1
|
Ji Z, Lomi E, Jeffery K, Mitchell AS, Burgess N. Phase Precession Relative to Turning Angle in Theta-Modulated Head Direction Cells. Hippocampus 2025; 35:e70008. [PMID: 40071745 PMCID: PMC11898577 DOI: 10.1002/hipo.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Grid and place cells typically fire at progressively earlier phases within each cycle of the theta rhythm as rodents run across their firing fields, a phenomenon known as theta phase precession. Here, we report theta phase precession relative to turning angle in theta-modulated head direction cells within the anteroventral thalamic nucleus (AVN). As rodents turn their heads, these cells fire at progressively earlier phases as head direction sweeps over their preferred tuning direction. The degree of phase precession increases with angular head velocity. Moreover, phase precession is more pronounced in those theta-modulated head direction cells that exhibit theta skipping, with a stronger theta-skipping effect correlating with a higher degree of phase precession. These findings are consistent with a ring attractor model that integrates external theta input with internal firing rate adaptation-a phenomenon we identified in head direction cells within AVN. Our results broaden the range of information known to be subject to neural phase coding and enrich our understanding of the neural dynamics supporting spatial orientation and navigation.
Collapse
Affiliation(s)
- Zilong Ji
- UCL Institute of Cognitive Neuroscience, University College LondonLondonUK
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Eleonora Lomi
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Kate Jeffery
- School of Psychology & Neuroscience, University of GlasgowGlasgowUK
| | - Anna S. Mitchell
- School of Psychology, Speech, and Hearing, University of CanterburyChristchurchNew Zealand
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, University College LondonLondonUK
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
2
|
Dabaghian Y. Grid cells, border cells, and discrete complex analysis. Front Comput Neurosci 2023; 17:1242300. [PMID: 37881247 PMCID: PMC10595009 DOI: 10.3389/fncom.2023.1242300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
We propose a mechanism enabling the appearance of border cells-neurons firing at the boundaries of the navigated enclosures. The approach is based on the recent discovery of discrete complex analysis on a triangular lattice, which allows constructing discrete epitomes of complex-analytic functions and making use of their inherent ability to attain maximal values at the boundaries of generic lattice domains. As it turns out, certain elements of the discrete-complex framework readily appear in the oscillatory models of grid cells. We demonstrate that these models can extend further, producing cells that increase their activity toward the frontiers of the navigated environments. We also construct a network model of neurons with border-bound firing that conforms with the oscillatory models.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas, McGovern Medical Center at Houston, Houston, TX, United States
| |
Collapse
|
3
|
Dabaghian Y. Grid Cell Percolation. Neural Comput 2023; 35:1609-1626. [PMID: 37523457 DOI: 10.1162/neco_a_01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/10/2023] [Indexed: 08/02/2023]
Abstract
Grid cells play a principal role in enabling cognitive representations of ambient environments. The key property of these cells-the regular arrangement of their firing fields-is commonly viewed as a means for establishing spatial scales or encoding specific locations. However, using grid cells' spiking outputs for deducing geometric orderliness proves to be a strenuous task due to fairly irregular activation patterns triggered by the animal's sporadic visits to the grid fields. This article addresses statistical mechanisms enabling emergent regularity of grid cell firing activity from the perspective of percolation theory. Using percolation phenomena for modeling the effect of the rat's moves through the lattices of firing fields sheds new light on the mechanisms of spatial information processing, spatial learning, path integration, and establishing spatial metrics. It is also shown that physiological parameters required for spiking percolation match the experimental range, including the characteristic 2/3 ratio between the grid fields' size and the grid spacing, pointing at a biological viability of the approach.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, U.S.A.
| |
Collapse
|
4
|
Abdellahi MEA, Koopman ACM, Treder MS, Lewis PA. Targeted memory reactivation in human REM sleep elicits detectable reactivation. eLife 2023; 12:e84324. [PMID: 37350572 PMCID: PMC10425171 DOI: 10.7554/elife.84324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Abstract
It is now well established that memories can reactivate during non-rapid eye movement (non-REM) sleep, but the question of whether equivalent reactivation can be detected in rapid eye movement (REM) sleep is hotly debated. To examine this, we used a technique called targeted memory reactivation (TMR) in which sounds are paired with learned material in wake, and then re-presented in subsequent sleep, in this case REM, to trigger reactivation. We then used machine learning classifiers to identify reactivation of task-related motor imagery from wake in REM sleep. Interestingly, the strength of measured reactivation positively predicted overnight performance improvement. These findings provide the first evidence for memory reactivation in human REM sleep after TMR that is directly related to brain activity during wakeful task performance.
