1
|
Cardoza E, Singh H. Temporal changes in cold-inducible and uncharacterized Csps under heat and oxidative stress signify a role in bacterial stress response and adaptation. Arch Microbiol 2025; 207:133. [PMID: 40312551 DOI: 10.1007/s00203-025-04317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 05/03/2025]
Abstract
E. coli has a family of nine homologous cold shock proteins (Csps) of which few members are considered stress proteins. Even with high sequence and structural similarity, not all Csps are expressed after a cold shock, and some are not even considered true Csps. Their designation of "cold shock proteins" is therefore misleading. Understanding their roles could shed light on the necessity of multiple Csps in a single bacterium. This study aims to decipher their expression pattern and understand their probable stress-induced functional roles. We analyzed the transcript abundance of csps in response to conditions of nutrients and stresses of cold, heat, and oxidative. The observations revealed diverse induction patterns, with most stresses inducing the uncharacterized and cold-inducible group. In terms of growth in nutrient media, cspA, cspC, cspD, and cspE have varying induction patterns under a rich and minimal medium, while other csps have a stable expression over the growth phases. In response to cold, along with the cold-inducible group, cspF, and cspH are induced whereas cspC, cspD, and cspE do not have a drastic induction pattern. The cspD, cspH, and cspB are particularly upregulated in response to heat, while the levels of cspC decrease over time. Additionally, exposure to 10mM H2O2 significantly upregulated cspA, cspF, and cspI at 15 min and, along with them, cspC, cspE, and cspH at 30 min. In conclusion, this article describes the novel stress induction pattern of all csps and lays emphasis on cspF and cspH that are still to be assigned a functional role. Therefore, though structurally similar, Csps are differentially expressed and could have stress-induced functional roles within the stress response network of E. coli.
Collapse
Affiliation(s)
- Evieann Cardoza
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle (West), Mumbai, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle (West), Mumbai, India.
| |
Collapse
|
2
|
Zhao W, Zheng S, Ye C, Li J, Yu X. Nonlinear impacts of temperature on antibiotic resistance in Escherichia coli. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100475. [PMID: 39280591 PMCID: PMC11402153 DOI: 10.1016/j.ese.2024.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
The increase in bacterial antibiotic resistance poses a significant threat to the effectiveness of antibiotics, and there is growing evidence suggesting that global warming may speed up this process. However, the direct influence of temperature on the development of antibiotic resistance and the underlying mechanisms is not yet fully understood. Here we show that antibiotic resistance exhibits a nonlinear response to elevated temperatures under the combined stress of temperatures and antibiotics. We find that the effectiveness of gatifloxacin against Escherichia coli significantly diminishes at 42 °C, while resistance increases 256-fold at 27 °C. Additionally, the increased transcription levels of genes such as marA, ygfA, and ibpB with rising temperatures, along with gene mutations at different sites, explain the observed variability in resistance patterns. These findings highlight the complexity of antibiotic resistance evolution and the urgent need for comprehensive studies to understand and mitigate the effects of global warming on antibiotic resistance.
Collapse
Affiliation(s)
- Wenya Zhao
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| | - Shikan Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| | - Jianguo Li
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, 361102, China
| |
Collapse
|
3
|
Cardoza E, Singh H. From Stress Tolerance to Virulence: Recognizing the Roles of Csps in Pathogenicity and Food Contamination. Pathogens 2024; 13:69. [PMID: 38251376 PMCID: PMC10819108 DOI: 10.3390/pathogens13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Be it for lab studies or real-life situations, bacteria are constantly exposed to a myriad of physical or chemical stresses that selectively allow the tolerant to survive and thrive. In response to environmental fluctuations, the expression of cold shock domain family proteins (Csps) significantly increases to counteract and help cells deal with the harmful effects of stresses. Csps are, therefore, considered stress adaptation proteins. The primary functions of Csps include chaperoning nucleic acids and regulating global gene expression. In this review, we focus on the phenotypic effects of Csps in pathogenic bacteria and explore their involvement in bacterial pathogenesis. Current studies of csp deletions among pathogenic strains indicate their involvement in motility, host invasion and stress tolerance, proliferation, cell adhesion, and biofilm formation. Through their RNA chaperone activity, Csps regulate virulence-associated genes and thereby contribute to bacterial pathogenicity. Additionally, we outline their involvement in food contamination and discuss how foodborne pathogens utilize the stress tolerance roles of Csps against preservation and sanitation strategies. Furthermore, we highlight how Csps positively and negatively impact pathogens and the host. Overall, Csps are involved in regulatory networks that influence the expression of genes central to stress tolerance and virulence.
