1
|
Chronic amphetamine enhances visual input to and suppresses visual output from the superior colliculus in withdrawal. Neuropharmacology 2018; 138:118-129. [DOI: 10.1016/j.neuropharm.2018.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 11/23/2022]
|
2
|
Bulin SE, Mendoza ML, Richardson DR, Song KH, Solberg TD, Yun S, Eisch AJ. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization. Addict Biol 2018. [PMID: 28626932 DOI: 10.1111/adb.12524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse.
Collapse
Affiliation(s)
- Sarah E. Bulin
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
- Department of Pharmacology; University of Texas Health Science Center; San Antonio TX USA
| | - Matthew L. Mendoza
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
| | - Devon R. Richardson
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
| | - Kwang H. Song
- Department of Radiology Oncology; University of Texas Southwestern Medical Center; Dallas TX USA
- Texas Oncology PA; Fort Worth TX USA
| | - Timothy D. Solberg
- Department of Radiology Oncology; University of Texas Southwestern Medical Center; Dallas TX USA
- Department of Radiation Oncology; University of California; San Francisco CA USA
| | - Sanghee Yun
- Mahoney Institute of Neurosciences; University of Pennsylvania Perelman School of Medicine; Philadelphia PA USA
- Department of Anesthesiology and Critical Care Medicine; Children's Hospital of Philadelphia; Philadelphia PA USA
| | - Amelia J. Eisch
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas TX USA
- Mahoney Institute of Neurosciences; University of Pennsylvania Perelman School of Medicine; Philadelphia PA USA
- Department of Anesthesiology and Critical Care Medicine; Children's Hospital of Philadelphia; Philadelphia PA USA
| |
Collapse
|
3
|
Engelke DS, Filev R, Mello LE, Santos-Junior JG. Evidence of memory generalization in contextual locomotor sensitization induced by amphetamine. Behav Brain Res 2017; 317:522-527. [DOI: 10.1016/j.bbr.2016.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
4
|
Rademacher DJ, Mendoza-Elias N, Meredith GE. Effects of context-drug learning on synaptic connectivity in the basolateral nucleus of the amygdala in rats. Eur J Neurosci 2015; 41:205-15. [PMID: 25359418 PMCID: PMC4300287 DOI: 10.1111/ejn.12781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/27/2014] [Accepted: 10/08/2014] [Indexed: 12/23/2022]
Abstract
Context-drug learning produces structural and functional synaptic changes in the circuitry of the basolateral nucleus of the amygdala (BLA). However, how the synaptic changes translated to the neuronal targets was not established. Thus, in the present study, immunohistochemistry with a cell-specific marker and the stereological quantification of synapses was used to determine if context-drug learning increases the number of excitatory and inhibitory/modulatory synapses contacting the gamma-aminobutyric acid (GABA) interneurons and/or the pyramidal neurons in the BLA circuitry. Amphetamine-conditioned place preference increased the number of asymmetric (excitatory) synapses contacting the spines and dendrites of pyramidal neurons and the number of multisynaptic boutons contacting pyramidal neurons and GABA interneurons. Context-drug learning increased asymmetric (excitatory) synapses onto dendrites of GABA interneurons and increased symmetric (inhibitory or modulatory) synapses onto dendrites but not perikarya of these same interneurons. The formation of context-drug associations alters the synaptic connectivity in the BLA circuitry, findings that have important implications for drug-seeking behavior.
Collapse
Affiliation(s)
- David J. Rademacher
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Nasya Mendoza-Elias
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Gloria E. Meredith
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| |
Collapse
|
5
|
Wang YC, Yeh YC, Wang CC, Hsiao S, Lee CC, Huang ACW. Neural substrates of amphetamine-induced behavioral sensitization: unconditioned (zero context) and conditioned (switch versus same context) components in c-fos overexpression. Neuropsychobiology 2013; 67:48-60. [PMID: 23222036 DOI: 10.1159/000343670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 09/24/2012] [Indexed: 11/19/2022]
Abstract
The neural substrates of the unconditioned and conditioned components of amphetamine (AMPH)-induced behavioral sensitization remain unknown. The present study examines the brain activation of rats in response to an AMPH challenge with augmented locomotion in groups receiving chronic AMPH under chloral hydrate anesthetization (i.e., the 'zero context') or when tested in the 'same context' as a chronic treatment, or when tested in a 'different context'. The neural activations of the three groups reveal fairly consistent patterns: (a) The substantia nigra is activated in the same context condition and the pure AMPH effect (i.e., the zero context with the unconditioned component), but not in the switch context condition. (b) The ventral pallidum showed Fos expression in the switch context and the same context, but not in the zero context condition. (c) The other nuclei, including the medial prefrontal cortex, nucleus accumbens, caudate putamen, medial thalamus, hippocampus, amygdala, and ventral tegmental area, are activated in all contextual conditions and the pure AMPH effect (the zero context). The context exerts definable effects on the mesocorticolimbic dopamine system on AMPH-induced behavioral sensitization. (d) The ventral pallidum and the substantia nigra activations dissociate the unconditioned component from the conditioned component in behavioral sensitization. Further studies are needed to determine how these two nuclei mediate the effect in terms of primary and conditioned rewards.
