1
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in environmental stress over COVID-19 pandemic likely contributed to failure to replicate adiposity phenotype associated with Krtcap3. Physiol Genomics 2023; 55:452-467. [PMID: 37458463 PMCID: PMC10642928 DOI: 10.1152/physiolgenomics.00019.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023] Open
Abstract
We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| |
Collapse
|
2
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in Environmental Stress over COVID-19 Pandemic Likely Contributed to Failure to Replicate Adiposity Phenotype Associated with Krtcap3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532439. [PMID: 36993361 PMCID: PMC10055176 DOI: 10.1101/2023.03.15.532439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole-body Krtcap3 knock-out (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lock-down orders and was completed during the pandemic with a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study by genotype interaction where WT had significantly higher CORT relative to KO in Study 1, with no differences in Study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| |
Collapse
|
3
|
Stanford SC. Animal Models of ADHD? Curr Top Behav Neurosci 2022; 57:363-393. [PMID: 35604570 DOI: 10.1007/7854_2022_342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To describe animals that express abnormal behaviors as a model of Attention-Deficit Hyperactivity Disorder (ADHD) implies that the abnormalities are analogous to those expressed by ADHD patients. The diagnostic features of ADHD comprise inattentiveness, impulsivity, and hyperactivity and so these behaviors are fundamental for validation of any animal model of this disorder. Several experimental interventions such as neurotoxic lesion of neonatal rats with 6-hydroxydopamine (6-OHDA), genetic alterations, or selective inbreeding of rodents have produced animals that express each of these impairments to some extent. This article appraises the validity of claims that these procedures have produced a model of ADHD, which is essential if they are to be used to investigate the underlying cause(s) of ADHD and its abnormal neurobiology.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
4
|
Nyman M, Eskola O, Kajander J, Jokinen R, Penttinen J, Karjalainen T, Nummenmaa L, Hirvonen J, Burns D, Hargreaves R, Solin O, Hietala J. Brain neurokinin-1 receptor availability in never-medicated patients with major depression - A pilot study. J Affect Disord 2019; 242:188-194. [PMID: 30193189 DOI: 10.1016/j.jad.2018.08.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Neurotransmitter substance P (SP) and its preferred neurokinin-1 receptor (NK1R) have been implicated in the treatment of affective and addiction disorders. Despite promising preclinical data on antidepressant action, the clinical trials of NK1R antagonists in major depression have been disappointing. There are no direct in vivo imaging studies on NK1R characteristics in patients with a major depressive disorder (MDD). METHODS In this cross-sectional case-control study, we recruited nine never-medicated patients with moderate to severe MDD and nine matched healthy controls. NK1R availability (NK1R binding potential, BPND) was measured with in vivo 3-D positron emission tomography and a specific NK1 receptor tracer [18F]SPA-RQ. Clinical symptoms were assessed with the 17-item Hamilton Rating Scale for Depression (HAM-D17). RESULTS NK1R-BPND did not differ statistically significantly between patients with MDD and healthy controls. HAM-D17 total scores (range 21-32) correlated positively with NK1R-BPND in cortical and limbic areas. HAM-D17 subscale score for anxiety symptoms correlated positively with NK1R-BPND in specific brain areas implicated in fear and anxiety. LIMITATIONS Small sample size. Low variability in the clinical HAM-D subscale ratings may affect the observed correlations. CONCLUSIONS Our preliminary results do not support a different baseline expression of NK1Rs in a representative sample of never-medicated patients with MDD during a current moderate/severe depressive episode. The modulatory effect of NK1Rs on affective symptoms is in line with early positive results on antidepressant action of NK1 antagonists. However, the effect is likely to be too weak for treatment of MDD with NK1R antagonists alone in clinical practice.