Collapse
Affiliation(s)
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle West, Mumbai 400056, India
| |
Collapse
|
4
|
Cellular RNA Targets of Cold Shock Proteins CspC and CspE and Their Importance for Serum Resistance in Septicemic Escherichia coli. mSystems 2022; 7:e0008622. [PMID: 35695420 PMCID: PMC9426608 DOI: 10.1128/msystems.00086-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The RNA chaperones, cold shock proteins CspC and CspE, are important in stress response and adaptation. We studied their role in the pathogenesis of a virulent Escherichia coli, representative of extraintestinal pathogenic E. coli (ExPEC) which are serum resistant and septicemic. We performed a global analysis to identify transcripts that interact with these cold shock proteins (CSPs), focusing on virulence-related genes. We used CLIP-seq, which combines UV cross-linking, immunoprecipitation and RNA sequencing. A large number of transcripts bound to the CSPs were identified, and many bind both CspC and CspE. Many transcripts were of genes involved in protein synthesis, transcription and energy metabolism. In addition, there were virulence-related genes, (i.e., fur and ryhB), essential for iron homeostasis. The CLIP-seq results were validated on two transcripts, clpX and tdcA, reported as virulence-associated. Deletion of either CspC or CspE significantly decreased their transcript levels and in a double deletion mutant cspC/cspE, the transcript stability of tdcA and clpX was reduced by 32-fold and 10-fold, respectively. We showed that these two genes are important for virulence, as deleting either of them resulted in loss of serum resistance, a requirement for sepsis. As several virulence-related transcripts interact with CspC or CspE, we determined the importance of these proteins for growth in serum and showed that deletion of either gene significantly reduced serum survival. This phenotype could be partially complemented by cspE and fully complemented by cspC. These results indicate that the two RNA chaperones are essential for virulence, and that CspC particularly critical. IMPORTANCE Virulent Escherichia coli strains that cause infections outside the intestinal tract—extraintestinal pathogenic E. coli (ExPEC)—constitute a major clinical problem worldwide. They are involved in several distinct conditions, including urinary tract infections, newborn meningitis, and sepsis. Due to increasing antibiotic resistance, these strains are a main factor in hospital and community-acquired infections. Because many strains, which do not cross-react immunologically are involved, developing a simple vaccine is not possible. Therefore, it is essential to understand the pathogenesis of these bacteria to identify potential targets for developing drugs or vaccines. One of the least investigated systems involves RNA binding proteins, important for stability of transcripts and global gene regulation. Two such proteins are CspC and CspE (“cold shock proteins”), RNA chaperones involved in stress adaptation. Here we performed a global analysis to identify the transcripts which are affected by these two chaperones, with focus on virulence-associated transcripts.
Collapse
|
5
|
Olaniyan OT, Dare A, Okoli B, Adetunji CO, Ibitoye BO, Okotie GE, Eweoya O. Increase in SARS-CoV-2 infected biomedical waste among low middle-income countries: environmental sustainability and impact with health implications. J Basic Clin Physiol Pharmacol 2021; 33:27-44. [PMID: 34293833 DOI: 10.1515/jbcpp-2020-0533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/28/2021] [Indexed: 12/15/2022]
Abstract
Studies have shown that severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) is a highly infectious disease, with global deaths rising to about 360,438 as of 28 May 2020. Different countries have used various approaches such as lockdown, social distancing, maintenance of personal hygiene, and increased establishment of testing and isolation centers to manage the pandemic. Poor biomedical waste (BMW) management, treatment, and disposal techniques, especially SARS-CoV-2 infected BMW, may threaten the environmental and public health in most developing countries and, by extension, impact the economic status of individuals and the nation at large. This may increase the potential for the transmission of air/blood body fluid-borne pathogens, increase the growth of microorganisms, risk of mutagenesis, and upsurge of more virulent strain. In contrast, uncontrolled substandard burning could increase the potential spread of nosocomial infection and environmental exposure to toxic organic compounds, heavy metals, radioactive, and genotoxic bio-aerosols which might be present in the gaseous, liquid, and solid by-products. The paucity of understanding of pathophysiology and management of the SARS-CoV-2 pandemic has also necessitated the need to put in place appropriate disposal techniques to cater for the sudden increase in the global demand for personal protective equipment (PPE) and pharmaceutical drugs to manage the pandemic and to reduce the risk of preventable infection by the waste. Therefore, there is a need for adequate sensitization, awareness, and environmental monitoring of the impacts of improper handling of SARS-CoV-2 infected BMWs. Hence, this review aimed to address the issues relating to the improper management of increased SARS-CoV-2 infected BMW in low middle-income countries (LMICs).
