1
|
Alwakeel S, Alothman N, Ameen F, Alotaibi M, Mohammed AE, Alhomaidi E. Stress-driven metabolites of desert soil fungi. Biotechnol Genet Eng Rev 2024; 40:140-153. [PMID: 36852923 DOI: 10.1080/02648725.2023.2182537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023]
Abstract
Microorganisms produce secondary metabolites to survive under stressful conditions. The effect of drought and heat stress on fungi isolated from Arabian desert soil during the hot (ca 40°C) and cool (ca 10°C) seasons was studied using the genome mining approach. The presence of three stress-related genes (calmodulin, polyketide synthase and beta tubulin) was analyzed molecularly using specific primers. The presence of the genes in desert fungi was compared to their antimicrobial (ten bacterial or fungal pathogens) and anticancer (liver, cervical and breast) properties and the production of thermostable enzymes (phytase and xylanase). The genes appeared to be present in the fungal sequence obtained during the summer, while none of the genes were present during winter. Appreciable differences were observed in enzyme activities, with summer activities high and winter low. The antagonistic activities of A. niger were relatively stable and varying, while those of P. chrysogenum were consistently higher in summer than in winter. The presence of the three genes seemed to correlate with the highly antagonistic activities of P. chrysogenum, while A. niger had relatively active winter isolates without any of the genes. The hot season in deserts yields fungal isolates with biological activities useful in biotechnological solutions.
Collapse
Affiliation(s)
- Suaad Alwakeel
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nouf Alothman
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Modhi Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Zou G, Xiao M, Chai S, Zhu Z, Wang Y, Zhou Z. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents. Microb Biotechnol 2021; 14:2343-2355. [PMID: 32841542 PMCID: PMC8601184 DOI: 10.1111/1751-7915.13652] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
DNA double-strand break (DSB) repair induced by the RNA-programmed nuclease Cas9 has become a popular method for genome editing. Direct genome editing via Cas9-CRISPR gRNA (guide RNA) ribonucleoprotein (RNP) complexes assembled in vitro has also been successful in some fungi. However, the efficiency of direct RNP transformation into fungal protoplasts is currently too low. Here, we report an optimized genome editing approach for filamentous fungi based on RNPs facilitated by adding chemical reagents. We increased the transformation efficiency of RNPs significantly by adding Triton X-100 and prolonging the incubation time, and the editing efficiency reached 100% in Trichoderma reesei and Cordyceps militaris. The optimized RNP-based method also achieved efficient (56.52%) homologous recombination integration with short homology arms (20 bp) and gene disruption (7.37%) that excludes any foreign DNA (selection marker) in T. reesei. In particular, after adding reagents related to mitosis and cell division, the further optimized protocol showed an increased ratio of edited homokaryotic transformants (from 0% to 40.0% for inositol and 71.43% for benomyl) from Aspergillus oryzae, which contains multinucleate spores and protoplasts. Furthermore, the multi-target engineering efficiency of the optimized RNP transformation method was similar to those of methods based on in vivo expression of Cas9. This newly established genome editing system based on RNPs may be widely applicable to construction of genome-edited fungi for the food and medical industries, and has good prospects for commercialization.
Collapse
Affiliation(s)
- Gen Zou
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- Shanghai Key Laboratory of Agricultural Genetics and BreedingInstitute of Edible FungiShanghai Academy of Agriculture Science1000 Jinqi Rd, FengxianShanghai201403China
| | - Meili Xiao
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shunxing Chai
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhihua Zhu
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ying Wang
- Shanghai Key Laboratory of Agricultural Genetics and BreedingInstitute of Edible FungiShanghai Academy of Agriculture Science1000 Jinqi Rd, FengxianShanghai201403China
| | - Zhihua Zhou
- CAS‐Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of ScienceFenglin Rd 300Shanghai200032China
| |
Collapse
|
3
|
Genome editing for resistance against plant pests and pathogens. Transgenic Res 2021; 30:427-459. [PMID: 34143358 DOI: 10.1007/s11248-021-00262-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
The conventional breeding of crops struggles to keep up with increasing food needs and ever-adapting pests and pathogens. Global climate changes have imposed another layer of complexity to biological systems, increasing the challenge to obtain improved crop cultivars. These dictate the development and application of novel technologies, like genome editing (GE), that assist targeted and fast breeding programs in crops, with enhanced resistance to pests and pathogens. GE does not require crossings, hence avoiding the introduction of undesirable traits through linkage in elite varieties, speeding up the whole breeding process. Additionally, GE technologies can improve plant protection by directly targeting plant susceptibility (S) genes or virulence factors of pests and pathogens, either through the direct edition of the pest genome or by adding the GE machinery to the plant genome or to microorganisms functioning as biocontrol agents (BCAs). Over the years, GE technology has been continuously evolving and more so with the development of CRISPR/Cas. Here we review the latest advancements of GE to improve plant protection, focusing on CRISPR/Cas-based genome edition of crops and pests and pathogens. We discuss how other technologies, such as host-induced gene silencing (HIGS) and the use of BCAs could benefit from CRISPR/Cas to accelerate the development of green strategies to promote a sustainable agriculture in the future.
