1
|
Brazdis RM, von Zimmermann C, Lenz B, Kornhuber J, Mühle C. Peripheral Upregulation of Parkinson's Disease-Associated Genes Encoding α-Synuclein, β-Glucocerebrosidase, and Ceramide Glucosyltransferase in Major Depression. Int J Mol Sci 2024; 25:3219. [PMID: 38542193 PMCID: PMC10970259 DOI: 10.3390/ijms25063219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme β-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.
Collapse
Affiliation(s)
- Razvan-Marius Brazdis
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| |
Collapse
|
2
|
Siddique Y. Neurodegenerative Disorders and the Current State, Pathophysiology, and Management of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:574-595. [PMID: 34477534 DOI: 10.2174/1871527320666210903101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/14/2020] [Accepted: 02/13/2021] [Indexed: 06/13/2023]
Abstract
In the last few decades, major knowledge has been gained about pathophysiological aspects and molecular pathways behind Parkinson's Disease (PD). Based on neurotoxicological studies and postmortem investigations, there is a general concept of how environmental toxicants (neurotoxins, pesticides, insecticides) and genetic factors (genetic mutations in PD-associated proteins) cause depletion of dopamine from substantia nigra pars compacta region of the midbrain and modulate cellular processes leading to the pathogenesis of PD. α-Synuclein, a neuronal protein accumulation in oligomeric form, called protofibrils, is associated with cellular dysfunction and neuronal death, thus possibly contributing to PD propagation. With advances made in identifying loci that contribute to PD, molecular pathways involved in disease pathogenesis are now clear, and introducing therapeutic strategy at the right time may delay the progression. Biomarkers for PD have helped monitor PD progression; therefore, personalized therapeutic strategies can be facilitated. In order to further improve PD diagnostic and prognostic accuracy, independent validation of biomarkers is required.
Collapse
Affiliation(s)
- Yasir Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
3
|
Fitzgerald PJ. Elevated norepinephrine may interact with alpha-synuclein to promote Parkinson's disease and DLB. Acta Neurol Scand 2022; 145:3-4. [PMID: 34854078 DOI: 10.1111/ane.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022]
|
4
|
Rosado-Ramos R, Godinho-Pereira J, Marques D, Figueira I, Fleming Outeiro T, Menezes R, Nunes dos Santos C. Small Molecule Fisetin Modulates Alpha-Synuclein Aggregation. Molecules 2021; 26:3353. [PMID: 34199487 PMCID: PMC8199635 DOI: 10.3390/molecules26113353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds are thought to be important to prevent neurodegenerative diseases (ND). Parkinson's Disease (PD) is a neurodegenerative disorder known for its typical motor features, the deposition of α-synuclein (αsyn)-positive inclusions in the brain, and for concomitant cellular pathologies that include oxidative stress and neuroinflammation. Neuroprotective activity of fisetin, a dietary flavonoid, was evaluated against main hallmarks of PD in relevant cellular models. At physiologically relevant concentrations, fisetin protected SH-SY5Y cells against oxidative stress overtaken by tert-butyl hydroperoxide (t-BHP) and against methyl-4-phenylpyridinuim (MPP+)-induced toxicity in dopaminergic neurons, the differentiated Lund human Mesencephalic (LUHMES) cells. In this cellular model, fisetin promotes the increase of the levels of dopamine transporter. Remarkably, fisetin reduced the percentage of cells containing αsyn inclusions as well as their size and subcellular localization in a yeast model of αsyn aggregation. Overall, our data show that fisetin exerts modulatory activities toward common cellular pathologies present in PD; remarkably, it modulates αsyn aggregation, supporting the idea that diets rich in this compound may prove beneficial.
Collapse
Affiliation(s)
- Rita Rosado-Ramos
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal;
| | - Joana Godinho-Pereira
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Daniela Marques
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal;
| | - Inês Figueira
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany;
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Regina Menezes
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal;
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Cláudia Nunes dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Av. da República, Apartado 12, 2781-901 Oeiras, Portugal; (R.R.-R.); (J.G.-P.); (I.F.); (R.M.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
5
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
6
|
Fouka M, Mavroeidi P, Tsaka G, Xilouri M. In Search of Effective Treatments Targeting α-Synuclein Toxicity in Synucleinopathies: Pros and Cons. Front Cell Dev Biol 2020; 8:559791. [PMID: 33015057 PMCID: PMC7500083 DOI: 10.3389/fcell.2020.559791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD), multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB) represent pathologically similar, progressive neurodegenerative disorders characterized by the pathological aggregation of the neuronal protein α-synuclein. PD and DLB are characterized by the abnormal accumulation and aggregation of α-synuclein in proteinaceous inclusions within neurons named Lewy bodies (LBs) and Lewy neurites (LNs), whereas in MSA α-synuclein inclusions are mainly detected within oligodendrocytes named glial cytoplasmic inclusions (GCIs). The presence of pathologically aggregated α-synuclein along with components of the protein degradation machinery, such as ubiquitin and p62, in LBs and GCIs is considered to underlie the pathogenic cascade that eventually leads to the severe neurodegeneration and neuroinflammation that characterizes these diseases. Importantly, α-synuclein is proposed to undergo pathogenic misfolding and oligomerization into higher-order structures, revealing self-templating conformations, and to exert the ability of "prion-like" spreading between cells. Therefore, the manner in which the protein is produced, is modified within neural cells and is degraded, represents a major focus of current research efforts in the field. Given that α-synuclein protein load is critical to disease pathogenesis, the identification of means to limit intracellular protein burden and halt α-synuclein propagation represents an obvious therapeutic approach in synucleinopathies. However, up to date the development of effective therapeutic strategies to prevent degeneration in synucleinopathies is limited, due to the lack of knowledge regarding the precise mechanisms underlying the observed pathology. This review critically summarizes the recent developed strategies to counteract α-synuclein toxicity, including those aimed to increase protein degradation, to prevent protein aggregation and cell-to-cell propagation, or to engage antibodies against α-synuclein and discuss open questions and unknowns for future therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