Collapse
Affiliation(s)
- Olugbemi T Olaniyan
- Department of Physiology, Laboratory for Reproductive Biology and Developmental Programming, Edo University Iyamho, Iyamho, Nigeria
| | - Ayobami Dare
- Discipline of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bamidele Okoli
- Institute of Chemical and Biotechnology, Vaal University of Technology, Southern Gauteng Science and Technology Park, Sebokeng, South Africa
| | - Charles O Adetunji
- Department of Microbiology, Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Edo University Iyamho, Iyamho, Edo State, Nigeria
| | | | - Gloria E Okotie
- Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Olugbenga Eweoya
- Department of Anatomical Sciences, School of Medicine and Allied Health Sciences, University of the Gambia, Serekunda, The Gambia
| |
Collapse
|
6
|
Roux C, Etienne TA, Hajnsdorf E, Ropers D, Carpousis AJ, Cocaign-Bousquet M, Girbal L. The essential role of mRNA degradation in understanding and engineering E. coli metabolism. Biotechnol Adv 2021; 54:107805. [PMID: 34302931 DOI: 10.1016/j.biotechadv.2021.107805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
Metabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E. coli that metabolic engineering strategies should take into account. We first discuss how mRNA degradation interacts with transcription and translation, two other gene expression processes, to balance transcription regulation and remove poorly translated mRNAs. The many reciprocal interactions between mRNA degradation and metabolism are also highlighted: metabolic activity can be controlled by changes in mRNA degradation and in return, the activity of the mRNA degradation machinery is controlled by metabolic factors. The mathematical models of the crosstalk between mRNA degradation dynamics and other cellular processes are presented and discussed with a view towards novel mRNA degradation-based metabolic engineering strategies. We show finally that mRNA degradation-based strategies have already successfully been applied to improve heterologous protein synthesis. Overall, this review underlines how important mRNA degradation is in regulating E. coli metabolism and identifies mRNA degradation as a key target for innovative metabolic engineering strategies in biotechnology.
Collapse
Affiliation(s)
- Charlotte Roux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Thibault A Etienne
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; Univ. Grenoble Alpes, Inria, 38000 Grenoble, France.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | - A J Carpousis
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; LMGM, Université de Toulouse, CNRS, UPS, CBI, 31062 Toulouse, France.
| | | | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France.
| |
Collapse
|
7
|
Cardoza E, Singh H. C Group-Mediated Antibiotic Stress Mimics the Cold Shock Response. Curr Microbiol 2021; 78:3372-3380. [PMID: 34283283 DOI: 10.1007/s00284-021-02613-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
A temperature downshift results in stabilized secondary structure formation in mRNA that halts translation to which Escherichia coli responds by synthesizing a set of proteins termed as cold shock proteins (Csps). To cope with the sudden temperature drop, gene expression patterns are reprogrammed to induce Csps at the cost of other proteins. Out of the nine homologous proteins in the CspA family, CspA, CspB, CspG, and CspI have major roles in protecting the cell under a cold shock. Additionally, a subset of Csps has conferred the organism an ability to adapt to various stresses along the lines of nutrient deprivation, oxidative, heat, acid, and antibiotic stresses. Stressors like C group translational inhibitors stall the translational apparatus and produce a response similar to that observed under a temperature downshift. Conditions set by the antibiotic therefore elicit a cold shock response and induce the major Csps, thereby pointing out to a common mechanism existing between the two. In the current review, we briefly describe the induction of E. coli Csps under an antibiotic stress acquired from data published previously and help establish the role of Csps in protecting the cell against the inducing agents and as a participant in the organisms' complex stress response network.
Collapse
Affiliation(s)
- Evieann Cardoza
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, India.
| |
Collapse
|
8
|
Cardoza E, Singh H. Involvement of CspC in response to diverse environmental stressors in Escherichia coli. J Appl Microbiol 2021; 132:785-801. [PMID: 34260797 DOI: 10.1111/jam.15219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
The ability of Escherichia coli surviving a cold shock lies mainly with the induction of a few Csps termed as 'Major cold shock proteins'. Regardless of high sequence similarity among the nine homologous members, CspC appears to be functionally diverse in conferring the cell adaptability to various stresses based on fundamental properties of the protein including nucleic acid binding, nucleic acid melting and regulatory activity. Spanning three different stress regulons of acid, oxidative and heat, CspC regulates gene expression and transcript stability of stress proteins and bestows upon the cell tolerance to lethal-inducing agents ultimately helping it adapt to severe environmental assaults. While its exact role in cellular physiology is still to be detailed, understanding the transcriptional and translational control will likely provide insights into the mechanistic role of CspC under stress conditions. To this end, we review the knowledge on stress protein regulation by CspC and highlight its activity in response to stressors thereby elucidating its role as a major Csp player in response to one too many environmental triggers. The knowledge presented here could see various downstream applications in engineering microbes for industrial, agricultural and research applications in order to achieve high product efficiency and to aid bacteria cope with environmentally harsh conditions.
