1
|
Comeaux P, Clark K, Noudoost B. A recruitment through coherence theory of working memory. Prog Neurobiol 2023; 228:102491. [PMID: 37393039 PMCID: PMC10530428 DOI: 10.1016/j.pneurobio.2023.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.
Collapse
Affiliation(s)
- Phillip Comeaux
- Dept. of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112, USA; Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kelsey Clark
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
2
|
Grimaldi A, Gruel A, Besnainou C, Jérémie JN, Martinet J, Perrinet LU. Precise Spiking Motifs in Neurobiological and Neuromorphic Data. Brain Sci 2022; 13:68. [PMID: 36672049 PMCID: PMC9856822 DOI: 10.3390/brainsci13010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Why do neurons communicate through spikes? By definition, spikes are all-or-none neural events which occur at continuous times. In other words, spikes are on one side binary, existing or not without further details, and on the other, can occur at any asynchronous time, without the need for a centralized clock. This stands in stark contrast to the analog representation of values and the discretized timing classically used in digital processing and at the base of modern-day neural networks. As neural systems almost systematically use this so-called event-based representation in the living world, a better understanding of this phenomenon remains a fundamental challenge in neurobiology in order to better interpret the profusion of recorded data. With the growing need for intelligent embedded systems, it also emerges as a new computing paradigm to enable the efficient operation of a new class of sensors and event-based computers, called neuromorphic, which could enable significant gains in computation time and energy consumption-a major societal issue in the era of the digital economy and global warming. In this review paper, we provide evidence from biology, theory and engineering that the precise timing of spikes plays a crucial role in our understanding of the efficiency of neural networks.
Collapse
Affiliation(s)
- Antoine Grimaldi
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Amélie Gruel
- SPARKS, Côte d’Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900 Sophia-Antipolis, France
| | - Camille Besnainou
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean-Nicolas Jérémie
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jean Martinet
- SPARKS, Côte d’Azur, CNRS, I3S, 2000 Rte des Lucioles, 06900 Sophia-Antipolis, France
| | - Laurent U. Perrinet
- INT UMR 7289, Aix Marseille Univ, CNRS, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
3
|
Sharma H, Azouz R. Coexisting neuronal coding strategies in the barrel cortex. Cereb Cortex 2022; 32:4986-5004. [PMID: 35149866 DOI: 10.1093/cercor/bhab527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022] Open
Abstract
During tactile sensation by rodents, whisker movements across surfaces generate complex whisker motions, including discrete, transient stick-slip events, which carry information about surface properties. The characteristics of these events and how the brain encodes this tactile information remain enigmatic. We found that cortical neurons show a mixture of synchronized and nontemporally correlated spikes in their tactile responses. Synchronous spikes convey the magnitude of stick-slip events by numerous aspects of temporal coding. These spikes show preferential selectivity for kinetic and kinematic whisker motion. By contrast, asynchronous spikes in each neuron convey the magnitude of stick-slip events by their discharge rates, response probability, and interspike intervals. We further show that the differentiation between these two types of activity is highly dependent on the magnitude of stick-slip events and stimulus and response history. These results suggest that cortical neurons transmit multiple components of tactile information through numerous coding strategies.
Collapse
Affiliation(s)
- Hariom Sharma
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
4
|
Lewis CM, Ni J, Wunderle T, Jendritza P, Lazar A, Diester I, Fries P. Cortical gamma-band resonance preferentially transmits coherent input. Cell Rep 2021; 35:109083. [PMID: 33951439 PMCID: PMC8200519 DOI: 10.1016/j.celrep.2021.109083] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 12/05/2022] Open
Abstract
Synchronization has been implicated in neuronal communication, but causal evidence remains indirect. We use optogenetics to generate depolarizing currents in pyramidal neurons of the cat visual cortex, emulating excitatory synaptic inputs under precise temporal control, while measuring spike output. The cortex transforms constant excitation into strong gamma-band synchronization, revealing the well-known cortical resonance. Increasing excitation with ramps increases the strength and frequency of synchronization. Slow, symmetric excitation profiles reveal hysteresis of power and frequency. White-noise input sequences enable causal analysis of network transmission, establishing that the cortical gamma-band resonance preferentially transmits coherent input components. Models composed of recurrently coupled excitatory and inhibitory units uncover a crucial role of feedback inhibition and suggest that hysteresis can arise through spike-frequency adaptation. The presented approach provides a powerful means to investigate the resonance properties of local circuits and probe how these properties transform input and shape transmission. Rhythmic synchronization has been implicated in neuronal communication, yet causal evidence has remained scarce. Lewis et al. optogenetically stimulate the visual cortex to emulate synaptic input while recording spike output. Cortex resonates at the gamma band (30–90 Hz) and preferentially transmits input that is coherent to the ongoing gamma-band rhythm.