7
|
The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21165724. [PMID: 32785033 PMCID: PMC7460874 DOI: 10.3390/ijms21165724] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD). Genetic causes and risk factors play a central role in disease pathophysiology and enable the identification of overlapping mechanisms and pathways. Here, we focus on clinico-genetic studies of causal variants and overlapping clinical and cellular features of ASD and PD. Several genes and genomic regions were selected for our review, including SNCA (alpha-synuclein), PARK2 (parkin RBR E3 ubiquitin protein ligase), chromosome 22q11 deletion/DiGeorge region, and FMR1 (fragile X mental retardation 1) repeat expansion, which influence the development of both ASD and PD, with converging features related to synaptic function and neurogenesis. Both PD and ASD display alterations and impairments at the synaptic level, representing early and key disease phenotypes, which support the hypothesis of converging mechanisms between the two types of diseases. Therefore, understanding the underlying molecular mechanisms might inform on common targets and therapeutic approaches. We propose to re-conceptualize how we understand these disorders and provide a new angle into disease targets and mechanisms linking neurodevelopmental disorders and neurodegeneration.
Collapse
|
8
|
Alpha-Synuclein RNA Expression is Increased in Major Depression. Int J Mol Sci 2019; 20:ijms20082029. [PMID: 31027150 PMCID: PMC6515395 DOI: 10.3390/ijms20082029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023] Open
Abstract
Alpha-synuclein (SNCA) is a small membrane protein that plays an important role in neuro-psychiatric diseases. It is best known for its abnormal subcellular aggregation in Lewy bodies that serves as a hallmark of Parkinson’s disease (PD). Due to the high comorbidity of PD with depression, we investigated the role of SNCA in patients suffering from major depressive disorder (MDD). SNCA mRNA expression levels were analyzed in peripheral blood cells of MDD patients and a healthy control group. SNCA mRNA expression was positively correlated with severity of depression as indicated by psychometric assessment. We found a significant increase in SNCA mRNA expression levels in severely depressed patients compared with controls. Thus, SNCA analysis could be a helpful target in the search for biomarkers of MDD.
Collapse
|
9
|
Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology. Int J Mol Sci 2019; 20:ijms20010141. [PMID: 30609739 PMCID: PMC6337145 DOI: 10.3390/ijms20010141] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein–protein and protein–lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it.
Collapse
|
10
|
Chlorella sorokiniana Extract Improves Short-Term Memory in Rats. Molecules 2016; 21:molecules21101311. [PMID: 27689989 PMCID: PMC6274193 DOI: 10.3390/molecules21101311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/28/2023] Open
Abstract
Increasing evidence shows that eukaryotic microalgae and, in particular, the green microalga Chlorella, can be used as natural sources to obtain a whole variety of compounds, such as omega (ω)-3 and ω-6 polyunsatured fatty acids (PUFAs). Although either beneficial or toxic effects of Chlorella sorokiniana have been mainly attributed to its specific ω-3 and ω-6 PUFAs content, the underlying molecular pathways remain to be elucidated yet. Here, we investigate the effects of an acute oral administration of a lipid extract of Chlorella sorokiniana, containing mainly ω-3 and ω-6 PUFAs, on cognitive, emotional and social behaviour in rats, analysing possible underlying neurochemical alterations. Our results showed improved short-term memory in Chlorella sorokiniana-treated rats compared to controls, without any differences in exploratory performance, locomotor activity, anxiety profile and depressive-like behaviour. On the other hand, while the social behaviour of Chlorella sorokiniana-treated animals was significantly decreased, no effects on aggressivity were observed. Neurochemical investigations showed region-specific effects, consisting in an elevation of noradrenaline (NA) and serotonin (5-HT) content in hippocampus, but not in the prefrontal cortex and striatum. In conclusion, our results point towards a beneficial effect of Chlorella sorokiniana extract on short-term memory, but also highlight the need of caution in the use of this natural supplement due to its possible masked toxic effects.
Collapse
|
11
|
Bleasel JM, Halliday GM, Kim WS. Animal modeling an oligodendrogliopathy--multiple system atrophy. Acta Neuropathol Commun 2016; 4:12. [PMID: 26860328 PMCID: PMC4748629 DOI: 10.1186/s40478-016-0279-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/23/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare, yet rapidly-progressive neurodegenerative disease that presents clinically with autonomic failure in combination with parkinsonism or cerebellar ataxia. The definitive neuropathology differentiating MSA from Lewy body diseases is the presence of α-synuclein aggregates in oligodendrocytes (called glial cytoplasmic inclusion or GCI) rather than the fibrillar aggregates in neurons (called Lewy bodies). This makes the pathological pathway(s) in MSA unique in that oligodendrocytes are involved rather than predominantly neurons, as is most other neurodegenerative disorders. MSA is therefore regarded as an oligodendrogliopathy. The etiology of MSA is unknown. No definitive risk factors have been identified, although α-synuclein and other genes have been variably linked to MSA risk. Utilization of postmortem brain tissues has greatly advanced our understanding of GCI pathology and the subsequent neurodegeneration. However, extrapolating the early pathogenesis of MSA from such resource has been difficult and limiting. In recent years, cell and animal models developed for MSA have been instrumental in delineating unique MSA pathological pathways, as well as aiding in clinical phenotyping. The purpose of this review is to bring together and discuss various animal models that have been developed for MSA and how they have advanced our understanding of MSA pathogenesis, particularly the dynamics of α-synuclein aggregation. This review will also discuss how animal models have been used to explore potential therapeutic avenues for MSA, and future directions of MSA modeling.
