1
|
Corse E, Gimenez M, Crochelet E, Paulin-Fayolle A, Campagnari F, Desbonnes O, Broudic L, Durville P, Trentin F, Barathieu G, Delamare C, Gautier T, Loisil C, Plantard P, Quaglietti S, Mulochau T, Nikolic N. Environmental DNA illuminates the darkness of mesophotic assemblages of fishes from West Indian Ocean. PLoS One 2025; 20:e0322870. [PMID: 40403023 PMCID: PMC12097626 DOI: 10.1371/journal.pone.0322870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/21/2025] [Indexed: 05/24/2025] Open
Abstract
The advent of environmental DNA (eDNA) represents a pivotal advancement in probing mesophotic communities, offering a non-intrusive avenue for studying marine biodiversity at greater depths. Using this approach, we characterized and compared the mesophotic reef fish assemblages of two West Indian Ocean islands, Mayotte and La Réunion, which are characterized by different geo-morphological contexts. The sequences obtained were assigned taxonomically and grouped into molecular operational taxonomic units to perform richness and beta diversity analyses. The functional diversity of the assemblages was assessed using five traits, enabling each sequence to be assigned to a functional entity corresponding to a specific trait combination. On both islands, the fish assemblages exhibited a comparable level of taxonomic and functional richness, consisting mainly of piscivorous and planktivorous fishes. These assemblages were primarily composed of families such as Serranidae, consistent with expectations for the mesophotic zone. However, beta diversity analyses revealed that the two islands exhibited different taxonomic and functional structures. For example, La Réunion was characterized by a greater importance of the Muraenidae, while Mayotte displayed a higher representation of families strongly associated with coral reefs (e.g., Zanclidae or Malacanthidae). These results suggest that depth-related forcing constrains fish assemblages to some extent, but that differences in structure remains determined by other, more local factors, likely linked to the geo-morphological contexts of the islands and their habitats. This study also revealed that eDNA is a promising method for studying difficult-to-observe taxa, such as moray eels or lanternfish, and may also be relevant for monitoring species depth ranges. Overall, results highlighted the "local scale", "functionally integrative" and "temporally integrative" characteristics of eDNA for studying mesophotic reef fish assemblages. However, this study also highlights the limitations of reference DNA databases, pointing to future prospects for fully exploiting the potential of eDNA approaches in the mesophotic zones of the Indian Ocean.
Collapse
Affiliation(s)
- Emmanuel Corse
- Université de Mayotte, Mayotte, France
- MARBEC, Université Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Marie Gimenez
- Université de Mayotte, Mayotte, France
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
| | - Estelle Crochelet
- Agence de Recherche pour la Biodiversité à La Réunion (ARBRE), Saint-Denis, Réunion, France
| | - Anaïs Paulin-Fayolle
- Agence de Recherche pour la Biodiversité à La Réunion (ARBRE), Saint-Denis, Réunion, France
| | - Florian Campagnari
- Agence de Recherche pour la Biodiversité à La Réunion (ARBRE), Saint-Denis, Réunion, France
| | - Océane Desbonnes
- Agence de Recherche pour la Biodiversité à La Réunion (ARBRE), Saint-Denis, Réunion, France
| | - Léo Broudic
- Agence de Recherche pour la Biodiversité à La Réunion (ARBRE), Saint-Denis, Réunion, France
- Vie Océane, La Réunion, France
| | - Patrick Durville
- GALAXEA, La Réunion, France
- Deep Blue Exploration, Mayotte, France
| | | | | | | | | | | | | | - Sébastien Quaglietti
- Service de Plongée Scientifique, Mayotte, France
- Parc Naturel Marin de Mayotte, Pamandzi, Mayotte, France
| | - Thierry Mulochau
- Agence de Recherche pour la Biodiversité à La Réunion (ARBRE), Saint-Denis, Réunion, France
- BIORECIF, La Réunion, France
| | - Natacha Nikolic
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
- Agence de Recherche pour la Biodiversité à La Réunion (ARBRE), Saint-Denis, Réunion, France
- INRAE, AQUA, ECOBIOP, Toulouse, France
| |
Collapse
|
2
|
Song C. Assembly Graph as the Rosetta Stone of Ecological Assembly. Environ Microbiol 2025; 27:e70030. [PMID: 39806523 DOI: 10.1111/1462-2920.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Ecological assembly-the process of ecological community formation through species introductions-has recently seen exciting theoretical advancements across dynamical, informational, and probabilistic approaches. However, these theories often remain inaccessible to non-theoreticians, and they lack a unifying lens. Here, I introduce the assembly graph as an integrative tool to connect these emerging theories. The assembly graph visually represents assembly dynamics, where nodes symbolise species combinations and edges represent transitions driven by species introductions. Through the lens of assembly graphs, I review how ecological processes reduce uncertainty in random species arrivals (informational approach), identify graphical properties that guarantee species coexistence and examine how the class of dynamical models constrain the topology of assembly graphs (dynamical approach), and quantify transition probabilities with incomplete information (probabilistic approach). To facilitate empirical testing, I also review methods to decompose complex assembly graphs into smaller, measurable components, as well as computational tools for deriving empirical assembly graphs. In sum, this math-light review of theoretical progress aims to catalyse empirical research towards a predictive understanding of ecological assembly.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
3
|
Han Q, Wang S, Han B, Su W, Yang J, Yu Q, Li H. Temporal dynamics of the diazotrophic community during corpse decomposition. Appl Microbiol Biotechnol 2024; 108:506. [PMID: 39520567 PMCID: PMC11550258 DOI: 10.1007/s00253-024-13329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Corpse decomposition affects soil organisms through the formation of "cadaver decomposition islands." Soil diazotrophic microbes possess essential ecological functions on nitrogen input and nutrient cycling in the terrestrial ecosystem. However, our knowledge about how soil diazotrophic communities respond to corpse decomposition is lacking. In this study, we focused on the succession patterns and biological interaction of nitrogen-fixing microorganisms during animal (Ochotona curzoniae) corpse decomposition in terrestrial ecosystems by targeting nifH gene with high-throughput sequencing. Our results revealed that corpse decomposition of pikas reduced the α diversity and significantly impacted the β diversity of diazotrophic community across different decomposition stages. The divergent succession of diazotrophic community occurred under corpse pressure. Furthermore, the relative importance of stochasticity to the community assembly was improved by corpse decomposition, while the importance decreased over decomposition time. Cadaver decay also simplified the diazotrophic networks and weakened the biological interactions among diazotrophic populations. Notably, NH4-N was the most important factor affecting diazotrophic community, followed by time and total carbon. This work emphasized that corpse decomposition perhaps influences the process of biological nitrogen fixation by altering soil diazotrophic communities, which is of great significance for understanding the terrestrial ecosystems' nitrogen cycle functions. KEY POINTS: • Corpse decomposition reduced the α diversity of diazotrophic community. • Corpse decomposition improved the stochasticity of diazotrophic community assembly. • Corpse decomposition weakened the interactions among diazotrophic populations.
Collapse
Affiliation(s)
- Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Binghua Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Suding KN, Collins CG, Hallett LM, Larios L, Brigham LM, Dudney J, Farrer EC, Larson JE, Shackelford N, Spasojevic MJ. Biodiversity in changing environments: An external-driver internal-topology framework to guide intervention. Ecology 2024; 105:e4322. [PMID: 39014865 DOI: 10.1002/ecy.4322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 07/18/2024]
Abstract
Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.
Collapse
Affiliation(s)
- Katharine N Suding
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
| | - Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Biodiversity Research Centre, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Hallett
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Biology and Environmental Studies Program, University of Oregon, Eugene, Oregon, USA
| | - Loralee Larios
- Department of Botany & Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Laurel M Brigham
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Joan Dudney
- Environmental Studies Program, Santa Barbara, California, USA
- Bren School of Environmental Science & Management, UC Santa Barbara, Santa Barbara, California, USA
| | - Emily C Farrer
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Julie E Larson
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- USDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, Oregon, USA
| | - Nancy Shackelford
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Marko J Spasojevic
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
5
|
de Souza SDNG, Batista DM, Quaresma AC, Costa AL, Demarchi LO, Albuquerque BW, Klein VP, Feitoza G, de Resende AF, Mori GB, Wittmann F, Oliveira LL, Mortati AF, da Cunha AC, Schongart J, Lopes A, Piedade MTF, André T. Soil flooding filters evolutionary lineages of tree communities in Amazonian riparian forests. Ecol Evol 2024; 14:e11635. [PMID: 39050660 PMCID: PMC11266118 DOI: 10.1002/ece3.11635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
Inundations in Amazonian black-water river floodplain result in the selection of different tree lineages, thus promoting coexistence between species. We investigated whether Amazonian tree communities are phylogenetically structured and distributed along a flooding gradient from irregularly flooded forests along streams embedded within upland (terra-firme) forest to seasonally flooded floodplains of large rivers (igapós). Floristic inventories and hydrological monitoring were performed along the Falsino River, a black-water river in the eastern Amazon within the Amapá National Forest. We constructed a presence-and-absence matrix and generated a phylogeny using the vascular plant database available in GenBank. We calculated the standardized values of the metrics of phylogenetic diversity (ses.PD), average phylogenetic distance (ses.MPD), and average nearest-neighbor distance (ses.MNTD) to test whether the history of relationships between species in the community is influenced by inundation. We used the phylogenetic endemism (PE) metric to verify the existence of taxa with restricted distribution. Linear regressions were used to test whether phylogenetic metrics have a significant relationship with the variables: maximum flood height, maximum water table depth, and maximum flood amplitude. The results show that forests subject to prolonged seasonal flooding have reduced taxon richness, low phylogenetic diversity, and random distribution of lineages within communities. On the other hand, terra-firme riparian forests showed higher rates of taxon richness, diversity, and phylogenetic dispersion, in addition to greater phylogenetic endemism. These results indicate that seasonal and predictable soil flooding filters tree lineages along the hydrographic gradient. Different adaptations to root waterlogging are likely requirements for colonization in these environments and may represent an important factor in the diversification of tree lineages in the Amazon biome.
