1
|
Miller LN, Walters AE, Denninger JK, Hanson MA, Marshall AH, Johantges AC, Hosawi M, Sebring G, Rieskamp JD, Ding T, Rindani R, Chen KS, Goldberg ME, Senthilvelan S, Volk A, Zhao F, Askwith C, Wester JC, Kirby ED. Neural stem and progenitor cells support and protect adult hippocampal function via vascular endothelial growth factor secretion. Mol Psychiatry 2025; 30:2152-2167. [PMID: 39528687 PMCID: PMC12014380 DOI: 10.1038/s41380-024-02827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Adult neural stem and progenitor cells (NSPCs) reside in the dentate gyrus (DG) of the hippocampus throughout the lifespan of most mammalian species. In addition to generating new neurons, NSPCs may alter their niche via secretion of growth factors and cytokines. We recently showed that adult DG NSPCs secrete vascular endothelial growth factor (VEGF), which is critical for maintaining adult neurogenesis. Here, we asked whether NSPC-derived VEGF alters hippocampal function independent of adult neurogenesis. We found that loss of NSPC-derived VEGF acutely impaired hippocampal memory, caused neuronal hyperexcitability and exacerbated excitotoxic injury. Conversely, we observed that overexpression of VEGF reduced microglial response to excitotoxic injury. We also found that NSPCs generate substantial proportions of total DG VEGF and VEGF disperses widely throughout the DG, both of which help explain how this anatomically-restricted cell population could modulate function broadly. These findings suggest that NSPCs actively support and protect DG function via secreted VEGF, thereby providing a non-neurogenic functional dimension to endogenous NSPCs.
Collapse
Affiliation(s)
- Lisa N Miller
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Ashley E Walters
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Meretta A Hanson
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Alec H Marshall
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Aidan C Johantges
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Manal Hosawi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Gwendolyn Sebring
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Joshua D Rieskamp
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Tianli Ding
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Raina Rindani
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- UC Health, Cincinnati, OH, USA
| | - Kelly S Chen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Megan E Goldberg
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Abigail Volk
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Fangli Zhao
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Jason C Wester
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D Kirby
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Fabregat-Cid G, Cedeno DL, De Andrés J, Harutyunyan A, Monsalve-Dolz V, Mínguez-Martí A, Escrivá-Matoses N, Asensio-Samper JM, Carnaval T, Villoria J, Rodríguez-López R, Vallejo R. Insights into the pathophysiology and response of persistent spinal pain syndrome type 2 to spinal cord stimulation: a human genome-wide association study. Reg Anesth Pain Med 2024:rapm-2024-105517. [PMID: 38960591 DOI: 10.1136/rapm-2024-105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Spinal cord stimulation (SCS) provides pain relief for some patients with persistent spinal pain syndrome type 2 (PSPS 2), but the precise mechanisms of action and prognostic factors for a favorable pain response remain obscure. This in vivo human genome-wide association study provides some pathophysiological clues. METHODS We performed a high-density oligonucleotide microarray analysis of serum obtained from both PSPS 2 cases and pain-free controls who had undergone lower back spinal surgery at the study site. Using multivariate discriminant analysis, we tried to identify different expressions between mRNA transcripts from PSPS 2 patients relative to controls, SCS responders to non-responders, or SCS responders to themselves before starting SCS. Gene ontology enrichment analysis was used to identify the biological processes that best discriminate between the groups of clinical interest. RESULTS Thirty PSPS 2 patients, of whom 23 responded to SCS, were evaluated together with 15 pain-free controls. We identified 11 significantly downregulated genes in serum of PSPS 2 patients compared with pain-free controls and two significantly downregulated genes once the SCS response became apparent. All were suggestive of enhanced inflammation, tissue repair mechanisms and proliferative responses among the former. We could not identify any gene differentiating patients who responded to SCS from those who did not respond. CONCLUSIONS This study points out various biological processes that may underlie PSPS 2 pain and SCS therapeutic effects, including the modulation of neuroimmune response, inflammation and restorative processes.
