1
|
Liu C, Shi R, Jensen MS, Zhu J, Liu J, Liu X, Sun D, Liu W. The global regulation of c-di-GMP and cAMP in bacteria. MLIFE 2024; 3:42-56. [PMID: 38827514 PMCID: PMC11139211 DOI: 10.1002/mlf2.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/09/2023] [Indexed: 06/04/2024]
Abstract
Nucleotide second messengers are highly versatile signaling molecules that regulate a variety of key biological processes in bacteria. The best-studied examples are cyclic AMP (cAMP) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which both act as global regulators. Global regulatory frameworks of c-di-GMP and cAMP in bacteria show several parallels but also significant variances. In this review, we illustrate the global regulatory models of the two nucleotide second messengers, compare the different regulatory frameworks between c-di-GMP and cAMP, and discuss the mechanisms and physiological significance of cross-regulation between c-di-GMP and cAMP. c-di-GMP responds to numerous signals dependent on a great number of metabolic enzymes, and it regulates various signal transduction pathways through its huge number of effectors with varying activities. In contrast, due to the limited quantity, the cAMP metabolic enzymes and its major effector are regulated at different levels by diverse signals. cAMP performs its global regulatory function primarily by controlling the transcription of a large number of genes via cAMP receptor protein (CRP) in most bacteria. This review can help us understand how bacteria use the two typical nucleotide second messengers to effectively coordinate and integrate various physiological processes, providing theoretical guidelines for future research.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Rui Shi
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Marcus S. Jensen
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Xiaobo Liu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information TechnologyNanjing University of Science and TechnologyNanjingChina
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
2
|
Liaudanskaya AI, Vychik PV, Maximova NP, Verameyenka KG. Genome analysis of Pseudomonas chlororaphis subsp. aurantiaca mutant strains with increased production of phenazines. Arch Microbiol 2022; 204:247. [PMID: 35397008 DOI: 10.1007/s00203-021-02648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Genomes of three strains-phenazine producers-Pseudomonas chlororaphis subsp. aurantiaca (B-162 (wild type), mutant strain B-162/255, and its derivative B-162/17) were sequenced and compared. Comparison of a wild-type strain and B-162/255 mutant genomes revealed 32 mutations. 19 new mutations were detected in the genome of B-162/17. Further bioinformatics analysis allowed us to predict mutant protein functions and secondary structures of five gene products, mutations which might potentially influence phenazine synthesis and secretion in Pseudomonas bacteria. These genes encode phenylalanine hydroxylase transcriptional activator PhhR, type I secretion system permease/ATPase, transcriptional regulator MvaT, GacA response regulator, and histidine kinase. Amino acid substitutions were found in domains of studied proteins. One deletion in an intergenic region could affect a potential transcription factor binding site that participates in the regulation of gene that encodes ABC transporter.
Collapse
Affiliation(s)
| | - Pavel V Vychik
- Belarusian State University, Nezavisimisty Ave. 4, 220030, Minsk, Belarus
| | - Natalia P Maximova
- Belarusian State University, Nezavisimisty Ave. 4, 220030, Minsk, Belarus
| | | |
Collapse
|
3
|
Yu C, Yang F, Xue D, Wang X, Chen H. The Regulatory Functions of σ 54 Factor in Phytopathogenic Bacteria. Int J Mol Sci 2021; 22:ijms222312692. [PMID: 34884502 PMCID: PMC8657755 DOI: 10.3390/ijms222312692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
σ54 factor (RpoN), a type of transcriptional regulatory factor, is widely found in pathogenic bacteria. It binds to core RNA polymerase (RNAP) and regulates the transcription of many functional genes in an enhancer-binding protein (EBP)-dependent manner. σ54 has two conserved functional domains: the activator-interacting domain located at the N-terminal and the DNA-binding domain located at the C-terminal. RpoN directly binds to the highly conserved sequence, GGN10GC, at the −24/−12 position relative to the transcription start site of target genes. In general, bacteria contain one or two RpoNs but multiple EBPs. A single RpoN can bind to different EBPs in order to regulate various biological functions. Thus, the overlapping and unique regulatory pathways of two RpoNs and multiple EBP-dependent regulatory pathways form a complex regulatory network in bacteria. However, the regulatory role of RpoN and EBPs is still poorly understood in phytopathogenic bacteria, which cause economically important crop diseases and pose a serious threat to world food security. In this review, we summarize the current knowledge on the regulatory function of RpoN, including swimming motility, flagella synthesis, bacterial growth, type IV pilus (T4Ps), twitching motility, type III secretion system (T3SS), and virulence-associated phenotypes in phytopathogenic bacteria. These findings and knowledge prove the key regulatory role of RpoN in bacterial growth and pathogenesis, as well as lay the groundwork for further elucidation of the complex regulatory network of RpoN in bacteria.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Dingrong Xue