Collapse
Affiliation(s)
- Sthefanie do Nascimento Gomes de Souza
- Postgraduate Program in EcologyNational Institute for Amazon Research (INPA)ManausBrazil
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
| | | | - Adriano Costa Quaresma
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
- Institute of Technology (KIT)KarlsruheGermany
| | - Ana Luiza Costa
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
| | - Layon Oreste Demarchi
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
| | - Bianca Weiss Albuquerque
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
| | - Viviane Pagnussat Klein
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
| | - Gildo Feitoza
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
| | - Angélica Faria de Resende
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
- Forest Sciences Department, ESALQ/USPUniversity of São PauloSão PauloBrazil
| | - Gisele Biem Mori
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
| | | | - Leidiane Leão Oliveira
- Institute of Water Sciences and TechnologyFederal University of Western ParáSantarémBrazil
| | | | | | - Jochen Schongart
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
| | - Aline Lopes
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
- Researcher at the Cesumar Institute of Science, Technology and Innovation (ICETI)MaringáBrazil
| | - Maria Teresa Fernandez Piedade
- Ecology, Monitoring and Sustainable Use of Wetlands (MAUA Research Group)National Institute for Amazon Research (INPA)ManausBrazil
| | - Thiago André
- Department of Botany, Institute of Biological SciencesUniversity of BrasíliaBrasíliaBrazil
| |
Collapse
|
6
|
Beaudrot L, Acevedo MA, Gorczynski D, Harris NC. Geographic differences in body size distributions underlie food web connectance of tropical forest mammals. Sci Rep 2024; 14:6965. [PMID: 38521800 PMCID: PMC10960815 DOI: 10.1038/s41598-024-57500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
Understanding variation in food web structure over large spatial scales is an emerging research agenda in food web ecology. The density of predator-prey links in a food web (i.e., connectance) is a key measure of network complexity that describes the mean proportional dietary breadth of species within a food web. Connectance is a critical component of food web robustness to species loss: food webs with lower connectance have been shown to be more susceptible to secondary extinctions. Identifying geographic variation in food web connectance and its drivers may provide insight into community robustness to species loss. We investigated the food web connectance of ground-dwelling tropical forest mammal communities in multiple biogeographic regions to test for differences among regions in food web connectance and to test three potential drivers: primary productivity, contemporary anthropogenic pressure, and variation in mammal body mass distributions reflective of historical extinctions. Mammal communities from fifteen protected forests throughout the Neo-, Afro-, and Asian tropics were identified from systematic camera trap arrays. Predator-prey interaction data were collected from published literature, and we calculated connectance for each community as the number of observed predator-prey links relative to the number of possible predator-prey links. We used generalized linear models to test for differences among regions and to identify the site level characteristics that best predicted connectance. We found that mammal food web connectance varied significantly among continents and that body size range was the only significant predictor. More possible predator-prey links were observed in communities with smaller ranges in body size and therefore sites with smaller body size ranges had higher mean proportional dietary breadth. Specifically, mammal communities in the Neotropics and in Madagascar had significantly higher connectance than mammal communities in Africa. This geographic variation in contemporary mammalian food web structure may be the product of historical extinctions in the Late Quaternary, which led to greater losses of large-bodied species in the Neotropics and Madagascar thus contributing to higher average proportional dietary breadth among the remaining smaller bodied species in these regions.
Collapse
Affiliation(s)
- Lydia Beaudrot
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
| | - Miguel A Acevedo
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Daniel Gorczynski
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX, USA
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Borkenhagen A, Cooper DJ, House M, Vitt DH. Establishing peat-forming plant communities: A comparison of wetland reclamation methods in Alberta's oil sands region. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2929. [PMID: 37942503 DOI: 10.1002/eap.2929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023]
Abstract
The Sandhill Wetland (SW) and Nikanotee Fen (NF) are two wetland research projects designed to test the viability of peatland reclamation in the Alberta oil sands post-mining landscape. To identify effective approaches for establishing peat-forming vegetation in reclaimed wetlands, we evaluated how plant introduction approaches and water level gradients influence species distribution, plant community development, and the establishment of bryophyte and peatland species richness and cover. Plant introduction approaches included seeding with a Carex aquatilis-dominated seed mix, planting C. aquatilis and Juncus balticus seedlings, and spreading a harvested moss layer transfer. Establishment was assessed 6 years after the introduction at SW and 5 years after the introduction at NF. In total, 51 species were introduced to the reclaimed wetlands, and 122 species were observed after 5 and 6 years. The most abundant species in both reclaimed wetlands was C. aquatilis, which produced dense canopies and occupied the largest water level range of observed plants. Introducing C. aquatilis also helped to exclude marsh plants such as Typha latifolia that has little to no peat accumulation potential. Juncus balticus persisted where the water table was lower and encouraged the formation of a diverse peatland community and facilitated bryophyte establishment. Various bryophytes colonized suitable areas, but the moss layer transfer increased the cover of desirable peat-forming mosses. Communities with the highest bryophyte and peatland species richness and cover (averaging 9 and 14 species, and 50%-160% cover respectively) occurred where the summer water level was between -10 and -40 cm. Outside this water level range, a marsh community of Typha latifolia dominated in standing water and a wet meadow upland community of Calamagrostis canadensis and woody species established where the water table was deeper. Overall, the two wetland reclamation projects demonstrated that establishing peat-forming vascular plants and bryophytes is possible, and community formation is dependent upon water level and plant introduction approaches. Future projects should aim to create microtopography with water tables within 40 cm of the surface and introduce vascular plants such as J. balticus that facilitate bryophyte establishment and support the development of a diverse peatland plant community.
Collapse
Affiliation(s)
- Andrea Borkenhagen
- Department of Forest and Rangeland Stewardship and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - David J Cooper
- Department of Forest and Rangeland Stewardship and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Melissa House
- School of Biological Sciences-Plant Biology, Southern Illinois University, Carbondale, Illinois, USA
| | - Dale H Vitt
- School of Biological Sciences-Plant Biology, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
8
|
Wu A, Xiong X, Zhou G, Barmon M, Li A, Tang X, Liu J, Zhang Q, Liu S, Chu G, Zhang D. Climate change-related biodiversity fluctuations and composition changes in an old-growth subtropical forest: A 26-yr study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169899. [PMID: 38184245 DOI: 10.1016/j.scitotenv.2024.169899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
The detection and attribution of biodiversity change is of great scientific interest and central to policy effects aimed at meeting biodiversity targets. Yet, how such a diverse climate scenarios influence forest biodiversity and composition dynamics remains unclear, particularly in high diversity systems of subtropical forests. Here we used data collected from the permanent sample plot spanning 26 years in an old-growth subtropical forest. Combining various climatic events (extreme drought, subsequent drought, warming, and windstorm), we analyzed long-term dynamics in multiple metrics: richness, turnover, density, abundance, reordering and stability. We did not observe consistent and directional trends in species richness under various climatic scenarios. Still, drought and windstorm events either reduced species gains or increased species loss, ultimately increased species turnover. Tree density increased significantly over time as a result of rapid increase in smaller individuals due to mortality in larger trees. Climate events caused rapid changes in dominant populations due to a handful of species undergoing strong increases or declines in abundance over time simultaneously. Species abundance composition underwent significant changes, particularly in the presence of drought and windstorm events. High variance ratio and species synchrony weaken community stability under various climate stress. Our study demonstrates that all processes underlying forest community composition changes often occur simultaneously and are equally affected by climate events, necessitating a holistic approach to quantifying community changes. By recognizing the interconnected nature of these processes, future research should accelerate comprehensive understanding and predicting of how forest vegetation responds to global climate change.
Collapse
Affiliation(s)
- Anchi Wu
- Hubei Key Laboratory of Biologic Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xin Xiong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Guoyi Zhou
- Institute of Ecology, School of Applied Meteorology, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Milon Barmon
- Department of Environmental Sciences, Emory University, Atlanta, GA 30322, United States; Population Biology, Ecology and Evolution Graduate Program, Emory University, Atlanta, GA 30322, United States
| | - Andi Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuli Tang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qianmei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shizhong Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Guowei Chu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Deqiang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
9
|
Cantera I, Carteron A, Guerrieri A, Marta S, Bonin A, Ambrosini R, Anthelme F, Azzoni RS, Almond P, Alviz Gazitúa P, Cauvy-Fraunié S, Ceballos Lievano JL, Chand P, Chand Sharma M, Clague J, Cochachín Rapre JA, Compostella C, Cruz Encarnación R, Dangles O, Eger A, Erokhin S, Franzetti A, Gielly L, Gili F, Gobbi M, Hågvar S, Khedim N, Meneses RI, Peyre G, Pittino F, Rabatel A, Urseitova N, Yang Y, Zaginaev V, Zerboni A, Zimmer A, Taberlet P, Diolaiuti GA, Poulenard J, Thuiller W, Caccianiga M, Ficetola GF. The importance of species addition 'versus' replacement varies over succession in plant communities after glacier retreat. NATURE PLANTS 2024; 10:256-267. [PMID: 38233559 DOI: 10.1038/s41477-023-01609-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
The mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition 'versus' replacement. We assessed the role of these processes in the variation (β-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys. Our findings indicate that addition and replacement concur in determining community changes in deglaciated sites, but their relative importance varied over time. Taxa addition dominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. These changes were aligned with total β-diversity changes, which were more pronounced between early-successional communities than between late-successional communities (>50 yr since glacier retreat). Despite the complexity of community assembly during plant succession, the observed global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early-successional communities to a predominance of competition later on.