Collapse
Affiliation(s)
- Christopher Murphy Lewis
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Jianguang Ni
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, Max-von-Laue-Straße 4, 60438 Frankfurt, Germany
| | - Thomas Wunderle
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Patrick Jendritza
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; International Max Planck Research School for Neural Circuits, Max-von-Laue-Straße 4, 60438 Frankfurt, Germany
| | - Andreea Lazar
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Ilka Diester
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Ghaderi P, Marateb HR, Safari MS. Electrophysiological Profiling of Neocortical Neural Subtypes: A Semi-Supervised Method Applied to in vivo Whole-Cell Patch-Clamp Data. Front Neurosci 2018; 12:823. [PMID: 30542256 PMCID: PMC6277855 DOI: 10.3389/fnins.2018.00823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
Abstract
A lot of efforts have been made to understand the structure and function of neocortical circuits. In fact, a promising way to understand the functions of cortical circuits is the classification of the neural types, based on their different properties. Recent studies focused on applying modern computational methods to classify neurons based on molecular, morphological, physiological, or mixed of these criteria. Although there are studies in the literature on in vitro/vivo extracellular or in vitro intracellular recordings, a study on the classification of neuronal types using in vivo whole-cell patch-clamp recordings is still lacking. We thus proposed a novel semi-supervised classification method based on waveform shape of neurons' spikes using in vivo whole-cell patch-clamp recordings. We, first, detected spike candidates. Then discriminative features were extracted from the time samples of the spikes using discrete cosine transform. We then extracted the center of clusters using fuzzy c-mean clustering and finally, the neurons were classified using the minimum distance classifier. We distinguished three types of neurons: excitatory pyramidal cells (Pyr) and two types of inhibitory neurons: GABAergic- parvalbumin positive (PV), and somatostatin positive (SST) non-pyramidal cells in layer II/III of the mice primary visual cortex. We used 10-fold cross validation in our study. The classification accuracy for PV, Pyr, and SST was 91.59 ± 1.69, 97.47 ± 0.67, and 89.06 ± 1.99, respectively. Overall, the algorithm correctly classified 92.67 ± 0.54% of the cells, confirming the relative robustness of the discriminant functions. The performance of the method was further assessed on in vitro recordings by using a pool of 50 neurons from Allen institute Cell Types Database (5 major subtypes of neurons: Pyr, PV, SST, 5HT3a, and vasoactive intestinal peptide (VIP) cells). Its overall accuracy was 84.13 ± 0.81% on this data set using cross validation framework. The proposed algorithm is thus a promising new tool in recognizing cell's type with high accuracy in laboratories using in vivo/vitro whole-cell patch-clamp recording technique. The developed programs and the entire dataset are available online to interested readers.