Collapse
|
4
|
Chlamydomonas reinhardtii tubulin-gene disruptants for efficient isolation of strains bearing tubulin mutations. PLoS One 2020; 15:e0242694. [PMID: 33227038 PMCID: PMC7682851 DOI: 10.1371/journal.pone.0242694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/08/2020] [Indexed: 11/24/2022] Open
Abstract
The single-cell green alga Chlamydomonas reinhardtii possesses two α-tubulin genes (tua1 and tua2) and two β-tubulin genes (tub1 and tub2), with the two genes in each pair encoding identical amino acid sequences. Here, we screened an insertional library to establish eight disruptants with defective tua2, tub1, or tub2 expression. Most of the disruptants did not exhibit major defects in cell growth, flagellar length, or flagellar regeneration after amputation. Because few tubulin mutants of C. reinhardtii have been reported to date, we then used our disruptants, together with a tua1 disruptant obtained from the Chlamydomonas Library Project (CLiP), to isolate tubulin-mutants resistant to the anti-tubulin agents propyzamide (pronamide) or oryzalin. As a result of several trials, we obtained 8 strains bearing 7 different α-tubulin mutations and 12 strains bearing 7 different β-tubulin mutations. One of the mutations is at a residue similar to that of a mutation site known to confer drug resistance in human cancer cells. Some strains had the same amino acid substitutions as those reported previously in C. reinhardtii; however, the mutants with single tubulin genes showed slightly stronger drug-resistance than the previous mutants that express the mutated tubulin in addition to the wild-type tubulin. Such increased drug-resistance may have facilitated sensitive detection of tubulin mutation. Single-tubulin-gene disruptants are thus an efficient background of generating tubulin mutants for the study of the structure–function relationship of tubulin.
Collapse
|
5
|
Assessing anthelmintic resistance risk in the post-genomic era: a proof-of-concept study assessing the potential for widespread benzimidazole-resistant gastrointestinal nematodes in North American cattle and bison. Parasitology 2020; 147:897-906. [PMID: 32138794 PMCID: PMC7391874 DOI: 10.1017/s0031182020000426] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As genomic research continues to improve our understanding of the genetics of anthelmintic drug resistance, the revolution in DNA sequencing technologies will provide increasing opportunities for large-scale surveillance for the emergence of drug resistance. In most countries, parasite control in cattle and bison has mainly depended on pour-on macrocyclic lactone formulations resulting in widespread ivermectin resistance. Consequently, there is an increased interest in using benzimidazole drugs which have been used comparatively little in cattle and bison in recent years. This situation, together with our understanding of benzimidazole resistance genetics, provides a practical opportunity to use deep-amplicon sequencing to assess the risk of drug resistance emergence. In this paper, we use deep-amplicon sequencing to scan for those mutations in the isotype-1 β-tubulin gene previously associated with benzimidazole resistance in many trichostrongylid nematode species. We found that several of these mutations occur at low frequency in many cattle and bison parasite populations in North America, suggesting increased use of benzimidazole drugs in cattle has the potential to result in widespread emergence of resistance in multiple parasite species. This work illustrates a post-genomic approach to large-scale surveillance of early emergence of anthelmintic resistance in the field.
Collapse
|
6
|
Hu HF, Zhou HY, Cheng GP, Xue YP, Wang YS, Zheng YG. Improvement of R-2-(4-hydroxyphenoxy) propionic acid biosynthesis of Beauveria bassiana by combined mutagenesis. Biotechnol Appl Biochem 2019; 67:343-353. [PMID: 31846537 DOI: 10.1002/bab.1872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
Abstract
R-2-(4-hydroxyphenoxy)propionicacid (HPOPA) is a valuable intermediate for the synthesis of enantiomerically pure aryloxyphenoxypropionic acid herbicides. In this work, to improve the HPOPA biosynthesis by Beauveria bassiana ZJB16002 from the substrate R-2-phenoxypropionic acid (POPA), the original HPOPA producer B. bassiana ZJB16002 was subjected to physical mutagenesis with 137 Cs-γ irradiation and chemical mutagen N-methyl-N'-nitro-N-nitrasoguanidine (NTG) induced mutagenesis. The effects of different treatment doses of the mutagens on the lethal rate and positive mutation rate were investigated, and the results showed that the optimal 137 Cs-γirradiation dose and NTG concentration was 850 Gy and 500 µg/mL, respectively. Under these conditions, a mutant strain CCN-7 with the highest HPOPA production capacity was obtained through two rounds of 137 Cs-γ irradiation treatment followed by one round of NTG mutagenesis. At the substrate (POPA) concentration of 50 g/L, HPOPA titer of CCN-7 reached 36.88 g/L, which was 9.73-fold higher than the parental strain. The morphology of the wild-type and mutant strain was compared and the results might provide helpful information in exploration of the correlation of morphology and biochemical features of B. bassiana.
Collapse
Affiliation(s)
- Hai-Feng Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hai-Yan Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Gao-Ping Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, People's Republic of China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Yang Y, Di Zeng G, Zhang Y, Xue R, Hu YJ. Molecular and Biochemical Characterization of Carbendazim-Resistant Botryodiplodia theobromae Field Isolates. PLANT DISEASE 2019; 103:2076-2082. [PMID: 31194616 DOI: 10.1094/pdis-01-19-0148-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stem-end rot caused by Botryodiplodia theobromae is a destructive disease of mango. B. theobromae field isolates resistant to carbendazim (MBC) were collected in Hainan Province, China. In this study, the characteristics of these field isolates with resistance to MBC were investigated. The resistance of B. theobromae isolates to MBC was stably inherited. Both the MBC-resistant and MBC-sensitive isolates had similar mycelial growth rates, pathogenicity, sensitivity to high glucose, glycerol content, and peroxidase activity. Compared with MBC-sensitive isolates, MBC-resistant isolates were more sensitive to low temperature and had a significant decrease in sensitivity to high NaCl and a significant increase in catalase (CAT) and glutathione S-transferase (GST) activities. After MBC treatment, the cell membrane permeability of the sensitive isolates was markedly increased compared with that of the resistant isolates. Analysis of the β-tubulin gene sequence revealed point mutations resulting in substitutions at codon 198 from glutamic acid (GAG) to alanine (GCG) in moderately resistant isolates, and at codon 200 from phenylalanine (TTC) to tyrosine (TAC) in highly resistant isolates. These β-tubulin gene mutations were consistently associated with MBC resistance. Overall, we infer that the altered cell membrane permeability and the increase in CAT and GST activities of the resistant isolates are linked to MBC resistance.