Collapse
Affiliation(s)
- Evieann Cardoza
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| |
Collapse
|
9
|
Effect of temperature on Burkholderia pseudomallei growth, proteomic changes, motility and resistance to stress environments. Sci Rep 2018; 8:9167. [PMID: 29907803 PMCID: PMC6004011 DOI: 10.1038/s41598-018-27356-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Burkholderia pseudomallei is a flagellated, gram-negative environmental bacterium that causes melioidosis, a severe infectious disease of humans and animals in tropical areas. We hypothesised that B. pseudomallei may undergo phenotypic adaptation in response to an increase in growth temperature. We analysed the growth curves of B. pseudomallei strain 153 cultured in Luria–Bertani broth at five different temperatures (25 °C–42 °C) and compared the proteomes of bacteria cultured at 37 °C and 42 °C. B. pseudomallei exhibited the highest growth rate at 37 °C with modest reductions at 30 °C, 40 °C and 42 °C but a more marked delay at 25 °C. Proteome analysis revealed 34 differentially expressed protein spots between bacterial cultures at 42 °C versus 37 °C. These were identified as chaperones (7 spots), metabolic enzymes (12 spots), antioxidants (10 spots), motility proteins (2 spots), structural proteins (2 spots) and hypothetical proteins (1 spot). Of the 22 down-regulated proteins at 42 °C, redundancy in motility and antioxidant proteins was observed. qRT-PCR confirmed decreased expression of fliC and katE. Experiments on three B. pseudomallei strains demonstrated that these had the highest motility, greatest resistance to H2O2 and greatest tolerance to salt stress at 37 °C. Our data suggest that temperature affects B. pseudomallei motility and resistance to stress.
Collapse
|
10
|
Biran D, Rotem O, Rosen R, Ron EZ. Coping with High Temperature: A Unique Regulation in A. tumefaciens. Curr Top Microbiol Immunol 2018; 418:185-194. [PMID: 30182196 DOI: 10.1007/82_2018_119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Elevation of temperature is a frequent and considerable stress for mesophilic bacteria. Therefore, several molecular mechanisms have evolved to cope with high temperature. We have been studying the response of Agrobacterium tumefaciens to temperature stress, focusing on two aspects: the heat-shock response and the temperature-dependent regulation of methionine biosynthesis. The results indicate that the molecular mechanisms involved in A. tumefaciens control of growth at high temperature are unique and we are still missing important information essential for understanding how these bacteria cope with temperature stress.
Collapse
Affiliation(s)
- Dvora Biran
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Or Rotem
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ran Rosen
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Eliora Z Ron
- School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
11
|
Jia H, Sun X, Sun H, Li C, Wang Y, Feng X, Li C. Intelligent Microbial Heat-Regulating Engine (IMHeRE) for Improved Thermo-Robustness and Efficiency of Bioconversion. ACS Synth Biol 2016; 5:312-20. [PMID: 26793993 DOI: 10.1021/acssynbio.5b00158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growth and production of microorganisms in bioconversion are often hampered by heat stress. In this study, an intelligent microbial heat-regulating engine (IMHeRE) was developed and customized to improve the thermo-robustness of Escherichia coli via the integration of a thermotolerant system and a quorum-regulating system. At the cell level, the thermotolerant system composed of different heat shock proteins and RNA thermometers hierarchically expands the optimum temperature by sensing heat changes. At the community level, the quorum-regulating system dynamically programs the altruistic sacrifice of individuals to reduce metabolic heat release by sensing the temperature and cell density. Using this hierarchical, dynamical, and multilevel regulation, the IMHeRE is able to significantly improve cell growth and production. In a real application, the production of lysine was increased 5-fold at 40 °C using the IMHeRE. Our work provides new potential for the development of bioconversion by conserving energy and increasing productivity.