Collapse
Affiliation(s)
- Gustavo Fabregat-Cid
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
- Surgery Department, University of Valencia, Valencia, Spain
| | | | - José De Andrés
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
- Surgery Department, University of Valencia, Valencia, Spain
| | - Anushik Harutyunyan
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Vicente Monsalve-Dolz
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
| | - Ana Mínguez-Martí
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
| | | | - Juan Marcos Asensio-Samper
- Multidisciplinary Pain Management Department, General University Hospital Consortium of Valencia, Valencia, Spain
- Surgery Department, University of Valencia, Valencia, Spain
| | - Thiago Carnaval
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, Barcelona, Spain
- Design and Biometrics Department, Medicxact, Madrid, Spain
| | - Jesús Villoria
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, Barcelona, Spain
- Design and Biometrics Department, Medicxact, Madrid, Spain
| | - Raquel Rodríguez-López
- Genetics Laboratory; Clinical Analysis Service, General University Hospital Consortium of Valencia, Valencia, Spain
| | | |
Collapse
|
3
|
Denninger JK, Miller LN, Walters AE, Hosawi M, Sebring G, Rieskamp JD, Ding T, Rindani R, Chen KS, Senthilvelan S, Volk A, Zhao F, Askwith C, Kirby ED. Neural stem and progenitor cells support and protect adult hippocampal function via vascular endothelial growth factor secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537801. [PMID: 37163097 PMCID: PMC10168272 DOI: 10.1101/2023.04.24.537801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Adult neural stem and progenitor cells (NSPCs) reside in the dentate gyrus (DG) of the hippocampus throughout the lifespan of most mammalian species. In addition to generating new neurons, NSPCs may alter their niche via secretion of growth factors and cytokines. We recently showed that adult DG NSPCs secrete vascular endothelial growth factor (VEGF), which is critical for maintaining adult neurogenesis. Here, we asked whether NSPC-derived VEGF alters hippocampal function independent of adult neurogenesis. We found that loss of NSPC-derived VEGF acutely impaired hippocampal memory, caused neuronal hyperexcitability and exacerbated excitotoxic injury. We also found that NSPCs generate substantial proportions of total DG VEGF and VEGF disperses broadly throughout the DG, both of which help explain how this anatomically-restricted cell population could modulate function broadly. These findings suggest that NSPCs actively support and protect DG function via secreted VEGF, thereby providing a non-neurogenic functional dimension to endogenous NSPCs.
Collapse
Affiliation(s)
| | - Lisa N. Miller
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Ashley E. Walters
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Manal Hosawi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Gwendolyn Sebring
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | | | - Tianli Ding
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Raina Rindani
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Current affiliation: UC Health, Cincinnati, OH, USA
| | - Kelly S. Chen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Abigail Volk
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Fangli Zhao
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Elizabeth D. Kirby
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Tesiye MR, Gol M, Fadardi MR, Kani SNM, Costa AM, Ghasemi-Kasman M, Biagini G. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Epilepsy and Their Interaction with Antiseizure Medications. Cells 2022; 11:cells11244129. [PMID: 36552892 PMCID: PMC9777461 DOI: 10.3390/cells11244129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is a life-threatening neurological disease that affects approximately 70 million people worldwide. Although the vast majority of patients may be successfully managed with currently used antiseizure medication (ASM), the search for alternative therapies is still necessary due to pharmacoresistance in about 30% of patients with epilepsy. Here, we review the effects of ASMs on stem cell treatment when they could be, as expected, co-administered. Indeed, it has been reported that ASMs produce significant effects on the differentiation and determination of stem cell fate. In addition, we discuss more recent findings on mesenchymal stem cells (MSCs) in pre-clinical and clinical investigations. In this regard, their ability to differentiate into various cell types, reach damaged tissues and produce and release biologically active molecules with immunomodulatory/anti-inflammatory and regenerative properties make them a high-potential therapeutic tool to address neuroinflammation in different neurological disorders, including epilepsy. Overall, the characteristics of MSCs to be genetically engineered, in order to replace dysfunctional elements with the aim of restoring normal tissue functioning, suggested that these cells could be good candidates for the treatment of epilepsy refractory to ASMs. Further research is required to understand the potential of stem cell treatment in epileptic patients and its interaction with ASMs.
Collapse
Affiliation(s)
- Maryam Rahimi Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Gol
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | - Anna-Maria Costa
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: (M.G.-K.); (G.B.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (M.G.-K.); (G.B.)