Collapse
Affiliation(s)
- Ye Yang
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Geng Di Zeng
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Yu Zhang
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Ru Xue
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Ya Juan Hu
- Key Lab of Green Prevention and Control of Tropical Plant Diseases and Pests, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
8
|
Wang H, Chen D, Li C, Tian N, Zhang J, Xu JR, Wang C. Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum. Fungal Genet Biol 2019; 132:103251. [PMID: 31319136 DOI: 10.1016/j.fgb.2019.103251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/06/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
The filamentous ascomycete Fusarium graminearum contains two β-tubulin genes TUB1 and TUB2 that differ in functions during vegetative growth and sexual reproduction. To further characterize their functional relationship, in this study we determined the co-localization of Tub1 and Tub2 and assayed their expression levels in different mutants and roles in DON production. Tub1 co-localized with Tub2 to the same regions of microtubules in conidia, hyphae, and ascospores. Whereas deletion of TUB1 had no obvious effect on the transcription of TUB2 and two α-tubulin genes (TUB4 and TUB5), the tub2 mutant was up-regulated in TUB1 transcription. To assay their protein expression levels, polyclonal antibodies that could specifically detect four α- and β-tubulin proteins were generated. Western blot analyses showed that the abundance of Tub1 proteins was increased in tub2 but reduced in tub4 and tub5 mutants. Interestingly, protein expression of Tub4 and Tub5 was decreased in the tub1 mutant in comparison with the wild type, despite a lack of obvious changes in their transcription. In contrast, deletion of TUB2 had no effect on translation of TUB4 and TUB5. Ectopic expression of Tub2-mCherry partially recovered the growth defect of the tub1 mutant but did not rescue its defect in sexual reproduction. Expression of Tub1-GFP in the tub2 mutant also partially rescued its defects in vegetative growth, suggesting that disturbance in the balance of α- and β-tubulins contributes to mutant defects. The tub2 but not tub1 mutant was almost blocked in DON biosynthesis. Expression of TRI genes, toxisome formation, and DON-related cellular differentiation were significantly reduced in the tub2 mutant. Overall, our results showed that Tub1 and Tub2 share similar subcellular localization and have overlapping functions during vegetative growth but they differ in functions in DON production and ascosporogenesis in F. graminearum.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengliang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Neng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Hu J, Deng S, Gao T, Lamour K, Liu X, Ren H. Thiophanate-methyl resistance in Sclerotinia homoeocarpa from golf courses in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:84-89. [PMID: 30497716 DOI: 10.1016/j.pestbp.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Sclerotinia homoeocarpa causes dollar spot disease on many turfgrass species and is a significant problem worldwide. Thiophanate-methyl (TM), a methyl benzimidazole carbamate (MBC) fungicide, has been used for over forty years to manage dollar spot. Here we describe genetic mutations linked to three distinct TM fungicide resistance phenotypes: sensitive (S), moderately resistant (MR) and highly resistant (HR). These were established using multiple doses of TM, compared to previous studies using single discriminatory doses. In total, 19 S, 3 MR and 22 HR isolates were detected. Analysis of the β-tubulin gene revealed the MR isolates had a point mutation from T to A at codon 200 changing phenylalanine (TTC) to tyrosine (TAC). Twenty HR isolates had a mutation at codon 198 changing glutamic acid (GAG) to alanine (GCG) and two HR isolates had a mutation at codon 198 changing glutamic acid (GAG) to lysine (AAG). Allele-specific PCR assays were developed for rapid detection of these mutations in isolates of S. homoeocarpa. In addition, our results suggest a two-dose system for in vitro screening provides useful information for monitoring the development of resistance.
Collapse
Affiliation(s)
- Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Shaojun Deng
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tao Gao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville 37996, USA
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, PR China
| | - Haiyan Ren
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
10
|
Deng SQ, Cai QD, Deng MZ, Huang Q, Peng HJ. Scorpion neurotoxin AaIT-expressing Beauveria bassiana enhances the virulence against Aedes albopictus mosquitoes. AMB Express 2017; 7:121. [PMID: 28605881 PMCID: PMC5466577 DOI: 10.1186/s13568-017-0422-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
To improve the insecticidal efficacy of this entomopathogen Beauveria bassiana, the fungus was genetically modified to express an insect-specific scorpion neurotoxin AaIT. The virulence of the recombinant B. bassiana strain (Bb-AaIT) against Aedes albopictus adults (which occurs via penetration through the cuticle during spore germination or by conidia ingestion), and the larvae (by conidia ingestion) was measured with bioassays. The median lethal concentration (LC50) of Bb-AaIT against A. albopictus larvae was 313.3-fold lower on day 4 and 11.3-fold lower on day 10 than that of the wild type (WT). Through conidia feeding or body contact, Bb-AaIT killed 50% of adult female mosquitoes at 3.9- or 1.9-fold reduced concentrations on day 4 and at 2.1- or 2.4-fold reduced concentrations on day 10. Compared with the results for the WT, the median lethal time (LT50) of Bb-AaIT was reduced by 28.6% at 1 × 107 conidia ml-1 and 34.3% at 1 × 106 conidia ml-1 in the larvae bioassay by conidia ingestion, while it decreased 32.3% at 1 × 107 conidia ml-1 by conidia ingestion and 24.2% at 1 × 108 conidia ml-1 by penetrating through the cuticle in the adult bioassay. All the differences were significant. Our findings indicated that Bb-AaIT had higher virulence and faster action than the WT in killing the larval and adult mosquitoes, and therefore, it is valuable for development as a commercial mosquito pesticide.