Collapse
Affiliation(s)
- Parviz Ghaderi
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Reza Marateb
- Biomedical Engineering Department, Engineering Faculty, University of Isfahan, Isfahan, Iran
| | - Mir-Shahram Safari
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.,Brain Science Institute, RIKEN, Wako, Japan.,Brain Future Institute, Tehran, Iran
| |
Collapse
|
6
|
Chrobok L, Palus‐Chramiec K, Jeczmien‐Lazur JS, Blasiak T, Lewandowski MH. Gamma and infra-slow oscillations shape neuronal firing in the rat subcortical visual system. J Physiol 2018; 596:2229-2250. [PMID: 29577327 PMCID: PMC5983133 DOI: 10.1113/jp275563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Neuronal oscillations observed in sensory systems are physiological carriers of information about stimulus features. Rhythm in the infra-slow range, originating from the retina, was previously found in the firing of subcortical visual system nuclei involved in both image and non-image forming functions. The present study shows that the firing of neurons in the lateral geniculate nucleus is also governed by gamma oscillation (∼35 Hz) time-locked to high phase of infra-slow rhythm that codes the intensity of transient light stimulation. We show that both physiological rhythms are synchronized within and between ipsilateral nuclei of the subcortical visual system and are dependent on retinal activity. The present study shows that neurophysiological oscillations characterized by various frequencies not only coexist in the subcortical visual system, but also are subjected to complex interference and synchronization processes. ABSTRACT The physiological function of rhythmic firing in the neuronal networks of sensory systems has been linked with information coding. Also, neuronal oscillations in different frequency bands often change as a signature of brain state or sensory processing. Infra-slow oscillation (ISO) in the neuronal firing dependent on the retinal network has been described previously in the structures of the subcortical visual system. In the present study, we show for the first time that firing of ISO neurons in the lateral geniculate nucleus is also characterized by a harmonic discharge pattern (i.e. action potentials are separated by the intervals governed by fundamental frequency in the gamma range: ∼35 Hz). A similar phenomenon was recently described in the suprachiasmatic nuclei of the hypothalamus: the master biological clock. We found that both gamma and ISO rhythms were synchronized within and between ipsilateral nuclei of the subcortical visual system and were dependent on the retinal activity of the contralateral eye. These oscillatory patterns were differentially influenced by transient and prolonged light stimulation with respect to both frequency change direction and sustainability. The results of the present study show that the firing pattern of neurons in the subcortical visual system is shaped by oscillations from infra-slow and gamma frequency bands that are plausibly generated by the retinal network. Additionally, the results demonstrate that both rhythms are not a distinctive feature of image or non-image forming visual systems but, instead, they comprise two channels carrying distinctive properties of photic information.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and ChronobiologyInstitute of Zoology and Biomedical ResearchJagiellonian University in KrakowKrakowPoland
| | - Katarzyna Palus‐Chramiec
- Department of Neurophysiology and ChronobiologyInstitute of Zoology and Biomedical ResearchJagiellonian University in KrakowKrakowPoland
| | - Jagoda Stanislawa Jeczmien‐Lazur
- Department of Neurophysiology and ChronobiologyInstitute of Zoology and Biomedical ResearchJagiellonian University in KrakowKrakowPoland
| | - Tomasz Blasiak
- Department of Neurophysiology and ChronobiologyInstitute of Zoology and Biomedical ResearchJagiellonian University in KrakowKrakowPoland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and ChronobiologyInstitute of Zoology and Biomedical ResearchJagiellonian University in KrakowKrakowPoland
| |
Collapse
|
7
|
Singer AC, Talei Franzesi G, Kodandaramaiah SB, Flores FJ, Cohen JD, Lee AK, Borgers C, Forest CR, Kopell NJ, Boyden ES. Mesoscale-duration activated states gate spiking in response to fast rises in membrane voltage in the awake brain. J Neurophysiol 2017; 118:1270-1291. [PMID: 28566460 PMCID: PMC5558023 DOI: 10.1152/jn.00116.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Seconds-scale network states, affecting many neurons within a network, modulate neural activity by complementing fast integration of neuron-specific inputs that arrive in the milliseconds before spiking. Nonrhythmic subthreshold dynamics at intermediate timescales, however, are less well characterized. We found, using automated whole cell patch clamping in vivo, that spikes recorded in CA1 and barrel cortex in awake mice are often preceded not only by monotonic voltage rises lasting milliseconds but also by more gradual (lasting tens to hundreds of milliseconds) depolarizations. The latter exert a gating function on spiking, in a fashion that depends on the gradual rise duration: the probability of spiking was higher for longer gradual rises, even when controlled for the amplitude of the gradual rises. Barrel cortex double-autopatch recordings show that gradual rises are shared across some, but not all, neurons. The gradual rises may represent a new kind of state, intermediate both in timescale and in proportion of neurons participating, which gates a neuron's ability to respond to subsequent inputs.NEW & NOTEWORTHY We analyzed subthreshold activity preceding spikes in hippocampus and barrel cortex of awake mice. Aperiodic voltage ramps extending over tens to hundreds of milliseconds consistently precede and facilitate spikes, in a manner dependent on both their amplitude and their duration. These voltage ramps represent a "mesoscale" activated state that gates spike production in vivo.