Collapse
Affiliation(s)
- Mahmoud EA Abdellahi
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Anne CM Koopman
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Matthias S Treder
- School of Computer Science and Informatics, Cardiff UniversityCardiffUnited Kingdom
| | - Penelope A Lewis
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| |
Collapse
|
5
|
Dabaghian Y. Grid Cells, Border Cells and Discrete Complex Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539720. [PMID: 37214803 PMCID: PMC10197584 DOI: 10.1101/2023.05.06.539720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We propose a mechanism enabling the appearance of border cells-neurons firing at the boundaries of the navigated enclosures. The approach is based on the recent discovery of discrete complex analysis on a triangular lattice, which allows constructing discrete epitomes of complex-analytic functions and making use of their inherent ability to attain maximal values at the boundaries of generic lattice domains. As it turns out, certain elements of the discrete-complex framework readily appear in the oscillatory models of grid cells. We demonstrate that these models can extend further, producing cells that increase their activity towards the frontiers of the navigated environments. We also construct a network model of neurons with border-bound firing that conforms with the oscillatory models.
Collapse
Affiliation(s)
- Yuri Dabaghian
- Department of Neurology, The University of Texas McGovern Medical School, 6431 Fannin St, Houston, TX 77030
| |
Collapse
|
6
|
Chen ZS, Wilson MA. How our understanding of memory replay evolves. J Neurophysiol 2023; 129:552-580. [PMID: 36752404 PMCID: PMC9988534 DOI: 10.1152/jn.00454.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Memory reactivations and replay, widely reported in the hippocampus and cortex across species, have been implicated in memory consolidation, planning, and spatial and skill learning. Technological advances in electrophysiology, calcium imaging, and human neuroimaging techniques have enabled neuroscientists to measure large-scale neural activity with increasing spatiotemporal resolution and have provided opportunities for developing robust analytic methods to identify memory replay. In this article, we first review a large body of historically important and representative memory replay studies from the animal and human literature. We then discuss our current understanding of memory replay functions in learning, planning, and memory consolidation and further discuss the progress in computational modeling that has contributed to these improvements. Next, we review past and present analytic methods for replay analyses and discuss their limitations and challenges. Finally, looking ahead, we discuss some promising analytic methods for detecting nonstereotypical, behaviorally nondecodable structures from large-scale neural recordings. We argue that seamless integration of multisite recordings, real-time replay decoding, and closed-loop manipulation experiments will be essential for delineating the role of memory replay in a wide range of cognitive and motor functions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York, United States
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, United States
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
7
|
Cazin N, Scleidorovich P, Weitzenfeld A, Dominey PF. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization. BIOLOGICAL CYBERNETICS 2020; 114:249-268. [PMID: 32095878 DOI: 10.1007/s00422-020-00820-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
An open problem in the cognitive dimensions of navigation concerns how previous exploratory experience is reorganized in order to allow the creation of novel efficient navigation trajectories. This behavior is revealed in the "traveling salesrat problem" (TSP) when rats discover the shortest path linking baited food wells after a few exploratory traversals. We have recently published a model of navigation sequence learning, where sharp wave ripple replay of hippocampal place cells transmit "snippets" of the recent trajectories that the animal has explored to the prefrontal cortex (PFC) (Cazin et al. in PLoS Comput Biol 15:e1006624, 2019). PFC is modeled as a recurrent reservoir network that is able to assemble these snippets into the efficient sequence (trajectory of spatial locations coded by place cell activation). The model of hippocampal replay generates a distribution of snippets as a function of their proximity to a reward, thus implementing a form of spatial credit assignment that solves the TSP task. The integrative PFC reservoir reconstructs the efficient TSP sequence based on exposure to this distribution of snippets that favors paths that are most proximal to rewards. While this demonstrates the theoretical feasibility of the PFC-HIPP interaction, the integration of such a dynamic system into a real-time sensory-motor system remains a challenge. In the current research, we test the hypothesis that the PFC reservoir model can operate in a real-time sensory-motor loop. Thus, the main goal of the paper is to validate the model in simulated and real robot scenarios. Place cell activation encoding the current position of the simulated and physical rat robot feeds the PFC reservoir which generates the successor place cell activation that represents the next step in the reproduced sequence in the readout. This is input to the robot, which advances to the coded location and then generates de novo the current place cell activation. This allows demonstration of the crucial role of embodiment. If the spatial code readout from PFC is played back directly into PFC, error can accumulate, and the system can diverge from desired trajectories. This required a spatial filter to decode the PFC code to a location and then recode a new place cell code for that location. In the robot, the place cell vector output of PFC is used to physically displace the robot and then generate a new place cell coded input to the PFC, replacing part of the software recoding procedure that was required otherwise. We demonstrate how this integrated sensory-motor system can learn simple navigation sequences and then, importantly, how it can synthesize novel efficient sequences based on prior experience, as previously demonstrated (Cazin et al. 2019). This contributes to the understanding of hippocampal replay in novel navigation sequence formation and the important role of embodiment.
