identify and quantify homotopic and heterotopic callosal connections in mice, marmosets, and humans. In all 3 species, we show that ~75% of interhemispheric callosal connections are heterotopic and comprise the central core of the CC, whereas the homotopic fibers lay along its periphery. We also demonstrate that heterotopic connections have an essential role in determining the global properties of brain networks. These findings reshape our view of the corpus callosum's role as the primary hub for interhemispheric brain communication, directly impacting multiple neuroscience fields investigating cortical connectivity, neurodevelopment, and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Diego Szczupak
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Pamela Meneses Iack
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil
| | - Danielle Rayêe
- Institute of Ophtalmology and Visual Sciences, Albert Einstein College of Medicine, NY 10461, United States
| | - Cirong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil
- D’Or Institute Research and Education (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Fernanda Tovar-Moll
- D’Or Institute Research and Education (IDOR), Rio de Janeiro 22281-100, Brazil
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
3
|
Rayêe D, Iack PM, Christoff RR, Lourenço MR, Bonifácio C, Boltz J, Lent R, Garcez PP. The Dynamics of Axon Bifurcation Development in the Cerebral Cortex of Typical and Acallosal Mice. Neuroscience 2021; 477:14-24. [PMID: 34601063 DOI: 10.1016/j.neuroscience.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
The corpus callosum (CC) is a major interhemispheric commissure of placental mammals. Early steps of CC formation rely on guidance strategies, such as axonal branching and collateralization. Here we analyze the time-course dynamics of axonal bifurcation during typical cortical development or in a CC dysgenesis mouse model. We use Swiss mice as a typical CC mouse model and find that axonal bifurcation rates rise in the cerebral cortex from embryonic day (E)17 and are reduced by postnatal day (P)9. Since callosal neurons populate deep and superficial cortical layers, we compare the axon bifurcation ratio between those neurons by electroporating ex vivo brains at E13 and E15, using eGFP reporter to label the newborn neurons on organotypic slices. Our results suggest that deep layer neurons bifurcate 32% more than superficial ones. To investigate axonal bifurcation in CC dysgenesis, we use BALB/c mice as a spontaneous CC dysgenesis model. BALB/c mice present a typical layer distribution of SATB2 callosal cells, despite the occurrence of callosal anomalies. However, using anterograde DiI tracing, we find that BALB/c mice display increased rates of axonal bifurcations during early and late cortical development in the medial frontal cortex. Midline guidepost cells adjacent to the medial frontal cortex are significant reduced in the CC dysgenesis mouse model. Altogether these data suggest that callosal collateral axonal exuberance is maintained in the absence of midline guidepost signaling and might facilitate aberrant connections in the CC dysgenesis mouse model.
Collapse
Affiliation(s)
- Danielle Rayêe
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Institute of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pamela Meneses Iack
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Raissa R Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil
| | - Michele R Lourenço
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro - IFRJ, Brazil
| | | | - Jürgen Boltz
- Institute of General Zoology and Animal Physiology, University of Jena, 07743 Jena, Germany
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Institute D'Or for Research and Education, Rio de Janeiro, Brazil
| | - Patricia P Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Chovsepian A, Empl L, Correa D, Bareyre FM. Heterotopic Transcallosal Projections Are Present throughout the Mouse Cortex. Front Cell Neurosci 2017; 11:36. [PMID: 28270750 PMCID: PMC5318386 DOI: 10.3389/fncel.2017.00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
Transcallosal projection neurons are a population of pyramidal excitatory neurons located in layers II/III and to a lesser extent layer V of the cortex. Their axons form the corpus callosum thereby providing an inter-hemispheric connection in the brain. While transcallosal projection neurons have been described in some detail before, it is so far unclear whether they are uniformly organized throughout the cortex or whether different functional regions of the cortex contain distinct adaptations of their transcallosal connectivity. To address this question, we have therefore conducted a systematic analysis of transcallosal projection neurons and their axons across six distinct stereotactic coordinates in the mouse cortex that cover different areas of the motor and somatosensory cortices. Using anterograde and retrograde tracing techniques, we found that in agreement with previous studies, most of the transcallosal projections show a precise homotopic organization. The somata of these neurons are predominantly located in layer II/III and layer V but notably smaller numbers of these cells are also found in layer IV and layer VI. In addition, regional differences in the distribution of their somata and the precision of their projections exist indicating that while transcallosal neurons show a uniform organization throughout the mouse cortex, there is a sizeable fraction of these connections that are heterotopic. Our study thus provides a comprehensive characterization of transcallosal connectivity in different cortical areas that can serve as the basis for further investigations of the establishment of inter-hemispheric projections in development and their alterations in disease.