Collapse
Affiliation(s)
- Sheng-Qun Deng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Qun-Di Cai
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Ming-Zhi Deng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Qiang Huang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, and Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong Province China
| |
Collapse
|
11
|
Chen J, Lai Y, Wang L, Zhai S, Zou G, Zhou Z, Cui C, Wang S. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana. Sci Rep 2017; 8:45763. [PMID: 28368054 PMCID: PMC5377935 DOI: 10.1038/srep45763] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/02/2017] [Indexed: 02/08/2023] Open
Abstract
Beauveria bassiana is an environmentally friendly alternative to chemical insecticides against various agricultural insect pests and vectors of human diseases. However, its application has been limited due to slow kill and sensitivity to abiotic stresses. Understanding of the molecular pathogenesis and physiological characteristics would facilitate improvement of the fungal performance. Loss-of-function mutagenesis is the most powerful tool to characterize gene functions, but it is hampered by the low rate of homologous recombination and the limited availability of selectable markers. Here, by combining the use of uridine auxotrophy as recipient and donor DNAs harboring auxotrophic complementation gene ura5 as a selectable marker with the blastospore-based transformation system, we established a highly efficient, low false-positive background and cost-effective CRISPR/Cas9-mediated gene editing system in B. bassiana. This system has been demonstrated as a simple and powerful tool for targeted gene knock-out and/or knock-in in B. bassiana in a single gene disruption. We further demonstrated that our system allows simultaneous disruption of multiple genes via homology-directed repair in a single transformation. This technology will allow us to study functionally redundant genes and holds significant potential to greatly accelerate functional genomics studies of B. bassiana.
Collapse
Affiliation(s)
- Jingjing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suzhen Zhai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Gen Zou
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhihua Zhou
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunlai Cui
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Zhang J, Jin K, Xia Y. Contributions of β-tubulin to cellular morphology, sporulation and virulence in the insect-fungal pathogen, Metarhizium acridum. Fungal Genet Biol 2017; 103:16-24. [PMID: 28336393 DOI: 10.1016/j.fgb.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/28/2017] [Accepted: 03/18/2017] [Indexed: 11/25/2022]
Abstract
β-tubulin is an elementary subunit of microtubules that form the cytoskeleton, participating in a wide range of cellular processes. The contributions of the single β-tubulin gene in affecting cell morphology, sporulation and virulence were examined in the entomopathogenic fungus Metarhizium acridum. Targeted gene knockout of β-tubulin resulted in resistance to benomyl but impaired proper nuclear segregation, lipid droplet transport, and deposition of chitin to the cell wall. M. acridum β-tubulin mutants displayed wavy hyphal growth and densely packed, wrinkled colonies. Decreases in the rate of phialides formation and conidial yield were observed for the β-tubulin mutant, which was also impaired in virulence towards locust hosts as compared to wild type and complemented strains. Morphological analyses of infection structures revealed development of bifurcated germ tubes, with reduced appressoria formation seen in the β-tubulin mutant. M. acridum β-tubulin mutant appressoria were aberrant in morphology and displayed decreased turgor pressure. The ability of the M. acridum β-tubulin mutant to proliferate in the insect hemolymph both in vitro and in vivo was also significantly reduced. Our results indicate that in M. acridum, β-tubulin is not essential for survival but that it contributes to cellular transport of organelles and cell wall materials, impacting growth, appressorial differentiation, virulence, and sporulation.
Collapse
Affiliation(s)
- Jie Zhang
- Genetic Engineering Research Center, School of Life Science, Chongqing University, Chongqing 400030, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 400030, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400030, PR China.
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Science, Chongqing University, Chongqing 400030, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 400030, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400030, PR China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Science, Chongqing University, Chongqing 400030, PR China; Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 400030, PR China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400030, PR China.
| |
Collapse
|
13
|
Hawkins NJ, Fraaije BA. Predicting Resistance by Mutagenesis: Lessons from 45 Years of MBC Resistance. Front Microbiol 2016; 7:1814. [PMID: 27895632 PMCID: PMC5108816 DOI: 10.3389/fmicb.2016.01814] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
When a new fungicide class is introduced, it is useful to anticipate the resistance risk in advance, attempting to predict both risk level and potential mechanisms. One tool for the prediction of resistance risk is laboratory selection for resistance, with the mutational supply increased through UV or chemical mutagenesis. This enables resistance to emerge more rapidly than in the field, but may produce mutations that would not emerge under field conditions. The methyl benzimidazole carbamates (MBCs) were the first systemic single-site agricultural fungicides, and the first fungicides affected by rapid evolution of target-site resistance. MBC resistance has now been reported in over 90 plant pathogens in the field, and laboratory mutants have been studied in nearly 30 species. The most common field mutations, including β-tubulin E198A/K/G, F200Y and L240F, have all been identified in laboratory mutants. However, of 28 mutations identified in laboratory mutants, only nine have been reported in the field. Therefore, the predictive value of mutagenesis studies would be increased by understanding which mutations are likely to emerge in the field. Our review of the literature indicates that mutations with high resistance factors, and those found in multiple species, are more likely to be reported in the field. However, there are many exceptions, possibly due to fitness penalties. Whether a mutation occurred in the same species appears less relevant, perhaps because β-tubulin is highly conserved so functional constraints are similar across all species. Predictability of mutations in other target sites will depend on the level and conservation of constraints.