Collapse
Affiliation(s)
- Ying-Chou Wang
- Department of Clinical Psychology, Fu Jen Catholic University, New Taipei City, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
6
|
Wayman WN, Dodiya HB, Persons AL, Kashanchi F, Kordower JH, Hu XT, Napier TC. Enduring cortical alterations after a single in-vivo treatment of HIV-1 Tat. Neuroreport 2012; 23:825-9. [PMID: 22828409 PMCID: PMC3555038 DOI: 10.1097/wnr.0b013e3283578050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HIV-1 proteins, including the transactivator of transcription (Tat), are believed to be involved in HIV-associated neurocognitive disorders by disrupting Ca²⁺ homeostasis, which leads to progressive dysregulation, damage, or death of neurons in the brain. We have found previously that bath-applied Tat abnormally increased Ca²⁺ influx through overactivated, voltage-sensitive L-type Ca²⁺ channels in pyramidal neurons within the rat medial prefrontal cortex (mPFC). However, it is unknown whether the Tat-induced Ca²⁺ dysregulation was mediated by increased activity and/or the number of the L-channels. This study tested the hypothesis that transient/early exposure to Tat in vivo promoted enduring L-channel dysregulation in the mPFC without neuron loss. Accordingly, rats were administered a single intracerebroventricular injection of recombinant Tat (80 μg/20 μl; diluted by cerebrospinal fluids to pathophysiological concentrations) or vehicle. Rats were killed 14 days after injection for immunohistochemical assessments of the mPFC, motor cortex, caudate-putamen, and nucleus accumbens. Stereological estimates for positively stained cells indicated a significant increase in the number of cells expressing the pore-forming Ca(v)1.2-α1c subunit of L-channels in the mPFC compared with other regions in Tat-treated or vehicle-treated rat brains. Optical density measurements showed a Tat-induced increase in glial fibrillary acidic protein expression, indicating astrogliosis in the cortical regions. There was no significant loss of neurons in any brain region investigated. These findings indicate that transient Tat exposure in vivo induced enduring L-channel dysregulation and astrogliosis in the mPFC without neuron loss. Such maladaptations may contribute toward dysregulated Ca²⁺ homeostasis and neuropathology in the PFC in the early stages of HIV infection.
Collapse
Affiliation(s)
- Wesley N Wayman
- Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Figge DA, Rahman I, Dougherty PJ, Rademacher DJ. Retrieval of contextual memories increases activity-regulated cytoskeleton-associated protein in the amygdala and hippocampus. Brain Struct Funct 2012; 218:1177-96. [PMID: 22945419 DOI: 10.1007/s00429-012-0453-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/17/2012] [Indexed: 01/16/2023]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) integrates information from multiple intracellular signaling cascades and, in turn, regulates cytoskeletal proteins involved in structural synaptic modifications. The purposes of the present study were: (1) to determine if the retrieval of contextual memories would induce Arc in hippocampal and amygdalar neurons; (2) use unbiased stereology at the ultrastructural level to quantify synapses contacting Arc-labeled (Arc+) and unlabeled (Arc-) postsynaptic structures in brain regions in which the amount of Arc integrated density (ID) correlated strongly with the degree of amphetamine conditioned place preference (AMPH CPP). The retrieval of contextual memories increased the Arc ID in the dentate gyrus, cornu ammonis (CA)1, and CA3 fields of the hippocampus and the basolateral, lateral, and central nuclei of the amygdala but not the primary auditory cortex, a control region. Stereological quantification of Arc+ and Arc- synapses in the basolateral nucleus of the amygdala (BLA) was undertaken because the strongest relationship between the amount of Arc ID and AMPH CPP was observed in the BLA. The retrieval of contextual memories increased the number and density of asymmetric (presumed excitatory) synapses contacting Arc+ spines and dendrites of BLA neurons, symmetric (presumed inhibitory or modulatory) synapses contacting Arc+ dendrites of BLA neurons, and multisynaptic boutons contacting Arc+ postsynaptic structures. Thus, the retrieval of contextual memories increases Arc in the amygdala and hippocampus, an effect that could be important for approach behavior to a drug-associated context.