| |
Collapse
|
5
|
VEGF/VEGFR-2 system exerts neuroprotection against Phoneutria nigriventer spider envenomation through PI3K-AKT-dependent pathway. Toxicon 2020; 185:76-90. [PMID: 32649934 DOI: 10.1016/j.toxicon.2020.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
This study was undertaken to elucidate why VEGF/VEGFR-2 is elevated in the hippocampus of rats injected with Phoneutria nigriventer spider venom (PNV). PNV delays Na+ channels inactivation; blocks Ca2+ and K+ channels, increases glutamate release, causes blood-brain breakdown (BBBb), brain edema and severe excitotoxicity. Analytical FT-IR spectroscopy showed profound alteration in molecular biochemical state, with evidences for VEGFR-2 (KDR/Flk-1) signaling mediation. By blocking VEGF/VEGFR-2 binding via pre-treatment with itraconazole we demonstrated that animals' condition was deteriorated soon at 1-2 h post-PNV exposure concurrently with decreased expression of VEGF, BBB-associated proteins, ZO-1, β-catenin, laminin, P-gp (P-glycoprotein), Neu-N (neuron's viability marker) and MAPKphosphorylated-p38, while phosphorylated-ERK and Src pathways were increased. At 5 h and coinciding with incipient signs of animals' recuperation, the proteins associated with protection (HIF-1α, VEGF, VEGFR-1, VEGFR-2, Neu-N, occludin, β-catenin, laminin, P-gp efflux protein, phosphorylated-p38) increased thus indicating p38 pathway activation together with paracellular route strengthening. However, the BBB transcellular trafficking and caspase-3 increased (pro-apoptotic pathway activation). At 24 h, the transcellular route reestablished physiological state but the pro-survival pathway PI3K/(p-Akt) dropped in animals underwent VEGF/VEGFR-2 binding inhibition, whereas it was significantly activated at matched interval in PNV group without prior itraconazole; these results demonstrate impaired VEGF' survival effects at 24 h. The inhibition of VEGF/VEGFR-2 binding identified 5 h as turning point at which multi-level dynamic interplay was elicited to reverse hippocampal damage. Collectively, the data confirmed VEGFR-2 signaling via serine-threonine kinase Akt as neuroprotective pathway against PNV-induced damage. Further studies are needed to elucidate mechanisms underlying PNV effects.
Collapse
|
6
|
Mesquita-Britto MHR, Mendonça MCP, Soares ES, Sakane KK, da Cruz-Höfling MA. Inhibition of VEGF-Flk-1 binding induced profound biochemical alteration in the hippocampus of a rat model of BBB breakdown by spider venom. A preliminary assessment using FT-IR spectroscopy. Neurochem Int 2018; 120:64-74. [PMID: 30075232 DOI: 10.1016/j.neuint.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022]
Abstract
Phoneutria nigriventer spider venom (PNV) contains ion channels-acting neuropeptides that in rat induces transitory blood-brain barrier breakdown (BBBb) in hippocampus in parallel with VEGF upregulation. We investigated whether VEGF has a neuroprotective role by inhibiting its binding to receptor Flk-1 by itraconazole (ITZ). FT-IR spectroscopy examined the biochemical status of hippocampus and evaluated BBBb in rats administered PNV or ITZ/PNV at periods with greatest toxicity (1-2h), recovery (5h) and visual absence of symptoms (24h), and compared to saline and ITZ controls. The antifungal treatment before venom intoxication aggravated the venom effects and increased BBB damage. FT-IR spectra of venom, hippocampi of controls, PNV and ITZ-PNV showed a 1400 cm-1 band linked to symmetric stretch of carboxylate and 1467 cm-1 band (CH2 bending: mainly lipids) that were considered biomarker and reference bands, respectively. Inhibition of VEGF/Flk-1 binding produced marked changes in lipid/protein stability at 1-2h. The largest differences were observed in spectra regions assigned to lipids, both symmetric (2852 cm-1) and asymmetric (2924 and 2968 cm-1). Quantitative analyses showed greatest increases in the 1400 cm-1/1467 cm-1 ratio also at 1h. Such changes at period of rats' severe intoxication referred to wavenumber region from 3106 cm-1 to 687 cm-1 assigning for C-H and N-H stretching of protein, Amide I, C=N cytosine, N-H adenine, Amide II, CH2 bending: mainly lipids, C-O stretch: glycogen, polysaccharides, glycolipids, z-type DNA, C-C, C-O and CH out-of-plane bending vibrations. We conclude that VEGF has a neuroprotective role and can be a therapeutic target in PNV envenomation. FT-IR spectroscopy showed to be instrumental for monitoring biochemical changes in this model of P. nigriventer venom-induced BBB disruption.