Collapse
|
12
|
Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system. Neurobiol Dis 2016; 88:44-54. [PMID: 26777664 DOI: 10.1016/j.nbd.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/07/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis.
Collapse
|
13
|
Abstract
Microtubules (MTs) are dynamic polymers consisting of α/β tubulin dimers and playing a plethora of roles in eukaryotic cells. Looking at neurons, they are key determinants of neuronal polarity, axonal transport and synaptic plasticity. The concept that MT dysfunction can participate in, and perhaps lead to, Parkinson's disease (PD) progression has been suggested by studies using toxin-based and genetic experimental models of the disease. Here, we first learn lessons from MPTP and rotenone as well as from the PD related genes, including SNCA and LRRK2, and then look at old and new evidence regarding the interplay between parkin and MTs. Data from experimental models and human cells point out that parkin regulates MT stability and strengthen the link between MTs and PD paving the way to a viable strategy for the management of the disease.
Collapse
|
14
|
Huot P, Fox SH, Brotchie JM. Monoamine reuptake inhibitors in Parkinson's disease. PARKINSON'S DISEASE 2015; 2015:609428. [PMID: 25810948 PMCID: PMC4355567 DOI: 10.1155/2015/609428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Department of Pharmacology and Division of Neurology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Susan H. Fox
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | - Jonathan M. Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
15
|
Gruden MA, Davydova TV, Narkevich VB, Fomina VG, Wang C, Kudrin VS, Morozova-Roche LA, Sewell RD. Noradrenergic and serotonergic neurochemistry arising from intranasal inoculation with α-synuclein aggregates which incite parkinsonian-like symptoms. Behav Brain Res 2015; 279:191-201. [DOI: 10.1016/j.bbr.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 12/13/2022]
|
16
|
Duka T, Anderson SM, Collins Z, Raghanti MA, Ely JJ, Hof PR, Wildman DE, Goodman M, Grossman LI, Sherwood CC. Synaptosomal lactate dehydrogenase isoenzyme composition is shifted toward aerobic forms in primate brain evolution. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:216-30. [PMID: 24686273 PMCID: PMC4096905 DOI: 10.1159/000358581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/13/2014] [Indexed: 01/11/2023]
Abstract
With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement.
Collapse
Affiliation(s)
- Tetyana Duka
- Department of Anthropology, The George Washington University, Washington, DC
| | - Sarah M. Anderson
- Department of Anthropology, The George Washington University, Washington, DC
| | - Zachary Collins
- Department of Anthropology, The George Washington University, Washington, DC
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | - John J. Ely
- Alamogordo Primate Facility, Holloman Air Force Base, NM
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Derek E. Wildman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Morris Goodman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC
| |
Collapse
|
17
|
Oaks AW, Sidhu A. Parallel mechanisms for direct and indirect membrane protein trafficking by synucleins. Commun Integr Biol 2013; 6:e26794. [PMID: 24563712 PMCID: PMC3917945 DOI: 10.4161/cib.26794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 12/11/2022] Open
Abstract
More than 2 decades of work have yet to conclusively determine the physiological role of the synuclein proteins, even though these abundant brain constituents are participants in a broad array of cellular processes. Among proposed physiological roles is a functional interaction between the synuclein proteins and monoamine transporters contributing to transporter trafficking through direct protein–protein interactions. Recent work shows that an antagonistic effect of the synuclein proteins on the secretory functions of the endoplasmic reticulum and the Golgi apparatus appears to simultaneously influence trafficking of the dopamine transporter and other membrane proteins. Here, we highlight these new findings in view of the broader literature identifying the role of synucleins in protein trafficking and suggest emerging themes for ongoing and future work in the field of synuclein biology.
Collapse
Affiliation(s)
- Adam W Oaks
- Laboratory of Molecular Neurochemistry; Department of Biochemistry and Molecular & Cellular Biology; Georgetown University Medical Center; Washington, DC USA
| | - Anita Sidhu
- Laboratory of Molecular Neurochemistry; Department of Biochemistry and Molecular & Cellular Biology; Georgetown University Medical Center; Washington, DC USA
| |
Collapse
|
18
|
Arapulisamy O, Mannangatti P, Jayanthi LD. Regulated norepinephrine transporter interaction with the neurokinin-1 receptor establishes transporter subcellular localization. J Biol Chem 2013; 288:28599-610. [PMID: 23979140 DOI: 10.1074/jbc.m113.472878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr(258) + Ser(259) motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation.