Collapse
Affiliation(s)
- Alexandra Chovsepian
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München Munich, Germany
| | - Laura Empl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München Munich, Germany
| | - Daphne Correa
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München Munich, Germany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität MünchenMunich, Germany; Munich Cluster of System Neurology (SyNergy), Ludwig-Maximilians Universität MünchenMunich, Germany
| |
Collapse
|
5
|
|
6
|
Watakabe A, Takaji M, Kato S, Kobayashi K, Mizukami H, Ozawa K, Ohsawa S, Matsui R, Watanabe D, Yamamori T. Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi-like detail for mouse corticothalamic and corticocortical cells: a double viral infection method. Front Neural Circuits 2014; 8:110. [PMID: 25278843 PMCID: PMC4166322 DOI: 10.3389/fncir.2014.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/22/2014] [Indexed: 11/21/2022] Open
Abstract
Here we present a novel tracing technique to stain projection neurons in Golgi-like detail by double viral infection. We used retrograde lentiviral vectors and adeno-associated viral vectors (AAV) to drive “TET-ON/TET-OFF system” in neurons connecting two regions. Using this method, we successfully labeled the corticothalamic (CT) cells of the mouse somatosensory barrel field (S1BF) and motor cortex (M1) in their entirety. We also labeled contra- and ipsilaterally-projecting corticocortical (CC) cells of M1 by targeting contralateral M1 or ipsilateral S1 for retrograde infection. The strength of this method is that we can observe the morphology of specific projection neuron subtypes en masse. We found that the group of CT cells extends their dendrites and intrinsic axons extensively below but not within the thalamorecipient layer in both S1BF and M1, suggesting that the primary target of this cell type is not layer 4. We also found that both ipsi- and contralateral targeting CC cells in M1 commonly exhibit widespread collateral extensions to contralateral M1 (layers 1–6), bilateral S1 and S2 (layers 1, 5 and 6), perirhinal cortex (layers 1, 2/3, 5, and 6), striatum and claustrum. These findings not only strengthened the previous findings of single cell tracings but also extended them by enabling cross-area comparison of CT cells or comparison of CC cells of two different labeling.
Collapse
Affiliation(s)
- Akiya Watakabe
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Masafumi Takaji
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine Fukushima, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University Shimotsuke, Japan
| | - Sonoko Ohsawa
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| | - Ryosuke Matsui
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Dai Watanabe
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University Kyoto, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology Okazaki, Japan
| |
Collapse
|
7
|
Srivatsa S, Parthasarathy S, Britanova O, Bormuth I, Donahoo AL, Ackerman SL, Richards LJ, Tarabykin V. Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation. Nat Commun 2014; 5:3708. [PMID: 24739528 PMCID: PMC3997811 DOI: 10.1038/ncomms4708] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/20/2014] [Indexed: 02/08/2023] Open
Abstract
The pyramidal neurons of the mammalian neocortex form two major types of long-range connections-corticocortical and cortico-subcortical. The transcription factors Satb2 and Ctip2 are critical regulators of neuronal cell fate that control interhemispheric versus corticofugal connections respectively. Here, we investigate the axon guidance molecules downstream of Satb2 and Ctip2 that establish these connections. We show that the expression of two Netrin1 receptors- DCC and Unc5C is under direct negative regulation by Satb2 and Ctip2, respectively. Further, we show that the Netrin1-Unc5C/DCC interaction is involved in controlling the interhemispherical projection in a subset of early born, deep layer callosal neurons.