Collapse
Affiliation(s)
- Maria Helena Rodrigues Mesquita-Britto
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Monique Culturato Padilha Mendonça
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edilene Siqueira Soares
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Kumiko Koibuchi Sakane
- Institute for Research and Development, University of Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
DaCosta JC, Portuguez MW, Marinowic DR, Schilling LP, Torres CM, DaCosta DI, Carrion MJM, Raupp EF, Machado DC, Soder RB, Lardi SL, Garicochea B. Safety and seizure control in patients with mesial temporal lobe epilepsy treated with regional superselective intra‐arterial injection of autologous bone marrow mononuclear cells. J Tissue Eng Regen Med 2017; 12:e648-e656. [DOI: 10.1002/term.2334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 07/29/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Jaderson C. DaCosta
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Mirna W. Portuguez
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Daniel R. Marinowic
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Lucas P. Schilling
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Carolina M. Torres
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Danielle I. DaCosta
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Maria Júlia M. Carrion
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | | | - Denise C. Machado
- Biomedical Research InstitutePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Ricardo B. Soder
- Brain Institute of Rio Grande do Sul (BraIns)Pontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Silvia L. Lardi
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
| | - Bernardo Garicochea
- Postgraduate Program in Medicine and Health SciencesPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- School of MedicinePontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- São Lucas HospitalPontifical Catholic University of Rio Grande do Sul Porto Alegre RS Brazil
- Teaching and Research Oncology CenterHospital Sírio Libanes São Paulo SP Brazil
| |
Collapse
|
8
|
|
9
|
De Rossi P, Harde E, Dupuis JP, Martin L, Chounlamountri N, Bardin M, Watrin C, Benetollo C, Pernet-Gallay K, Luhmann HJ, Honnorat J, Malleret G, Groc L, Acker-Palmer A, Salin PA, Meissirel C. A critical role for VEGF and VEGFR2 in NMDA receptor synaptic function and fear-related behavior. Mol Psychiatry 2016; 21:1768-1780. [PMID: 26728568 PMCID: PMC5116482 DOI: 10.1038/mp.2015.195] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF) is known to be required for the action of antidepressant therapies but its impact on brain synaptic function is poorly characterized. Using a combination of electrophysiological, single-molecule imaging and conditional transgenic approaches, we identified the molecular basis of the VEGF effect on synaptic transmission and plasticity. VEGF increases the postsynaptic responses mediated by the N-methyl-D-aspartate type of glutamate receptors (GluNRs) in hippocampal neurons. This is concurrent with the formation of new synapses and with the synaptic recruitment of GluNR expressing the GluN2B subunit (GluNR-2B). VEGF induces a rapid redistribution of GluNR-2B at synaptic sites by increasing the surface dynamics of these receptors within the membrane. Consistently, silencing the expression of the VEGF receptor 2 (VEGFR2) in neural cells impairs hippocampal-dependent synaptic plasticity and consolidation of emotional memory. These findings demonstrated the direct implication of VEGF signaling in neurons via VEGFR2 in proper synaptic function. They highlight the potential of VEGF as a key regulator of GluNR synaptic function and suggest a role for VEGF in new therapeutic approaches targeting GluNR in depression.
Collapse
Affiliation(s)
- P De Rossi
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Neurooncology and Neuroinflammation, Lyon Neuroscience Research Center, Lyon, France
| | - E Harde
- Institute of Cell Biology and Neuroscience and BMLS, Goethe University Frankfurt, Frankfurt, Germany,Max Planck Institute for Brain Research, Frankfurt, Germany,Focus Program Translational Neurosciences, University of Mainz, Mainz, Germany
| | - J P Dupuis
- Interdisciplinary Institute for Neuroscience, Unité Mixte de Recherche 5297, Université de Bordeaux, Bordeaux, France,Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France
| | - L Martin
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Neurooncology and Neuroinflammation, Lyon Neuroscience Research Center, Lyon, France
| | - N Chounlamountri
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Neurooncology and Neuroinflammation, Lyon Neuroscience Research Center, Lyon, France
| | - M Bardin
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Neurooncology and Neuroinflammation, Lyon Neuroscience Research Center, Lyon, France
| | - C Watrin
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Neurooncology and Neuroinflammation, Lyon Neuroscience Research Center, Lyon, France
| | - C Benetollo
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Functional Neurogenomics and Optogenetics, Lyon Neuroscience Research Center, Lyon, France
| | - K Pernet-Gallay
- Grenoble Institute of Neurosciences, Grenoble, France,INSERM U836, Microscopy and Electron Microscopy Platform, Grenoble, France
| | - H J Luhmann
- Institute of Physiology, University Medical Center, University of Mainz, Mainz, Germany
| | - J Honnorat
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Neuro-Oncology Department, Hospices Civils de Lyon, Hôpital Neurologique, Lyon, France