Collapse
Affiliation(s)
- Isabel Cantera
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy.
| | - Alexis Carteron
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Université de Toulouse, Ecole d'Ingénieurs de Purpan, UMR INRAE-INPT DYNAFOR, Toulouse, France
| | - Alessia Guerrieri
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | - Silvio Marta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Institute of Geosciences and Earth Resources, CNR, Pisa, Italy
| | - Aurélie Bonin
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Fabien Anthelme
- Laboratory AMAP, IRD, University of Montpellier, CIRAD, CNRS, INRA, Montpellier, France
| | - Roberto Sergio Azzoni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Scienze della Terra 'Ardito Desio', Milano, Italy
| | - Peter Almond
- Department of Soil and Physical Sciences, Lincoln University, Lincoln, New Zealand
| | - Pablo Alviz Gazitúa
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | | | | | - Pritam Chand
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, Punjab, India
| | - Milap Chand Sharma
- Centre for the Study of Regional Development - School of Social Sciences, Jawaharlal Nehru University, New Delhi, India
| | - John Clague
- Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | - Olivier Dangles
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Andre Eger
- Mannaki Whenua - Landcare Research, Soils and Landscapes, Lincoln, New Zealand
| | - Sergey Erokhin
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), - University of Milano-Bicocca, Milano, Italy
| | - Ludovic Gielly
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Fabrizio Gili
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum, Trento, Italy
| | - Sigmund Hågvar
- Faculty of Environmental Sciences and Natural Resource Management (INA), Norwegian University of Life Sciences, Ås, Norway
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | - Norine Khedim
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, EDYTEM, Chambéry, France
| | - Rosa Isela Meneses
- Herbario Nacional de Bolivia: La Paz, La Paz, Bolivia
- Universidad Católica del Norte, Antofagasta, Chile
| | - Gwendolyn Peyre
- Department of Civil and Environmental Engineering, University of the Andes, Bogotá, Colombia
| | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), - University of Milano-Bicocca, Milano, Italy
| | - Antoine Rabatel
- Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l'Environnement (IGE, UMR 5001), Grenoble, France
| | - Nurai Urseitova
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Yan Yang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Vitalii Zaginaev
- Mountain Societies Research Institute, University of Central Asia, Bishkek, Kyrgyzstan
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra 'Ardito Desio', Milano, Italy
| | - Anaïs Zimmer
- Department of Geography and the Environment, University of Texas at Austin, Austin, TX, USA
| | - Pierre Taberlet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | | | - Jerome Poulenard
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
10
|
Rubio VE, Swenson NG. On functional groups and forest dynamics. Trends Ecol Evol 2024; 39:23-30. [PMID: 37673714 DOI: 10.1016/j.tree.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
Functional trait variation measured on continuous scales has helped ecologists to unravel important ecological processes. However, forest ecologists have recently moved back toward using functional groups. There are pragmatic and biological rationales for focusing on functional groups. Both of these approaches have inherent limitations including binning clearly continuous distributions, poor trait-group matching, and narrow conceptual frameworks for why groups exist and how they evolved. We believe the pragmatic use of functional groups due to data deficiencies will eventually erode. Conversely, we argue that existing conceptual frameworks for why a limited number of tree functional groups may exist is a useful, but flawed, starting point for modeling forests that can be improved through the consideration of unmeasured axes of functional variation.
Collapse
Affiliation(s)
- Vanessa E Rubio
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
11
|
Zou HX, Rudolf VHW. Bridging theory and experiments of priority effects. Trends Ecol Evol 2023; 38:1203-1216. [PMID: 37633727 DOI: 10.1016/j.tree.2023.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Priority effects play a key role in structuring natural communities, but considerable confusion remains about how they affect different ecological systems. Synthesizing previous studies, we show that this confusion arises because the mechanisms driving priority and the temporal scale at which they operate differ among studies, leading to divergent outcomes in species interactions and biodiversity patterns. We suggest grouping priority effects into two functional categories based on their mechanisms: frequency-dependent priority effects that arise from positive frequency dependence, and trait-dependent priority effects that arise from time-dependent changes in interacting traits. Through easy quantification of these categories from experiments, we can construct community models representing diverse biological mechanisms and interactions with priority effects, therefore better predicting their consequences across ecosystems.
Collapse
Affiliation(s)
- Heng-Xing Zou
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA.
| | - Volker H W Rudolf
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
12
|
Grunberg RL, Halliday FW, Heckman RW, Joyner BN, O’Keeffe KR, Mitchell CE. Disease decreases variation in host community structure in an old-field grassland. PLoS One 2023; 18:e0293495. [PMID: 37889914 PMCID: PMC10610459 DOI: 10.1371/journal.pone.0293495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Disease may drive variation in host community structure by modifying the interplay of deterministic and stochastic processes that shape communities. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When communities have higher levels of disease and disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the seasonal duration of fungicide treatment and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. These changes in richness and aboveground biomass were consistent across years despite changes in structure of the plant communities over the experiment's three years. Importantly, disease reduction amplified host community variation, suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure.
Collapse
Affiliation(s)
- Rita L. Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Fletcher W. Halliday
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Robert W. Heckman
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Brooklynn N. Joyner
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kayleigh R. O’Keeffe
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Charles E. Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
13
|
Yoneya K, Miki T, Katayama N. Plant volatiles and priority effects interactively determined initial community assembly of arthropods on multiple willow species. Ecol Evol 2023; 13:e10270. [PMID: 37492458 PMCID: PMC10364932 DOI: 10.1002/ece3.10270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Plant traits, which are often species specific, can serve as environmental filtering for community assembly on plants. At the same time, the species identity of the initially colonizing arthropods would vary between plant individuals, which would subsequently influence colonizing arthropods and community development in the later stages. However, it remains unclear whether interindividual divergence due to priority effects is equally important as plant trait-specific environmental filtering in the initial stages. In this study, we propose that plant volatile organic compounds (PVOCs) may play a crucial role as an environmental filter in the initial stages of community assembly, which can prevent the community assembly process from being purely stochastic. To test this hypothesis, we conducted short term but highly frequent monitoring (19 observations over 9 days) of arthropod community assembly on intact individuals of six willow species in a common garden. PVOC compositions were analyzed before starting the experiment and compared with arthropod compositions occurring on Days 1-2 of the experiment (earliest colonizer community) and those occurring on Days 8-9 of the experiment (subsequent colonizer community). Unintentionally, deer herbivory also occurred at night of Day 2. Distance-based statistics demonstrated that PVOC compositions were plant species specific, but neither the earliest colonizer nor the subsequent colonizer community composition could be explained by plant species identity. Rather, Procrustes analysis showed that both the PVOC composition and that of the earliest colonizer community can be used to explain the subsequent colonizer community. In addition, the linkage between PVOCs and the subsequent colonizer community was stronger on individuals with deer herbivory. These findings indicate that PVOCs have widespread effects on initial community assembly, as well as priority effects brought on by stochastic immigration, and that plant species identity only has weak and indirect effects on the actual composition of the community.
Collapse
Affiliation(s)
- Kinuyo Yoneya
- Faculty of AgricultureKindai UniversityNaraJapan
- Center for Biodiversity ScienceRyukoku UniversityOtsuJapan
| | - Takeshi Miki
- Center for Biodiversity ScienceRyukoku UniversityOtsuJapan
- Faculty of Advanced Science and TechnologyRyukoku UniversityOtsuJapan
| | - Noboru Katayama
- General EducationFaculty of CommerceOtaru University of CommerceOtaruJapan
| |
Collapse
|
14
|
Zieschank V, Junker RR. Digital whole-community phenotyping: tracking morphological and physiological responses of plant communities to environmental changes in the field. FRONTIERS IN PLANT SCIENCE 2023; 14:1141554. [PMID: 37229120 PMCID: PMC10203609 DOI: 10.3389/fpls.2023.1141554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Plant traits are informative for ecosystem functions and processes and help to derive general rules and predictions about responses to environmental gradients, global change and perturbations. Ecological field studies often use 'low-throughput' methods to assess plant phenotypes and integrate species-specific traits to community-wide indices. In contrast, agricultural greenhouse or lab-based studies often employ 'high-throughput phenotyping' to assess plant individuals tracking their growth or fertilizer and water demand. In ecological field studies, remote sensing makes use of freely movable devices like satellites or unmanned aerial vehicles (UAVs) which provide large-scale spatial and temporal data. Adopting such methods for community ecology on a smaller scale may provide novel insights on the phenotypic properties of plant communities and fill the gap between traditional field measurements and airborne remote sensing. However, the trade-off between spatial resolution, temporal resolution and scope of the respective study requires highly specific setups so that the measurements fit the scientific question. We introduce small-scale, high-resolution digital automated phenotyping as a novel source of quantitative trait data in ecological field studies that provides complementary multi-faceted data of plant communities. We customized an automated plant phenotyping system for its mobile application in the field for 'digital whole-community phenotyping' (DWCP), capturing the 3-dimensional structure and multispectral information of plant communities. We demonstrated the potential of DWCP by recording plant community responses to experimental land-use treatments over two years. DWCP captured changes in morphological and physiological community properties in response to mowing and fertilizer treatments and thus reliably informed about changes in land-use. In contrast, manually measured community-weighted mean traits and species composition remained largely unaffected and were not informative about these treatments. DWCP proved to be an efficient method for characterizing plant communities, complements other methods in trait-based ecology, provides indicators of ecosystem states, and may help to forecast tipping points in plant communities often associated with irreversible changes in ecosystems.
Collapse
Affiliation(s)
- Vincent Zieschank
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Robert R. Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, Salzburg, Austria
| |
Collapse
|
15
|
Moreira-Saporiti A, Teichberg M, Garnier E, Cornelissen JHC, Alcoverro T, Björk M, Boström C, Dattolo E, Eklöf JS, Hasler-Sheetal H, Marbà N, Marín-Guirao L, Meysick L, Olivé I, Reusch TBH, Ruocco M, Silva J, Sousa AI, Procaccini G, Santos R. A trait-based framework for seagrass ecology: Trends and prospects. FRONTIERS IN PLANT SCIENCE 2023; 14:1088643. [PMID: 37021321 PMCID: PMC10067889 DOI: 10.3389/fpls.2023.1088643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision. We then apply this framework to the global seagrass literature, using a systematic review to identify the strengths, gaps, and opportunities of the field. Seagrass trait research has mostly focused on the effect of environmental drivers on traits, i.e., "environmental filtering" (72%), whereas links between traits and functions are less common (26.9%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (15% of studies), including the relative importance of neutral and niche assembly processes, or the influence of trait dominance or complementarity in ecosystem function provision. These knowledge gaps indicate ample potential for further research, highlighting the need to understand the links between the unique traits of seagrasses and the ecosystem services they provide.