Collapse
Affiliation(s)
- Haiyang Jia
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiangying Sun
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Huan Sun
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chenyi Li
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yunqian Wang
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xudong Feng
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chun Li
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- State
Key Laboratory of System Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
12
|
Mechanism to control the cell lysis and the cell survival strategy in stationary phase under heat stress. SPRINGERPLUS 2015; 4:599. [PMID: 26543734 PMCID: PMC4627973 DOI: 10.1186/s40064-015-1415-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 10/07/2015] [Indexed: 11/10/2022]
Abstract
An array of stress signals triggering the bacterial cellular stress response is well known in Escherichia coli and other bacteria. Heat stress is usually sensed through the misfolded outer membrane porin (OMP) precursors in the periplasm, resulting in the activation of σ(E) (encoded by rpoE), which binds to RNA polymerase to start the transcription of genes required for responding against the heat stress signal. At the elevated temperatures, σ(E) also serves as the transcription factor for σ(H) (the main heat shock sigma factor, encoded by rpoH), which is involved in the expression of several genes whose products deal with the cytoplasmic unfolded proteins. Besides, oxidative stress in form of the reactive oxygen species (ROS) that accumulate due to heat stress, has been found to give rise to viable but non-culturable (VBNC) cells at the early stationary phase, which is in turn lysed by the σ(E)-dependent process. Such lysis of the defective cells may generate nutrients for the remaining population to survive with the capacity of formation of colony forming units (CFUs). σ(H) is also known to regulate the transcription of the major heat shock proteins (HSPs) required for heat shock response (HSR) resulting in cellular survival. Present review concentrated on the cellular survival against heat stress employing the harmonized impact of σ(E) and σ(H) regulons and the HSPs as well as their inter connectivity towards the maintenance of cellular survival.
Collapse
|
13
|
Liu C, Niu Y, Zhou X, Zheng X, Wang S, Guo Q, Li Y, Li M, Li J, Yang Y, Ding Y, Lamont RJ, Xu X. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism. Sci Rep 2015; 5:12929. [PMID: 26251057 PMCID: PMC4528225 DOI: 10.1038/srep12929] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 07/14/2015] [Indexed: 02/05/2023] Open
Abstract
Dental caries is closely associated with the virulence of Streptococcus mutans. The virulence expression of S. mutans is linked to its stress adaptation to the changes in the oral environment. In this work we used whole-genome microarrays to profile the dynamic transcriptomic responses of S. mutans during physiological heat stress. In addition, we evaluated the phenotypic changes, including, eDNA release, initial biofilm formation, extracellular polysaccharides generation, acid production/acid tolerance, and ATP turnover of S. mutans during heat stress. There were distinct patterns observed in the way that S. mutans responded to heat stress that included 66 transcription factors for the expression of functional genes being differentially expressed. Especially, response regulators of two component systems (TCSs), the repressors of heat shock proteins and regulators involved in sugar transporting and metabolism co-ordinated to enhance the cell’s survival and energy generation against heat stress in S. mutans.
Collapse
Affiliation(s)
- Chengcheng Liu
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [3] Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Yulong Niu
- Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Xuedong Zhou
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Xin Zheng
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Shida Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Qiang Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yuqing Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Mingyun Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jiyao Li
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yi Yang
- Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China
| | - Yi Ding
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Richard J Lamont
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Xin Xu
- 1] State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China [2] Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| |
Collapse
|
14
|
|
15
|
Conditional, temperature-induced proteolytic regulation of cyanobacterial RNA helicase expression. J Bacteriol 2014; 196:1560-8. [PMID: 24509313 DOI: 10.1128/jb.01362-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Conditional proteolysis is a crucial process regulating the abundance of key regulatory proteins associated with the cell cycle, differentiation pathways, or cellular response to abiotic stress in eukaryotic and prokaryotic organisms. We provide evidence that conditional proteolysis is involved in the rapid and dramatic reduction in abundance of the cyanobacterial RNA helicase, CrhR, in response to a temperature upshift from 20 to 30°C. The proteolytic activity is not a general protein degradation response, since proteolysis is only present and/or functional in cells grown at 30°C and is only transiently active at 30°C. Degradation is also autoregulatory, since the CrhR proteolytic target is required for activation of the degradation machinery. This suggests that an autoregulatory feedback loop exists in which the target of the proteolytic machinery, CrhR, is required for activation of the system. Inhibition of translation revealed that only elongation is required for induction of the temperature-regulated proteolysis, suggesting that translation of an activating factor was already initiated at 20°C. The results indicate that Synechocystis responds to a temperature shift via two independent pathways: a CrhR-independent sensing and signal transduction pathway that regulates induction of crhR expression at low temperature and a CrhR-dependent conditional proteolytic pathway at elevated temperature. The data link the potential for CrhR RNA helicase alteration of RNA secondary structure with the autoregulatory induction of conditional proteolysis in the response of Synechocystis to temperature upshift.