| | - G Malleret
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, Lyon, France
| | - L Groc
- Interdisciplinary Institute for Neuroscience, Unité Mixte de Recherche 5297, Université de Bordeaux, Bordeaux, France,Interdisciplinary Institute for Neuroscience, UMR 5297, Centre National de la Recherche Scientifique, Bordeaux, France
| | - A Acker-Palmer
- Institute of Cell Biology and Neuroscience and BMLS, Goethe University Frankfurt, Frankfurt, Germany,Max Planck Institute for Brain Research, Frankfurt, Germany,Focus Program Translational Neurosciences, University of Mainz, Mainz, Germany
| | - P A Salin
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, Lyon, France
| | - C Meissirel
- Institut National de la Santé et de la Recherche Médicale, Unité 1028, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5292, Lyon, France,Claude Bernard University Lyon 1, Lyon, France,Neurooncology and Neuroinflammation, Lyon Neuroscience Research Center, Lyon, France,Equipe Neurooncologie et Neuroinflammation, Centre de Recherche en Neurosciences de Lyon, Institut National de la Santé et de la Recherche Médicale, Unité 1028, Faculté de Médecine Laennec, Lyon cedex O8, 69372 Lyon, France. E-mail:
| |
Collapse
|
10
|
Sun FJ, Wei YJ, Li S, Guo W, Chen X, Liu SY, He JJ, Yin Q, Yang H, Zhang CQ. Elevated Expression of VEGF-C and Its Receptors, VEGFR-2 and VEGFR-3, in Patients with Mesial Temporal Lobe Epilepsy. J Mol Neurosci 2016; 59:241-50. [DOI: 10.1007/s12031-016-0714-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022]
|
11
|
Benini R, Roth R, Khoja Z, Avoli M, Wintermark P. Does angiogenesis play a role in the establishment of mesial temporal lobe epilepsy? Int J Dev Neurosci 2016; 49:31-6. [PMID: 26773167 DOI: 10.1016/j.ijdevneu.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 01/03/2023] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) is a focal epileptic disorder that is frequently associated with hippocampal sclerosis. This study investigated whether blocking angiogenesis prevents the development of seizures and hippocampal atrophy in the pilocarpine rat model of MTLE. To block angiogenesis, a subset of animals were given sunitinib orally. Continuous video recordings were performed to identify seizures. Brains were then extracted and sectioned, and hippocampal surfaces and angiogenesis were assessed. After a latent period of 6.6 ± 2.6 days, the sham-treated pilocarpine rats presented convulsive seizures, while the pilocarpine rats treated with sunitinib did not develop seizures. Sham-treated pilocarpine rats but not sunitinib-treated pilocarpine rats had significantly smaller hippocampi. Endothelial cell counts in sham-treated pilocarpine rats were significantly greater than in controls and sunitinib-treated pilocarpine rats. Blocking angiogenesis immediately following the initial insult in this animal model prevented thus angiogenesis and hippocampal atrophy and averted the development of clinical seizures.
Collapse
Affiliation(s)
- Ruba Benini
- Division of Pediatric Neurology, Department of Pediatrics, Montreal Children's Hospital, Canada
| | - Raquel Roth
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, Canada
| | - Zehra Khoja
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, Canada
| | - Massimo Avoli
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Pia Wintermark
- Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, Canada.
| |
Collapse
|
12
|
Vavers E, Zvejniece L, Svalbe B, Volska K, Makarova E, Liepinsh E, Rizhanova K, Liepins V, Dambrova M. The neuroprotective effects of R-phenibut after focal cerebral ischemia. Pharmacol Res 2015; 113:796-801. [PMID: 26621244 DOI: 10.1016/j.phrs.2015.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/25/2022]
Abstract
R-phenibut is a γ-aminobutyric acid (GABA)-B receptor and α2-δ subunit of the voltage-dependent calcium channel (VDCC) ligand. The aim of the present study was to test the effects of R-phenibut on the motor, sensory and tactile functions and histological outcomes in rats following transient middle cerebral artery occlusion (MCAO). In this study, MCAO was induced by filament insertion (f-MCAO) or endothelin-1 (ET1) microinjection (ET1-MCAO) in male Wistar or CD rats, respectively. R-phenibut was administrated at doses of 10 and 50mg/kg for 14 days in the f-MCAO or 7 days in the ET1-MCAO. The vibrissae-evoked forelimb-placing and limb-placing tests were used to assess sensorimotor, tactile and proprioceptive function. Quantitative reverse transcriptase-PCR was used to detect brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) gene expression in the damaged brain hemisphere. Both f-MCAO and ET1-MCAO resulted in statistically significant impairment of sensorimotor function and brain infarction. R-phenibut at a dose of 10mg/kg significantly improved histological outcome at day 7 in the ET1-MCAO. R-phenibut treatment at a dose of 50mg/kg significantly alleviated reduction of brain volume in damaged hemisphere in both f-MCAO and ET1-MCAO. In R-phenibut treated animals a trend of recovery of tactile and proprioceptive stimulation in the vibrissae-evoked forelimb-placing test was observed. After R-phenibut treatment at a dose of 50mg/kg statistically significant increase of BDNF and VEGF gene expression was found in damaged brain hemisphere. Taken together, obtained results provide evidence for the neuroprotective activity of R-phenibut in experimental models of stroke. These effects might be related to the modulatory effects of the drug on the GABA-B receptor and α2-δ subunit of VDCC.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia.