Collapse
Affiliation(s)
- Agustín Moreira-Saporiti
- Faculty for Biology and Chemistry, University of Bremen, Bremen, Germany
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Mirta Teichberg
- Algae and Seagrass Ecology Group, Department of Ecology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Eric Garnier
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | | | - Mats Björk
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Johan S. Eklöf
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | | | - Nuria Marbà
- Global Change Research Group, Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Esporles Illes Balears, Spain
| | - Lázaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Lukas Meysick
- Åbo Akademi University, Environmental and Marine Biology, Åbo, Finland
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Irene Olivé
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Thorsten B. H. Reusch
- Marine Evolutionary Ecology, Division of Marine Ecology, GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - João Silva
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Ana I. Sousa
- CESAM – Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Rui Santos
- Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
16
|
Soil Moisture and Available Phosphorus as the Factors Driving Variation in Functional Characteristics across Different Restoration Communities in a Subtropical Mountain Ecosystem. BIOLOGY 2023; 12:biology12030427. [PMID: 36979119 PMCID: PMC10045093 DOI: 10.3390/biology12030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Functional characteristics are increasingly used to evaluate the success of different vegetation restoration. Community functional diversity (FD) and the community-weighted mean (CWM), as two main complementary components, are closely linked to site environment and ecosystem functions. However, the patterns and driving factors of functional characteristics are still not clear in different vegetation restoration types. Here, four community restoration types (secondary shrubland, SL; Pinus yunnanensis forest, PF; mixed needle–broad-leaved forest, MF; natural secondary forest, NSF) were selected to investigate species diversity, FD, CWM, and soil physicochemical properties. The relative effects of species diversity and soil abiotic features on variation in functional characteristics were then evaluated. We found that different restoration communities altered most community structures and functional properties in terms of species diversity, FD, and CWM. CWM values and FD in different communities presented different distribution patterns depending on certain traits and parameters. Significant correlations between functional traits were found at the species and community scales, suggesting a potential covariation between these selected traits in communities. The results of redundancy analysis and variation partitioning showed that most of the variation in functional characteristics, especially CWM, was explained by soil moisture and available phosphorus, indicating that habitat filters regulate the functional characteristics of plant communities mainly by changing the dominant species composition and functional traits of species. Therefore, the selection of restoration species adapted to low soil moisture and available phosphorus and the construction of communities based on selected species as the dominant species can effectively drive community assembly and ecosystem functions in the vegetation restoration process.
Collapse
|
17
|
Eichel J, Draebing D, Winkler S, Meyer N. Similar vegetation‐geomorphic disturbance feedbacks shape unstable glacier forelands across mountain regions. Ecosphere 2023. [DOI: 10.1002/ecs2.4404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Affiliation(s)
- Jana Eichel
- Department of Physical Geography Utrecht University Utrecht The Netherlands
| | - Daniel Draebing
- Department of Physical Geography Utrecht University Utrecht The Netherlands
- Chair of Geomorphology University of Bayreuth Bayreuth Germany
| | - Stefan Winkler
- Department of Geography and Geology University of Würzburg Würzburg Germany
| | - Nele Meyer
- Department of Soil Ecology University of Bayreuth Bayreuth Germany
| |
Collapse
|
18
|
O'Brien DA, Gal G, Thackeray SJ, Matsuzaki SS, Clements CF. Planktonic functional diversity changes in synchrony with lake ecosystem state. GLOBAL CHANGE BIOLOGY 2023; 29:686-701. [PMID: 36370051 PMCID: PMC10100413 DOI: 10.1111/gcb.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Managing ecosystems to effectively preserve function and services requires reliable tools that can infer changes in the stability and dynamics of a system. Conceptually, functional diversity (FD) appears as a sensitive and viable monitoring metric stemming from suggestions that FD is a universally important measure of biodiversity and has a mechanistic influence on ecological processes. It is however unclear whether changes in FD consistently occur prior to state responses or vice versa, with no current work on the temporal relationship between FD and state to support a transition towards trait-based indicators. There is consequently a knowledge gap regarding when functioning changes relative to biodiversity change and where FD change falls in that sequence. We therefore examine the lagged relationship between planktonic FD and abundance-based metrics of system state (e.g. biomass) across five highly monitored lake communities using both correlation and cutting edge non-linear empirical dynamic modelling approaches. Overall, phytoplankton and zooplankton FD display synchrony with lake state but each lake is idiosyncratic in the strength of relationship. It is therefore unlikely that changes in plankton FD are identifiable before changes in more easily collected abundance metrics. These results highlight the power of empirical dynamic modelling in disentangling time lagged relationships in complex multivariate ecosystems, but suggest that FD cannot be generically viable as an early indicator. Individual lakes therefore require consideration of their specific context and any interpretation of FD across systems requires caution. However, FD still retains value as an alternative state measure or a trait representation of biodiversity when considered at the system level.
Collapse
Affiliation(s)
| | - Gideon Gal
- Kinneret Limnological LaboratoryIsrael Oceanographic and Limnological ResearchMigdalIsrael
| | | | | | | |
Collapse
|
19
|
Yoneya K, Miki T, Takabayashi J. Initial herbivory and exposure to herbivory-induced volatiles enhance arthropod species richness by diversifying community assemblages. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1031664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant ecological traits affect the species identity of plant-colonizing arthropods, which in turn induces species-specific trait changes in plants, forming feedback between plants and arthropods. Such feedback can amplify initial differences in species composition, leading to large variations (i.e., high β diversity). We hypothesized that the differences in plant initial conditions have sustained effects on arthropod community composition and species richness. To test this hypothesis, we monitored arthropod community assembly on a willow tree species, Salix eriocarpa, which was experimentally manipulated into three initial treatments: undamaged (in chamber 1); damaged by the specialist leaf beetle, Plagiodera versicolora (chamber 2); and “exposed” plants that were undamaged but were exposed to volatiles from damaged plants (in chamber 2). The arrival and population dynamics of the leaf beetle were affected by the plant’s initial condition (chamber 1 vs. 2), which could result from the microscale environmental heterogeneity between chambers (chamber effect) and/or from the herbivory-related impacts (direct herbivory and exposure to induced volatiles in chamber 2). The community composition on damaged and exposed plants became significantly different on day 32. In addition, the divergence in composition between plant individuals was significantly smaller in undamaged plants (chamber 1) than in damaged and exposed plants (chamber 2) on day 60. The compositional variations (β diversity) between chambers, between treatments, and between days, comprised a large proportion (two third) of the total species richness (γ diversity) in the whole community of arthropods. These results suggest that plant initial condition is a key driver of community assembly and the maintenance of species diversity.
Collapse
|
20
|
Frishkoff LO, Lertzman-Lepofsky G, Mahler DL. Evolutionary opportunity and the limits of community similarity in replicate radiations of island lizards. Ecol Lett 2022; 25:2384-2396. [PMID: 36192673 DOI: 10.1111/ele.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Ecological community structure ultimately depends on the production of community members by speciation. To understand how macroevolution shapes communities, we surveyed Anolis lizard assemblages across elevations on Jamaica and Hispaniola, neighbouring Caribbean islands similar in environment, but contrasting in the richness of their endemic evolutionary radiations. The impact of diversification on local communities depends on available spatial opportunities for speciation within or between ecologically distinct sub-regions. In the spatially expansive lowlands of both islands, communities converge in species richness and average morphology. But communities diverge in the highlands. On Jamaica, where limited highland area restricted diversification, communities remain depauperate and consist largely of elevational generalists. In contrast, a unique fauna of high-elevation specialists evolved in the vast Hispaniolan highlands, augmenting highland richness and driving islandwide turnover in community composition. Accounting for disparate evolutionary opportunities may illuminate when regional diversity will enhance local diversity and help predict when communities should converge in structure.
Collapse
|
21
|
Gardarin A, Valantin‐Morison M. Initial assemblage characteristics determine the functional dynamics of flower-strip plant communities. Ecol Evol 2022; 12:e9435. [PMID: 36267684 PMCID: PMC9579737 DOI: 10.1002/ece3.9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
In agroecosystems, species-rich habitats, such as linear field margins and flower strips, are beneficial to the overall biodiversity and contribute to pest control. Their effects are thought to be mediated by plant species composition and diversity. However, the management of plant communities with targeted levels of functional diversity has been little investigated. In an open field landscape, we compared the effects of the sown species richness (9, 14, and 29 species) and functional diversity (high vs. low) of eight different seed mixtures, sown in flower strips, on the 4-year temporal dynamics of their functional diversity. There was a good agreement between the expected and realized species richness and functional diversity at the start of the experiment. All plant assemblages progressively lost species over time, but this decline was lower for assemblages sown with a high initial functional diversity, in which species evenness was maintained at higher levels. Species-rich assemblages had a higher degree of functional redundancy, and their functional diversity remained higher over time than less rich assemblages. A possible explanation for this is that functional redundancy would have enabled the compensation for the loss of species by functionally equivalent species. The realized functional diversity of the sown species also limited the establishment of spontaneous species, perhaps due to a higher degree of niche occupancy. This study provides useful insight into the creation of functionally diversified plant communities. A high level of initial species and functional diversity is required to guarantee a greater temporal persistence of the communities.
Collapse
Affiliation(s)
- Antoine Gardarin
- UMR Agronomie, INRAE, AgroParisTechUniversité Paris‐SaclayThiverval‐GrignonFrance
| | | |
Collapse
|
22
|
Borowy D, Swan CM. The effects of local filtering processes on the structure and functioning of native plant communities in experimental urban habitats. Ecol Evol 2022; 12:e9397. [PMID: 36262263 PMCID: PMC9575998 DOI: 10.1002/ece3.9397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
Despite a growing literature-base devoted to document biodiversity patterns in cities, little is known about the processes that influence these patterns, and whether they are consistent over time. In particular, numerous studies have identified the capacity of cities to host a rich diversity of plant species. This trend, however, is driven primarily by introduced species, which comprise a large proportion of the urban species pool relative to natives. Using an experimental common garden study, we assessed the relative influence of local assembly processes (i.e., soil environmental filtering and competition from spontaneous urban species) on the taxonomic and functional diversity of native plant communities sampled over four seasons in 2016-2018. Taxonomic and functional diversity exhibited different responses to local processes, supporting the general conclusion that species- and trait-based measures of biodiversity offer distinct insights into community assembly dynamics. Additionally, we found that neither soil nor competition from spontaneous urban species influenced taxonomic or functional composition of native species. Functional composition, however, did shift strongly over time and was driven by community-weighted mean differences in both measured traits (maximum height, Hmax; specific leaf area, SLA; leaf chlorophyll a fluorescence, Chl a) and the relative proportions of different functional groups (legumes, annual and biennial-perennial species, C4 grasses, and forbs). By contrast, taxonomic composition only diverged between early and late seasons. Overall, our results indicate that native species are not only capable of establishing and persisting in vacant urban habitats, they can functionally respond to local filtering pressures over time. This suggests that regional dispersal limitation may be a primary factor limiting native species in urban environments. Thus, future regreening and management plans should focus on enhancing the dispersal potential of native plant species in urban environments, in order to achieve set goals for increasing native species diversity and associated ecosystem services in cities.