Collapse
Affiliation(s)
- Annabelle C Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Media Laboratory and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Giovanni Talei Franzesi
- Media Laboratory and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Suhasa B Kodandaramaiah
- Media Laboratory and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Francisco J Flores
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeremy D Cohen
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia
| | - Albert K Lee
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia
| | | | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - Nancy J Kopell
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Edward S Boyden
- Media Laboratory and McGovern Institute for Brain Research, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts;
| |
Collapse
|
8
|
Vinck M, Bosman CA. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions. Front Syst Neurosci 2016; 10:35. [PMID: 27199684 PMCID: PMC4842768 DOI: 10.3389/fnsys.2016.00035] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 11/15/2022] Open
Abstract
During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that is particularly information-rich and sparse.
Collapse
Affiliation(s)
- Martin Vinck
- School of Medicine, Yale University New Haven, CT, USA
| | - Conrado A Bosman
- Cognitive and Systems Neuroscience Group, Swammerdam Institute, Center for Neuroscience, University of AmsterdamAmsterdam, Netherlands; Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
9
|
Fontaine B, Peña JL, Brette R. Spike-threshold adaptation predicted by membrane potential dynamics in vivo. PLoS Comput Biol 2014; 10:e1003560. [PMID: 24722397 PMCID: PMC3983065 DOI: 10.1371/journal.pcbi.1003560] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/21/2014] [Indexed: 11/18/2022] Open
Abstract
Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. Neurons spike when their membrane potential exceeds a threshold value, but this value has been shown to be variable in the same neuron recorded in vivo. This variability could reflect noise, or deterministic processes that make the threshold vary with the membrane potential. The second alternative would have important functional consequences. Here, we show that threshold variability is a genuine feature of neurons, which reflects adaptation to the membrane potential at a short timescale, with little contribution from noise. This demonstrates that a deterministic model can predict spikes based only on the membrane potential.
Collapse
Affiliation(s)
- Bertrand Fontaine
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - José Luis Peña
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Romain Brette
- Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Paris, France
- Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR_7210, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Maruyama Y, Ito H. Diversity, heterogeneity and orientation-dependent variation of spike count correlation in the cat visual cortex. Eur J Neurosci 2013; 38:3611-27. [PMID: 24112241 DOI: 10.1111/ejn.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 08/09/2013] [Accepted: 08/25/2013] [Indexed: 12/01/2022]
Abstract
Cortical neurons are known to be noisy encoders of information, showing large response variabilities with repeated presentations of identical stimuli. These spike count variabilities are correlated over the cell population and their neuronal mechanism and functional significance have not been well understood. Recently there has been much debate over the magnitude of the population mean of the correlation, ranging from 0.1 to 0.2 down to nearly zero. We performed multi-neuron recordings on the cat visual cortex and found that the population mean did not necessarily represent the nature of correlated variabilities because the spike count correlation showed significant diversity and heterogeneity. Although the population mean was relatively small (0.06), the correlations of individual unit pairs were distributed over a broad range, extending to both positive and negative values. In most of the recording sessions of local cell populations (83%), significantly positive correlations coexisted with significantly negative ones in different unit pairs. Furthermore, nearly 20% of the unit pairs showed significant variation in the spike count correlation for different stimulus orientations. Correlation analysis between the spike count correlation and the firing activity of the unit pair suggested that the orientation tuning properties of the two quantities were unlikely to have originated from a common neuronal mechanism. Diversity, heterogeneity and context-dependent variation suggests that the correlated spike count variabilities originate not from fixed anatomical connections but rather from the dynamic interaction of neuronal networks.
Collapse
Affiliation(s)
- Yoshiko Maruyama
- Faculty of Computer Science and Engineering, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | | |
Collapse
|
11
|
Yaron-Jakoubovitch A, Koch C, Segev I, Yarom Y. The unimodal distribution of sub-threshold, ongoing activity in cortical networks. Front Neural Circuits 2013; 7:116. [PMID: 23874270 PMCID: PMC3708135 DOI: 10.3389/fncir.2013.00116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/16/2013] [Indexed: 11/13/2022] Open
Abstract
The characterization of the subthreshold, ongoing activity in cortical neurons has been the focus of numerous studies. This activity, described as spontaneous slow waves in membrane potential, has been observed in a span of species in diverse cortical and subcortical areas. We here characterized membrane potential fluctuations in motor and the frontal association cortices cortical neurons of ketamine–xylazine anesthetized rats. We recorded from 95 neurons from a range of cortical depths to unravel the network and cellular mechanisms that shape the subthreshold ongoing spontaneous activity of these neurons. We define a unitary event that generates the subthreshold ongoing activity: giant synaptic potentials (GSPs). These events have a duration of 87 ± 50 ms and an amplitude of 19 ± 6.4 mV. They occur at a frequency of 3.7 ± 0.8 Hz and involve an increase in conductance change of 22 ± 21%. GSPs are mainly due to excitatory activity that occurs throughout all cortical layers, unaffected by the intrinsic properties of the cells. Indeed, blocking the GABAA receptors, a procedure that had a profound effect on cortical activity, did not alter these unitary events. We propose that this unitary event is composed of individual, excitatory synaptic potentials that appear at different levels of synchrony and that the level of synchrony determines the shape of the subthreshold activity.