Collapse
Affiliation(s)
- David A Figge
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | |
Collapse
|
8
|
In vivo visualization of delta opioid receptors upon physiological activation uncovers a distinct internalization profile. J Neurosci 2012; 32:7301-10. [PMID: 22623675 DOI: 10.1523/jneurosci.0185-12.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) mediate numerous physiological functions and represent prime therapeutic targets. Receptor trafficking upon agonist stimulation is critical for GPCR function, but examining this process in vivo remains a true challenge. Using knock-in mice expressing functional fluorescent delta opioid receptors under the control of the endogenous promoter, we visualized in vivo internalization of this native GPCR upon physiological stimulation. We developed a paradigm in which animals were made dependent on morphine in a drug-paired context. When re-exposed to this context in a drug-free state, mice showed context-dependent withdrawal signs and activation of the hippocampus. Receptor internalization was transiently detected in a subset of CA1 neurons, uncovering regionally restricted opioid peptide release. Importantly, a pool of surface receptors always remained, which contrasts with the in vivo profile previously established for exogenous drug-induced internalization. Therefore, a distinct response is observed at the receptor level upon a physiological or pharmacological stimulation. Altogether, direct in vivo GPCR visualization enables mapping receptor stimulation promoted by a behavioral challenge and represents a powerful approach to study endogenous GPCR physiology.
Collapse
|
9
|
Sheppard AB, Gross SC, Pavelka SA, Hall MJ, Palmatier MI. Caffeine increases the motivation to obtain non-drug reinforcers in rats. Drug Alcohol Depend 2012; 124:216-22. [PMID: 22336397 PMCID: PMC3383337 DOI: 10.1016/j.drugalcdep.2012.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Caffeine is widely considered to be a reinforcer in humans, but this effect is difficult to measure in non-human animals. We hypothesized that caffeine may have dual reinforcing effects comparable to nicotine--limited primary reinforcing effects, but potent reinforcement enhancing effects. The present studies tested this hypothesis by investigating the effect of caffeine on responding for non-drug rewards. METHODS In two experiments, rats were shaped to respond on a progressive ratio (PR) schedule for sucrose solution (20%, w/v; experiment 1) or a fixed ratio 2 (FR2) schedule for a moderately reinforcing visual stimulus (VS; experiment 2). Pretreatment with various doses of caffeine (0-50 mg/kg, intraperitoneal injection) were administered prior to tests over successive week days (M-F). In experiment 1, acute administration of low-moderate caffeine doses (6.25-25 mg/kg) increased responding for sucrose under the PR schedule. This effect of caffeine declined over the initial 15 test days. In experiment 2, only acute pretreatment with 12.5mg/kg caffeine increased responding for the visual stimulus and complete tolerance to this effect of caffeine was observed over the 15 days of testing. In follow up tests we found that abstinence periods of 4 and 8 days resulted in incomplete recovery of the enhancing effects of caffeine. CONCLUSION The findings suggest that caffeine enhances the reinforcing effects of non-drug stimuli, but that the pharmacological profile of these effects may differ from other psychomotor stimulants.