Collapse
Affiliation(s)
- Dorothy Borowy
- Geography and Environmental Systems DepartmentUniversity of MarylandBaltimoreMarylandUSA
| | - Christopher M. Swan
- Geography and Environmental Systems DepartmentUniversity of MarylandBaltimoreMarylandUSA
| |
Collapse
|
23
|
Species-specific traits predict whole-assemblage detritus processing by pond invertebrates. Oecologia 2022; 199:951-963. [PMID: 35980489 DOI: 10.1007/s00442-022-05239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/10/2022] [Indexed: 10/15/2022]
Abstract
Functional trait diversity determines if ecosystem processes are sensitive to shifts in species abundances or composition. For example, trait variation suggests detritivores process detritus at different rates and make different contributions to whole-assemblage processing, which could be sensitive to compositional shifts. Here, we used a series of microcosm experiments to quantify species-specific coarse and fine particulate organic matter (CPOM and FPOM) processing for ten larval caddisfly species and three non-caddisfly species in high-elevation wetlands. We then compared trait-based models including life history, dietary, and extrinsic traits to determine which traits explained interspecific variation in detritus processing. Finally, we compared processing by mixed caddisfly assemblages in microcosms and natural ponds to additive predictions based on species-specific processing to determine if single-species effects are additive in multi-species assemblages. We found considerable interspecific variation in biomass-specific CPOM (13-fold differences) and FPOM (8-fold differences) processing. Furthermore, on a mass-specific basis, amphipods, chironomids, and caddisflies processed similar amounts of detritus, suggesting non-shredder taxa could process more than previously recognized. Trait models including dietary percent detritus, development rate, body size, and wetland hydroperiod explained 81 and 57% of interspecific variation in CPOM and FPOM processing, respectively. Finally, species-specific additive predictions were strikingly similar to mixed-assemblage processing in microcosms and natural ponds, with the largest difference being a 15% overestimate. Thus, additivity of species-specific processing suggests single-species rates may be useful for understanding functional consequences of shifting assemblages, and a trait-based approach to predicting species-specific processing could support generating additive predictions of whole-assemblage processing.
Collapse
|
24
|
Simler‐Williamson AB, Applestein C, Germino MJ. Interannual variation in climate contributes to contingency in post‐fire restoration outcomes in seeded sagebrush steppe. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Allison B. Simler‐Williamson
- Department of Biological Sciences Boise State University Boise Idaho USA
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - Cara Applestein
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| | - Matthew J. Germino
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center Boise Idaho USA
| |
Collapse
|
25
|
Hanusch M, He X, Ruiz-Hernández V, Junker RR. Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity. Commun Biol 2022; 5:424. [PMID: 35523944 PMCID: PMC9076875 DOI: 10.1038/s42003-022-03372-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/14/2022] [Indexed: 01/26/2023] Open
Abstract
Research on successions and community assembly both address the same processes such as dispersal, species sorting, and biotic interactions but lack unifying concepts. Recent theoretical advances integrated both research lines proposing a sequence of stochastic and deterministic processes along successional gradients. Shifts in ecosystem states along successional gradients are predicted to occur abruptly once abiotic and biotic factors dominate over dispersal as main driver. Considering the multidiversity composed of five organismal groups including plants, animals, and microbes, our results imply that stochastic, likely dispersal-dominated, processes are replaced by rather deterministic processes such as environmental filtering and biotic interactions after around 60 years of succession in a glacier forefield. The niche-based character of later successional processes is further supported by a decline in multi-beta-diversity. Our results may update concepts of community assembly by considering multiple taxa, help to bridge the gap between research on successions and community assembly, and provide insights into the emergence of multidiverse and complex ecosystems.
Collapse
Affiliation(s)
- Maximilian Hanusch
- Department of Environment and Biodiversity, Paris Lodron University Salzburg, 5020, Salzburg, Austria
| | - Xie He
- Department of Environment and Biodiversity, Paris Lodron University Salzburg, 5020, Salzburg, Austria
| | - Victoria Ruiz-Hernández
- Department of Environment and Biodiversity, Paris Lodron University Salzburg, 5020, Salzburg, Austria
| | - Robert R Junker
- Department of Environment and Biodiversity, Paris Lodron University Salzburg, 5020, Salzburg, Austria.
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, 35043, Marburg, Germany.
| |
Collapse
|
26
|
Ohtsuki H, Norimatsu H, Makino T, Urabe J. Invasions of an obligate asexual daphnid species support the nearly neutral theory. Sci Rep 2022; 12:7305. [PMID: 35508526 PMCID: PMC9068809 DOI: 10.1038/s41598-022-11218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
To verify the "nearly neutral theory (NNT)," the ratio of nonsynonymous to synonymous substitutions (dN/dS) was compared among populations of different species. To determine the validity of NNT, however, populations that are genetically isolated from each other but share the same selection agents and differ in size should be compared. Genetically different lineages of obligate asexual Daphnia pulex invading Japan from North America are an ideal example as they satisfy these prerequisites. Therefore, we analyzed the whole-genome sequences of 18 genotypes, including those of the two independently invaded D. pulex lineages (JPN1 and JPN2) and compared the dN/dS ratio between the lineages. The base substitution rate of each genotype demonstrated that the JPN1 lineage having a larger distribution range diverged earlier and thus was older than the JPN2 lineage. Comparisons of the genotypes within lineages revealed that changes in dN/dS occurred after the divergence and were larger in the younger lineage, JPN2. These results imply that the JPN1 lineage has been more effectively subjected to purification selections, while slightly deteriorating mutations are less purged in JPN2 with smaller population size. Altogether, the lineage-specific difference in the dN/dS ratio for the obligate asexual D. pulex was well explained by the NNT.
Collapse
Affiliation(s)
- Hajime Ohtsuki
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hirotomo Norimatsu
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takashi Makino
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Jotaro Urabe
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
27
|
Linking Land Use and Plant Functional Diversity Patterns in Sabah, Borneo, through Large-Scale Spatially Continuous Sentinel-2 Inference. LAND 2022. [DOI: 10.3390/land11040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Global biodiversity losses erode the functioning of our vital ecosystems. Functional diversity is increasingly recognized as a critical link between biodiversity and ecosystem functioning. Satellite earth observation was proposed to address the current absence of information on large-scale continuous patterns of plant functional diversity. This study demonstrates the inference and spatial mapping of functional diversity metrics through satellite remote sensing over a large key biodiversity region (Sabah, Malaysian Borneo, ~53,000 km2) and compares the derived estimates across a land-use gradient as an initial qualitative assessment to test the potential merits of the approach. Functional traits (leaf water content, chlorophyll-a and -b, and leaf area index) were estimated from Sentinel-2 spectral reflectance using a pre-trained neural network on radiative transfer modeling simulations. Multivariate functional diversity metrics were calculated, including functional richness, divergence, and evenness. Spatial patterns of functional diversity were related to land-use data distinguishing intact forest, logged forest, and oil palm plantations. Spatial patterns of satellite remotely sensed functional diversity are significantly related to differences in land use. Intact forests, as well as logged forests, featured consistently higher functional diversity compared to oil palm plantations. Differences were profound for functional divergence, whereas functional richness exhibited relatively large variances within land-use classes. By linking large-scale patterns of functional diversity as derived from satellite remote sensing to land-use information, this study indicated initial responsiveness to broad human disturbance gradients over large geographical and spatially contiguous extents. Despite uncertainties about the accuracy of the spatial patterns, this study provides a coherent early application of satellite-derived functional diversity toward further validation of its responsiveness across ecological gradients.
Collapse
|
28
|
Dewan S, Sanders NJ, Acharya BK. Turnover in butterfly communities and traits along an elevational gradient in the eastern Himalaya, India. Ecosphere 2022. [DOI: 10.1002/ecs2.3984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sailendra Dewan
- Department of Zoology, School of Life Sciences Sikkim University Gangtok Sikkim India
| | - Nathan J. Sanders
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA
| | - Bhoj Kumar Acharya
- Department of Zoology, School of Life Sciences Sikkim University Gangtok Sikkim India
| |
Collapse
|
29
|
Jiang L, Hu D, Wang H, Lv G. Discriminating ecological processes affecting different dimensions of α- and β-diversity in desert plant communities. Ecol Evol 2022; 12:e8710. [PMID: 35342610 PMCID: PMC8933320 DOI: 10.1002/ece3.8710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/10/2022] Open
Abstract
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α- and β-diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α-diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α-diversity was mainly influenced by dispersal limitation. Species and phylogenetic β-diversity were mainly consisted of turnover component. The functional β-diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β-diversity and their turnover component of species and phylogenetic β-diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α-diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α- and β-diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α- and β-diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.