Collapse
Affiliation(s)
- Mikko Nyman
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Olli Eskola
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Turku, Finland
| | - Jaana Kajander
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland
| | - Riitta Jokinen
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Penttinen
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | - Jussi Hirvonen
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Donald Burns
- Imaging Research, Merck Research Laboratories, West Point, PA, USA
| | | | - Olof Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland
| | - Jarmo Hietala
- Turku PET Centre, Neuropsychiatric Imaging, Turku, Finland; Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
5
|
Akkhawattanangkul Y, Maiti P, Xue Y, Aryal D, Wetsel WC, Hamilton D, Fowler SC, McDonald MP. Targeted deletion of GD3 synthase protects against MPTP-induced neurodegeneration. GENES BRAIN AND BEHAVIOR 2017; 16:522-536. [PMID: 28239983 DOI: 10.1111/gbb.12377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/07/2023]
Abstract
Parkinson's disease is a debilitating neurodegenerative condition for which there is no cure. Converging evidence implicates gangliosides in the pathogenesis of several neurodegenerative diseases, suggesting a potential new class of therapeutic targets. We have shown that interventions that simultaneously increase the neuroprotective GM1 ganglioside and decrease the pro-apoptotic GD3 ganglioside - such as inhibition of GD3 synthase (GD3S) or administration of sialidase - are neuroprotective in vitro and in a number of preclinical models. In this study, we investigated the effects of GD3S deletion on parkinsonism induced by 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP was administered to GD3S-/- mice or controls using a subchronic regimen consisting of three series of low-dose injections (11 mg/kg/day × 5 days each, 3 weeks apart), and motor function was assessed after each. The typical battery of tests used to assess parkinsonism failed to detect deficits in MPTP-treated mice. More sensitive measures - such as the force-plate actimeter and treadmill gait parameters - detected subtle effects of MPTP, some of which were absent in mice lacking GD3S. In wild-type mice, MPTP destroyed 53% of the tyrosine-hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc) and reduced striatal dopamine 60.7%. In contrast, lesion size was only 22.5% in GD3S-/- mice and striatal dopamine was reduced by 37.2%. Stereological counts of Nissl-positive SNc neurons that did not express TH suggest that neuroprotection was complete but TH expression was suppressed in some cells. These results show that inhibition of GD3S has neuroprotective properties in the MPTP model and may warrant further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Y Akkhawattanangkul
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P Maiti
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Y Xue
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D Aryal
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - W C Wetsel
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - D Hamilton
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S C Fowler
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - M P McDonald
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
6
|
Geiszler PC, Barron MR, Pardon MC. Impaired burrowing is the most prominent behavioral deficit of aging htau mice. Neuroscience 2016; 329:98-111. [PMID: 27167086 PMCID: PMC4915442 DOI: 10.1016/j.neuroscience.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/03/2016] [Accepted: 05/03/2016] [Indexed: 01/22/2023]
Abstract
htau mice exhibit robust deficits in food burrowing. Behavioral differences between htau and mtau−/− are age-dependent. Before 6 months of age, the htau phenotype is stronger than the mtau−/− phenotype. With aging, the htau phenotype is milder than the mtau−/− phenotype.
htau mice are deficient of murine tau but express all six human tau isoforms, leading to gradual tau misprocessing and aggregation in brain areas relevant to Alzheimer’s disease. While histopathological changes in htau mice have been researched in the past, we focused here on functional consequences of human tau accumulation. htau mice and their background controls – murine tau knock-out (mtau−/−) and C57Bl/6J mice – underwent a comprehensive trial battery to investigate species-specific behavior, locomotor activity, emotional responses, exploratory traits, spatial and recognition memory as well as acquisition, retention and extinction of contextual fear at two, four, six, nine and twelve months of age. In htau mice, tau pathology was already present at two months of age, whereas deficits in food burrowing and spatial working memory were first noted at four months of age. At later stages the presence of human tau on a mtau−/− background appeared to guard cognitive performance; as mtau−/− but not htau mice differed from C57Bl/6J mice in the food burrowing, spontaneous alternation and object discrimination tasks. Aging mtau−/− mice also exhibited increased body mass and locomotor activity. These data highlight that reduced food-burrowing performance was the most robust aspect of the htau phenotype with aging. htau and mtau−/− deficits in food burrowing pointed at the necessity of intact tau systems for daily life activities. While some htau and mtau−/− deficits overlap, age differences between the two genotypes may reflect distinct functional effects and compared to C57Bl/6J mice, the htau phenotype appeared stronger than the mtau−/− phenotype at young ages but milder with aging.