Collapse
Affiliation(s)
- Nicolas Cazin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France
- Robot Cognition Laboratory, Institut Marey, INSERM U1093 CAPS, UBFC, Dijon, France
| | | | | | - Peter Ford Dominey
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France.
- Robot Cognition Laboratory, Institut Marey, INSERM U1093 CAPS, UBFC, Dijon, France.
| |
Collapse
|
8
|
Babichev A, Morozov D, Dabaghian Y. Replays of spatial memories suppress topological fluctuations in cognitive map. Netw Neurosci 2019; 3:707-724. [PMID: 31410375 PMCID: PMC6663216 DOI: 10.1162/netn_a_00076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/18/2018] [Indexed: 11/04/2022] Open
Abstract
The spiking activity of the hippocampal place cells plays a key role in producing and sustaining an internalized representation of the ambient space-a cognitive map. These cells do not only exhibit location-specific spiking during navigation, but also may rapidly replay the navigated routs through endogenous dynamics of the hippocampal network. Physiologically, such reactivations are viewed as manifestations of "memory replays" that help to learn new information and to consolidate previously acquired memories by reinforcing synapses in the parahippocampal networks. Below we propose a computational model of these processes that allows assessing the effect of replays on acquiring a robust topological map of the environment and demonstrate that replays may play a key role in stabilizing the hippocampal representation of space.
Collapse
Affiliation(s)
- Andrey Babichev
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | | | - Yuri Dabaghian
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| |
Collapse
|
9
|
Rennó-Costa C, da Silva ACC, Blanco W, Ribeiro S. Computational models of memory consolidation and long-term synaptic plasticity during sleep. Neurobiol Learn Mem 2018; 160:32-47. [PMID: 30321652 DOI: 10.1016/j.nlm.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/18/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
The brain stores memories by persistently changing the connectivity between neurons. Sleep is known to be critical for these changes to endure. Research on the neurobiology of sleep and the mechanisms of long-term synaptic plasticity has provided data in support of various theories of how brain activity during sleep affects long-term synaptic plasticity. The experimental findings - and therefore the theories - are apparently quite contradictory, with some evidence pointing to a role of sleep in the forgetting of irrelevant memories, whereas other results indicate that sleep supports the reinforcement of the most valuable recollections. A unified theoretical framework is in need. Computational modeling and simulation provide grounds for the quantitative testing and comparison of theoretical predictions and observed data, and might serve as a strategy to organize the rather complicated and diverse pool of data and methodologies used in sleep research. This review article outlines the emerging progress in the computational modeling and simulation of the main theories on the role of sleep in memory consolidation.
Collapse
Affiliation(s)
- César Rennó-Costa
- BioMe - Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil; Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Cláudia Costa da Silva
- BioMe - Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil; Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal, Brazil; Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil; Federal University of Paraiba, João Pessoa, Brazil
| | - Wilfredo Blanco
- BioMe - Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil; Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil; State University of Rio Grande do Norte, Natal, Brazil
| | - Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
10
|
Martínez-Bellver S, Cervera-Ferri A, Luque-García A, Martínez-Ricós J, Valverde-Navarro A, Bataller M, Guerrero J, Teruel-Marti V. Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat. J Physiol 2017; 595:1775-1792. [PMID: 27880004 DOI: 10.1113/jp272841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/12/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The nucleus incertus is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Synchronisation exists between the nucleus incertus and hippocampal activities during theta periods. By the Granger causality analysis, we demonstrated a directional information flow between theta rhythmical neurons in the nucleus incertus and the hippocampus in theta-on states. The electrical stimulation of the nucleus incertus is also able to evoke a phase reset of the hippocampal theta wave. Our data suggest that the nucleus incertus is a key node of theta generation and the modulation network. ABSTRACT In recent years, a body of evidence has shown that the nucleus incertus (NI), in the dorsal tegmental pons, is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Ascending reticular brainstem system activation evokes hippocampal theta rhythm with coupled neuronal activity in the NI. In a recent paper, we showed three populations of neurons in the NI with differential firing during hippocampal theta activation. The objective of this work was to better evaluate the causal relationship between the activity of NI neurons and the hippocampus during theta activation in order to further understand the role of the NI in the theta network. A Granger causality analysis was run to determine whether hippocampal theta activity with sensory-evoked theta depends on the neuronal activity of the NI, or vice versa. The analysis showed causal interdependence between the NI and the hippocampus during theta activity, whose directional flow depended on the different neuronal assemblies of the NI. Whereas type I and II NI neurons mainly acted as receptors of hippocampal information, type III neuronal activity was the predominant source of flow between the NI and the hippocampus in theta states. We further determined that the electrical activation of the NI was able to reset hippocampal waves with enhanced theta-band power, depending on the septal area. Collectively, these data suggest that hippocampal theta oscillations after sensory activation show dependence on NI neuron activity, which could play a key role in establishing optimal conditions for memory encoding.