Collapse
Affiliation(s)
- Nichola J. Hawkins
- Biological Chemistry and Crop Protection, Rothamsted ResearchHarpenden, UK
| | | |
Collapse
|
14
|
Wang F, Lin Y, Yin WX, Peng YL, Schnabel G, Huang JB, Luo CX. The Y137H mutation of VvCYP51 gene confers the reduced sensitivity to tebuconazole in Villosiclava virens. Sci Rep 2015; 5:17575. [PMID: 26631591 PMCID: PMC4668384 DOI: 10.1038/srep17575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/02/2015] [Indexed: 11/08/2022] Open
Abstract
Management of rice false smut disease caused by Villosiclava virens is dependent on demethylation inhibitor (DMI) fungicides. Investigation of molecular mechanisms of resistance is therefore of upmost importance. In this study the gene encoding the target protein for DMI fungicides (VvCYP51) was cloned and investigated. The VvCYP51 gene in the resistant mutant revealed both a change from tyrosine to histidine at position 137 (Y137H) and elevated gene expression compared to the parental isolate. In order to determine which of these mechanisms was responsible for the reduced sensitivity to DMI fungicide tebuconazole, transformants expressing the mutated or the wild type VvCYP51 gene were generated. Transformants carrying the mutated gene were more resistant to tebuconazole compared to control transformants lacking the mutation, but the expression of the VvCYP51 gene was not significantly correlated with EC50 values. The wild type VvCYP51 protein exhibited stronger affinity for tebuconazole compared to the VvCYP51/Y137H in both molecular docking analysis and experimental binding assays. The UV-generated mutant as well as transformants expressing the VvCYP51/Y137H did not exhibit significant fitness penalties based on mycelial growth and spore germination, suggesting that isolates resistant to DMI fungicides based on the Y137H mutation may develop and be competitive in the field.
Collapse
Affiliation(s)
- Fei Wang
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Xiao Yin
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - You-Liang Peng
- Department of Plant Pathology, College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Guido Schnabel
- Department of Agricultural and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jun-Bin Huang
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Department of Plant Protection, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life. Sci Rep 2014; 4:6746. [PMID: 25339375 PMCID: PMC5381371 DOI: 10.1038/srep06746] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022] Open
Abstract
Microtubules are essential for various cellular activities and β-tubulins are the target of benzimidazole fungicides. However, the evolution and molecular mechanisms driving functional diversification in fungal tubulins are not clear. In this study, we systematically identified tubulin genes from 59 representative fungi across the fungal kingdom. Phylogenetic analysis showed that α-/β-tubulin genes underwent multiple independent duplications and losses in different fungal lineages and formed distinct paralogous/orthologous clades. The last common ancestor of basidiomycetes and ascomycetes likely possessed two paralogs of α-tubulin (α1/α2) and β-tubulin (β1/β2) genes but α2-tubulin genes were lost in basidiomycetes and β2-tubulin genes were lost in most ascomycetes. Molecular evolutionary analysis indicated that α1, α2, and β2-tubulins have been under strong divergent selection and adaptive positive selection. Many positively selected sites are at or adjacent to important functional sites and likely contribute to functional diversification. We further experimentally confirmed functional divergence of two β-tubulins in Fusarium and identified type II variations in FgTub2 responsible for function shifts. In this study, we also identified δ-/ε-/η-tubulins in Chytridiomycetes. Overall, our results illustrated that different evolutionary mechanisms drive functional diversification of α-/β-tubulin genes in different fungal lineages, and residues under positive selection could provide targets for further experimental study.
Collapse
|
16
|
Wang ZL, Li F, Li C, Feng MG. Bbssk1, a response regulator required for conidiation, multi-stress tolerance, and virulence of Beauveria bassiana. Appl Microbiol Biotechnol 2014; 98:5607-18. [PMID: 24633371 DOI: 10.1007/s00253-014-5644-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 01/18/2023]
Abstract
Ssk1-type response regulator proteins are the core elements of histidine-to-aspartate systems that mediate fungal stress tolerance, a determinant to the biocontrol potential of fungal entomopathogens. We characterized the functions of Beauveria bassiana Ssk1 (Bbssk1) by analyzing multi-phenotypic changes in ΔBbssk1 and differentially expressed genes in the digital gene expression (DGE) libraries of ΔBbssk1 and wild-type constructed under osmotic stress. The Bbssk1 disruption caused 25 % reductions in conidial yield and virulence to Spodoptera litura larvae and significant defects in tolerances to two osmotic salts (81-84 %), H2O2 oxidation (23 %), two fungicides (21-58 %), three cell wall biosynthesis inhibitors (25-36 %), and three metal ions (~8 %) during colony growth, respectively, but little changes in cell sensitivity to menadione oxidation and in conidial thermotolerance and UV-B resistance. RNA-seq analysis with the DGE libraries revealed differential expressions of 1,003 genes in the ΔBbssk1 genome. Of those, many associated with conidiation, stress response, xenobiotic transport, cell wall integrity, and protein/carbohydrate metabolism were remarkably down-regulated, including the genes involved in mitogen-activated protein kinase (MAPK) signal pathway that downstream of Bbssk1. Our results indicate that Bbssk1 regulates positively the expressions of the MAPK cascade in the pathway of B. bassiana and many more downstream genes associated with conidiation, multi-stress tolerance, and virulence.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, People's Republic of China,
| | | | | | | |
Collapse
|
17
|