Collapse
|
16
|
Lenz G, Ron EZ. Novel interaction between the major bacterial heat shock chaperone (GroESL) and an RNA chaperone (CspC). J Mol Biol 2013; 426:460-6. [PMID: 24148697 DOI: 10.1016/j.jmb.2013.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/13/2013] [Accepted: 10/14/2013] [Indexed: 01/16/2023]
Abstract
The heat shock response is one of the main global regulatory networks in all organisms and involves an increased cellular level of chaperones and proteases to enable correct protein folding and balanced growth. One of the major heat shock chaperones in Escherichia coli is GroESL, composed of GroES and GroEL (the bacterial Hsp10 and Hsp60 homologues), which is essential for refolding of misfolded proteins. GroESL was previously shown to play a role in the regulation of the heat shock response by promoting the proteolysis of the regulatory protein--sigma32 (RpoH), the heat shock transcription activator. Here we show the involvement of GroESL in another proteolytic process, this of the major RNA chaperone--CspC--that specifically stabilizes the transcripts of several stress-related genes. Evidence is provided for an interaction between GroESL and CspC that results in enhanced, temperature-dependent proteolysis of the latter. This interaction is of regulatory importance, as reduction in the cellular levels of CspC leads to a decrease in stability of the major heat shock gene transcripts.
Collapse
Affiliation(s)
- Gal Lenz
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eliora Z Ron
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; MIGAL, Galilee Research Center, Kiriat Shmone, Israel.
| |
Collapse
|
17
|
Rosana ARR, Chamot D, Owttrim GW. Autoregulation of RNA helicase expression in response to temperature stress in Synechocystis sp. PCC 6803. PLoS One 2012; 7:e48683. [PMID: 23119089 PMCID: PMC3485376 DOI: 10.1371/journal.pone.0048683] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/28/2012] [Indexed: 12/12/2022] Open
Abstract
RNA helicases are ubiquitous enzymes whose modification of RNA secondary structure is known to regulate RNA function. The pathways controlling RNA helicase expression, however, have not been well characterized. Expression of the cyanobacterial RNA helicase, crhR, is regulated in response to environmental signals that alter the redox poise of the electron transport chain, including light and temperature. Here we analyze crhR expression in response to alteration of abiotic conditions in wild type and a crhR mutant, providing evidence that CrhR autoregulates its own expression through a combination of transcriptional and post-transcriptional mechanisms. Temperature regulates crhR expression through alteration of both transcript and protein half-life which are significantly extended at low temperature (20°C). CrhR-dependent mechanisms regulate both the transient accumulation of crhR transcript at 20°C and stability of the CrhR protein at all temperatures. CrhR-independent mechanisms regulate temperature sensing and induction of crhR transcript accumulation at 20°C and the temperature regulation of crhR transcript stability, suggesting CrhR is not directly associated with crhR mRNA turnover. Many of the processes are CrhR- and temperature-dependent and occur in the absence of a correlation between crhR transcript and protein abundance. The data provide important insights into not only how RNA helicase gene expression is regulated but also the role that rearrangement of RNA secondary structure performs in the molecular response to temperature stress. We propose that the crhR-regulatory pathway exhibits characteristics similar to the heat shock response rather than a cold stress-specific mechanism.
Collapse
Affiliation(s)
| | - Danuta Chamot
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - George W. Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
18
|
Shenhar Y, Biran D, Ron EZ. Resistance to environmental stress requires the RNA chaperones CspC and CspE. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:532-539. [PMID: 23760898 DOI: 10.1111/j.1758-2229.2012.00358.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Stress response is essential for adaptation and for survival during environmental changes. A major factor in these responses is RpoS (σS), the master regulator of stationary phase and of the general stress response in Escherichia coli. RpoS is regulated by a complex network at several levels - transcription, translation and proteolysis. Previous studies indicated that rpoS transcripts are stabilized by overexpression of the cold shock proteins CspC and CspE. Here we demonstrate the importance of this transcript stabilization in the regulatory networks governing σS activity. We show that upon entry into stationary-phase rpoS transcripts are stabilized and this stabilization is necessary for the increased activity of σS. The increase in rpoS transcript stability requires at least one of the cold shock proteins CspC and CspE. We also show that the cellular concentration of CspC - but not CspE - increases concurrently with the increase in rpoS transcript stability, probably accounting for this stabilization. These data expand previous data showing that upon heat shock there is a reduction in CspC levels, coupled to a reduced half-life of heat shock gene transcripts. Taken together, it appears that CspC levels modulate transcript stability upon exposure to environmental stress while CspE acts as a 'housekeeping RNA chaperone' under general stress conditions.