Collapse
Affiliation(s)
- Philippine Camilla Geiszler
- Neuroscience Group, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - Matthew Richard Barron
- Neuroscience Group, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - Marie-Christine Pardon
- Neuroscience Group, School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
7
|
Pillidge K, Porter AJ, Dudley JA, Tsai YC, Heal DJ, Stanford SC. The behavioural response of mice lacking NK₁ receptors to guanfacine resembles its clinical profile in treatment of ADHD. Br J Pharmacol 2015; 171:4785-96. [PMID: 25074741 PMCID: PMC4209942 DOI: 10.1111/bph.12860] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 01/15/2023] Open
Abstract
Background and Purpose Mice with functional ablation of substance P-preferring neurokinin-1 receptors (NK1R−/− mice) display behavioural abnormalities resembling those in attention deficit hyperactivity disorder (ADHD). Here, we investigated whether the ADHD treatment, guanfacine, alleviated the hyperactivity and impulsivity/inattention displayed by NK1R−/− mice in the light/dark exploration box (LDEB) and 5-choice serial reaction–time task (5-CSRTT), respectively. Following reports of co-morbid anxiety in ADHD, we also investigated effects of guanfacine on anxiety-like behaviour displayed by NK1R−/− and wild-type (WT) mice in the elevated plus maze (EPM). Experimental Approach Mice were treated with guanfacine (0.1, 0.3 or 1.0 mg·kg−1, i.p.), vehicle or no injection and tested in the 5-CSRTT or the LDEB. Only the lowest dose of guanfacine was used in the EPM assays. Key Results In the 5-CSRTT, a low dose of guanfacine (0.1 mg·kg−1) increased attention in NK1R−/− mice, but not in WT mice. This dose did not affect the total number of trials completed, latencies to respond or locomotor activity in the LDEB. Impulsivity was decreased by the high dose (1.0 mg·kg−1) of guanfacine, but this was evident in both genotypes and is likely to be secondary to a generalized blunting of behaviour. Although the NK1R−/− mice displayed marked anxiety-like behaviour, guanfacine did not affect the behaviour of either genotype in the EPM. Conclusions and Implications This evidence that guanfacine improves attention at a dose that did not affect arousal or emotionality supports our proposal that NK1R−/− mice express an attention deficit resembling that of ADHD patients. Linked Articles This article is part of a themed section on Animal Models in Psychiatry Research. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-20
Collapse
Affiliation(s)
- Katharine Pillidge
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
8
|
GAD65/GAD67 double knockout mice exhibit intermediate severity in both cleft palate and omphalocele compared with GAD67 knockout and VGAT knockout mice. Neuroscience 2015; 288:86-93. [DOI: 10.1016/j.neuroscience.2014.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 12/24/2022]
|
9
|
Prince KL, Colvin SC, Park S, Lai X, Witzmann FA, Rhodes SJ. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease. Endocrinology 2013; 154:738-48. [PMID: 23288907 PMCID: PMC3548188 DOI: 10.1210/en.2012-1790] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3(W227ter/W227ter) mouse model. Lhx3(W227ter/W227ter) embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3(W227ter/W227ter) genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3(W227ter/W227ter) animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3(W227ter/W227ter) mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3(W227ter/W227ter) mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases.
Collapse
Affiliation(s)
- Kelly L Prince
- Departments of Cellular and Integrative Physiology, Indiana University-Purdue University, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
10
|
Najafi AH, Aghili N, Tilan JU, Andrews JA, Peng X, Lassance-Soares RM, Sood S, Alderman LO, Abe K, Li L, Kolodgie FD, Virmani R, Zukowska Z, Epstein SE, Burnett MS. A new murine model of stress-induced complex atherosclerotic lesions. Dis Model Mech 2013; 6:323-31. [PMID: 23324329 PMCID: PMC3597015 DOI: 10.1242/dmm.009977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The primary purpose of this investigation was to determine whether ApoE−/− mice, when subjected to chronic stress, exhibit lesions characteristic of human vulnerable plaque and, if so, to determine the time course of such changes. We found that the lesions were remarkably similar to human vulnerable plaque, and that the time course of lesion progression raised interesting insights into the process of plaque development. Lard-fed mixed-background ApoE−/− mice exposed to chronic stress develop lesions with large necrotic core, thin fibrous cap and a high degree of inflammation. Neovascularization and intraplaque hemorrhage are observed in over 80% of stressed animals at 20 weeks of age. Previously described models report a prevalence of only 13% for neovascularization observed at a much later time point, between 36 and 60 weeks of age. Thus, our new stress-induced model of advanced atherosclerotic plaque provides an improvement over what is currently available. This model offers a tool to further investigate progression of plaque phenotype to a more vulnerable phenotype in humans. Our findings also suggest a possible use of this stress-induced model to determine whether therapeutic interventions have effects not only on plaque burden, but also, and importantly, on plaque vulnerability.