Zhang L, Shi WB, Feng MG. Histopathological and molecular insights into the ovicidal activities of two entomopathogenic fungi against two-spotted spider mite. J Invertebr Pathol 2014; 117:73-8. [DOI: 10.1016/j.jip.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/12/2014] [Indexed: 11/26/2022]
|
18
|
Shinohara S, Fitriana Y, Satoh K, Narumi I, Saito T. Enhanced fungicide resistance in Isaria fumosoroseafollowing ionizing radiation-induced mutagenesis. FEMS Microbiol Lett 2013; 349:54-60. [DOI: 10.1111/1574-6968.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/17/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Yuyun Fitriana
- Faculty of Agriculture; Shizuoka University; Shizuoka Japan
| | - Katsuya Satoh
- Quantum Beam Science Directorate; Japan Atomic Energy Agency; Gunma Japan
| | - Issay Narumi
- Quantum Beam Science Directorate; Japan Atomic Energy Agency; Gunma Japan
| | - Tsutomu Saito
- Faculty of Agriculture; Shizuoka University; Shizuoka Japan
| |
Collapse
|
19
|
Song TT, Zhao J, Ying SH, Feng MG. Differential contributions of five ABC transporters to mutidrug resistance, antioxidion and virulence of Beauveria bassiana, an entomopathogenic fungus. PLoS One 2013; 8:e62179. [PMID: 23596534 PMCID: PMC3626590 DOI: 10.1371/journal.pone.0062179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/18/2013] [Indexed: 01/13/2023] Open
Abstract
Multidrug resistance (MDR) confers agrochemical compatibility to fungal cells-based mycoinsecticdes but mechanisms involved in MDR remain poorly understood for entomopathogenic fungi, which have been widely applied as biocontrol agents against arthropod pests. Here we characterized the functions of five ATP-binding cassette (ABC) transporters, which were classified to the subfamilies ABC-B (Mdr1), ABC-C (Mrp1) and ABC-G (Pdr1, Pdr2 and Pdr5) and selected from 54 full-size ABC proteins of Beauveria bassiana based on their main domain architecture, membrane topology and transcriptional responses to three antifungal inducers. Disruption of each transporter gene resulted in significant reduction in resistance to four to six of eight fungicides or antifungal drugs tested due to their differences in structure and function. Compared with wild-type and complemented (control) strains, disruption mutants of all the five transporter genes became significantly less tolerant to the oxidants menadione and H2O2 based on 22−41% and 10−31% reductions of their effective concentrations required for the suppression of 50% colony growth at 25°C. Under a standardized spray, the killing actions of ΔPdr5 and ΔMrp1 mutants against Spodoptera litura second-instar larvae were delayed by 59% and 33% respectively. However, no significant virulence change was observed in three other delta mutants. Taken together, the examined five ABC transporters contribute differentially to not only the fungal MDR but antioxidant capability, a phenotype rarely associated with ABC efflux pumps in previous reports; at least some of them are required for the full virulence of B. bassiana, thereby affecting the fungal biocontrol potential. Our results indicate that ABC pump-dependent MDR mechanisms exist in entomopathogenic fungi as do in yeasts and human and plant pathogenic fungi.
Collapse
Affiliation(s)
- Ting-Ting Song
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- Horticulture Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Jing Zhao
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail:
| |
Collapse
|
20
|
Wang ZL, Ying SH, Feng MG. Recognition of a core fragment ofBeauveria bassiana hydrophobin gene promoter (P hyd1) and its special use in improving fungal biocontrol potential. Microb Biotechnol 2013; 6:27-35. [PMID: 22639846 PMCID: PMC3815382 DOI: 10.1111/j.1751-7915.2012.00351.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/13/2012] [Accepted: 04/20/2012] [Indexed: 11/29/2022] Open
Abstract
To identify a suitable promoter for use in engineering fungal entomopathogens to improve heterologous gene expression and fungal biocontrol potential, a 1798 bp promoter (P hyd1) upstream of Beauveria bassiana class I hydrophobin gene (hyd1) was optimized by upstream truncation and site-directed mutation. A truncated 1290 bp fragment (P hyd1-t1) drove eGFP expression in B. bassiana much more efficiently than full-length P hyd1. Further truncating P hyd1-t1 to 1179, 991 and 791 bp or mutating one of the binding domains of three transcription factors in P hyd1-t1 reduced significantly the expression of eGFP (enhanced green fluorescence protein). Under P hyd1-t1 control, eGFP was expressed more abundantly in conidiogenic cells and conidia than in mycelia. Therefore, P hyd1-t1 was used to integrate a bacterium-derived, insect midgut-specific toxin (vip3Aa1) gene into B. bassiana, yielding a transgenic strain (BbHV8) expressing 9.8-fold more toxin molecules in conidia than a counterpart strain (BbV28) expressing the toxin under the control of P gpdA, a promoter widely used for gene expression in fungi. Consequently, BbHV8 showed much higher per os virulence to Spodoptera litura larvae than BbV28 in standardized bioassays with normal conidia for both cuticle penetration and ingestion or heat-killed conidia for ingestion only. Conclusively, P hyd1-t1 is a useful tool for enhancing beneficial protein expression, such as vip3Aa1, in fungal conidia, which are the active ingredients of mycoinsecticides.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang UniversityHangzhou, Zhejiang, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang UniversityHangzhou, Zhejiang, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang UniversityHangzhou, Zhejiang, 310058, China
| |
Collapse
|
21
|
Wang J, Zhou G, Ying SH, Feng MG. P-type calcium ATPase functions as a core regulator of Beauveria bassiana growth, conidiation and responses to multiple stressful stimuli through cross-talk with signalling networks. Environ Microbiol 2012. [PMID: 23206243 DOI: 10.1111/1462-2920.12044] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