Collapse
Affiliation(s)
- Sergio Martínez-Bellver
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Aina Luque-García
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Alfonso Valverde-Navarro
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Manuel Bataller
- Digital Signal Processing Group, Department of Electronics and Engineering, University of Valencia, Burjassot (Valencia), Spain
| | - Juan Guerrero
- Digital Signal Processing Group, Department of Electronics and Engineering, University of Valencia, Burjassot (Valencia), Spain
| | - Vicent Teruel-Marti
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Dabaghian Y. Maintaining Consistency of Spatial Information in the Hippocampal Network: A Combinatorial Geometry Model. Neural Comput 2016; 28:1051-71. [PMID: 27137840 PMCID: PMC6223651 DOI: 10.1162/neco_a_00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Place cells in the rat hippocampus play a key role in creating the animal's internal representation of the world. During active navigation, these cells spike only in discrete locations, together encoding a map of the environment. Electrophysiological recordings have shown that the animal can revisit this map mentally during both sleep and awake states, reactivating the place cells that fired during its exploration in the same sequence in which they were originally activated. Although consistency of place cell activity during active navigation is arguably enforced by sensory and proprioceptive inputs, it remains unclear how a consistent representation of space can be maintained during spontaneous replay. We propose a model that can account for this phenomenon and suggest that a spatially consistent replay requires a number of constraints on the hippocampal network that affect its synaptic architecture and the statistics of synaptic connection strengths.
Collapse
Affiliation(s)
- Y Dabaghian
- Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, and Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, U.S.A.
| |
Collapse
|
12
|
Boyce R, Glasgow SD, Williams S, Adamantidis A. Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 2016; 352:812-6. [DOI: 10.1126/science.aad5252] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/24/2016] [Indexed: 11/02/2022]
|
13
|
Valdés JL, McNaughton BL, Fellous JM. Offline reactivation of experience-dependent neuronal firing patterns in the rat ventral tegmental area. J Neurophysiol 2015; 114:1183-95. [PMID: 26108957 PMCID: PMC4725100 DOI: 10.1152/jn.00758.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/23/2015] [Indexed: 12/29/2022] Open
Abstract
In a rest period immediately after a task, neurons in the hippocampus, neocortex, and striatum exhibit spatiotemporal correlation patterns resembling those observed during the task. This reactivation has been proposed as a neurophysiological substrate for memory consolidation. We provide new evidence that rodent ventral tegmental area (VTA) neurons are selective for different types of food stimuli and that stimulus-sensitive neurons strongly reactivate during the rest period following a task that involved those stimuli. Reactivation occurred primarily during slow wave sleep and during quiet awakeness. In these experiments, VTA reactivation patterns were uncompressed and occurred at the firing rate level, rather than on a spike-to-spike basis. Mildly aversive stimuli were reactivated more often than positive ones. The VTA is a pivotal structure involved in the perception and prediction of reward and stimulus salience and is a key neuromodulatory system involved in synaptic plasticity. These results suggest new ways in which dopaminergic signals could contribute to the biophysical mechanisms of selective, system-wide, memory consolidation, and reconsolidation during sleep.
Collapse
Affiliation(s)
- José L Valdés
- Program of Physiology and Biophysics, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Psychology and Program in Applied Mathematics, University of Arizona, Tucson, Arizona
| | - Bruce L McNaughton
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Alberta, Canada; and Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Jean-Marc Fellous
- Department of Psychology and Program in Applied Mathematics, University of Arizona, Tucson, Arizona;
| |
Collapse
|
14
|
Kurth-Nelson Z, Barnes G, Sejdinovic D, Dolan R, Dayan P. Temporal structure in associative retrieval. eLife 2015; 4:e04919. [PMID: 25615722 PMCID: PMC4303761 DOI: 10.7554/elife.04919] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/25/2014] [Indexed: 12/28/2022] Open
Abstract
Electrophysiological data disclose rich dynamics in patterns of neural activity evoked by sensory objects. Retrieving objects from memory reinstates components of this activity. In humans, the temporal structure of this retrieved activity remains largely unexplored, and here we address this gap using the spatiotemporal precision of magnetoencephalography (MEG). In a sensory preconditioning paradigm, 'indirect' objects were paired with 'direct' objects to form associative links, and the latter were then paired with rewards. Using multivariate analysis methods we examined the short-time evolution of neural representations of indirect objects retrieved during reward-learning about direct objects. We found two components of the evoked representation of the indirect stimulus, 200 ms apart. The strength of retrieval of one, but not the other, representational component correlated with generalization of reward learning from direct to indirect stimuli. We suggest the temporal structure within retrieved neural representations may be key to their function.