Collapse
Affiliation(s)
- Amir H Najafi
- Cardiovascular Research Institute, MedStar Health Research Institute, 108 Irving Street, NW Washington, DC 20010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Metabolic parameters and emotionality are little affected in G-protein coupled receptor 12 (Gpr12) mutant mice. PLoS One 2012; 7:e42395. [PMID: 22879962 PMCID: PMC3413656 DOI: 10.1371/journal.pone.0042395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background G-protein coupled receptors (GPR) bear the potential to serve as yet unidentified drug targets for psychiatric and metabolic disorders. GPR12 is of major interest given its putative role in metabolic function and its unique brain distribution, which suggests a role in emotionality and affect. We tested Gpr12 deficient mice in a series of metabolic and behavioural tests and subjected them to a well-established high-fat diet feeding protocol. Methodology/Principal Findings Comparing the mutant mice with wild type littermates, no significant differences were seen in body weight, fatness or weight gain induced by a high-fat diet. The Gpr12 mutant mice displayed a modest but significant lowering of energy expenditure and a trend to lower food intake on a chow diet, but no other metabolic parameters, including respiratory rate, were altered. No emotionality-related behaviours (assessed by light-dark box, tail suspension, and open field tests) were affected by the Gpr12 gene mutation. Conclusions/Significance Studying metabolic and emotionality parameters in Gpr12 mutant mice did not reveal a major phenotypic impact of the gene mutation. Compared to previous results showing a metabolic phenotype in Gpr12 mice with a mixed 129 and C57Bl6 background, we suggest that a more pure C57Bl/6 background due to further backcrossing might have reduced the phenotypic penetrance.
Collapse
|
12
|
Hodes GE, Brookshire BR, Hill-Smith TE, Teegarden SL, Berton O, Lucki I. Strain differences in the effects of chronic corticosterone exposure in the hippocampus. Neuroscience 2012; 222:269-80. [PMID: 22735575 DOI: 10.1016/j.neuroscience.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/18/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Stress hormones are thought to be involved in the etiology of depression, in part, because animal models show they cause morphological damage to the brain, an effect that can be reversed by chronic antidepressant treatment. The current study examined two mouse strains selected for naturalistic variation of tissue regeneration after injury for resistance to the effects of chronic corticosterone (CORT) exposure on cell proliferation and neurotrophin mobilization. The wound healer MRL/MpJ and control C57BL/6J mice were implanted subcutaneously with pellets that released CORT for 7 days. MRL/MpJ mice were resistant to reductions of hippocampal cell proliferation by chronic exposure to CORT when compared to vulnerable C57BL/6J mice. Chronic CORT exposure also reduced protein levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of C57BL/6J but not MRL/MpJ mice. CORT pellet exposure increased circulating levels of CORT in the plasma of both strains in a dose-dependent manner although MRL/MpJ mice may have larger changes from baseline. The strains did not differ in circulating levels of corticosterone binding globulin (CBG). There were also no strain differences in CORT levels in the hippocampus, nor did CORT exposure alter glucocorticoid receptor or mineralocorticoid receptor expression in a strain-dependent manner. Strain differences were found in the N-methyl-D-aspartate (NMDA) receptor, and BDNF I and IV promoters. Strain and CORT exposure interacted to alter tropomyosine-receptor-kinase B (TrkB) expression and this may be a potential mechanism protecting MRL/MpJ mice. In addition, differences in the inflammatory response of matrix metalloproteinases (MMPs) may also contribute to these strain differences in resistance to the deleterious effects of CORT to the brain.