Collapse
Affiliation(s)
| | | | | | | | - Matthew I. Palmatier
- Corresponding Author: Matthew I. Palmatier, 469 Bluemont Hall, 1100 Mid Campus Drive, Manhattan, KS 66506,
| |
Collapse
|
10
|
Graves SM, Napier TC. SB 206553, a putative 5-HT2C inverse agonist, attenuates methamphetamine-seeking in rats. BMC Neurosci 2012; 13:65. [PMID: 22697313 PMCID: PMC3441362 DOI: 10.1186/1471-2202-13-65] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/01/2012] [Indexed: 12/11/2022] Open
Abstract
Background Methamphetamine (meth) dependence presents a substantial socioeconomic burden. Despite the need, there is no FDA-approved pharmacotherapy for psychostimulant dependence. We consider 5-HT2C receptors as viable therapeutic targets. We recently revealed that the atypical antidepressant, mirtazapine, attenuates meth-seeking in a rodent model of human substance abuse. Mirtazapine historically has been considered to be an antagonist at 5-HT2C receptors, but more recently shown to exhibit inverse agonism at constitutively active 5-HT2C receptors. To help distinguish the roles for antagonism vs. inverse agonism, here we explored the ability of a more selective 5-HT2C inverse agonist, SB 206553 to attenuate meth-seeking behavior, and compared its effects to those obtained with 5-HT2C antagonists, SDZ Ser 082 and SB 242084. To do so, rats were trained to self-administer meth and tested for seeking-like behavior in cue reactivity sessions consisting of contingently presenting meth-associated cues without meth reinforcement. We also explored motor function to determine the influence of SB 206553 and SDZ Ser 082 on motor activity in the presence and absence of meth. Results Like mirtazapine, pretreatment with SB 206553 (1.0, 5.0, and 10.0 mg/kg), attenuated meth-seeking. In contrast, the antagonists, SDZ Ser 082 (0.1, 0.3, and 1.0 mg/kg) and SB 242084 (3.0 mg/kg) had no effect on cue reactivity (CR). SB 242084 (3.0 mg/kg) failed to attenuate the effects of 5.0 and 10 mg/kg SB 206553 on CR. Motor function was largely unaltered by the 5-HT2C ligands; however, SB 206553, at the highest dose tested (10.0 mg/kg), attenuated meth-induced rearing behavior. Conclusions The lack of effect by 5-HT2C antagonists suggests that meth-seeking and meth-evoked motor activity are independent of endogenous 5-HT acting at 5-HT2C receptors. While SB 206553 dramatically impacted meth-evoked behaviors it is unclear whether the observed effects were 5-HT2C receptor mediated. Thus, SB 206553 deserves further attention in the study of psychostimulant abuse disorders.
Collapse
Affiliation(s)
- Steven M Graves
- Department of Pharmacology Rush, University Medical Center, 1735 W Harrison Street, Cohn Research Building, Chicago, IL 60612, USA.
| | | |
Collapse
|
11
|
Knox D, Fitzpatrick CJ, George SA, Abelson JL, Liberzon I. Unconditioned freezing is enhanced in an appetitive context: Implications for the contextual dependency of unconditioned fear. Neurobiol Learn Mem 2012; 97:386-92. [DOI: 10.1016/j.nlm.2012.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/20/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
|
12
|
Chavez C, Gogos A, Hill R, Van Sinderen M, Simpson E, Boon WC, van den Buuse M. Differential effect of amphetamine on c-fos expression in female aromatase knockout (ArKO) mice compared to wildtype controls. Psychoneuroendocrinology 2011; 36:761-8. [PMID: 21093158 DOI: 10.1016/j.psyneuen.2010.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 11/29/2022]
Abstract
Estrogen may be involved in psychosis by an interaction with central dopaminergic activity. Aromatase knockout mice are unable to produce estrogen and have been shown to display altered behavioural responses and effects of the dopamine releaser, amphetamine. This study investigates the effect of gonadal status on amphetamine-induced c-fos expression in the brains of female aromatase knockout and wildtype mice. Six groups of mice were treated intraperitoneally with saline or 5mg/kg amphetamine. Fos immunoreactivity was assessed in the cingulate cortex, caudate putamen and nucleus accumbens. Aromatase knockout mice showed markedly reduced amphetamine-induced Fos immunoreactivity compared to wildtype mice. However, the amphetamine response was restored in aromatase-knockout mice after ovariectomy, which reduced this effect in wildtype controls. Estrogen supplementation reversed the effect of ovariectomy in wildtype mice but had no additional significant effect in aromatase-knockout mice. These results indicate that mechanisms involved in amphetamine-induced c-fos expression are altered in aromatase knockout mice and that the primary hormone involved in this effect is not estrogen, but may be another factor released from the ovaries, such as an androgen. These results provide new insight into the effect of gonadal hormones on amphetamine induced c-fos expression in this mouse model of estrogen deficiency. These results could be important for our understanding of the role of sex steroid hormones in psychosis.