Collapse
Affiliation(s)
- Obulakshmi Arapulisamy
- From the Department of Neurosciences, Division of Neuroscience Research, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | | | | |
Collapse
|
19
|
Oaks AW, Marsh-Armstrong N, Jones JM, Credle JJ, Sidhu A. Synucleins antagonize endoplasmic reticulum function to modulate dopamine transporter trafficking. PLoS One 2013; 8:e70872. [PMID: 23967127 PMCID: PMC3742698 DOI: 10.1371/journal.pone.0070872] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 06/25/2013] [Indexed: 01/20/2023] Open
Abstract
Synaptic re-uptake of dopamine is dependent on the dopamine transporter (DAT), which is regulated by its distribution to the cell surface. DAT trafficking is modulated by the Parkinson's disease-linked protein alpha-synuclein, but the contribution of synuclein family members beta-synuclein and gamma-synuclein to DAT trafficking is not known. Here we use SH-SY5Y cells as a model of DAT trafficking to demonstrate that all three synucleins negatively regulate cell surface distribution of DAT. Under these conditions the synucleins limit export of DAT from the endoplasmic reticulum (ER) by impairment of the ER-Golgi transition, leading to accumulation of DAT in this compartment. This mechanism for regulating DAT export indirectly through effects on ER and Golgi function represents a previously unappreciated role for the extended synuclein family that is likely applicable to trafficking of the many proteins that rely on the secretory pathway.
Collapse
Affiliation(s)
- Adam W. Oaks
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Nicholas Marsh-Armstrong
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, United States of America
| | - Jessica M. Jones
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Joel J. Credle
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Anita Sidhu
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
20
|
Oaks AW, Frankfurt M, Finkelstein DI, Sidhu A. Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function. PLoS One 2013; 8:e60378. [PMID: 23560093 PMCID: PMC3613356 DOI: 10.1371/journal.pone.0060378] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022] Open
Abstract
Expression of A53T mutant human alpha-synuclein under the mouse prion promoter is among the most successful transgenic models of Parkinson's disease. Accumulation of A53T alpha-synuclein causes adult mice to develop severe motor impairment resulting in early death at 8–12 months of age. In younger, pre-symptomatic animals, altered motor activity and anxiety-like behaviors have also been reported. These behavioral changes, which precede severe neuropathology, may stem from non-pathological functions of alpha-synuclein, including modulation of monoamine neurotransmission. Our analysis over the adult life-span of motor activity, anxiety-like, and depressive-like behaviors identifies perturbations both before and after the onset of disease. Young A53T mice had increased distribution of the dopamine transporter (DAT) to the membrane that was associated with increased striatal re-uptake function. DAT function decreased with aging, and was associated with neurochemical alterations that included increased expression of beta-synuclein and gamma synuclein. Prior to normalization of dopamine uptake, transient activation of Tau kinases and hyperphosphorylation of Tau in the striatum were also observed. Aged A53T mice had reduced neuron counts in the substantia nigra pars compacta, yet striatal medium spiny neuron dendritic spine density was largely maintained. These findings highlight the involvement of the synuclein family of proteins and phosphorylation of Tau in the response to dopaminergic dysfunction of the nigrostriatal pathway.
Collapse
Affiliation(s)
- Adam W. Oaks
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Maya Frankfurt
- Department of Science Education, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Anita Sidhu
- Laboratory of Molecular Neurochemistry, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
21
|
Scarr E, Dean B. Altered neuronal markers following treatment with mood stabilizer and antipsychotic drugs indicate an increased likelihood of neurotransmitter release. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2012; 10:25-33. [PMID: 23429852 PMCID: PMC3569157 DOI: 10.9758/cpn.2012.10.1.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/10/2011] [Indexed: 01/08/2023]
Abstract
Objective Given the ability of mood stabilizers and antipsychotics to promote cell proliferation, we wanted to determine the effects of these drugs on neuronal markers previously reported to be altered in subjects with psychiatric disorders. Methods Male Sprauge-Dawley rats were treated with vehicle (ethanol), lithium (25.5 mg per day), haloperidol (0.1 mg/kg), olanzapine (1.0 mg/kg) or a combination of lithium and either of the antipsychotic drugs for 28 days. Levels of cortical synaptic (synaptosomal associated protein-25, synaptophysin, vesicle associated protein and syntaxin) and structural (neural cell adhesion molecule and alpha-synuclein) proteins were determined in each treatment group using Western blots. Results Compared to the vehicle treated group; animals treated with haloperidol had greater levels of synaptosomal associated protein-25 (p<0.01) and neural cell adhesion molecule (p<0.05), those treated with olanzapine had greater levels of synaptophysin (p<0.01) and syntaxin (p<0.01). Treatment with lithium alone did not affect the levels of any of the proteins. Combining lithium and haloperidol resulted in greater levels of synaptophysin (p<0.01), synaptosomal associated protein-25 (p<0.01) and neural cell adhesion molecule (p<0.01). The combination of lithium and olanzapine produced greater levels of synaptophysin (p<0.01) and alpha-synuclein (p<0.05). Conclusion Lithium alone had no effect on the neuronal markers. However, haloperidol and olanzapine affected different presynaptic markers. Combining lithium with olanzapine additionally increased alpha-synuclein. These drug effects need to be taken into account by future studies examining presynaptic and neuronal markers in tissue from subjects with psychiatric disorders.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, Rebecca L. Cooper Research Laboratories, The Mental Health Research Institute, Melbourne Brain Centre, The University of Melbourne, Parkville, Australia
| | | |
Collapse
|
22
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 617] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Although well-studied in the context of neurodegenerative disease, a clear biological function for the synuclein proteins remains elusive. Emerging data indicate a role for synucleins in monoamine neurotransmitter homeostasis. A key regulatory component of monoamine neurotransmission is re-uptake of neurotransmitter by the dopamine transporter, norepinephrine transporter, and serotonin transporter, which are common drug targets in the treatment of depression and other mood disorders. Through interactions with these transporters, the neuronal cytoskeleton, and pre-synaptic scaffolding proteins, α-synuclein, β-synuclein, and γ-synuclein modulate trafficking, expression and function of monoamine transporters at the cell surface, thus playing a central role in regulating monoamine re-uptake.