Collapse
Affiliation(s)
- G E Hodes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | | | | | | | |
Collapse
|
13
|
Berger A, Tran AH, Dida J, Minkin S, Gerard NP, Yeomans J, Paige CJ. Diminished pheromone-induced sexual behavior in neurokinin-1 receptor deficient (TACR1−/−) mice. GENES BRAIN AND BEHAVIOR 2012; 11:568-76. [DOI: 10.1111/j.1601-183x.2012.00787.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Cominski TP, Turchin CE, Hsu MS, Ansonoff MA, Pintar JE. Loss of the mu opioid receptor on different genetic backgrounds leads to increased bromodeoxyuridine labeling in the dentate gyrus only after repeated injection. Neuroscience 2012; 206:49-59. [PMID: 22280973 DOI: 10.1016/j.neuroscience.2011.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 01/14/2023]
Abstract
The endogenous opioid system is involved in various physiological processes, including neurogenesis in the dentate gyrus (DG) of the hippocampus. In the current study, we investigated the role of the mu opioid receptor (MOR-1) on DG neurogenesis and measured glucocorticoid levels following several injection paradigms to supplement the neurogenesis experiments. MOR-1 knockout (KO) mice on C57BL/6 and 129S6 backgrounds were injected with bromodeoxyuridine (BrdU) using either a single injection or two different repeated injection protocols and then sacrificed at different time points. The total number of BrdU and proliferating cell nuclear antigen (PCNA) positive cells in the DG is significantly increased in MOR-1 KO mice compared with wild type (WT) on both strains after repeated injection, but not after a single injection. Plasma corticosterone (CORT) levels increased similarly in MOR-1 KO and WT mice following both single and repeated injection, indicating that the stress response is activated following any injection protocol, but that the mechanism responsible for the increase in BrdU labeling in MOR-1 KO mice is CORT-level independent. Finally, WT 129S6 mice, independent of genotype, showed higher levels of plasma CORT compared with WT C57BL/6 mice in both noninjected controls and following injection at two separate time points; these levels were inversely correlated with low numbers of BrdU cells in the DG in 129S6 mice compared with C57BL/6 mice. In summary, these data demonstrate that loss of MOR-1 increases BrdU labeling in the DG independent of CORT levels, but only following a repeated injection, illustrating the capability of injection paradigms to influence cell-proliferative responses in a genotype-dependent manner.
Collapse
Affiliation(s)
- T P Cominski
- Department of Neuroscience, Cell Biology, University of Medicine and Dentistry of New Jersey-Robert, Wood Johnson Medical School (UMDNJ/RWJMS) 675 Hoes Lane, RWJMS-SPH, Room 352, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
15
|
Neurokinin-1 receptor deletion modulates behavioural and neurochemical alterations in an animal model of depression. Behav Brain Res 2011; 228:91-8. [PMID: 22155476 DOI: 10.1016/j.bbr.2011.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/21/2011] [Accepted: 11/26/2011] [Indexed: 12/28/2022]
Abstract
The substance P/NK1 receptor system plays an important role in the regulation of stress and emotional responding and as such had been implicated in the pathophysiology of anxiety and depression. The present study investigated whether alterations in the substance P/NK1 receptor system in brain areas which regulate emotional responding accompany the depressive behavioural phenotype observed in the olfactory bulbectomised (OB) mouse. The effect of NK1 receptor deletion on behavioural responding and monoamine levels in discrete brain regions of the OB model, were also examined. Substance P levels in the frontal cortex and NK1 receptor expression in the amygdala and hippocampus were enhanced following olfactory bulbectomy. Although NK1 receptor knockout (NK1-/-) mice did not exhibit altered behavioural responding in the open field test, noradrenaline levels were enhanced in the frontal cortex, amygdala and hippocampus, as were serotonin levels in the frontal cortex. Locomotor activity and exploratory behaviour were enhanced in wild type OB mice, indicative of a depressive-like phenotype, an effect attenuated in NK1-/- mice. Bulbectomy induced a decrease in noradrenaline and 5-HIAA in the frontal cortex and an increase in serotonin in the amygdala, effects attenuated in OB NK1-/- mice. The present studies indicate that alterations in substance P/NK1 receptor system underlie, at least in part, the behavioural and monoaminergic changes in this animal model of depression.