Collapse
Affiliation(s)
- Zeb Kurth-Nelson
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Gareth Barnes
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Dino Sejdinovic
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Ray Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| |
Collapse
|
15
|
Hippocampus and retrosplenial cortex combine path integration signals for successful navigation. J Neurosci 2014; 33:19304-13. [PMID: 24305826 DOI: 10.1523/jneurosci.1825-13.2013] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current study used fMRI in humans to examine goal-directed navigation in an open field environment. We designed a task that required participants to encode survey-level spatial information and subsequently navigate to a goal location in either first person, third person, or survey perspectives. Critically, no distinguishing landmarks or goal location markers were present in the environment, thereby requiring participants to rely on path integration mechanisms for successful navigation. We focused our analysis on mechanisms related to navigation and mechanisms tracking linear distance to the goal location. Successful navigation required translation of encoded survey-level map information for orientation and implementation of a planned route to the goal. Our results demonstrate that successful first and third person navigation trials recruited the anterior hippocampus more than trials when the goal location was not successfully reached. When examining only successful trials, the retrosplenial and posterior parietal cortices were recruited for goal-directed navigation in both first person and third person perspectives. Unique to first person perspective navigation, the hippocampus was recruited to path integrate self-motion cues with location computations toward the goal location. Last, our results demonstrate that the hippocampus supports goal-directed navigation by actively tracking proximity to the goal throughout navigation. When using path integration mechanisms in first person and third person perspective navigation, the posterior hippocampus was more strongly recruited as participants approach the goal. These findings provide critical insight into the neural mechanisms by which we are able to use map-level representations of our environment to reach our navigational goals.
Collapse
|
16
|
Gupta K, Erdem UM, Hasselmo ME. Modeling of grid cell activity demonstrates in vivo entorhinal 'look-ahead' properties. Neuroscience 2013; 247:395-411. [PMID: 23660194 DOI: 10.1016/j.neuroscience.2013.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
Abstract
Recent in vivo data show ensemble activity in medial entorhinal neurons that demonstrates 'look-ahead' activity, decoding spatially to reward locations ahead of a rat deliberating at a choice point while performing a cued, appetitive T-Maze task. To model this experiment's look-ahead results, we adapted previous work that produced a model where scans along equally probable directions activated place cells, associated reward cells, grid cells, and persistent spiking cells along those trajectories. Such look-ahead activity may be a function of animals performing scans to reduce ambiguity while making decisions. In our updated model, look-ahead scans at the choice point can activate goal-associated reward and place cells, which indicate the direction the virtual rat should turn at the choice point. Hebbian associations between stimulus and reward cell layers are learned during training trials, and the reward and place layers are then used during testing to retrieve goal-associated cells based on cue presentation. This system creates representations of location and associated reward information based on only two inputs of heading and speed information which activate grid cell and place cell layers. We present spatial and temporal decoding of grid cell ensembles as rats are tested with perfect and imperfect stimuli. Here, the virtual rat reliably learns goal locations through training sessions and performs both biased and unbiased look-ahead scans at the choice point. Spatial and temporal decoding of simulated medial entorhinal activity indicates that ensembles are representing forward reward locations when the animal deliberates at the choice point, emulating in vivo results.
Collapse
Affiliation(s)
- K Gupta
- Center for Memory and Brain, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | | | | |
Collapse
|
17
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
18
|
Brandon MP, Bogaard AR, Andrews CM, Hasselmo ME. Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep. Hippocampus 2011; 22:604-18. [PMID: 21509854 DOI: 10.1002/hipo.20924] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 11/10/2022]
Abstract
During slow-wave sleep (SWS) and rapid eye movement (REM) sleep, hippocampal place cells in the rat show replay of sequences previously observed during waking. We tested the hypothesis from computational modeling that the temporal structure of REM sleep replay could arise from an interplay of place cells with head direction cells in the postsubiculum. Physiological single-unit recording was performed simultaneously from five or more head direction or place by head direction cells in the postsubiculum during running on a circular track allowing sampling of a full range of head directions, and during sleep periods before and after running on the circular track. Data analysis compared the spiking activity during individual REM periods with waking as in previous analysis procedures for REM sleep. We also used a new procedure comparing groups of similar runs during waking with REM sleep periods. There was no consistent evidence for a statistically significant correlation of the temporal structure of spiking during REM sleep with spiking during waking running periods. Thus, the spiking activity of head direction cells during REM sleep does not show replay of head direction cell activity occurring during a previous waking period of running on the task. In addition, we compared the spiking of postsubiculum neurons during hippocampal sharp wave ripple events. We show that head direction cells are not activated during sharp wave ripples, whereas neurons responsive to place in the postsubiculum show reliable spiking at ripple events.