Collapse
Affiliation(s)
- Swathi Srivatsa
- 1] Institute for Cell and Neurobiology, Center for Anatomy, Charité- Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany [2] Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse. 3, 37075 Goettingen, Germany [3]
| | - Srinivas Parthasarathy
- 1] Institute for Cell and Neurobiology, Center for Anatomy, Charité- Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany [2] Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse. 3, 37075 Goettingen, Germany [3]
| | - Olga Britanova
- 1] Institute for Cell and Neurobiology, Center for Anatomy, Charité- Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany [2] Shemyakin and Ovchinnikov Institute for Bioorganic Chemistry RAS, Miklukho-Maklaya, Moscow 117997, Russia
| | - Ingo Bormuth
- Institute for Cell and Neurobiology, Center for Anatomy, Charité- Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| | - Amber-Lee Donahoo
- Queensland Brain Institute, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susan L Ackerman
- Howard Hughes Medical Institute and The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA
| | - Linda J Richards
- Queensland Brain Institute, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Victor Tarabykin
- Institute for Cell and Neurobiology, Center for Anatomy, Charité- Universitätsmedizin Berlin, Virchowweg 6, 10117 Berlin, Germany
| |
Collapse
|
8
|
Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience 2013; 248:499-528. [PMID: 23727006 DOI: 10.1016/j.neuroscience.2013.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022]
Abstract
The mature neocortex is a unique six-layered mammalian brain region. It is composed of morphologically and functionally distinct subpopulations of primary projection neurons that form complex circuits across the central nervous system. The precisely-timed generation of projection neurons from neural stem cells governs their differentiation, postmitotic specification, and signaling, and is critical for cognitive and sensorimotor ability. Developmental perturbations to the birthdate, location, and connectivity of neocortical neurons are observed in neurological and psychiatric disorders. These facts are highlighting the importance of the precise spatiotemporal development of the neocortex regulated by intricate transcriptional, but also complex post-transcriptional events. Indeed, mRNA transcripts undergo many post-transcriptional regulatory steps before the production of functional proteins, which specify neocortical neural stem cells and subpopulations of neocortical neurons. Therefore, particular attention is paid to the differential post-transcriptional regulation of key transcripts by RNA-binding proteins, including splicing, localization, stability, and translation. We also present a transcriptome screen of candidate molecules associated with post-transcriptional mRNA processing that are differentially expressed at key developmental time points across neocortical prenatal neurogenesis.
Collapse
|
9
|
Lickiss T, Cheung AFP, Hutchinson CE, Taylor JSH, Molnár Z. Examining the relationship between early axon growth and transcription factor expression in the developing cerebral cortex. J Anat 2012; 220:201-11. [PMID: 22212101 DOI: 10.1111/j.1469-7580.2011.01466.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The transcription factors Satb2 (special AT-rich sequence binding protein 2) and Ctip2 (COUP-TF interacting protein 2) have been shown to be required for callosal and corticospinal axon growth respectively from subtypes of cerebral cortex projection neurons. In this study we investigated early stages of directed axon growth in the embryonic mouse cerebral cortex, and studied the possible correlation with the expression of Satb2 and Ctip2. Electroporation of an EYFP-expressing plasmid at embryonic day 13.5 to label developing projection neurons revealed that directed axon growth is first seen in radially migrating neurons in the intermediate zone (IZ), prior to migration into the cortical plate, as has been suggested previously. Onset of expression of SATB2 and CTIP2 was also observed in the IZ, correlating well with this stage of migration and initiation of axon growth. Immunohistochemical staining through embryonic and early postnatal development revealed a significant population of Satb2/Ctip2 co-expressing cells, while retrograde axon tracing from the corpus callosum at embryonic day 18.5 back-labelled many neurons with bi-directional axon processes. However, through retrograde tracing and simultaneous immunohistochemical staining we show that these bi-directional processes do not correlate with Satb2/Ctip2 co-expression. Our work shows that although expression of these transcription factors correlates well with the appearance of directed axon growth during cortical development, the transcriptional code underlying the bi-directional axonal projections of early neocortical neurons is not likely to be the result of Satb2/Ctip2 co-expression.