P-type Ca(2+) -ATPase (Pmr1) is a core element in calcium-calcineurin pathway and evidence for its cross-talk with other signalling pathways in filamentous fungi is of scarcity. Here, we characterized the striking functions of a Golgi Ca(2+) -ATPase (Bbpmr1) in Beauveria bassiana (fungal entomopathogen) by multi-phenotypic and transcriptional analyses under normal and stressful conditions. Bbpmr1 inactivation caused severe defects in nutritional uptake, growth, conidiation and germination under normal conditions, drastic reductions in cell tolerances to oxidative, hyperosmotic, cell wall disturbing and fungicidal stresses and toxic metal ions during colony growth and/or conidial germination, and half loss of the fungal biocontrol potential represented by conidial virulence, thermotolerance and UV-B resistance. Accompanied with the multi-phenotypic defects, four important genes associated with asexual development were repressed by ≥ 75% in ΔBbpmr1 versus wild type, and all or most of stress-responsive genes encoding 14 cascaded proteins in MAPK pathways, two Ras GTPases, two protein kinases, Ssk1-type response regulator, TOR signalling protein, and many downstream enzymes and proteins were greatly downregulated in ΔBbpmr1 under the chemical stresses. Conclusively, Bbpmr1 regulates positively fundamental aspects on B. bassiana biology and environmental adaptation through wide cross-talk with cellular signalling networks including MAPK cascades and those upstream or independent of the cascades.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | | | | | | |
Collapse
|
22
|
Wang ZL, Zhang LB, Ying SH, Feng MG. Catalases play differentiated roles in the adaptation of a fungal entomopathogen to environmental stresses. Environ Microbiol 2012; 15:409-18. [PMID: 22891860 DOI: 10.1111/j.1462-2920.2012.02848.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The catalase family of Beauveria bassiana (fungal entomopathogen) consists of catA (spore-specific), catB (secreted), catP (peroxisomal), catC (cytoplasmic) and catD (secreted peroxidase/catalase), which were distinguished in phylogeny and structure and functionally characterized by constructing single-gene disrupted and rescued mutants for enzymatic and multi-phenotypic analyses. Total catalase activity decreased 89% and 56% in ΔcatB and ΔcatP, corresponding to the losses of upper and lower active bands gel-profiled for all catalases respectively, but only 9-12% in other knockout mutants. Compared with wild type and complement mutants sharing similar enzymatic and phenotypic parameters, all knockout mutants showed significant (9-56%) decreases in the antioxidant capability of their conidia (active ingredients of mycoinsecticides), followed by remarkable phenotypic defects associated with the fungal biocontrol potential. These defects included mainly the losses of 40% thermotolerance (45°C) in ΔcatA, 46-48% UV-B resistance in ΔcatA and ΔcatD, and 33-47% virulence to Spodoptera litura larvae in ΔcatA, ΔcatP and ΔcatD respectively. Moreover, the drastic transcript upregulation of some other catalase genes observed in the normal culture of each knockout mutant revealed functionally complimentary effects among some of the catalase genes, particularly between catB and catC whose knockout mutants displayed little or minor phenotypic changes. However, the five catalase genes functioned redundantly in mediating the fungal tolerance to either hyperosmotic or fungicidal stress. The differentiated roles of five catalases in regulating the B. bassiana virulence and tolerances to oxidative stress, high temperature and UV-B irradiation provide new insights into fungal adaptation to stressful environment and host invasion.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | | | | | | |
Collapse
|
23
|
Song TT, Ying SH, Feng MG. High resistance of Isaria fumosorosea to carbendazim arises from the overexpression of an ATP-binding cassette transporter (ifT1) rather than tubulin mutation. J Appl Microbiol 2011; 112:175-84. [DOI: 10.1111/j.1365-2672.2011.05188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Ying SH, Feng MG. A conidial protein (CP15) of Beauveria bassiana contributes to the conidial tolerance of the entomopathogenic fungus to thermal and oxidative stresses. Appl Microbiol Biotechnol 2011; 90:1711-20. [PMID: 21455593 DOI: 10.1007/s00253-011-3205-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 11/25/2022]
Abstract
Aerial conidia are central dispersing structures for most fungi and represent the infectious propagule for entomopathogenic fungus Beauveria bassiana, thus the active ingredients of commercial mycoinsecticides. Although a number of formic-acid-extractable (FAE) cell wall proteins from conidia have been characterized, the functions of many such proteins remain obscure. We report that a conidial FAE protein, termed CP15, isolated from B. bassiana is related to fungal tolerance to thermal and oxidative stresses. The full-length genomic sequence of CP15 was shown to lack introns, encoding for a 131 amino acid protein (15.0 kDa) with no sequence identity to any known proteins in the NCBI database. The function of this new gene with two genomic copies was examined using the antisense-RNA method. Five transgenic strains displayed various degrees of silenced CP15 expression, resulting in significantly reduced conidial FAE protein profiles. The FAE protein contents of the strains were linearly correlated to the survival indices of their conidia when exposed to 30-min wet stress at 48°C (r (2) = 0.93). Under prolonged 75-min heat stress, the median lethal times (LT(50)s) of their conidia were significantly reduced by 13.6-29.5%. The CP15 silenced strains were also 20-50% less resistant to oxidative stress but were not affected with respect to UV-B or hyperosmotic stress. Our data indicate that discrete conidial proteins may mediate resistance to some abiotic stresses, and that manipulation of such proteins may be a viable approach to enhancing the environmental fitness of B. bassiana for more persisting control of insect pests in warmer climates.