Collapse
Affiliation(s)
- Mark P Brandon
- Department of Psychology and Program in Neuroscience, Center for Memory and Brain, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
19
|
Abstract
As indicated by the profound cognitive impairments caused by cholinergic receptor antagonists, cholinergic neurotransmission has a vital role in cognitive function, specifically attention and memory encoding. Abnormally regulated cholinergic neurotransmission has been hypothesized to contribute to the cognitive symptoms of neuropsychiatric disorders. Loss of cholinergic neurons enhances the severity of the symptoms of dementia. Cholinergic receptor agonists and acetylcholinesterase inhibitors have been investigated for the treatment of cognitive dysfunction. Evidence from experiments using new techniques for measuring rapid changes in cholinergic neurotransmission provides a novel perspective on the cholinergic regulation of cognitive processes. This evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance. Furthermore, the evidence indicates cholinergic induction of evoked intrinsic, persistent spiking mechanisms for active maintenance of sensory input, and planned responses. Models have been developed to describe the neuronal mechanisms underlying the transient modulation of cortical target circuits by cholinergic activity. These models postulate specific locations and roles of nicotinic and muscarinic acetylcholine receptors and that cholinergic neurotransmission is controlled in part by (cortical) target circuits. The available evidence and these models point to new principles governing the development of the next generation of cholinergic treatments for cognitive disorders.
Collapse
|
20
|
Miller P, Wingfield A. Distinct effects of perceptual quality on auditory word recognition, memory formation and recall in a neural model of sequential memory. Front Syst Neurosci 2010; 4:14. [PMID: 20631822 PMCID: PMC2901090 DOI: 10.3389/fnsys.2010.00014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 05/07/2010] [Indexed: 11/13/2022] Open
Abstract
Adults with sensory impairment, such as reduced hearing acuity, have impaired ability to recall identifiable words, even when their memory is otherwise normal. We hypothesize that poorer stimulus quality causes weaker activity in neurons responsive to the stimulus and more time to elapse between stimulus onset and identification. The weaker activity and increased delay to stimulus identification reduce the necessary strengthening of connections between neurons active before stimulus presentation and neurons active at the time of stimulus identification. We test our hypothesis through a biologically motivated computational model, which performs item recognition, memory formation and memory retrieval. In our simulations, spiking neurons are distributed into pools representing either items or context, in two separate, but connected winner-takes-all (WTA) networks. We include associative, Hebbian learning, by comparing multiple forms of spike-timing-dependent plasticity (STDP), which strengthen synapses between coactive neurons during stimulus identification. Synaptic strengthening by STDP can be sufficient to reactivate neurons during recall if their activity during a prior stimulus rose strongly and rapidly. We find that a single poor quality stimulus impairs recall of neighboring stimuli as well as the weak stimulus itself. We demonstrate that within the WTA paradigm of word recognition, reactivation of separate, connected sets of non-word, context cells permits reverse recall. Also, only with such coactive context cells, does slowing the rate of stimulus presentation increase recall probability. We conclude that significant temporal overlap of neural activity patterns, absent from individual WTA networks, is necessary to match behavioral data for word recall.
Collapse
Affiliation(s)
- Paul Miller
- Department of Biology, Volen National Center for Complex Systems, Brandeis University Waltham, MA, USA
| | | |
Collapse
|
21
|
Scarpetta S, de Candia A, Giacco F. Storage of Phase-Coded Patterns via STDP in Fully-Connected and Sparse Network: A Study of the Network Capacity. Front Synaptic Neurosci 2010; 2:32. [PMID: 21423518 PMCID: PMC3059676 DOI: 10.3389/fnsyn.2010.00032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 06/28/2010] [Indexed: 11/30/2022] Open
Abstract
We study the storage and retrieval of phase-coded patterns as stable dynamical attractors in recurrent neural networks, for both an analog and a integrate and fire spiking model. The synaptic strength is determined by a learning rule based on spike-time-dependent plasticity, with an asymmetric time window depending on the relative timing between pre and postsynaptic activity. We store multiple patterns and study the network capacity. For the analog model, we find that the network capacity scales linearly with the network size, and that both capacity and the oscillation frequency of the retrieval state depend on the asymmetry of the learning time window. In addition to fully connected networks, we study sparse networks, where each neuron is connected only to a small number z ≪ N of other neurons. Connections can be short range, between neighboring neurons placed on a regular lattice, or long range, between randomly chosen pairs of neurons. We find that a small fraction of long range connections is able to amplify the capacity of the network. This imply that a small-world-network topology is optimal, as a compromise between the cost of long range connections and the capacity increase. Also in the spiking integrate and fire model the crucial result of storing and retrieval of multiple phase-coded patterns is observed. The capacity of the fully-connected spiking network is investigated, together with the relation between oscillation frequency of retrieval state and window asymmetry.