Collapse
|
24
|
NACP-Rep1 relates to Beck Depression Inventory scores in healthy humans. J Mol Neurosci 2011; 44:41-7. [PMID: 21271299 DOI: 10.1007/s12031-011-9493-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
Abstract
Alpha-synuclein (SNCA) is associated with a range of psychiatric diseases including neurodegeneration, alcohol craving, and depression. It regulates cellular homeostasis by virtue of its ability to interfere in dopaminergic, serotonergic, and noradrenergic pathways. To date, it is unclear whether the previously described association between SNCA and depressive symptomatology is limited to females with eating disorders or whether it could be extended to include healthy individuals. We included 105 women and 108 men. Genetic data and mRNA expression analyses were drawn from peripheral blood and the severity of depressive symptoms was quantified by the Beck's Depression Inventory (BDI). We found a significant association between the NACP-Rep1 length polymorphism and the BDI score (p = 0.004). Moreover, there was a significant gender dimorphism regarding mRNA expression of SNCA (p = 0.011). Our analysis revealed no further association between the In4 polymorphism or between the mRNA expression of SNCA and the BDI score. Since this investigation was limited to healthy individuals, conclusions concerning depression according to ICD-10 or DSM-IV cannot be drawn. The reported results may contribute to a better understanding of the molecular mechanisms linked to depressive symptoms.
Collapse
|
25
|
Graham DR, Sidhu A. Mice expressing the A53T mutant form of human alpha-synuclein exhibit hyperactivity and reduced anxiety-like behavior. J Neurosci Res 2010; 88:1777-83. [PMID: 20077428 DOI: 10.1002/jnr.22331] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic mutations associated with alpha-synuclein (alpha-Syn) are implicated in the pathogenesis of Parkinson's disease (PD). PD is primarily a movement disorder, but patients are known to experience anxiety and other mood disorders. In this study, we examined the effect of the hA53T mutation during development by analyzing the protein expression of norepinephrine (NET), serotonin (SERT), and dopamine (DAT) transporters in addition to assessing locomotor and anxiety-like behavior. We observed significant decreases in DAT expression at 8 months in transgenic animals compared with normal and younger mice. We used the elevated plus maze, open-field test, and rotarod apparatus to evaluate wild-type and hA53T hemizygous mice at 2, 8, and 12 months of age. Our results showed that 12-month-old transgenic mice spend more time in the open arms and display a greater number of open entries of the elevated plus maze compared with wild-type controls and younger mice. Open-field test results showed that 12-month-old mice travel a greater distance overall and travel more in the inner zone than either wild-type or younger mice. Rotarod testing showed that 8- and 12-month-old transgenic mice perform better than either wild-type controls or younger mice. Overall, 8-12-month-old transgenic mice showed a trend toward reduced anxiety-like behavior and increased hyperactivity. These results indicate a possible role of the A53T alpha-Syn mutation in anxiety-like and hyperactive behaviors in a PD mouse model, suggesting that these behaviors might be comorbid with this disease.
Collapse
Affiliation(s)
- Dianca R Graham
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC 20007, USA
| | | |
Collapse
|
26
|
Pérez-Sánchez F, Milán M, Buendía P, Cano-Jaimez M, Ambrosio S, Rosenthal A, Fariñas I. Prosurvival effect of human wild-type alpha-synuclein on MPTP-induced toxicity to central but not peripheral catecholaminergic neurons isolated from transgenic mice. Neuroscience 2010; 167:261-76. [PMID: 20156526 DOI: 10.1016/j.neuroscience.2010.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/01/2010] [Accepted: 02/08/2010] [Indexed: 12/15/2022]
Abstract
In the present work we report the generation of a new line of alpha-synuclein (alpha-SYN) transgenic mice in which the human wild-type alpha-SYN cDNA is expressed under the control of a tyrosine hydroxylase (TH) promoter. We provide evidence that the ectopic protein is found in TH expressing neurons of both central and peripheral nervous systems. The transgene is expressed very early in development coinciding with the activity of the TH promoter and in the adult brain the human protein distributes normally to the nerve endings and cell bodies of dopaminergic nigral neurons without any evidence of abnormal aggregation. Our results indicate that expression of human wild-type alpha-SYN does not affect normal development or maintenance of TH immunoreactive nigral neurons, striatal dopamine content, or locomotor activity. Systemic administration of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces a loss of TH immunoreactive nigral neurons and terminals and of dopamine levels to the same degree in both transgenic and non-transgenic adult mice. Intoxication also results in a similar loss of cardiac noradrenaline in both genotypes. Surprisingly, cultured transgenic ventral mesencephalic fetal dopaminergic neurons exhibit complete resistance to cell death induced by 1-methyl-4-phenylpyridinium ion (MPP(+)) intoxication, without changes in dopamine transporter (DAT) surface levels. Interestingly, this protection is not observed in other populations of catecholaminergic neurons such as peripheral sympathetic neurons, despite their high sensitivity to MPP(+)in vitro.