Collapse
Affiliation(s)
- Yotam Shenhar
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978. MIGAL - Galil Research Center, Kiriat Shmone, Israel
| | | | | |
Collapse
|
19
|
Dimethyl sulfoxide and ethanol elicit increased amyloid biogenesis and amyloid-integrated biofilm formation in Escherichia coli. Appl Environ Microbiol 2012; 78:3369-78. [PMID: 22389366 DOI: 10.1128/aem.07743-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Escherichia coli directs the assembly of functional amyloid fibers termed "curli" that mediate adhesion and biofilm formation. We discovered that E. coli exhibits a tunable and selective increase in curli protein expression and fiber assembly in response to moderate concentrations of dimethyl sulfoxide (DMSO) and ethanol. Furthermore, the molecular alterations resulted in dramatic functional phenotypes associated with community behavior, including (i) cellular agglutination in broth, (ii) altered colony morphology, and (iii) increased biofilm formation. Solid-state nuclear magnetic resonance (NMR) spectra of intact pellicles formed in the presence of [(13)C(2)]DMSO confirmed that DMSO was not being transformed and utilized directly for metabolism. Collectively, the chemically induced phenotypes emphasize the plasticity of E. coli's response to environmental stimuli to enhance amyloid production and amyloid-integrated biofilm formation. The data also support our developing model of the extracellular matrix as an organized assembly of polymeric components, including amyloid fibers, in which composition relates to bacterial physiology and community function.
Collapse
|
20
|
Huwiler SG, Beyer C, Fröhlich J, Hennecke H, Egli T, Schürmann D, Rehrauer H, Fischer HM. Genome-wide transcription analysis of Escherichia coli in response to extremely low-frequency magnetic fields. Bioelectromagnetics 2012; 33:488-96. [DOI: 10.1002/bem.21709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 01/11/2012] [Indexed: 11/09/2022]
|
21
|
Lenz G, Doron-Faigenboim A, Ron EZ, Tuller T, Gophna U. Sequence features of E. coli mRNAs affect their degradation. PLoS One 2011; 6:e28544. [PMID: 22163312 PMCID: PMC3233582 DOI: 10.1371/journal.pone.0028544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022] Open
Abstract
Degradation of mRNA in bacteria is a regulatory mechanism, providing an efficient way to fine-tune protein abundance in response to environmental changes. While the mechanisms responsible for initiation and subsequent propagation of mRNA degradation are well studied, the mRNA features that affect its stability are yet to be elucidated. We calculated three properties for each mRNA in the E. coli transcriptome: G+C content, tRNA adaptation index (tAI) and folding energy. Each of these properties were then correlated with the experimental transcript half life measured for each transcript and detected significant correlations. A sliding window analysis identified the regions that displayed the maximal signal. The correlation between transcript half life and both G+C content and folding energy was strongest at the 5' termini of the mRNAs. Partial correlations showed that each of the parameters contributes separately to mRNA half life. Notably, mRNAs of recently-acquired genes in the E. coli genome, which have a distinct nucleotide composition, tend to be highly stable. This high stability may aid the evolutionary fixation of horizontally acquired genes.
Collapse
Affiliation(s)
- Gal Lenz
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Adi Doron-Faigenboim
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Eliora Z. Ron
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Tamir Tuller
- Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Israel
| | - Uri Gophna
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
22
|
Gur E, Biran D, Ron EZ. Regulated proteolysis in Gram-negative bacteria--how and when? Nat Rev Microbiol 2011; 9:839-48. [PMID: 22020261 DOI: 10.1038/nrmicro2669] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Most bacteria live in a dynamic environment where temperature, availability of nutrients and the presence of various chemicals vary, which requires rapid adaptation. Many of the adaptive changes are determined by changes in the transcription of global regulatory networks, but this response is slow because most bacterial proteins are stable and their concentration remains high even after transcription slows down. To respond rapidly, an additional level of regulation has evolved: the degradation of key proteins. However, as proteolysis is an irreversible process, it is subject to tight regulation of substrate binding and degradation. Here we review the roles of the proteolytic enzymes in Gram-negative bacteria and how these enzymes can be regulated to target only a subset of proteins.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
23
|