Collapse
Affiliation(s)
- Anat Yaron-Jakoubovitch
- Department of Neurobiology, The Hebrew University Jerusalem, Israel ; The Interdisciplinary Centre for Neural Computation, The Edmond and Lily Safra Center for Brain Sciences The Hebrew University Jerusalem, Israel
| | | | | | | |
Collapse
|
12
|
Optimizing the decoding of movement goals from local field potentials in macaque cortex. J Neurosci 2012; 31:18412-22. [PMID: 22171043 DOI: 10.1523/jneurosci.4165-11.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The successful development of motor neuroprosthetic devices hinges on the ability to accurately and reliably decode signals from the brain. Motor neuroprostheses are widely investigated in behaving non-human primates, but technical constraints have limited progress in optimizing performance. In particular, the organization of movement-related neuronal activity across cortical layers remains poorly understood due, in part, to the widespread use of fixed-geometry multielectrode arrays. In this study, we use chronically implanted multielectrode arrays with individually movable electrodes to examine how the encoding of movement goals depends on cortical depth. In a series of recordings spanning several months, we varied the depth of each electrode in the prearcuate gyrus of frontal cortex in two monkeys as they performed memory-guided eye movements. We decode eye movement goals from local field potentials (LFPs) and multiunit spiking activity recorded across a range of depths up to 3 mm from the cortical surface. We show that both LFP and multiunit signals yield the highest decoding performance at superficial sites, within 0.5 mm of the cortical surface, while performance degrades substantially at sites deeper than 1 mm. We also analyze performance by varying bandpass filtering characteristics and simulating changes in microelectrode array channel count and density. The results indicate that the performance of LFP-based neuroprostheses strongly depends on recording configuration and that recording depth is a critical parameter limiting system performance.
Collapse
|
13
|
Abstract
Chandelier (axoaxonic) cells (ChCs) are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells. However, their circuit role and the function of their clearly defined anatomical specificity remain unclear. Recent work has demonstrated that chandelier cells can produce depolarizing GABAergic PSPs, occasionally driving postsynaptic targets to spike. On the other hand, other work suggests that ChCs are hyperpolarizing and may have an inhibitory role. These disparate functional effects may reflect heterogeneity among ChCs. Here, using brain slices from transgenic mouse strains, we first demonstrate that, across different neocortical areas and genetic backgrounds, upper Layer 2/3 ChCs belong to a single electrophysiologically and morphologically defined population, extensively sampling Layer 1 inputs with asymmetric dendrites. Consistent with being a single cell type, we find electrical coupling between ChCs. We then investigate the effect of chandelier cell activation on pyramidal neuron spiking in several conditions, ranging from the resting membrane potential to stimuli designed to approximate in vivo membrane potential dynamics. We find that under quiescent conditions, chandelier cells are capable of both promoting and inhibiting spike generation, depending on the postsynaptic membrane potential. However, during in vivo-like membrane potential fluctuations, the dominant postsynaptic effect was a strong inhibition. Thus, neocortical chandelier cells, even from within a homogeneous population, appear to play a dual role in the circuit, helping to activate quiescent pyramidal neurons, while at the same time inhibiting active ones.