Collapse
Affiliation(s)
- F Pérez-Sánchez
- Departament de Biologia cellular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat de València, 46100 Burjassot, València, Spain.
| | | | | | | | | | | | | |
Collapse
|
27
|
Eriksen J, Jørgensen TN, Gether U. Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges. J Neurochem 2010; 113:27-41. [PMID: 20085610 DOI: 10.1111/j.1471-4159.2010.06599.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dopamine transporter (DAT) plays a key role in regulating dopaminergic signalling in the brain by mediating rapid clearance of dopamine from the synaptic clefts. The psychostimulatory actions of cocaine and amphetamine are primarily the result of a direct interaction of these compounds with DAT leading to attenuated dopamine clearance and for amphetamine even increased dopamine release. In the last decade, intensive efforts have been directed towards understanding the molecular and cellular mechanisms governing the activity and availability of DAT in the plasma membrane of the pre-synaptic neurons. This has led to the identification of a plethora of different kinases, receptors and scaffolding proteins that interact with DAT and hereby either modulate the catalytic activity of the transporter or regulate its trafficking and degradation. Several new tools for studying DAT regulation in live cells have also recently become available such as fluorescently tagged cocaine analogues and fluorescent substrates. Here we review the current knowledge about the role of protein-protein interactions in DAT regulation as well as we describe the most recent methodological developments that have been established to overcome the challenges associated with the study of DAT in endogenous systems.
Collapse
Affiliation(s)
- Jacob Eriksen
- Molecular Neuropharmacology Group and Center for Pharmacogenomics, Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | | | | |
Collapse
|
28
|
Jeannotte AM, McCarthy JG, Sidhu A. Desipramine induced changes in the norepinephrine transporter, alpha- and gamma-synuclein in the hippocampus, amygdala and striatum. Neurosci Lett 2009; 467:86-9. [PMID: 19818834 DOI: 10.1016/j.neulet.2009.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022]
Abstract
The high incidence of depression in Parkinson's disease (PD) has been well documented in the clinic; however, the underlying molecular mechanisms of these overlapping pathologies remain elusive. Using a rodent model of depression, the Wistar-Kyoto (WKY) rat, we previously demonstrated that in the frontal cortex the altered expression and protein interactions of alpha- and gamma-synuclein (alpha-Syn, gamma-Syn) were associated with dysregulated trafficking of the norepinephrine transporter (NET). Chronic treatment with desipramine (DMI), a NET-selective antidepressant, caused a disappearance of depressive-like behavior that was accompanied by a change in alpha-Syn and gamma-Syn expression and their trafficking of NET. Using this same model, we examined the expression of NET, alpha-Syn and gamma-Syn in the hippocampus, amygdale, brainstem, and striatum, all regions implicated in the development or maintenance of depression or PD pathology. Following chronic treatment with DMI, we observed a significant decrease in NET in the hippocampus, amygdala, and brainstem; decrease in gamma-Syn in the hippocampus and amygdala; and, increase in alpha-Syn in the hippocampus and amygdala. Unexpectedly, we observed a significant decrease in alpha-Syn expression in the striatum of the WKY following chronic DMI treatment. The altered expression of NET, alpha-Syn and gamma-Syn in different brain suggest that DMI's ability to improve depressive-like behavior in a rodent is associated with region-specific changes in the regulation of NET by alpha- and gamma-Syn.
Collapse
Affiliation(s)
- Alexis M Jeannotte
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University Medical Center, Georgetown University, Washington, DC 20007, United States
| | | | | |
Collapse
|
29
|
Duka T, Duka V, Joyce JN, Sidhu A. Alpha-Synuclein contributes to GSK-3beta-catalyzed Tau phosphorylation in Parkinson's disease models. FASEB J 2009; 23:2820-30. [PMID: 19369384 DOI: 10.1096/fj.08-120410] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have shown in the parkinsonism-inducing neurotoxin MPP(+)/MPTP model that alpha-Synuclein (alpha-Syn), a presynaptic protein causal in Parkinson's disease (PD), contributes to hyperphosphorylation of Tau (p-Tau), a protein normally linked to tauopathies, such as Alzheimer's disease (AD). Here, we investigated the kinase involved and show that the Tau-specific kinase, glycogen synthase kinase 3beta (GSK-3beta), is robustly activated in various MPP(+)/MPTP models of Parkinsonism (SH-SY5Y cotransfected cells, mesencephalic neurons, transgenic mice overexpressing alpha-Syn, and postmortem striatum of PD patients). The activation of GSK-3beta was absolutely dependent on the presence of alpha-Syn, as indexed by the absence of p-GSK-3beta in cells lacking alpha-Syn and in alpha-Syn KO mice. MPP(+) treatment induced translocation and accumulation of p-GSK-3beta in nuclei of SH-SY5Y cells and mesencephalic neurons. Through coimmunoprecipitation (co-IP), we found that alpha-Syn, pSer396/404-Tau, and p-GSK-3beta exist as a heterotrimeric complex in SH-SY5Y cells. GSK-3beta inhibitors (lithium and TDZD-8) protected against MPP(+)-induced events in SH-SY5Y cells, preventing cell death and p-GSK-3beta formation, by reversing increases in alpha-Syn accumulation and p-Tau formation. These data unveil a previously unappreciated role of alpha-Syn in the induction of p-GSK-3beta, and demonstrate the importance of this kinase in the genesis and maintenance of neurodegenerative changes associated with PD.