| | | | - Baiba Svalbe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Kristine Volska
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia
| | | | | | | | | | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia
| |
Collapse
|
13
|
Zanirati G, Azevedo PN, Marinowic DR, Rodrigues F, de Oliveira Dias AC, Venturin GT, Greggio S, Simão F, DaCosta JC. Transplantation of bone marrow mononuclear cells modulates hippocampal expression of growth factors in chronically epileptic animals. CNS Neurosci Ther 2015; 21:463-71. [PMID: 25645708 DOI: 10.1111/cns.12382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 12/26/2014] [Accepted: 12/27/2014] [Indexed: 12/27/2022] Open
Abstract
AIMS In previous studies, transplantation of bone marrow mononuclear cells (BMMCs) in epileptic animals has been found to be neuroprotective. However, the mechanism by which the BMMCs act remains unclear. We hypothesize that BMMCs may provide neuroprotection to the epileptic brain through trophic support. To test our hypothesis, we studied the temporal expression of neurotrophins after BMMC transplantation in the epileptic rat hippocampus. METHODS Chronically epileptic rats were intravenously transplanted with 1 × 10(7) BMMCs isolated from GFP transgenic mice. Expression levels of BDNF, GDNF, NGF, VEGF, and TGF-β1, and their receptors, were evaluated by ELISA and/or qRT-PCR analysis. RESULTS Our data revealed increased protein expression of BDNF, GDNF, NGF, and VEGF and reduced levels of TGF-β1 in the hippocampus of transplanted epileptic animals. Additionally, an increase in the mRNA expression of BDNF, GDNF, and VEGF, a reduction in TGF-β1, and a decrease in mRNA levels of the TrkA and TGFR-β1 receptors were also observed. CONCLUSION The gain provided by transplanted BMMCs in the epileptic brain may be related to the ability of these cells in modulating the network of neurotrophins and angiogenic signals.
Collapse
Affiliation(s)
- Gabriele Zanirati
- PUCRS, Pós-Graduação em Medicina e Ciências da Saúde, Instituto do Cérebro do Rio Grande do Sul (InsCer), Instituto de Pesquisas Biomódicas, Laboratório de Neurociências e Sinalização Celular, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vascular endothelial growth factor increases during blood-brain barrier-enhanced permeability caused by Phoneutria nigriventer spider venom. BIOMED RESEARCH INTERNATIONAL 2014; 2014:721968. [PMID: 25247186 PMCID: PMC4163422 DOI: 10.1155/2014/721968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 07/26/2014] [Accepted: 08/05/2014] [Indexed: 11/17/2022]
Abstract
Phoneutria nigriventer spider accidental envenomation provokes neurotoxic manifestations, which when critical, results in epileptic-like episodes. In rats, P. nigriventer venom (PNV) causes blood-brain barrier breakdown (BBBb). The PNV-induced excitotoxicity results from disturbances on Na+, K+ and Ca2+ channels and glutamate handling. The vascular endothelial growth factor (VEGF), beyond its angiogenic effect, also, interferes on synaptic physiology by affecting the same ion channels and protects neurons from excitotoxicity. However, it is unknown whether VEGF expression is altered following PNV envenomation. We found that adult and neonates rats injected with PNV showed immediate neurotoxic manifestations which paralleled with endothelial occludin, β-catenin, and laminin downregulation indicative of BBBb. In neonate rats, VEGF, VEGF mRNA, and Flt-1 receptors, glutamate decarboxylase, and calbindin-D28k increased in Purkinje neurons, while, in adult rats, the BBBb paralleled with VEGF mRNA, Flk-1, and calbindin-D28k increases and Flt-1 decreases. Statistically, the variable age had a role in such differences, which might be due to age-related unequal maturation of blood-brain barrier (BBB) and thus differential cross-signaling among components of the glial neurovascular unit. The concurrent increases in the VEGF/Flt-1/Flk-1 system in the cerebellar neuron cells and the BBBb following PNV exposure might imply a cytokine modulation of neuronal excitability consequent to homeostatic perturbations induced by ion channels-acting PNV neuropeptides. Whether such modulation represents neuroprotection needs further investigation.