Collapse
|
14
|
Hoch T, Volgushev S, Malyshev A, Obermayer K, Volgushev M. Modulation of the amplitude of γ-band activity by stimulus phase enhances signal encoding. Eur J Neurosci 2011; 33:1223-39. [PMID: 21375595 DOI: 10.1111/j.1460-9568.2011.07593.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Visual stimulation often leads to elevated fluctuations of the membrane potential in the γ-frequency range (25-70 Hz) in visual cortex neurons. Recently, we have found that the strength of γ-band fluctuations is coupled to the oscillation of the membrane potential at the temporal frequency of the stimulus, so that the γ-band fluctuations are stronger at depolarization peaks, but weaker at troughs of the stimulus frequency oscillation of the membrane potential. We hypothesized that this coupling may improve stimulus encoding. Here, we tested this hypothesis by using a single-compartment conductance-based neuron model, with parameters of the input adjusted to reproduce typical features of membrane potential and spike responses, recorded in cat visual cortical neurons in vivo during the presentation of moving gratings. We show that modulation of the γ-range membrane potential fluctuations by the amplitude of the slow membrane depolarization greatly improves stimulus encoding. Moreover, changing the degree of modulation of the γ-activity by the low-frequency signal within the range typically observed in visual cortex cells had a stronger effect on both the firing rates and information rates than changing the amplitude of the low-frequency stimulus itself. Thus, modulation of the γ-activity represents an efficient mechanism for regulation of neuronal firing and encoding of the temporal characteristics of visual stimuli.
Collapse
Affiliation(s)
- Thomas Hoch
- Neural Information Processing Group, Berlin University of Technology, Germany
| | | | | | | | | |
Collapse
|
15
|
Yu J, Ferster D. Membrane potential synchrony in primary visual cortex during sensory stimulation. Neuron 2011; 68:1187-201. [PMID: 21172618 DOI: 10.1016/j.neuron.2010.11.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2010] [Indexed: 11/26/2022]
Abstract
When the primary visual cortex (V1) is activated by sensory stimulation, what is the temporal correlation between the synaptic inputs to nearby neurons? This question underlies the origin of correlated activity, the mechanism of how visually evoked activity emerges and propagates in cortical circuits, and the relationship between spontaneous and evoked activity. Here, we have recorded membrane potential from pairs of V1 neurons in anesthetized cats and found that visual stimulation suppressed low-frequency membrane potential synchrony (0-10 Hz), and often increased synchrony at high frequencies (20-80 Hz). The increase in high-frequency synchrony occurred for neurons with similar orientation preferences and for neurons with different orientation preferences and occurred for a wide range of stimulus orientations. Thus, while only a subset of neurons spike in response to visual stimulation, a far larger proportion of the circuit is correlated with spiking activity through subthreshold, high-frequency synchronous activity that crosses functional domains.
Collapse
Affiliation(s)
- Jianing Yu
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
16
|
Knoblich U, Siegle JH, Pritchett DL, Moore CI. What do we gain from gamma? Local dynamic gain modulation drives enhanced efficacy and efficiency of signal transmission. Front Hum Neurosci 2010; 4:185. [PMID: 21151350 PMCID: PMC2981421 DOI: 10.3389/fnhum.2010.00185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/14/2010] [Indexed: 11/23/2022] Open
Abstract
Gamma oscillations in neocortex are hypothesized to improve information transmission between groups of neurons. We recently showed that optogenetic drive of fast-spiking interneurons (FS) at 40 Hz in mouse neocortex in vivo modulates the spike count and precision of sensory evoked responses. At specific phases of alignment between stimuli and FS activation, total evoked spike count was unchanged compared to baseline, but precision was increased. In the present study, we used computational modeling to investigate the origin of these local transformations, and to make predictions about their impact on downstream signal transmission. We replicated the prior experimental findings, and found that the local gain observed can be explained by mutual inhibition of fast-spiking interneurons, leading to more robust sensory-driven spiking in a brief temporal window post-stimulus, increasing local synchrony. Enhanced spiking in a second neocortical area, without a net increase in overall driven spikes in the first area, resulted from faster depolarization of target neurons due to increased pre-synaptic synchrony. In addition, we found that the precise temporal structure of spiking in the first area impacted the gain between cortical areas. The optimal spike distribution matched the “window of opportunity” defined by the timing of inhibition in the target area: spiking beyond this window did not contribute to downstream spike generation, leading to decreased overall gain. This result predicts that efficient transmission between neocortical areas requires a mechanism to dynamically match the temporal structure of the output of one area to the timing of inhibition in the recipient zone.