Collapse
Affiliation(s)
- Tetyana Duka
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | | | | | | |
Collapse
|
30
|
Wersinger C, Sidhu A. Partial regulation of serotonin transporter function by gamma-synuclein. Neurosci Lett 2009; 453:157-61. [PMID: 19429025 PMCID: PMC2825691 DOI: 10.1016/j.neulet.2009.02.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 02/14/2009] [Accepted: 02/18/2009] [Indexed: 12/27/2022]
Abstract
Human alpha-synuclein (alpha-Syn) is instrumental in maintaining homeostasis of monoamine neurotransmitters in brain, through its trafficking, and regulation of the cell surface expression and, thereby, activity of dopamine, serotonin and norepinephrine transporters. Here we have investigated whether other members of the synuclein family of proteins, gamma-synuclein (gamma-Syn) and beta-synuclein (beta-Syn) can similarly modulate the serotonin transporter (SERT). In Ltk(-) cells co-transfected with SERT and gamma-Syn, gamma-Syn reduced [(3)H]5-HT uptake, in a manner dependent on its expression levels. The decrease in SERT activity was via decreased V(max) of the transporter, without change in K(m), compared to cells expressing only SERT. By contrast, beta-Syn co-expression failed to alter SERT uptake activity, and neither the V(max) nor the K(m) was changed in the presence of beta-Syn. gamma-Syn modulation of SERT was only partial, with a maximal approximately 27% decrease in SERT activity seen even at high expression levels of gamma-Syn. By contrast, alpha-Syn attenuated SERT activity by approximately 65% at identical expression levels as gamma-Syn. Co-immunoprecipitation studies showed the presence of heteromeric protein:protein complexes between gamma-Syn or alpha-Syn and SERT, while beta-Syn failed to physically interact with SERT. Both alpha-Syn and gamma-Syn colocalized with SERT in rat primary raphae nuclei neurons. These studies document a novel physiological role for gamma-Syn in regulating 5-HT synaptic availability and homeostasis, and may be of relevance in depression and mood disorders, where SERT function is dysregulated.
Collapse
Affiliation(s)
| | - Anita Sidhu
- Department of Biochemistry, Georgetown University, Washington D.C. 20007, USA
| |
Collapse
|
31
|
Jeannotte AM, McCarthy JG, Redei EE, Sidhu A. Desipramine modulation of alpha-, gamma-synuclein, and the norepinephrine transporter in an animal model of depression. Neuropsychopharmacology 2009; 34:987-98. [PMID: 18800064 DOI: 10.1038/npp.2008.146] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanisms underlying depression remain elusive. We previously determined that alpha-synuclein (alpha-Syn) modulates the activity and trafficking of the norepinephrine transporter (NET) in a manner that is dependent on its interactions with microtubules (MTs). Here we sought to determine if alpha-Syn, or the other synuclein family members, beta-synuclein (beta-Syn) and gamma-synuclein (gamma-Syn), modulate NET activity in an animal model of depression, the Wistar-Kyoto (WKY) rat. The NET-selective antidepressant desipramine (DMI) was chronically administered for 14 days to WKY rats and the strain from which it was outbred that does not show depressive-like behavior, the Wistar rat. This drug regimen induced significant behavioral improvements in the WKY, but not the Wistar rat, in the forced swim test. In WKY rats there was an overexpression of gamma-Syn which was reduced following DMI treatment. In parallel, DMI caused an increase in both alpha-Syn and NET in the frontal cortex. Frontal cortex synaptosomes from WKY rats were not sensitive to nocodazole, a compound that promotes MT destabilization. However, in WKYs treated with DMI, nocodazole induced an increase in [(3)H]-NE uptake. This trend was reversed in Wistars. Underlying these DMI-induced changes were alterations in the protein interactions between the synucleins and NET with the tubulins. These results are the first to implicate alpha-Syn or gamma-Syn in the pathophysiology of depression and suggest that targeting synucleins may provide a new therapeutic option for depression.
Collapse
Affiliation(s)
- Alexis M Jeannotte
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | | | | | | |
Collapse
|
32
|
Sotiriou E, Vassilatis DK, Vila M, Stefanis L. Selective noradrenergic vulnerability in α-synuclein transgenic mice. Neurobiol Aging 2009; 31:2103-14. [PMID: 19152986 DOI: 10.1016/j.neurobiolaging.2008.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/04/2008] [Accepted: 11/23/2008] [Indexed: 02/02/2023]
Abstract
Classical pathological signs of Parkinson's disease (PD) include loss of dopaminergic neurons in substantia nigra (SN) and noradrenergic neurons in locus coeruleus (LC), and deposition of Lewy bodies rich in the presynaptic protein alpha-synuclein (ASYN). Mammalian genetic models based on ASYN overexpression, however, have generally not reproduced the profound dopaminergic deficit of PD and do not display classical PD phenotypes. In the current study we examined these catecholaminergic systems in transgenic (Tg) mice expressing the A53T mutant of human ASYN under the Prion promoter. Surprisingly we detected a substantial reduction in norepinephrine (NE), but not dopamine (DA), levels in spinal cord, olfactory bulb and striatum of aged (15-month-old), but not young (4-month-old) transgenic compared to control mice. In spinal cord and olfactory bulb of 15-month-old Tg mice there was an age-dependent decrease in tyrosine hydroxylase (TH) protein levels, which in spinal cord was accompanied by a decrease in TH-positive terminals detected by immunohistochemistry. There was no difference in the number of TH-positive neuron cell bodies in SN or LC between Tg and control mice. We conclude that aberrant ASYN, expressed in both SN and LC, induces preferential degeneration of noradrenergic terminals. These observations suggest that in mice the NE may be more vulnerable than the DA system to the toxic effects of aberrant alpha-synuclein, and are in line with the major damage to the NE system that occurs in patients with PD.