Collapse
|
15
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|
16
|
Mendonça MCP, Soares ES, Stávale LM, Rapôso C, Coope A, Kalapothakis E, da Cruz-Höfling MA. Expression of VEGF and Flk-1 and Flt-1 receptors during blood-brain barrier (BBB) impairment following Phoneutria nigriventer spider venom exposure. Toxins (Basel) 2013; 5:2572-88. [PMID: 24351717 PMCID: PMC3873701 DOI: 10.3390/toxins5122572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 01/19/2023] Open
Abstract
Apart from its angiogenic and vascular permeation activity, the vascular endothelial growth factor (VEGF) has been also reported as a potent neuronal protector. Newborn rats with low VEGF levels develop neuron degeneration, while high levels induce protective mechanisms in several neuropathological conditions. Phoneutria nigriventer spider venom (PNV) disrupts the blood-brain barrier (BBB) and causes neuroinflammation in central neurons along with excitotoxic signals in rats and humans. All these changes are transient. Herein, we examined the expression of VEGF and its receptors, Flt-1 and Flk-1 in the hippocampal neurons following envenomation by PNV. Adult and neonatal rats were evaluated at time limits of 2, 5 and 24 h. Additionally, BBB integrity was assessed by measuring the expression of occludin, β-catenin and laminin and neuron viability was evaluated by NeuN expression. VEGF, Flt-1 and Flk-1 levels increased in PNV-administered rats, concurrently with respective mRNAs. Flt-1 and Flk-1 immunolabeling was nuclear in neurons of hippocampal regions, instead of the VEGF membrane-bound typical location. These changes occurred simultaneously with the transient decreases in BBB-associated proteins and NeuN positivity. Adult rats showed more prominent expressional increases of the VEGF/Flt-1/Flk-1 system and earlier recovery of BBB-related proteins than neonates. We conclude that the reactive expressional changes seen here suggest that VEGF and receptors could have a role in the excitotoxic mechanism of PNV and that such role would be less efficient in neonate rats.
Collapse
Affiliation(s)
- Monique C. P. Mendonça
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (Unicamp) Campinas, SP 13083-887, Brazil; E-Mail:
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
| | - Edilene S. Soares
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
| | - Leila M. Stávale
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
| | - Catarina Rapôso
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
| | - Andressa Coope
- Cell Signaling Laboratory, Faculty of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP 13081-970, Brazil; E-Mail:
| | - Evanguedes Kalapothakis
- Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil; E-Mail:
| | - Maria Alice da Cruz-Höfling
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (Unicamp) Campinas, SP 13083-887, Brazil; E-Mail:
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (Unicamp) Campinas, SP 13083-863, Brazil; E-Mails: (E.S.S.); (L.M.S.); (C.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-19-3521-6224; Fax: +55-19-3289-3124
| |
Collapse
|
17
|
Sah N, Sikdar SK. Transition in subicular burst firing neurons from epileptiform activity to suppressed state by feedforward inhibition. Eur J Neurosci 2013; 38:2542-56. [DOI: 10.1111/ejn.12262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Nirnath Sah
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore; India
| | - Sujit K. Sikdar
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore; India
| |
Collapse
|
18
|
Siddiq I, Park E, Liu E, Spratt SK, Surosky R, Lee G, Ando D, Giedlin M, Hare GMT, Fehlings MG, Baker AJ. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 2012; 29:2647-59. [PMID: 23016562 DOI: 10.1089/neu.2012.2444] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a role in angiogenesis and has been shown to be neuroprotective following central nervous system trauma. In the present study we evaluated the pro-angiogenic and neuroprotective effects of an engineered zinc-finger protein transcription factor transactivator targeting the vascular endothelial growth factor A (VEGF-ZFP). We used two virus delivery systems, adeno-virus and adeno-associated virus, to examine the effects of early and delayed VEGF-A upregulation after brain trauma, respectively. Male Sprague-Dawley rats were subject to a unilateral fluid percussion injury (FPI) of moderate severity (2.2-2.5 atm) followed by intracerebral microinjection of either adenovirus vector (Adv) or an adeno-associated vector (AAV) carrying the VEGF-ZFP construct. Adv-VEGF-ZFP-treated animals had significantly fewer TUNEL positive cells in the injured penumbra of the cortex (p<0.001) and hippocampus (p=0.001) relative to untreated rats at 72 h post-injury. Adv-VEGF-ZFP treatment significantly improved fEPSP values (p=0.007) in the CA1 region relative to injury alone. Treatment with AAV2-VEGF-ZFP resulted in improved post-injury microvascular diameter and improved functional recovery on the balance beam and rotarod task at 30 days post-injury. Collectively, the results provide supportive evidence for the concept of acute and delayed treatment following TBI using VEGF-ZFP to induce angiogenesis, reduce cell death, and enhance functional recovery.