Collapse
Affiliation(s)
- Lamei Jiang
- College of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Dong Hu
- College of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Hengfang Wang
- College of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| | - Guanghui Lv
- College of Resources and Environmental ScienceXinjiang UniversityUrumqiChina
| |
Collapse
|
30
|
Manhães A, Pantaleão L, Moraes L, Amazonas N, Saavedra M, Mantuano D, Sansevero J. FUNCTIONAL TRAJECTORY FOR THE ASSESSMENT OF ECOLOGICAL RESTORATION SUCCESS. Restor Ecol 2022. [DOI: 10.1111/rec.13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A.P. Manhães
- Plant Ecophysiology Laboratory, Department of Botany Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro RJ 21941‐901 Brazil
- Applied Ecology Laboratory, Department of Environmental Sciences Forests Institute, Universidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica RJ 23897‐000 Brazil
| | - L.C. Pantaleão
- Applied Ecology Laboratory, Department of Environmental Sciences Forests Institute, Universidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica RJ 23897‐000 Brazil
| | - L.F.D. Moraes
- Center of Agrobiology, Brazilian Agricultural Research Corporation (EMBRAPA) Seropédica RJ 23897‐000 Brazil
| | - N.T. Amazonas
- Plant Ecophysiology Laboratory, Department of Botany Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro RJ 21941‐901 Brazil
- Applied Ecology Laboratory, Department of Environmental Sciences Forests Institute, Universidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica RJ 23897‐000 Brazil
| | - M.M. Saavedra
- Plant Ecophysiology Laboratory, Department of Botany Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro RJ 21941‐901 Brazil
| | - D. Mantuano
- Plant Ecophysiology Laboratory, Department of Botany Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro RJ 21941‐901 Brazil
| | - J.B.B. Sansevero
- Applied Ecology Laboratory, Department of Environmental Sciences Forests Institute, Universidade Federal Rural do Rio de Janeiro (UFRRJ) Seropédica RJ 23897‐000 Brazil
| |
Collapse
|
31
|
Resistance of plant communities to invasion by tall fescue: An experimental study combining species diversity, functional traits and nutrient levels. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Rosenthal LM, Brooks WR, Rizzo DM. Species densities, assembly order, and competence jointly determine the diversity–disease relationship. Ecology 2021; 103:e3622. [DOI: 10.1002/ecy.3622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Lisa M. Rosenthal
- Department of Plant Pathology University of California Davis California USA
- Graduate Group in Ecology University of California Davis California USA
| | | | - David M. Rizzo
- Department of Plant Pathology University of California Davis California USA
| |
Collapse
|
33
|
O'Brien SA, Dehling DM, Tylianakis JM. The recovery of functional diversity with restoration. Ecology 2021; 103:e3618. [PMID: 34927237 DOI: 10.1002/ecy.3618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 11/07/2022]
Abstract
Ecological restoration aims at recovering biodiversity in degraded ecosystems, and it is commonly assessed via species richness. However, it is unclear whether increasing species richness in a site also recovers its functional diversity, which has been shown to be a better representation of ecosystem functioning. We conducted a quantitative synthesis of 30 restoration projects and tested whether restoration improves functional diversity. We compared actively and passively restored sites with degraded and reference sites with respect to four key measures of functional diversity (richness, evenness, dispersion and functional turnover) and two measures of species diversity (richness and evenness). We separately analyzed longitudinal studies (which monitor degraded, reference and restored sites through time) and space-for-time substitutions (which compare at one point in time degraded and reference sites with restored sites of different ages). Space-for-time studies suggested that species and functional diversity improved over time. However, replicated longitudinal data showed no sustained benefits of active or passive restoration for functional diversity measures, relative to degraded sites. This could suggest that the positive results in space-for-time designs may have been unreliable, but the relative short duration of longitudinal studies suggests a need for longer-term longitudinal research to robustly demonstrate the absence of any effect. These differences across study designs may explain the variable results found in recent studies directly measuring the response of functional diversity to restoration. We recommend that future assessments of ecological community dynamics include control sites in monitoring, to ensure the consequences of treatments, including but not limited to restoration, are correctly partitioned from unassisted temporal changes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sophie A O'Brien
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - D Matthias Dehling
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jason M Tylianakis
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
34
|
Mirabel A, Marcon E, Hérault B. 30 Years of postdisturbance recruitment in a Neotropical forest. Ecol Evol 2021; 11:14448-14458. [PMID: 34765118 PMCID: PMC8571577 DOI: 10.1002/ece3.7634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022] Open
Abstract
QUESTIONS Long-term community response to disturbance can follow manifold successional pathways depending on the interplay between various recruitment processes. Analyzing the succession of recruited communities provides a long-term perspective on forest response to disturbance. Specifically, postdisturbance recruitment trajectories assess (a) the successive phases of postdisturbance response and the role of deterministic recruitment processes, and (b) the return to predisturbance state of recruits taxonomic/functional diversity/composition. LOCATION Amazonian rainforest, Paracou station, French Guiana. METHODS We analyzed trajectories of recruited tree communities, from twelve forest plots of 6.25 ha each, during 30 years following a disturbance gradient that ranged from 10% to 60% of aboveground biomass removed. We measured recruited community taxonomic composition turnover, compared to whole predisturbance community, and assessed their functional composition by measuring the community weighted means for seven leaf, stem, and life-history functional traits. We also measured recruited community taxonomic richness, taxonomic evenness, and functional diversity and compared them to the diversity values from a random recruitment process. RESULTS While control plots trajectories resembled random recruitment trajectories, postdisturbance trajectories diverged significantly. This divergence corresponded to an enhanced recruitment of light-demanding species that became dominant above a disturbance intensity threshold. After breakpoints in time, though, recruitment trajectories returned to diversity values and composition similar to those of predisturbance and control plots community. CONCLUSIONS Following disturbance, recruitment processes specific to undisturbed community were first replaced by the emergence of more restricted, deterministic recruitment processes favoring species with efficient light use and acquisition. Then, a second phase corresponded to a decades-long recovery of recruits predisturbance taxonomic and functional diversity and composition that remained unachieved after 30 years.
Collapse
Affiliation(s)
- Ariane Mirabel
- UMR EcoFoGAgroParistechCNRSCiradINRAUniversité des AntillesUniversité de GuyaneKourouFrance
| | - Eric Marcon
- UMR EcoFoGAgroParistechCNRSCiradINRAUniversité des AntillesUniversité de GuyaneKourouFrance
| | - Bruno Hérault
- CIRADUPR Forêts et SociétésYamoussoukroCôte d'Ivoire
- Forêts et SociétésUniv MontpellierCIRADMontpellierFrance
- Institut National Polytechnique Félix Houphouët‐BoignyINP‐HBYamoussoukroCôte d'Ivoire
| |
Collapse
|
35
|
DeMalach N, Ke PJ, Fukami T. The effects of ecological selection on species diversity and trait distribution: predictions and an empirical test. Ecology 2021; 103:e03567. [PMID: 34674221 DOI: 10.1002/ecy.3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022]
Abstract
Ecological selection is a major driver of community assembly. Selection is classified as stabilizing when species with intermediate trait values gain the highest reproductive success, whereas selection is considered directional when fitness is highest for species with extreme trait values. Previous studies have investigated the effects of different selection types on trait distribution, but the effects of selection on species diversity have remained unclear. Here, we propose a framework for inferring the type and strength of selection by studying species diversity and trait distribution together against null expectations. We use a simulation model to confirm our prediction that directional selection should lead to lower species diversity than stabilizing selection despite a similar effect on trait community-weighted variance. We apply the framework to a mesocosm system of annual plants to test whether differences in species diversity between two habitats that vary in productivity are related to differences in selection on seed mass. We show that, in both habitats, species diversity was lower than the null expectation, but that species diversity was lower in the more productive habitat. We attribute this difference to strong directional selection for large-seeded species in the productive habitat as indicated by trait community-weighted-mean being higher and community-weighted variance being lower than the null expectations. In the less productive habitat, we found that community-weighted variance was higher than expected by chance, suggesting that seed mass could be a driver of niche partitioning under such conditions. Altogether, our results suggest that viewing species diversity and trait distribution as interrelated patterns driven by the same process, ecological selection, is helpful in understanding community assembly.
Collapse
Affiliation(s)
- Niv DeMalach
- Department of Biology, Stanford University, Stanford, California, USA.,Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Po-Ju Ke
- Department of Biology, Stanford University, Stanford, California, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA.,Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
36
|
Gundersen MS, Morelan IA, Andersen T, Bakke I, Vadstein O. The effect of periodic disturbances and carrying capacity on the significance of selection and drift in complex bacterial communities. ISME COMMUNICATIONS 2021; 1:53. [PMID: 37938282 PMCID: PMC9723678 DOI: 10.1038/s43705-021-00058-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 08/15/2023]
Abstract
Understanding how periodical disturbances affect the community assembly processes is vital for predicting temporal dynamics in microbial communities. However, the effect of dilutions as disturbances are poorly understood. We used a marine bacterial community to investigate the effect of disturbance (+/-) and carrying capacity (high/low) over 50 days in a dispersal-limited 2 × 2 factorial study in triplicates, with a crossover in the disturbance regime between microcosms halfway in the experiment. We modelled the rate of change in community composition between replicates and used this rate to quantify selection and ecological drift. The disturbed communities increased in Bray-Curtis similarity with 0.011 ± 0.0045 (Period 1) and 0.0092 ± 0.0080 day-1 (Period 2), indicating that selection dominated community assembly. The undisturbed communities decreased in similarity at a rate of -0.015 ± 0.0038 day-1 in Period 1 and were stable in Period 2 at 0.00050 ± 0.0040 day-1, suggesting drift structured community assembly. Interestingly, carrying capacity had minor effects on community dynamics. This study is the first to show that stochastic effects are suppressed by periodical disturbances resulting in exponential growth periods due to density-independent biomass loss and resource input. The increased contribution of selection as a response to disturbances implies that ecosystem prediction is achievable.