Collapse
|
16
|
Delgado-Morales R, del Río E, Gómez-Román A, Bisagno V, Nadal R, de Felipe C, Armario A. Adrenocortical and behavioural response to chronic restraint stress in neurokinin-1 receptor knockout mice. Physiol Behav 2011; 105:669-75. [PMID: 22019828 DOI: 10.1016/j.physbeh.2011.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 11/15/2022]
Abstract
Brain substance P and its receptor (neurokinin-1, NK1) have a widespread brain distribution and are involved in an important number of behavioural and physiological responses to emotional stimuli. However, the role of NK1 receptors in the consequences of exposure to chronic stress has not been explored. The present study focused on the role of these receptors in the hypothalamic-pituitary-adrenal (HPA) response to daily repeated restraint stress (evaluated by plasma corticosterone levels), as well as on the effect of this procedure on anxiety-like behaviour, spatial learning and memory in the Morris water maze (MWM), a hippocampus-dependent task. Adult null mutant NK1-/- mice, with a C57BL/6J background, and the corresponding wild-type mice showed similar resting corticosterone levels and, also, did not differ in corticosterone response to a first restraint. Nevertheless, adaptation to the repeated stressor was faster in NK1-/- mice. Chronic restraint modestly increased anxiety-like behaviour in the light-dark test, irrespective of genotype. Throughout the days of the MWM trials, NK1-/- mice showed a similar learning rate to that of wild-type mice, but had lower levels of thigmotaxis and showed a better retention in the probe trial. Chronic restraint stress did not affect these variables in either genotype. These results indicate that deletion of the NK1 receptor does not alter behavioural susceptibility to chronic repeated stress in mice, but accelerates adaptation of the HPA axis. In addition, deletion may result in lower levels of thigmotaxis and improved short-term spatial memory, perhaps reflecting a better learning strategy in the MWM.
Collapse
|
17
|
Bilkei-Gorzo A, Berner J, Zimmermann J, Wickström R, Racz I, Zimmer A. Increased morphine analgesia and reduced side effects in mice lacking the tac1 gene. Br J Pharmacol 2010; 160:1443-52. [PMID: 20590634 DOI: 10.1111/j.1476-5381.2010.00757.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Although morphine is a very effective analgesic, its narrow therapeutic index and severe side effects limit its therapeutic use. Previous studies indicated that the pharmacological responses of opioids are modulated by genetic and pharmacological invalidation of tachykinin receptors. Here we address the role of substance P and neurokinin A, which are both encoded by the tachykinin 1 (tac1) gene, as modulators of opioid effects. EXPERIMENTAL APPROACH The analgesic and side effect potential of morphine was compared between wild-type and tac1 null mutant mice. KEY RESULTS Morphine was a more potent analgesic in tac1 null mutant mice, that is, in the absence of substance P/neurokinin A signalling. Interestingly, the most serious side effect of acute morphine, that is respiratory depression, was reduced in tac1(-/-) animals. Comparing the addictive potential of morphine in wild-type and knockout animals we found that morphine preference was similar between the genotypes. However, the aversive effect of withdrawal precipitated by naloxone in morphine-dependent animals was significantly reduced in tac1 knockout mice. Behavioural sensitization, the underlying mechanism of addiction, was also significantly lower in tac1(-/-) mice. CONCLUSION AND IMPLICATIONS The analgesic potential of morphine was increased in tac1 knockout mice. In contrast, both the ventilatory suppressing effect and the addictive potential of morphine were reduced. These results suggest that reducing activity of the tachykinin system may be a possible strategy to improve the pharmacological potential of morphine.
Collapse
Affiliation(s)
- A Bilkei-Gorzo
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
IL-1 is a well-characterized proinflammatory cytokine that is involved in host defense and autoimmune diseases. IL-1 can promote activation of T cells, including Th1 cells, Th2 cells and Th17 cells, and B cells, suggesting that IL-1 may contribute to the development of various types of T-cell-mediated diseases. This report reviews and discusses the role of IL-1 in the pathogenesis of allergic diseases based on studies using IL-1-related gene-deficient mice.
Collapse
Affiliation(s)
- Aya Nambu
- Atopy Research Center, Juntendo University, Tokyo, Japan
| | | |
Collapse
|
19
|
Thorsell A, Schank JR, Singley E, Hunt SP, Heilig M. Neurokinin-1 receptors (NK1R:s), alcohol consumption, and alcohol reward in mice. Psychopharmacology (Berl) 2010; 209:103-11. [PMID: 20112009 DOI: 10.1007/s00213-010-1775-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 12/31/2009] [Indexed: 01/13/2023]
Abstract
RATIONALE Reduced voluntary alcohol consumption was recently found in neurokinin-1 receptor (NK1R)-deficient (KO) mice. It remains unknown whether this reflects developmental effects or direct regulation of alcohol consumption by NK1R:s, and whether the reduced consumption reflects motivational effects. OBJECTIVE The objective of this study is to obtain an expanded preclinical validation of NK1R antagonism as a candidate therapeutic mechanism in alcohol use disorders. METHODS The NK1R antagonist L-703,606 and NK1R KO mice were used in models that assess alcohol-related behaviors. RESULTS L-703,606 (3-10 mg/kg i.p.) dose-dependently suppressed alcohol intake in WT C57BL/6 mice under two-bottle free choice conditions but was ineffective in NK1R KO:s, demonstrating the receptor specificity of the effect. Alcohol reward, measured as conditioned place preference for alcohol, was reduced by NK1R receptor deletion in a gene dose-dependent manner. In a model where escalation of intake is induced by repeated cycles of deprivation and access, escalation was seen in WT mice, but not in KO mice. Among behavioral phenotypes previously reported for NK1R mice on a mixed background, an analgesic-like phenotype was maintained on the C57BL/6 background used here, while KO:s and WT:s did not differ in anxiety- and depression-related behaviors. CONCLUSIONS Acute blockade of NK1R:s mimics the effects of NKR1 gene deletion on alcohol consumption, supporting a direct rather than developmental role of the receptor in regulation of alcohol intake. Inactivation of NK1R:s critically modulates alcohol reward and escalation, two key characteristics of addiction. These data provide critical support for NK1R antagonism as a candidate mechanism for treatment of alcoholism.