Collapse
Affiliation(s)
- Silvia Scarpetta
- Dipartimento di Fisica "E.R.Caianiello", Università di Salerno Fisciano, Italy
| | | | | |
Collapse
|
22
|
Hasselmo ME, Giocomo LM, Brandon MP, Yoshida M. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory. Behav Brain Res 2009; 215:261-74. [PMID: 20018213 DOI: 10.1016/j.bbr.2009.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 12/05/2009] [Accepted: 12/10/2009] [Indexed: 01/01/2023]
Abstract
Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
23
|
Neural population-level memory traces in the mouse hippocampus. PLoS One 2009; 4:e8256. [PMID: 20016843 PMCID: PMC2788416 DOI: 10.1371/journal.pone.0008256] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/19/2009] [Indexed: 11/19/2022] Open
Abstract
One of the fundamental goals in neurosciences is to elucidate the formation and retrieval of brain's associative memory traces in real-time. Here, we describe real-time neural ensemble transient dynamics in the mouse hippocampal CA1 region and demonstrate their relationships with behavioral performances during both learning and recall. We employed the classic trace fear conditioning paradigm involving a neutral tone followed by a mild foot-shock 20 seconds later. Our large-scale recording and decoding methods revealed that conditioned tone responses and tone-shock association patterns were not present in CA1 during the first pairing, but emerged quickly after multiple pairings. These encoding patterns showed increased immediate-replay, correlating tightly with increased immediate-freezing during learning. Moreover, during contextual recall, these patterns reappeared in tandem six-to-fourteen times per minute, again correlating tightly with behavioral recall. Upon traced tone recall, while various fear memories were retrieved, the shock traces exhibited a unique recall-peak around the 20-second trace interval, further signifying the memory of time for the expected shock. Therefore, our study has revealed various real-time associative memory traces during learning and recall in CA1, and demonstrates that real-time memory traces can be decoded on a moment-to-moment basis over any single trial.
Collapse
|
24
|
Hasselmo ME, Brandon MP, Yoshida M, Giocomo LM, Heys JG, Fransen E, Newman EL, Zilli EA. A phase code for memory could arise from circuit mechanisms in entorhinal cortex. Neural Netw 2009; 22:1129-38. [PMID: 19656654 PMCID: PMC2825042 DOI: 10.1016/j.neunet.2009.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/24/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Neurophysiological data reveals intrinsic cellular properties that suggest how entorhinal cortical neurons could code memory by the phase of their firing. Potential cellular mechanisms for this phase coding in models of entorhinal function are reviewed. This mechanism for phase coding provides a substrate for modeling the responses of entorhinal grid cells, as well as the replay of neural spiking activity during waking and sleep. Efforts to implement these abstract models in more detailed biophysical compartmental simulations raise specific issues that could be addressed in larger scale population models incorporating mechanisms of inhibition.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington Street, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hasselmo ME. A model of episodic memory: mental time travel along encoded trajectories using grid cells. Neurobiol Learn Mem 2009; 92:559-73. [PMID: 19615456 DOI: 10.1016/j.nlm.2009.07.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/20/2009] [Accepted: 07/12/2009] [Indexed: 11/25/2022]
Abstract
The definition of episodic memory includes the concept of mental time travel: the ability to re-experience a previously experienced trajectory through continuous dimensions of space and time, and to recall specific events or stimuli along this trajectory. Lesions of the hippocampus and entorhinal cortex impair human episodic memory function and impair rat performance in tasks that could be solved by retrieval of trajectories. Recent physiological data suggests a novel model for encoding and retrieval of trajectories, and for associating specific stimuli with specific positions along the trajectory. During encoding in the model, external input drives the activity of head direction cells. Entorhinal grid cells integrate the head direction input to update an internal representation of location, and drive hippocampal place cells. Trajectories are encoded by Hebbian modification of excitatory synaptic connections between hippocampal place cells and head direction cells driven by external action. Associations are also formed between hippocampal cells and sensory stimuli. During retrieval, a sensory input cue activates hippocampal cells that drive head direction activity via previously modified synapses. Persistent spiking of head direction cells maintains the direction and speed of the action, updating the activity of entorhinal grid cells that thereby further update place cell activity. Additional cells, termed arc length cells, provide coding of trajectory segments based on the one-dimensional arc length from the context of prior actions or states, overcoming ambiguity where the overlap of trajectory segments causes multiple head directions to be associated with one place. These mechanisms allow retrieval of complex, self-crossing trajectories as continuous curves through space and time.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington St., Boston, MA 02215, United States.
| |
Collapse
|
26
|
Persistent firing supported by an intrinsic cellular mechanism in a component of the head direction system. J Neurosci 2009; 29:4945-52. [PMID: 19369563 DOI: 10.1523/jneurosci.5154-08.2009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rat postsubiculum has head direction cells that fire persistently when the rat's head is oriented in particular directions. This persistent firing is maintained even if the rat is motionless, when spatial cues are removed from the environment and in the dark, but the mechanism that supports persistent firing of the head direction cells is still unclear. Here, using in vitro whole-cell patch recording, we found that a short-triggering stimulus (as few as five induced spikes) can initiate persistent firing in cells of the postsubiculum. Pharmacological results indicated that this persistent firing is driven by a calcium-sensitive nonselective cation current. The distribution of cells with persistent firing in superficial and deep layers in the postsubiculum was similar to that of head direction cells. These results suggest that persistent firing of head direction cells in the postsubiculum could be supported by an intrinsic mechanism.