Collapse
Affiliation(s)
- Madeleine S Gundersen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | | | - Tom Andersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ingrid Bakke
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
37
|
Chen D, Zhang B, Fadda C, Jarvis D, Bergamini N, Han G, Zhao M, Bai K, Zhang Z. Spontaneous grassland recovery on abandoned croplands in northern China: Different vegetation patterns in desert and typical steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148155. [PMID: 34380252 DOI: 10.1016/j.scitotenv.2021.148155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Passive restoration (without any intervention) has been proposed as an effective strategy for grassland restoration in abandoned croplands. However, whether the vegetation in abandoned croplands can change towards the desired state and the time needed to reach a relative stable state are context-dependent. We investigated three abandoned croplands with different recovery times (5, 15 and 20 years) and one natural grassland in each of two different types of steppe (desert steppe and typical steppe) in the agro-pastoral ecotone of northern China to assess the restoration potential of grassland on abandoned croplands. Above- and below-ground biomass as well as species biodiversity increased gradually with increasing recovery time. After 20 years of restoration there was no significant difference between abandoned cropland and natural steppe in the typical steppe site, but above- and below-ground biomass and species biodiversity were still lower in abandoned cropland in the desert steppe site. At the beginning of restoration, the communities were dominated mainly by annual species, especially in the desert steppe. As recovery time increased, the biomass and richness of perennial graminoids and forbs increased significantly and replaced annual species as the dominant species. In both desert steppe and typical steppes, species similarity between restored and natural steppe increased over time, suggesting that previously cultivated grassland recovered towards the desired state. Our results indicate that 20 years was sufficient time for the restoration of croplands in the typical steppe, but more time may be needed in the desert steppe.
Collapse
Affiliation(s)
- Daling Chen
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Bin Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Carlo Fadda
- Alliance of Bioversity International and CIAT, Addis Ababa, Ethiopia
| | - Devra Jarvis
- Alliance of Bioversity International and CIAT, Rome, Italy
| | | | - Guodong Han
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Mengli Zhao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China.
| | - Keyu Bai
- Bioversity International, Office for East Asia, Beijing 100081, China
| | - Zongwen Zhang
- Bioversity International, Office for East Asia, Beijing 100081, China
| |
Collapse
|
38
|
Dantas de Paula M, Forrest M, Langan L, Bendix J, Homeier J, Velescu A, Wilcke W, Hickler T. Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. THE NEW PHYTOLOGIST 2021; 232:551-566. [PMID: 34228829 DOI: 10.1111/nph.17600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Community trait assembly in highly diverse tropical rainforests is still poorly understood. Based on more than a decade of field measurements in a biodiversity hotspot of southern Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gradient. In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics), each plant individual can possess different trait combinations, and the community trait composition emerges via ecological sorting. Further model developments include plant growth limitation by phosphorous (P) and mycorrhizal nutrient uptake. The new model version reproduced the main observed community trait shift and related vegetation processes along the elevational gradient, but only if nutrient limitations to plant growth were activated. In turn, when traits were fixed, low productivity communities emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deactivated, reduced net primary production (NPP) by 61-72% along the gradient. Our results strongly suggest that the elevational temperature gradient drives community assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics and vegetation traits. This illustrates the importance of considering these processes to yield realistic model predictions.
Collapse
Affiliation(s)
- Mateus Dantas de Paula
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
| | - Matthew Forrest
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
| | - Liam Langan
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
| | - Jörg Bendix
- Department of Geography, University of Marburg, Marburg, 35037, Germany
| | - Jürgen Homeier
- Plant Ecology and Ecosystems Research, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, 37073, Germany
| | - Andre Velescu
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, Karlsruhe, 76131, Germany
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, Karlsruhe, 76131, Germany
| | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
- Department of Physical Geography, Geosciences, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, 60438, Germany
| |
Collapse
|
39
|
Rojas-Botero S, Kollmann J, Teixeira LH. Competitive trait hierarchies of native communities and invasive propagule pressure consistently predict invasion success during grassland establishment. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02630-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractInvasive non-native plants challenge ecosystems restoration, and understanding the factors that determine the establishment of invasive plants is crucial to improve restoration outcomes. However, the drivers of invasibility of plant communities are not sufficiently clear, and combined effects are not understood. Therefore, we investigated the contribution of the main drivers of invasion success during early phases of restoration, i.e., biotic resistance, invasive propagule pressure, and environmental fluctuations. We compared the contribution of these drivers in a series of mesocosms experiments using designed grasslands as a model system, and Solidago gigantea as invasive model species. Two grassland communities were designed according to competitive trait hierarchies with different sowing patterns, reflecting variation in biotic resistance. We then manipulated invader propagule pressure and applied different scenarios of environmental fluctuation, i.e., flood, heat, and N fertilization. Invasive biomass was considered as proxy for invasion success, while native biomass represented restoration success. There were consistent effects of biotic resistance to S. gigantea invasion via competitive trait hierarchies in the three experiments. Communities dominated by species with high-competition traits were more resistant regardless of environmental fluctuation. Clumped seeding of the native community reduced invasibility, whereas high non-native propagule density increased invasion. The effects of environmental fluctuation were less consistent and context-dependent, thus playing a secondary role when compared to biotic drivers of invasion. Restoration initiatives on grasslands impacted by invasive plants should consider biotic resistance of the restored community as a key driver and the importance of controlling further arrivals of invasive species during community assembly.
Collapse
|
40
|
Ulrich W, Olszewski P, Puchałka R, Sewerniak P, Koprowski M. Inter‐ and intraspecific spatial distributions, spatial segregation by dominants and emergent neutrality in understorey plants. OIKOS 2021. [DOI: 10.1111/oik.08269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Werner Ulrich
- Dept of Ecology and Biogeography, Nicolaus Copernicus Univ.Toruń Poland
| | - Piotr Olszewski
- Dept of Ecology and Biogeography, Nicolaus Copernicus Univ.Toruń Poland
| | - Radosław Puchałka
- Dept of Ecology and Biogeography, Nicolaus Copernicus Univ.Toruń Poland
| | - Piotr Sewerniak
- Dept of Soil Science and Landscape Management, Nicolaus Copernicus Univ.Toruń Poland
| | - Marcin Koprowski
- Dept of Ecology and Biogeography, Nicolaus Copernicus Univ.Toruń Poland
| |
Collapse
|
41
|
Sivadas SK, Gupta GVM, Kumar S, Ingole BS. Trait-based and taxonomic macrofauna community patterns in the upwelling ecosystem of the southeastern Arabian sea. MARINE ENVIRONMENTAL RESEARCH 2021; 170:105431. [PMID: 34364059 DOI: 10.1016/j.marenvres.2021.105431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Coastal upwelling that occurs in the eastern Arabian Sea (EAS) drive the complex dynamics of the food chain. Macrofauna plays a key role in the functioning of coastal ecosystems, but few studies explored the taxonomic and functional patterns of macrofaunal communities under the influence of upwelling. These patterns have been investigated in this study by sampling macrofauna and environmental variables during March-December 2012 across six depths (13-100 m) over the continental shelf off Kochi, south EAS. Upwelling, set over outer shelf prior to March, occupies the entire shelf by May, peaked during June-July and withdrew rapidly by September. A total of 203 macrofaunal taxa were collected in this study. Multivariate analysis revealed that the macrofaunal composition showed a spatiotemporal variation. Taxonomic diversity increases from nearshore to mid shelf whereas abundance and biomass decreased. Macrobenthic functioning, assessed through Biological Trait Analyses, displayed similar trait modalities between depths and seasons but abundance driven differences in trait expression revealed important habitat filtering. Increase in organic matter and decrease in dissolved oxygen influenced by upwelling and the spatial variation in sediment texture were the strongest drivers of the macrofaunal taxonomic pattern. We suggest that taxonomic and biological trait information needs to be considered in ecological studies as it provides a better understanding of how biodiversity responds to and interacts with environmental changes.
Collapse
Affiliation(s)
- Sanitha K Sivadas
- National Centre for Coastal Research, Ministry of Earth Sciences, Chennai, India; CSIR-National Institute of Oceanography, Goa, India.
| | - G V M Gupta
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, India.
| | | | - Baban S Ingole
- CSIR-National Institute of Oceanography, Goa, India; ESSO-National Centre for Polar & Ocean Research, Vasco-da-Gama, Goa, India.
| |
Collapse
|
42
|
Catano CP, Bassett TJ, Bauer JT, Grman E, Groves AM, Zirbel CR, Brudvig LA. Soil resources mediate the strength of species but not trait convergence across grassland restorations. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Tyler J. Bassett
- Michigan Natural Features Inventory Michigan State University Extension Lansing MI USA
| | - Jonathan T. Bauer
- Department of Biology and the Institute for the Environment and Sustainability Miami University Oxford OH USA
| | - Emily Grman
- Department of Biology Eastern Michigan University Ypsilanti MI USA
| | - Anna M. Groves
- Department of Plant Biology Michigan State University East Lansing MI USA
- Freelance science journalist Kansas City MI USA
- Program in Ecology, Evolution, and Behavior Michigan State University East Lansing MI USA
| | - Chad R. Zirbel
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul MN USA
| | - Lars A. Brudvig
- Department of Plant Biology Michigan State University East Lansing MI USA
- Program in Ecology, Evolution, and Behavior Michigan State University East Lansing MI USA
| |
Collapse
|
43
|
Bishop TR, Tomlinson A, McNeice T, Sfenthourakis S, Parr CL. The effect of fire on ant assemblages does not depend on habitat openness but does select for large, gracile predators. Ecosphere 2021. [DOI: 10.1002/ecs2.3549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tom R. Bishop
- Department of Earth, Ocean and Ecological Sciences University of Liverpool LiverpoolL69 3GPUK
- Department of Zoology and Entomology University of Pretoria Pretoria0002South Africa
| | - Andy Tomlinson
- Department of Earth, Ocean and Ecological Sciences University of Liverpool LiverpoolL69 3GPUK
| | - Travers McNeice
- Environmental Change Institute School of Geography University of Oxford OxfordOX1 3QYUK
| | | | - Catherine L. Parr
- Department of Earth, Ocean and Ecological Sciences University of Liverpool LiverpoolL69 3GPUK
- Department of Zoology and Entomology University of Pretoria Pretoria0002South Africa
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Wits South Africa
| |
Collapse
|
44
|
He X, Brown C, Lin L. Relative importance of deterministic and stochastic processes for beta diversity of bird assemblages in Yunnan, China. Ecosphere 2021. [DOI: 10.1002/ecs2.3545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xuelian He
- CAS Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming650223China
- National Forest Ecosystem Research Station at Xishuangbanna Menglun Mengla Yunnan666303China
| | - Calum Brown
- Karlsruhe Institute of Technology Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK‐IFU) Garmisch‐Partenkirchen Germany
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Kunming650223China
- National Forest Ecosystem Research Station at Xishuangbanna Menglun Mengla Yunnan666303China
- Southeast Asia Biodiversity Research Institute Chinese Academy of Sciences Menglun Mengla Yunnan666303China
| |
Collapse
|
45
|
Olinger CT, Hart JL, Howeth JG. Functional trait sorting increases over succession in metacommunity mosaics of fish assemblages. Oecologia 2021; 196:483-497. [PMID: 33991245 DOI: 10.1007/s00442-021-04943-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
Metacommunity theory predicts that the relative importance of regional and local processes structuring communities will change over time since initiation of community assembly. Determining effects of these processes on species and trait diversity over succession remains largely unaddressed in metacommunity ecology to date, yet could confer an improved mechanistic understanding of community assembly. To test theoretical predictions of the increasing importance of local processes in structuring communities over successional stages in metacommunities, we evaluated fish species and trait diversity in three pond metacommunities undergoing secondary succession from beaver (Castor canadensis) disturbance. Processes influencing taxonomic and trait diversity were contrasted across pond communities of different ages and in reference streams. Counter to predictions, the local environment became less important in structuring communities over succession but did exert a stronger effect on trait sorting. Beta diversity and trait richness declined over succession while there was no influence on species richness or trait dispersion. The trait filtering in older habitats was likely a response to the larger and deeper pond ecosystems characteristic of late succession. In contrast to these observed effects in ponds, the local environment primarily structured species and trait diversity in streams. Analyses of the relative importance of regional and local processes in structuring fish assemblages within each pond metacommunity suggests that habitat age and connectivity were more important than the environment in structuring communities but contributions were region and scale-dependent. Together, these findings highlight that regional and local processes can differentially influence taxonomic and trait diversity in successional metacommunity mosaics.