Collapse
Affiliation(s)
- Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | | |
Collapse
|
25
|
Qin Y, Ying SH, Chen Y, Shen ZC, Feng MG. Integration of insecticidal protein Vip3Aa1 into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per Os infection. Appl Environ Microbiol 2010; 76:4611-8. [PMID: 20495052 PMCID: PMC2901720 DOI: 10.1128/aem.00302-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/11/2010] [Indexed: 11/20/2022] Open
Abstract
The entomopathogenic fungus Beauveria bassiana acts slowly on insect pests through cuticle infection. Vegetative insecticidal proteins (Vip3A) of Bacillus thuringiensis kill lepidopteran pests rapidly, via per os infection, but their use for pest control is restricted to integration into transgenic plants. A transgenic B. bassiana strain (BbV28) expressing Vip3Aa1 (a Vip3A toxin) was thus created to infect the larvae of the oriental leafworm moth Spodoptera litura through conidial ingestion and cuticle adhesion. Vip3Aa1 ( approximately 88 kDa) was highly expressed in the conidial cytoplasm of BbV28 and was detected as a digested form ( approximately 62 kDa) in the larval midgut 18 and 36 h after conidial ingestion. The median lethal concentration (LC(50)) of BbV28 against the second-instar larvae feeding on cabbage leaves sprayed with conidial suspensions was 26.2-fold lower than that of the wild-type strain on day 3 and 1.1-fold lower on day 7. The same sprays applied to both larvae and leaves for their feeding reduced the LC(50) of the transformant 17.2- and 1.3-fold on days 3 and 7, respectively. Median lethal times (LT(50)s) of BbV28 were shortened by 23 to 35%, declining with conidial concentrations. The larvae infected by ingestion of BbV28 conidia showed typical symptoms of Vip3A action, i.e., shrinkage and palsy. However, neither LC(50) nor LT(50) trends differed between BbV28 and its parental strain if the infection occurred through the cuticle only. Our findings indicate that fungal conidia can be used as vectors for spreading the highly insecticidal Vip3A protein for control of foliage feeders such as S. litura.
Collapse
Affiliation(s)
- Yi Qin
- Institute of Microbiology, College of Life Sciences, Insect Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Insect Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Chen
- Institute of Microbiology, College of Life Sciences, Insect Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhi-Cheng Shen
- Institute of Microbiology, College of Life Sciences, Insect Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Insect Science Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
26
|
Shan LT, Wang ZL, Ying SH, Feng MG. Hydrophobicity-Related Protein Contents and Surface Areas of Aerial Conidia are Useful Traits for Formulation Design of Fungal Biocontrol Agents. Mycopathologia 2010; 169:483-94. [DOI: 10.1007/s11046-010-9283-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
|
27
|
Shi WB, Feng MG, Liu SS. Sprays of emulsifiable Beauveria bassiana formulation are ovicidal towards Tetranychus urticae (Acari: Tetranychidae) at various regimes of temperature and humidity. EXPERIMENTAL & APPLIED ACAROLOGY 2008; 46:247-257. [PMID: 18584129 DOI: 10.1007/s10493-008-9172-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 06/09/2008] [Indexed: 05/26/2023]
Abstract
Aerial conidia of Beauveria bassiana in an emulsifiable formulation germinated by >95% after 24 h exposure to the regimes of 20, 25 and 30 degrees C with 51%, 74% and 95% RH. Ovicidal activities of the formulation towards two-spotted spider mite, Tetranychus urticae, were assayed at the concentrations of 0, 18, 160 and 693 conidia mm(-2) sprayed separately onto fava bean leaves including 39 (25-76) eggs per capita. All the sprayed eggs on the leaves were directly exposed to the different regimes for hatch after 24 h maintenance in covered Petri dishes. Generally, hatched proportions increased over post-spray days and decreased with the elevated fungal concentrations; no more eggs hatched from day 9 or 10 onwards. Based on the counts of the hatched/non-hatched eggs in the different regimes, the final egg mortalities were 15.0-40.4%, 48.9-66.6% and 62.9-87.5% at the low, medium and high concentrations, respectively, but only 5.6-11.3% in blank controls. The RH effect on the fungal action was significant at 20 and 25 degrees C but not at 30 degrees C whereas the effect of temperature was significant at 51% and 74% RH but not at 95% RH. Probit analysis of the egg mortalities versus the fungal sprays generated median lethal concentrations (LC(50)) of 65-320 conidia mm(-2) at all the regimes, and of only 65-78 conidia mm(-2) at 25-30 degrees C with 74-95% RH. The results highlight ovicidal activities of the emulsifiable formulation against the mite species at the tested regimes and its potential use in spider mite control.
Collapse
Affiliation(s)
- Wei-Bing Shi
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | | | | |
Collapse
|
28
|
Jiang Q, Ying SH, Feng MG. Enhanced frequency of Beauveria bassiana blastospore transformation by restriction enzyme-mediated integration and electroporation. J Microbiol Methods 2007; 69:512-7. [PMID: 17459503 DOI: 10.1016/j.mimet.2007.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 03/15/2007] [Indexed: 11/17/2022]
Abstract
The techniques of restriction enzyme-mediated integration (REMI) and electroporation (EP) were applied for the first time to improving the blastospore transformation of fungal biocontrol agent Beauveria bassiana for higher frequency. The blastospores from < or =24 h incubation in glucose-mineral medium after shaking conidia for 48 h in Subouraud dextrose broth were found most competent for integrating 1 microg plasmid DNA vectoring the phosphinothricin (PPT) resistance gene bar in 360 microL reaction system containing 100 U HindIII or XbaI. Such blastospores were also most suitable for EP transformation at the optimized field strength of 10 kV cm(-1). The optimized REMI and EP generated averagely 39 and 53 transformants microg(-1) plasmid DNA whereas polyethylene glycol (PEG) integration yielded only 22. All transformants grew well on Czapek's agar containing 400 microg PPT mL(-1) after three rounds of cultivation on the same agar excluding PPT but their parental strain showed no resistance. The target gene inserted into the genomes of 10 transformants randomly taken from REMI or EP transformation was consistently detected by both PCR and Southern blotting. Compared to the PEG integration, REMI and EP enhanced the frequency of the blastospore transformation by 73 and 137%, respectively.
Collapse
Affiliation(s)
- Qiong Jiang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China
| | | | | |
Collapse
|
29
|
Ying SH, Feng MG. Means to mediating accumulation of hydrophobin-like proteins in the wall of Beauveria bassiana conidia for improved tolerance to thermal stress. J GEN APPL MICROBIOL 2007; 53:309-14. [DOI: 10.2323/jgam.53.309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|