Collapse
|
27
|
Abstract
Trace conditioning requires that a transient representation of the conditional stimulus (CS) persists during the time interval between the CS offset and the onset of the unconditional stimulus. According to one hypothesis, this transient CS representation is supported by endogenous activity in "persistent-firing" neurons of perirhinal cortex (PR). By definition, persistent-firing neurons discharge for tens of seconds or minutes after the termination of the original spike-initiating stimulus. This continued spiking does not depend on recurrent circuit activity and can be reliably and completely blocked by muscarinic receptor antagonists. The present study evaluated the role of PR muscarinic receptors in trace fear conditioning. Before conditioning, rats received bilateral intra-PR infusions with either saline or scopolamine, a nonselective muscarinic receptor antagonist. Scopolamine infusions profoundly impaired trace conditioning but had no effect on delay conditioning or context conditioning. The results encourage a more general understanding of muscarinic receptors in PR and they motivate additional tests of the emerging theory that persistent-firing neurons support aspects of transient memory.
Collapse
|
28
|
Anzalone S, Roland J, Vogt B, Savage L. Acetylcholine efflux from retrosplenial areas and hippocampal sectors during maze exploration. Behav Brain Res 2009; 201:272-8. [PMID: 19428644 DOI: 10.1016/j.bbr.2009.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 12/27/2022]
Abstract
Both the retrosplenial cortex (RSC) and the hippocampus are important for spatial learning across species. Although hippocampal acetylcholine (ACh) release has been associated with learning on a number of spatial tasks, relatively little is understood about the functional role of ACh release in the RSC. In the present study, spatial exploration was assessed in rats using a plus maze spontaneous alternation task. ACh efflux was assessed simultaneously in the hippocampus and two sub-regions of the RSC (areas 29ab and 30) before, during and after maze exploration. Results demonstrated that there was a significant rise in ACh efflux in RSC area 29ab and the hippocampus during maze traversal. The rise in ACh efflux across these two regions was correlated. There were no significant behaviorally driven changes in ACh efflux in RSC area 30. While both the hippocampal sectors and area 29ab displayed increases in ACh efflux during maze exploration, the percent ACh rise in area 29ab was higher than that observed in the hippocampus and persisted into the post-baseline period. Joint efflux analyses demonstrated a key functional role for ACh release in area 29ab during spatial processing.
Collapse
Affiliation(s)
- Steven Anzalone
- Behavioral Neuroscience Program, Department of Psychology, State University of New York, Vestal Parkway East, Binghamton, NY 13902, United States
| | | | | | | |
Collapse
|
29
|
Brandon MP, Hasselmo ME. Sources of the spatial code within the hippocampus. F1000 BIOLOGY REPORTS 2009; 1:3. [PMID: 20948656 PMCID: PMC2920688 DOI: 10.3410/b1-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neurons in the hippocampus are thought to provide information on an animal's location within its environment. Input to the hippocampus comes via afferents from the entorhinal cortex, which are separated into several major pathways serving different hippocampal regions. Recent studies show the significance of individual afferent pathways in location perception, enhancing our understanding of hippocampal function.
Collapse
Affiliation(s)
- Mark P Brandon
- Center for Memory and Brain, Department of Psychology and Program in NeuroscienceBoston University, 2 Cummington Street, Boston, MA 02215USA
| | - Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in NeuroscienceBoston University, 2 Cummington Street, Boston, MA 02215USA
| |
Collapse
|
30
|
Hasselmo ME. Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 2008; 18:1213-29. [PMID: 19021258 PMCID: PMC2614862 DOI: 10.1002/hipo.20512] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article presents a model of grid cell firing based on the intrinsic persistent firing shown experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed-modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in a shift in spiking phase in proportion to the integral of velocity. The convergence of input from different persistent firing neurons causes spiking in a grid cell only when the persistent firing neurons are within similar phase ranges. This model effectively simulates the two-dimensional firing of grid cells in open field environments, as well as the properties of theta phase precession. This model provides an alternate implementation of oscillatory interference models. The persistent firing could also interact on a circuit level with rhythmic inhibition and neurons showing membrane potential oscillations to code position with spiking phase. These mechanisms could operate in parallel with computation of position from visual angle and distance of stimuli. In addition to simulating two-dimensional grid patterns, models of phase interference can account for context-dependent firing in other tasks. In network simulations of entorhinal cortex, hippocampus, and postsubiculum, the reset of phase effectively replicates context-dependent firing by entorhinal and hippocampal neurons during performance of a continuous spatial alternation task, a delayed spatial alternation task with running in a wheel during the delay period (Pastalkova et al., Science, 2008), and a hairpin maze task.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, Boston, Massachusetts 02215, USA.
| |
Collapse
|