de Lorenzo V. Genes that move the window of viability of life: lessons from bacteria thriving at the cold extreme: mesophiles can be turned into extremophiles by substituting essential genes. Bioessays 2011; 33:38-42. [PMID: 21072830 DOI: 10.1002/bies.201000101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whether occurrence of life at the physicochemical extremes results from the entire adaptation of organisms to such settings or it originates from the action of a few genes has been debated for a long time. Recent evidence suggests that a limited number of functions suffice to change the predilection of microorganisms for radically different environmental scenarios. For instance, expression of a few genes from cold-loving bacteria in mesophilic hosts allows them to grow at much lower temperatures and become heat-sensitive. This has been exploited not only for constructing Escherichia coli strains able to grow at 5-10 °C (and thus optimised as hosts for heterologous gene expression) but also for designing vaccines based on temperature-sensitive pathogens. Occurrence of genes/functions that reframe the windows of viability may also ask for a revision of some concepts in microbial ecology and may provide new tools for engineering bacteria with a superior biotechnological performance.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CSIC Cantoblanco, Madrid, Spain
| |
Collapse
|
24
|
Langklotz S, Narberhaus F. The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease. Mol Microbiol 2011; 80:1313-25. [DOI: 10.1111/j.1365-2958.2011.07646.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
René O, Alix JH. Late steps of ribosome assembly in E. coli are sensitive to a severe heat stress but are assisted by the HSP70 chaperone machine. Nucleic Acids Res 2010; 39:1855-67. [PMID: 21059683 PMCID: PMC3061059 DOI: 10.1093/nar/gkq1049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The late stages of 30S and 50S ribosomal subunits biogenesis have been studied in a wild-type (wt) strain of Escherichia coli (MC4100) subjected to a severe heat stress (45–46°C). The 32S and 45S ribosomal particles (precursors to 50S subunits) and 21S ribosomal particles (precursors to 30S subunits) accumulate under these conditions. They are authentic precursors, not degraded or dead-end particles. The 21S particles are shown, by way of a modified 3′5′ RACE procedure, to contain 16S rRNA unprocessed, or processed at its 5′ end, and not at the 3′ end. This implies that maturation of 16S rRNA is ordered and starts at its 5′-terminus, and that the 3′-terminus is trimmed at a later step. This observation is not limited to heat stress conditions, but it also can be verified in bacteria growing at a normal temperature (30°C), supporting the idea that this is the general pathway. Assembly defects at very high temperature are partially compensated by plasmid-driven overexpression of the DnaK/DnaJ chaperones. The ribosome assembly pattern in wt bacteria under a severe heat stress is therefore reminiscent of that observed at lower temperatures in E. coli mutants lacking the chaperones DnaK or DnaJ.
Collapse
Affiliation(s)
- Olivier René
- CNRS UPR9073 (affiliated with University Paris 7-Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, F-75005 Paris
| | | |
Collapse
|
26
|
CspC regulates rpoS transcript levels and complements hfq deletions. Res Microbiol 2010; 161:694-700. [PMID: 20633642 DOI: 10.1016/j.resmic.2010.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 11/21/2022]
Abstract
The general stress response in Escherichia coli is activated by several stress agents, including entering the stationary growth phase. This response constitutes a complex regulatory network in which a large number of genes are induced and others are repressed. The stress response is regulated by the alternative sigma factor σ(S) encoded by the rpoS gene. The rpoS transcripts are substrates of the RNA binding protein, Hfq, which is essential for its translation. The rpoS mRNA is also a substrate of the cold shock protein C (CspC) which stabilizes the transcripts. Here we demonstrate, using pull-down assays, that CspC interacts with Hfq via mRNA molecules. We also show that CspC acts on the 5' UTR of the rpoS transcript, but its activity on rpoS is independent of Hfq. Moreover, we show that CspC suppresses the phenotypes of an hfq deletion. These results elucidate a new aspect in the post-transcriptional regulation of the stress response and will further our understanding of this complex network.
Collapse
|
27
|
Katz C, Rasouly A, Gur E, Shenhar Y, Biran D, Ron EZ. Temperature-dependent proteolysis as a control element in Escherichia coli metabolism. Res Microbiol 2009; 160:684-6. [PMID: 19770038 DOI: 10.1016/j.resmic.2009.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/23/2009] [Accepted: 08/27/2009] [Indexed: 11/25/2022]
Abstract
Escherichia coli can grow at a broad temperature range, from less than 20 degrees C up to 45 degrees C. An increase in temperature results in a major physiological change, as enzymes work faster but, on the other hand, proteins tend to unfold. Therefore, a shift-up in temperature results in the induction of several regulatory response mechanisms aimed at restoring balanced growth at the new temperature. One important mechanism involves temperature-dependent proteolysis, which constitutes a fast response to temperature shift-ups. Here we discuss the effect of proteolysis on protein synthesis, and the heat shock response.
Collapse
Affiliation(s)
- Chen Katz
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Levanon St, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|