Collapse
Affiliation(s)
- Ulf Knoblich
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA
| | | | | | | |
Collapse
|
17
|
Ito H, Maldonado PE, Gray CM. Dynamics of stimulus-evoked spike timing correlations in the cat lateral geniculate nucleus. J Neurophysiol 2010; 104:3276-92. [PMID: 20881200 DOI: 10.1152/jn.01000.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precisely synchronized neuronal activity has been commonly observed in the mammalian visual pathway. Spike timing correlations in the lateral geniculate nucleus (LGN) often take the form of phase synchronized oscillations in the high gamma frequency range. To study the relations between oscillatory activity, synchrony, and their time-dependent properties, we recorded activity from multiple single units in the cat LGN under stimulation by stationary spots of light. Autocorrelation analysis showed that approximately one third of the cells exhibited oscillatory firing with a mean frequency ∼80 Hz. Cross-correlation analysis showed that 30% of unit pairs showed significant synchronization, and 61% of these pairs consisted of synchronous oscillations. Cross-correlation analysis assumes that synchronous firing is stationary and maintained throughout the period of stimulation. We tested this assumption by applying unitary events analysis (UEA). We found that UEA was more sensitive to weak and transient synchrony than cross-correlation analysis and detected a higher incidence (49% of cell pairs) of significant synchrony (unitary events). In many unit pairs, the unitary events were optimally characterized at a bin width of 1 ms, indicating that neural synchrony has a high degree of temporal precision. We also found that approximately one half of the unit pairs showed nonstationary changes in synchrony that could not be predicted by the modulation of firing rates. Population statistics showed that the onset of synchrony between LGN cells occurred significantly later than that observed between retinal afferents and LGN cells. The synchrony detected among unit pairs recorded on separate tetrodes tended to be more transient and have a later onset than that observed between adjacent units. These findings show that stimulus-evoked synchronous activity within the LGN is often rhythmic, highly nonstationary, and modulated by endogenous processes that are not tightly correlated with firing rate.
Collapse
Affiliation(s)
- Hiroyuki Ito
- Faculty of Computer Science and Engineering, Kyoto Sangyo Univ., Kamigamo, Kita-ku, Kyoto 603-8555, Japan.
| | | | | |
Collapse
|
18
|
Sceniak MP, Sabo SL. Modulation of firing rate by background synaptic noise statistics in rat visual cortical neurons. J Neurophysiol 2010; 104:2792-805. [PMID: 20739598 DOI: 10.1152/jn.00023.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been shown previously that background synaptic noise modulates the response gain of neocortical neurons. However, the role of the statistical properties of the noise in modulating firing rate is not known. Here, the dependence of firing rate on the statistical properties of the excitatory to inhibitory balance (EI) in cortical pyramidal neurons was studied. Excitatory glutamatergic and inhibitory GABAergic synaptic conductances were simulated as two stochastic processes and injected into individual neurons in vitro through use of the dynamic-clamp system. Response gain was significantly modulated as a function of the statistical interactions between excitatory and inhibitory synaptic conductances. Firing rates were compared for noisy synaptic conductance steps by varying either the EI correlation or the relative delay between correlated E and I. When inhibitory synaptic conductances exhibited a short temporal delay (5 ms) relative to correlated excitatory synaptic conductances, the response gain was increased compared with noise with no temporal delay but with an equivalent degree of correlation. The dependence of neuronal firing rate on the EI delay of the noisy background synaptic conductance suggests that individual excitatory pyramidal neurons are sensitive to the EI balance of the synaptic conductance. Therefore the statistical EI interactions encoded within the synaptic subthreshold membrane fluctuations are able to modulate neuronal firing properties.
Collapse
Affiliation(s)
- Michael P Sceniak
- Neuroscience and Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
19
|
Haider B, McCormick DA. Rapid neocortical dynamics: cellular and network mechanisms. Neuron 2009; 62:171-89. [PMID: 19409263 PMCID: PMC3132648 DOI: 10.1016/j.neuron.2009.04.008] [Citation(s) in RCA: 330] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/12/2009] [Accepted: 04/13/2009] [Indexed: 01/07/2023]
Abstract
The highly interconnected local and large-scale networks of the neocortical sheet rapidly and dynamically modulate their functional connectivity according to behavioral demands. This basic operating principle of the neocortex is mediated by the continuously changing flow of excitatory and inhibitory synaptic barrages that not only control participation of neurons in networks but also define the networks themselves. The rapid control of neuronal responsiveness via synaptic bombardment is a fundamental property of cortical dynamics that may provide the basis of diverse behaviors, including sensory perception, motor integration, working memory, and attention.
Collapse
Affiliation(s)
- Bilal Haider
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - David A. McCormick
- Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|