Collapse
Affiliation(s)
- Ishita Siddiq
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
McCarthy KF, Connor TJ, McCrory C. Cerebrospinal Fluid Levels of Vascular Endothelial Growth Factor Correlate With Reported Pain and Are Reduced by Spinal Cord Stimulation in Patients With Failed Back Surgery Syndrome. Neuromodulation 2012; 16:519-22; discussion 522. [DOI: 10.1111/j.1525-1403.2012.00527.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/15/2012] [Accepted: 09/13/2012] [Indexed: 01/21/2023]
Affiliation(s)
| | - Thomas J. Connor
- Trinity College Institute of Neuroscience; Trinity College Dublin; Dublin Ireland
| | - Connail McCrory
- Department of Pain Medicine; St James's Hospital; Dublin Ireland
| |
Collapse
|
20
|
Kan AA, de Jager W, de Wit M, Heijnen C, van Zuiden M, Ferrier C, van Rijen P, Gosselaar P, Hessel E, van Nieuwenhuizen O, de Graan PNE. Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines. J Neuroinflammation 2012; 9:207. [PMID: 22935090 PMCID: PMC3489559 DOI: 10.1186/1742-2094-9-207] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/30/2012] [Indexed: 11/25/2022] Open
Abstract
Mesial temporal lobe epilepsy (mTLE) is a chronic and often treatment-refractory brain disorder characterized by recurrent seizures originating from the hippocampus. The pathogenic mechanisms underlying mTLE remain largely unknown. Recent clinical and experimental evidence supports a role of various inflammatory mediators in mTLE. Here, we performed protein expression profiling of 40 inflammatory mediators in surgical resection material from mTLE patients with and without hippocampal sclerosis, and autopsy controls using a multiplex bead-based immunoassay. In mTLE patients we identified 21 upregulated inflammatory mediators, including 10 cytokines and 7 chemokines. Many of these upregulated mediators have not previously been implicated in mTLE (for example, CCL22, IL-7 and IL-25). Comparing the three patient groups, two main hippocampal expression patterns could be distinguished, pattern I (for example, IL-10 and IL-25) showing increased expression in mTLE + HS patients compared to mTLE-HS and controls, and pattern II (for example, CCL4 and IL-7) showing increased expression in both mTLE groups compared to controls. Upregulation of a subset of inflammatory mediators (for example, IL-25 and IL-7) could not only be detected in the hippocampus of mTLE patients, but also in the neocortex. Principle component analysis was used to cluster the inflammatory mediators into several components. Follow-up analyses of the identified components revealed that the three patient groups could be discriminated based on their unique expression profiles. Immunocytochemistry showed that IL-25 IR (pattern I) and CCL4 IR (pattern II) were localized in astrocytes and microglia, whereas IL-25 IR was also detected in neurons. Our data shows co-activation of multiple inflammatory mediators in hippocampus and neocortex of mTLE patients, indicating activation of multiple pro- and anti-epileptogenic immune pathways in this disease.
Collapse
Affiliation(s)
- Anne A Kan
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Wilco de Jager
- Department of Pediatric Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Cobi Heijnen
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Mirjam van Zuiden
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Cyrill Ferrier
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Peter van Rijen
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Peter Gosselaar
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Ellen Hessel
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Onno van Nieuwenhuizen
- Department of Child Neurology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Pierre N E de Graan
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
21
|
Feast A, Martinian L, Liu J, Catarino CB, Thom M, Sisodiya SM. Investigation of hypoxia-inducible factor-1α in hippocampal sclerosis: A postmortem study. Epilepsia 2012; 53:1349-59. [DOI: 10.1111/j.1528-1167.2012.03591.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
VEGF receptor-2 (Flk-1) overexpression in mice counteracts focal epileptic seizures. PLoS One 2012; 7:e40535. [PMID: 22808185 PMCID: PMC3395684 DOI: 10.1371/journal.pone.0040535] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 06/12/2012] [Indexed: 12/27/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) was first described as an angiogenic agent, but has recently also been shown to exert various neurotrophic and neuroprotective effects in the nervous system. These effects of VEGF are mainly mediated by its receptor, VEGFR-2, which is also referred to as the fetal liver kinase receptor 1 (Flk-1). VEGF is up-regulated in neurons and glial cells after epileptic seizures and counteracts seizure-induced neurodegeneration. In vitro, VEGF administration suppresses ictal and interictal epileptiform activity caused by AP4 and 0 Mg2+ via Flk-1 receptor. We therefore explored whether increased VEGF signaling through Flk-1 overexpression may regulate epileptogenesis and ictogenesis in vivo. To this extent, we used transgenic mice overexpressing Flk-1 postnatally in neurons. Intriguingly, Flk-1 overexpressing mice were characterized by an elevated threshold for seizure induction and a decreased duration of focal afterdischarges, indicating anti-ictal action. On the other hand, the kindling progression in these mice was similar to wild-type controls. No significant effects on blood vessels or glia cells, as assessed by Glut1 and GFAP immunohistochemistry, were detected. These results suggest that increased VEGF signaling via overexpression of Flk-1 receptors may directly affect seizure activity even without altering angiogenesis. Thus, Flk-1 could be considered as a novel target for developing future gene therapy strategies against ictal epileptic activity.
Collapse
|