Collapse
Affiliation(s)
- Annika Thorsell
- The Laboratory of Clinical and Translational Studies, National Institute On Alcohol Abuse and Alcoholism, 10 Center Drive, 10-CRC/1-5330, Bethesda, MD 20892-1108, USA
| | | | | | | | | |
Collapse
|
20
|
How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. ADVANCES IN THE STUDY OF BEHAVIOR 2010. [DOI: 10.1016/s0065-3454(10)41007-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Yan TC, Hunt SP, Stanford SC. Behavioural and neurochemical abnormalities in mice lacking functional tachykinin-1 (NK1) receptors: A model of attention deficit hyperactivity disorder. Neuropharmacology 2009; 57:627-35. [DOI: 10.1016/j.neuropharm.2009.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 01/23/2023]
|
22
|
Carter RN, Paterson JM, Tworowska U, Stenvers DJ, Mullins JJ, Seckl JR, Holmes MC. Hypothalamic-pituitary-adrenal axis abnormalities in response to deletion of 11beta-HSD1 is strain-dependent. J Neuroendocrinol 2009; 21:879-87. [PMID: 19602102 PMCID: PMC2810446 DOI: 10.1111/j.1365-2826.2009.01899.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inter-individual differences in hypothalamic-pituitary-adrenal (HPA) axis activity underlie differential vulnerability to neuropsychiatric and metabolic disorders, although the basis of this variation is poorly understood. 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) has previously been shown to influence HPA axis activity. 129/MF1 mice null for 11beta-HSD1 (129/MF1 HSD1(-/-)) have greatly increased adrenal gland size and altered HPA activity, consistent with reduced glucocorticoid negative feedback. On this background, concentrations of plasma corticosterone and adrenocorticotrophic hormone (ACTH) were elevated in unstressed mice, and showed a delayed return to baseline after stress in HSD1-null mice with reduced sensitivity to exogenous glucocorticoid feedback compared to same-background genetic controls. In the present study, we report that the genetic background can dramatically alter this pattern. By contrast to HSD1(-/-) mice on a 129/MF1 background, HSD1(-/-) mice congenic on a C57Bl/6J background have normal basal plasma corticosterone and ACTH concentrations and exhibit normal return to baseline of plasma corticosterone and ACTH concentrations after stress. Furthermore, in contrast to 129/MF1 HSD1(-/-) mice, C57Bl/6J HSD1(-/-) mice have increased glucocorticoid receptor expression in areas of the brain involved in glucocorticoid negative feedback (hippocampus and paraventricular nucleus), suggesting this may be a compensatory response to normalise feedback control of the HPA axis. In support of this hypothesis, C57Bl/6J HSD1(-/-) mice show increased sensitivity to dexamethasone-mediated suppression of peak corticosterone. Thus, although 11beta-HSD1 appears to contribute to regulation of the HPA axis, the genetic background is crucial in governing the response to (and hence the consequences of) its loss. Similar variations in plasticity may underpin inter-individual differences in vulnerability to disorders associated with HPA axis dysregulation. They also indicate that 11beta-HSD1 inhibition does not inevitably activate the HPA axis.
Collapse
Affiliation(s)
- R N Carter
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
23
|
Ebner K, Muigg P, Singewald G, Singewald N. Substance P in Stress and Anxiety. Ann N Y Acad Sci 2008; 1144:61-73. [DOI: 10.1196/annals.1418.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|