Collapse
Affiliation(s)
- C Thomas Olinger
- Department of Biological Sciences, University of Alabama, 1106 Bevill Building, Box 870344, Tuscaloosa, AL, 35487, USA
| | - Justin L Hart
- Department of Geography, University of Alabama, 204 Farrah Hall, Box 870322, Tuscaloosa, AL, 35487, USA
| | - Jennifer G Howeth
- Department of Biological Sciences, University of Alabama, 1106 Bevill Building, Box 870344, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
46
|
Sulavik J, Auestad I, Halvorsen R, Rydgren K. Assessing recovery of alpine spoil heaps by vascular plant, bryophyte, and lichen functional traits. Restor Ecol 2021. [DOI: 10.1111/rec.13257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Sulavik
- Department of Environmental Sciences, Faculty of Engineering and Science Western Norway University of Applied Sciences P.O. Box. 133, NO‐6851 Sogndal Norway
- Geo‐ecological Research Group, Section for Research and Collections, Natural History Museum University of Oslo P.O. Box 1172 Blindern, N‐0318 Oslo Norway
| | - Inger Auestad
- Department of Environmental Sciences, Faculty of Engineering and Science Western Norway University of Applied Sciences P.O. Box. 133, NO‐6851 Sogndal Norway
| | - Rune Halvorsen
- Geo‐ecological Research Group, Section for Research and Collections, Natural History Museum University of Oslo P.O. Box 1172 Blindern, N‐0318 Oslo Norway
| | - Knut Rydgren
- Department of Environmental Sciences, Faculty of Engineering and Science Western Norway University of Applied Sciences P.O. Box. 133, NO‐6851 Sogndal Norway
| |
Collapse
|
47
|
Amaral EJ, Franco AC, Rivera VL, Munhoz CBR. Environment, phylogeny, and photosynthetic pathway as determinants of leaf traits in savanna and forest graminoid species in central Brazil. Oecologia 2021; 197:1-11. [PMID: 33885981 DOI: 10.1007/s00442-021-04923-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/13/2021] [Indexed: 12/01/2022]
Abstract
Leaf traits are closely linked to plant responses to the environment and can provide important information on adaptation and evolution. These traits may also result from common ancestry, so phylogenetic relationships also play an important role in adaptive evolution. We evaluated the effects of the closed forest environment (gallery forest) and the open savanna environment (cerrado) on the selection of leaf traits of graminoid species. The two plant communities differ in light, nutrients, and water availability, which are important drivers in the selection and differentiation of these traits. We also investigated the functional structure and the role of phylogeny in the functional organization of species, considering leaf traits. Patterns of leaf trait variation differed between forest and savanna species suggesting habitat specialization. Wider and longer leaves, with higher values of specific leaf area, chlorophyll, and nitrogen, seem to be an advantage for graminoid species growing in forest environments, while thicker leaves, with higher values of leaf dry-matter content and carbon, benefit species growing in savanna environments. We found few phylogenetic signals related to leaf traits in each environment. Therefore, the functional similarity that the gallery forest and cerrado graminoid species share within their group is independent of their phylogenetic proximity. Environmental filters affect the functional structure of communities differently, generating communities with trait values that are more distant than expected by chance in cerrado (functional dispersion), and closer than expected by chance in the gallery forest (functional convergence).
Collapse
Affiliation(s)
- Eliel J Amaral
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
| | - Augusto C Franco
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.,Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Vanessa L Rivera
- Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Cássia B R Munhoz
- Graduate Program in Ecology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.,Department of Botany, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| |
Collapse
|
48
|
Nolting KM, Prunier R, Midgley GF, Holsinger KE. Intraspecific trait variation influences physiological performance and fitness in the South Africa shrub genus Protea (Proteaceae). ANNALS OF BOTANY 2021; 127:519-531. [PMID: 32249291 PMCID: PMC7988518 DOI: 10.1093/aob/mcaa060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/03/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Global plant trait datasets commonly identify trait relationships that are interpreted to reflect fundamental trade-offs associated with plant strategies, but often these trait relationships are not identified when evaluating them at smaller taxonomic and spatial scales. In this study we evaluate trait relationships measured on individual plants for five widespread Protea species in South Africa to determine whether broad-scale patterns of structural trait (e.g. leaf area) and physiological trait (e.g. photosynthetic rates) relationships can be detected within natural populations, and if these traits are themselves related to plant fitness. METHODS We evaluated the variance structure (i.e. the proportional intraspecific trait variation relative to among-species variation) for nine structural traits and six physiological traits measured in wild populations. We used a multivariate path model to evaluate the relationships between structural traits and physiological traits, and the relationship between these traits and plant size and reproductive effort. KEY RESULTS While intraspecific trait variation is relatively low for structural traits, it accounts for between 50 and 100 % of the variation in physiological traits. Furthermore, we identified few trait associations between any one structural trait and physiological trait, but multivariate regressions revealed clear associations between combinations of structural traits and physiological performance (R2 = 0.37-0.64), and almost all traits had detectable associations with plant fitness. CONCLUSIONS Intraspecific variation in structural traits leads to predictable differences in individual-level physiological performance in a multivariate framework, even though the relationship of any particular structural trait to physiological performance may be weak or undetectable. Furthermore, intraspecific variation in both structural and physiological traits leads to differences in plant size and fitness. These results demonstrate the importance of considering measurements of multivariate phenotypes on individual plants when evaluating trait relationships and how trait variation influences predictions of ecological and evolutionary outcomes.
Collapse
Affiliation(s)
- Kristen M Nolting
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Rachel Prunier
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, CT, USAand
| | - Guy F Midgley
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Kent E Holsinger
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
49
|
Wilcox KR, Blumenthal DM, Kray JA, Mueller KE, Derner JD, Ocheltree T, Porensky LM. Plant traits related to precipitation sensitivity of species and communities in semiarid shortgrass prairie. THE NEW PHYTOLOGIST 2021; 229:2007-2019. [PMID: 33053217 DOI: 10.1111/nph.17000] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Abstract
Understanding how plant communities respond to temporal patterns of precipitation in water-limited ecosystems is necessary to predict interannual variation and trends in ecosystem properties, including forage production, biogeochemical cycling, and biodiversity. In North American shortgrass prairie, we measured plant abundance, functional traits related to growth rate and drought tolerance, and aboveground net primary productivity to identify: species-level responsiveness to precipitation (precipitation sensitivity Sspp ) across functional groups; Sspp relationships to continuous plant traits; and whether continuous trait-Sspp relationships scaled to the community level. Across 32 plant species, we found strong bivariate relationships of both leaf dry matter content (LDMC) and leaf osmotic potential Ψosm with Sspp . Yet, LDMC and specific leaf area were retained in the lowest Akaike information criterion multiple regression model, explaining 59% of Sspp . Most relationships between continuous traits and Sspp scaled to the community level but were often contingent on the presence/absence of particular species and/or land management at a site. Thus, plant communities in shortgrass prairie may shift towards slower growing, more stress-resistant species in drought years and/or chronically drier climate. These findings highlight the importance of both leaf economic and drought tolerance traits in determining species and community responses to altered precipitation.
Collapse
Affiliation(s)
- Kevin R Wilcox
- Department of Ecosystem Science and Management, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
- Crops Research Laboratory, USDA ARS - Rangeland Resources and Systems Research Unit, 1701 Centre Avenue, Fort Collins, CO, 80526, USA
| | - Dana M Blumenthal
- Crops Research Laboratory, USDA ARS - Rangeland Resources and Systems Research Unit, 1701 Centre Avenue, Fort Collins, CO, 80526, USA
| | - Julie A Kray
- Crops Research Laboratory, USDA ARS - Rangeland Resources and Systems Research Unit, 1701 Centre Avenue, Fort Collins, CO, 80526, USA
| | - Kevin E Mueller
- Biological, Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, SI 219, Cleveland, OH, 44115-2214, USA
| | - Justin D Derner
- USDA-ARS Rangeland Resources and Systems Research Unit, 8408 Hildreth Road, Cheyenne, WY,, 82009, USA
| | - Troy Ocheltree
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lauren M Porensky
- Crops Research Laboratory, USDA ARS - Rangeland Resources and Systems Research Unit, 1701 Centre Avenue, Fort Collins, CO, 80526, USA
| |
Collapse
|
50
|
Sturbois A, De Cáceres M, Sánchez-Pinillos M, Schaal G, Gauthier O, Mao PL, Ponsero A, Desroy N. Extending community trajectory analysis: New metrics and representation. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|