Collapse
Affiliation(s)
- Tom Lickiss
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | |
Collapse
|
10
|
Fame RM, MacDonald JL, Macklis JD. Development, specification, and diversity of callosal projection neurons. Trends Neurosci 2010; 34:41-50. [PMID: 21129791 DOI: 10.1016/j.tins.2010.10.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 10/04/2010] [Accepted: 10/08/2010] [Indexed: 01/24/2023]
Abstract
Callosal projection neurons (CPN) are a diverse population of neocortical projection neurons that connect the two hemispheres of the cerebral cortex via the corpus callosum. They play key roles in high-level associative connectivity, and have been implicated in cognitive syndromes of high-level associative dysfunction, such as autism spectrum disorders. CPN evolved relatively recently compared to other cortical neuron populations, and have undergone disproportionately large expansion from mouse to human. While much is known about the anatomical trajectory of developing CPN axons, and progress has been made in identifying cellular and molecular controls over midline crossing, only recently have molecular-genetic controls been identified that specify CPN populations, and help define CPN subpopulations. In this review, we discuss the development, diversity and evolution of CPN.
Collapse
Affiliation(s)
- Ryann M Fame
- MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
11
|
Torre ER, Gutekunst CA, Gross RE. Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in vitro but a mild in vivo phenotype. Mol Cell Neurosci 2010; 44:135-53. [PMID: 20298787 DOI: 10.1016/j.mcn.2010.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/17/2010] [Accepted: 03/03/2010] [Indexed: 12/23/2022] Open
Abstract
Here we explore the role of semaphorin 3A and 3F (Sema3A, Sema3F) in the formation of the mesotelencephalic pathway. We show that Sema3A and 3F are expressed in the ventral mesencephalon (VM) of E13.5 rat embryos; the receptors Neuropilin 1 and Neuropilin 2, and co-receptors L1CAM, NrCAM, and Plexins A1 and A3 but not A4 are expressed by VM dopaminergic neurons; these neurons bind Sema3A and 3F in vitro which induces collapse of their growth cones and elicits, with different potencies, a repulsive response; and this response is absent in axons from Nrp1 and Nrp2 null embryos. Despite these in vitro effects, only very mild anatomical defects were detected in the organization of the mesotelencephalic pathway in embryonic and adult Nrp1 or Nrp2 null mice. However, the dopaminergic meso-habenular pathway and catecholaminergic neurons in the parafascicular and paraventricular nuclei of the thalamus were significantly affected in Nrp2 null mice. These data are consistent with a model whereby Sema3A and 3F, in combination with other guidance molecules, contributes to the navigation of DA axons to their final synaptic targets.
Collapse
Affiliation(s)
- Enrique R Torre
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
12
|
Jovanov-Milosević N, Culjat M, Kostović I. Growth of the human corpus callosum: modular and laminar morphogenetic zones. Front Neuroanat 2009; 3:6. [PMID: 19562029 PMCID: PMC2697006 DOI: 10.3389/neuro.05.006.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 05/21/2009] [Indexed: 01/15/2023] Open
Abstract
The purpose of this focused review is to present and discuss recent data on the changing organization of cerebral midline structures that support the growth and development of the largest commissure in humans, the corpus callosum. We will put an emphasis on the callosal growth during the period between 20 and 45 postconceptual weeks (PCW) and focus on the advantages of a correlated histological/magnetic resonance imaging (MRI) approach. The midline structures that mediate development of the corpus callosum in rodents, also mediate its early growth in humans. However, later phases of callosal growth in humans show additional medial transient structures: grooves made up of callosal septa and the subcallosal zone. These modular (septa) and laminar (subcallosal zone) structures enable the growth of axons along the ventral callosal tier after 18 PCW, during the rapid increase in size of the callosal midsagittal cross-section area. Glial fibrillary acidic protein positive cells, neurons, guidance molecule semaphorin3A in cells and extracellular matrix (ECM), and chondroitin sulfate proteoglycan in the ECM have been identified along the ventral callosal tier in the protruding septa and subcallosal zone. Postmortem MRI at 3 T can demonstrate transient structures based on higher water content in ECM, and give us the possibility to follow the growth of the corpus callosum in vivo, due to the characteristic MR signal. Knowledge about structural properties of midline morphogenetic structures may facilitate analysis of the development of interhemispheric connections in the normal and abnormal fetal human brain.
Collapse
|