Collapse
Affiliation(s)
- Carolina Chavez
- Behavioural Neuroscience Laboratory, Mental Health Research Institute of Victoria, Parkville, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Boikess SR, O'Dell SJ, Marshall JF. A sensitizing D-amphetamine dose regimen induces long-lasting spinophilin and VGLUT1 protein upregulation in the rat diencephalon. Neurosci Lett 2009; 469:49-54. [PMID: 19932152 DOI: 10.1016/j.neulet.2009.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 11/29/2022]
Abstract
Numerous studies in this lab and others have reported psychostimulant-induced alterations in both synaptic protein expression and synaptic density in striatum and prefrontal cortex. Recently we have shown that chronic D-amphetamine (D-AMPH) administration in rats increased synaptic protein expression in striatum and limbic brain regions including hippocampus, amygdala, septum, and paraventricular nucleus of the thalamus (PVT). Potential synaptic changes in thalamic nuclei are interesting since the thalamus serves as a gateway to cerebral cortex and a nodal point for basal ganglia influences. Therefore we sought to examine drug-induced differences in synaptic protein expression throughout the diencephalon. Rats received an escalating (1-8 mg/kg) dosing regimen of D-AMPH for five weeks and were euthanized 28 days later. Radioimmunocytochemistry (RICC) revealed significant upregulation of both spinophilin and the vesicular glutamate transporter, VGLUT1, in PVT, mediodorsal (MD), and ventromedial (VM) thalamic nuclei as well as in lateral hypothalamus (LH) and habenula. Strong positive correlations were observed between VGLUT1 and spinophilin expression in PVT, medial habenula, MD, VM and LH of D-AMPH-treated rats. No significant D-AMPH effect was seen in sensorimotor cortices for either protein. Additionally, no significant differences in the general vesicular protein synaptophysin were observed for any brain region. These findings add to evidence suggesting that long-lasting stimulant-induced synaptic alterations are widespread but not ubiquitous. Moreover, they suggest that D-AMPH-induced synaptic changes may occur preferentially in excitatory synapses.
Collapse
Affiliation(s)
- Steven R Boikess
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | | | | |
Collapse
|
14
|
Marin MT, Berkow A, Golden SA, Koya E, Planeta CS, Hope BT. Context-specific modulation of cocaine-induced locomotor sensitization and ERK and CREB phosphorylation in the rat nucleus accumbens. Eur J Neurosci 2009; 30:1931-40. [PMID: 19912338 PMCID: PMC2810354 DOI: 10.1111/j.1460-9568.2009.06982.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Learned associations are hypothesized to develop between drug effects and contextual stimuli during repeated drug administration to produce context-specific sensitization that is expressed only in the drug-associated environment and not in a non-drug-paired environment. The neuroadaptations that mediate such context-specific behavior are largely unknown. We investigated context-specific modulation of cAMP-response element-binding protein (CREB) phosphorylation and that of four upstream kinases in the nucleus accumbens that phosphorylate CREB, including extracellular signal-regulated kinase (ERK), cAMP-dependent protein kinase, calcium/calmodulin-dependent kinase (CaMK) II and CaMKIV. Rats received seven once-daily injections of cocaine or saline in one of two distinct environments outside their home cages. Seven days later, test injections of cocaine or saline were administered in either the paired or the non-paired environment. CREB and ERK phosphorylation were assessed with immunohistochemistry, and phosphorylation of the remaining kinases, as well as of CREB and ERK, was assessed by western blotting. Repeated cocaine administration produced context-specific sensitized locomotor responses accompanied by context-specific enhancement of the number of cocaine-induced phosphoCREB-immunoreactive and phosphoERK-immunoreactive nuclei in a minority of neurons. In contrast, CREB and CaMKIV phosphorylation in nucleus accumbens homogenates were decreased by cocaine test injections. We have recently shown that a small number of cocaine-activated accumbens neurons mediate the learned association between cocaine effects and the drug administration environment to produce context-specific sensitization. Context-specific phosphorylation of ERK and CREB in the present study suggests that this signal transduction pathway is selectively activated in the same set of cocaine-activated accumbens neurons that mediate this learned association.