Collapse
Affiliation(s)
- Evangelos Sotiriou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece.
| | | | | | | |
Collapse
|
33
|
Fountaine TM, Venda LL, Warrick N, Christian HC, Brundin P, Channon KM, Wade-Martins R. The effect of alpha-synuclein knockdown on MPP+ toxicity in models of human neurons. Eur J Neurosci 2008; 28:2459-73. [PMID: 19032594 DOI: 10.1111/j.1460-9568.2008.06527.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein alpha-synuclein is central to the pathophysiology of Parkinson's disease (PD) but its role in the development of neurodegeneration remains unclear. alpha-Synuclein-knockout mice develop without gross abnormality and are resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial inhibitor widely used to model parkinsonism. Here we show that differentiated human dopaminergic neuron-like cells also have increased resistance to 1-methyl-4-phenylpyridine (MPP+), the active metabolite of MPTP, when alpha-synuclein is knocked down using RNA interference. In attempting to understand how this occurred we found that lowering alpha-synuclein levels caused changes to intracellular vesicles, dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2), each of which is known to be an important component of the early events leading to MPP+ toxicity. Knockdown of alpha-synuclein reduced the availability of DAT on the neuronal surface by 50%, decreased the total number of intracellular vesicles by 37% but increased the density of VMAT2 molecules per vesicle by 2.8-fold. However, these changes were not associated with any reduction in MPP+ -induced superoxide production, suggesting that alpha-synuclein knockdown may have other downstream effects which are important. We then showed that alpha-synuclein knockdown prevented MPP+ -induced activation of nitric oxide synthase (NOS). Activation of NOS is an essential step in MPTP toxicity and increasing evidence points to nitrosative stress as being important in neurodegeneration. Overall, these results show that as well as having a number of effects on cellular events upstream of mitochondrial dysfunction alpha-synuclein affects pathways downstream of superoxide production, possibly involving regulation of NOS activity.
Collapse
Affiliation(s)
- Timothy M Fountaine
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Bisaglia M, Mammi S, Bubacco L. Structural insights on physiological functions and pathological effects of alpha-synuclein. FASEB J 2008; 23:329-40. [PMID: 18948383 DOI: 10.1096/fj.08-119784] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alpha-synuclein is an intrinsically unfolded protein that can adopt a partially helical structure when it interacts with different lipid membranes. Its pathological relevance is linked to its involvement in several neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, and dementia with Lewy bodies. Typical of such ailments is the presence of alpha-synuclein aggregates in a beta-structure that can be soluble or precipitate. This review focuses on the structural knowledge acquired in recent years on the various conformations accessible to alpha-synuclein and to its pathologically relevant mutants. Furthermore, the role of the different variables of the chemical environments that govern the equilibria among the accessible conformations is also reviewed. The hypotheses that rationalize the relevance of the individual structural features and conformations for the physiological function of the protein or for its purported pathological role are described and compared.
Collapse
Affiliation(s)
- Marco Bisaglia
- Department of Biology, University of Padova, Via U. Bassi 58B, 35121, Padova, Italy
| | | | | |
Collapse
|
35
|
George S, van den Buuse M, San Mok S, Masters CL, Li QX, Culvenor JG. α-Synuclein transgenic mice exhibit reduced anxiety-like behaviour. Exp Neurol 2008; 210:788-92. [DOI: 10.1016/j.expneurol.2007.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/07/2007] [Accepted: 12/15/2007] [Indexed: 12/30/2022]
|
36
|
Jeannotte AM, Sidhu A. Regulated interactions of the norepineprhine transporter by the actin and microtubule cytoskeletons. J Neurochem 2008; 105:1668-82. [PMID: 18331289 DOI: 10.1111/j.1471-4159.2008.05258.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One role of the actin cytoskeleton is to maintain the structural morphology and activity of the pre-synaptic terminal. We sought to determine if the actin cytoskeleton plays a role in regulating interactions between the norepinephrine transporter (NET) and alpha-Synuclein (alpha-Syn), two proteins expressed in the pre-synaptic terminal. In cells transfected with either 0.5 microg/mL or 3 microg/mL of alpha-Syn and 1 microg/mL of NET DNA, treatment with cytochalasin D, an actin depolymerizing agent, caused a dose-dependent decrease and increase, respectively, in [3H]-NE uptake. Protein interactions between NET, beta-actin, and alpha-Syn were modified, along with levels of surface transporters. Treatment of primary brainstem neurons and frontal cortex synaptosomes with cytochalasin D caused a 115% and 28% increase, respectively, in NET activity. Depolymerization of both actin and microtubules did not alter NET activity in cells with 0.5 microg/mL alpha-Syn, but caused an increase in [3H]-NE uptake in cells transfected with 3 microg/mL of alpha-Syn and primary neurons. This is the first direct demonstration of NET activity being regulated via actin and modulated by interactions with alpha-Syn.
Collapse
Affiliation(s)
- Alexis M Jeannotte
- Interdisciplinary Program in Neuroscience, Department of Biochemistry and Molecular and Cell Biology, Georgetown University, Washington, DC 20007, USA
| | | |
Collapse
|