Collapse
Affiliation(s)
- Marcelo T. Marin
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, 14801-902, Araraquara-SP, Brazil
| | - Alexander Berkow
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Sam A. Golden
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Eisuke Koya
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Cleopatra S. Planeta
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, 14801-902, Araraquara-SP, Brazil
| | - Bruce T. Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Koya E, Golden SA, Harvey BK, Guez DH, Berkow A, Simmons DE, Bossert JM, Nair SG, Uejima JL, Marin MT, Mitchell T, Farquhar D, Ghosh S, Mattson BJ, Hope BT. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat Neurosci 2009; 12:1069-73. [PMID: 19620976 PMCID: PMC2752202 DOI: 10.1038/nn.2364] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/09/2009] [Indexed: 11/10/2022]
Abstract
Learned associations between effects of abused drugs and the drug administration environment are important in drug addiction. Histochemical and electrophysiological studies suggest that these associations are encoded in sparsely distributed nucleus accumbens neurons that are selectively activated by drugs and drug-associated cues. Although correlations have been observed between nucleus accumbens neuronal activity and responsivity to drugs and drug cues, no technique exists for selectively manipulating these activated neurons and establishing their causal role in behavioral effects of drugs and drug cues. Here we describe a new approach, which we term the 'Daun02 inactivation method', that selectively inactivates a minority of neurons previously activated by cocaine in an environment repeatedly paired with cocaine to demonstrate a causal role for these activated neurons in context-specific cocaine-induced psychomotor sensitization in rats. This method provides a new tool for studying the causal roles of selectively activated neurons in behavioral effects of drugs and drug cues and in other learned behaviors.
Collapse
Affiliation(s)
- Eisuke Koya
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Sam A. Golden
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Brandon K. Harvey
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Danielle H. Guez
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Alexander Berkow
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Danielle E. Simmons
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Jennifer M. Bossert
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Sunila G. Nair
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Jamie L. Uejima
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Marcelo T. Marin
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Timothy Mitchell
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - David Farquhar
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston TX 77030, USA
| | - Sukhen Ghosh
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston TX 77030, USA
| | - Brandi J. Mattson
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| | - Bruce T. Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Drive, Baltimore, MD 21224, USA
| |
Collapse
|
16
|
Persistence of one-trial cocaine-induced behavioral sensitization in young rats: regional differences in Fos immunoreactivity. Psychopharmacology (Berl) 2009; 203:617-28. [PMID: 19020866 DOI: 10.1007/s00213-008-1407-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 11/01/2008] [Indexed: 12/28/2022]
Abstract
RATIONALE Unlike adult rats, young rats exhibit context-dependent and context-independent behavioral sensitization when assessed after a single pretreatment injection of cocaine. OBJECTIVE The purpose of this study was to determine whether: (1) the context-dependent and context-independent sensitization of young rats can be dissociated based on the persistence of the sensitized response and (2) the expression of behavioral sensitization is associated with region-specific increases in Fos immunoreactivity (Fos-IR). MATERIALS AND METHODS On postnatal day (PD) 19, rats were injected with either saline or cocaine (30 mg/kg) in a novel test chamber or the home cage. After 1, 3, 5, 7, 14, or 61 abstinence days, rats were challenged with 20 mg/kg cocaine and locomotor activity was measured for 60 min. In a separate experiment, rats pretreated on PD 19 were challenged with cocaine (10-30 mg/kg) on PD 80. RESULTS The sensitized responding of young rats persisted for the same length of time (5 days) regardless of whether cocaine pretreatment occurred in a novel environment or the home cage. Behavioral sensitization did not reemerge in adulthood. When assessed after three abstinence days (i.e., on PD 22), acute treatment with cocaine increased Fos-IR in various brain regions, but sensitized responding was associated with elevated Fos expression in only the caudate-putamen (CP) and prefrontal cortex (PFC). CONCLUSIONS Persistence of the sensitized response cannot be used to dissociate the one-trial context-dependent and context-independent sensitization of young rats. Fos data indicate that the CP and PFC may be involved in the mediation of short-term behavioral sensitization on PD 22.
Collapse
|
17
|
Boikess SR, Marshall JF. A sensitizing d-amphetamine regimen induces long-lasting spinophilin protein upregulation in the rat striatum and limbic forebrain. Eur J Neurosci 2008; 28:2099-107. [DOI: 10.1111/j.1460-9568.2008.06481.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|