- National Engineering Laboratory of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China;
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
- Correspondence:
| |
Collapse
|
4
|
Coulson TJD, Malenfant RM, Patten CL. Characterization of the TyrR Regulon in the Rhizobacterium Enterobacter ludwigii UW5 Reveals Overlap with the CpxR Envelope Stress Response. J Bacteriol 2020; 203:e00313-20. [PMID: 33046562 PMCID: PMC7723952 DOI: 10.1128/jb.00313-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The TyrR transcription factor controls the expression of genes for the uptake and biosynthesis of aromatic amino acids in Escherichia coli In the plant-associated and clinically significant proteobacterium Enterobacter ludwigii UW5, the TyrR orthologue was previously shown to regulate genes that encode enzymes for synthesis of the plant hormone indole-3-acetic acid and for gluconeogenesis, indicating a broader function for the transcription factor. This study aimed to delineate the TyrR regulon of E. ludwigii by comparing the transcriptomes of the wild type and a tyrR deletion strain. In E. ludwigii, TyrR positively or negatively regulates the expression of over 150 genes. TyrR downregulated expression of envelope stress response regulators CpxR and CpxP through interaction with a DNA binding site in the intergenic region between divergently transcribed cpxP and cpxR Repression of cpxP was alleviated by tyrosine. Methyltransferase gene dmpM, which is possibly involved in antibiotic synthesis, was strongly activated in the presence of tyrosine and phenylalanine by TyrR binding to its promoter region. TyrR also regulated expression of genes for aromatic catabolism and anaerobic respiration. Our findings suggest that the E. ludwigii TyrR regulon has diverged from that of E. coli to include genes for survival in the diverse environments that this bacterium inhabits and illustrate the expansion and plasticity of transcription factor regulons.IMPORTANCE Genome-wide RNA sequencing revealed a broader regulatory role for the TyrR transcription factor in the ecologically versatile bacterium Enterobacter ludwigii beyond that of aromatic amino acid synthesis and transport that constitute the role of the TyrR regulon of E. coli In E. ludwigii, a plant symbiont and human gut commensal, the TyrR regulon is expanded to include genes that are beneficial for plant interactions and response to stresses. Identification of the genes regulated by TyrR provides insight into the mechanisms by which the bacterium adapts to its environment.
Collapse
Affiliation(s)
- Thomas J D Coulson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - René M Malenfant
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Cheryl L Patten
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
5
|
Henriquez T, Baldow T, Lo YK, Weydert D, Brachmann A, Jung H. Involvement of MexS and MexEF-OprN in Resistance to Toxic Ion Chelators in Pseudomonas putida KT2440. Microorganisms 2020; 8:microorganisms8111782. [PMID: 33202537 PMCID: PMC7697342 DOI: 10.3390/microorganisms8111782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 01/22/2023] Open
Abstract
Bacteria must be able to cope with harsh environments to survive. In Gram-negative bacteria like Pseudomonas species, resistance-nodulation-division (RND) transporters contribute to this task by pumping toxic compounds out of cells. Previously, we found that the RND system TtgABC of Pseudomonas putida KT2440 confers resistance to toxic metal chelators of the bipyridyl group. Here, we report that the incubation of a ttgB mutant in medium containing 2,2’-bipyridyl generated revertant strains able to grow in the presence of this compound. This trait was related to alterations in the pp_2827 locus (homolog of mexS in Pseudomonas aeruginosa). The deletion and complementation of pp_2827 confirmed the importance of the locus for the revertant phenotype. Furthermore, alteration in the pp_2827 locus stimulated expression of the mexEF-oprN operon encoding an RND efflux pump. Deletion and complementation of mexF confirmed that the latter system can compensate the growth defect of the ttgB mutant in the presence of 2,2’-bipyridyl. To our knowledge, this is the first report on a role of pp_2827 (mexS) in the regulation of mexEF-oprN in P. putida KT2440. The results expand the information about the significance of MexEF-OprN in the stress response of P. putida KT2440 and the mechanisms for coping with bipyridyl toxicity.
Collapse
Affiliation(s)
- Tania Henriquez
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Tom Baldow
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Yat Kei Lo
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Dina Weydert
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
| | - Andreas Brachmann
- Biozentrum, Genetik, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany;
| | - Heinrich Jung
- Biozentrum, Mikrobiologie, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany; (T.H.); (T.B.); (Y.K.L.); (D.W.)
- Correspondence:
| |
Collapse
|
6
|
Otto M, Wynands B, Lenzen C, Filbig M, Blank LM, Wierckx N. Rational Engineering of Phenylalanine Accumulation in Pseudomonas taiwanensis to Enable High-Yield Production of Trans-Cinnamate. Front Bioeng Biotechnol 2019; 7:312. [PMID: 31824929 PMCID: PMC6882275 DOI: 10.3389/fbioe.2019.00312] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Microbial biocatalysis represents a promising alternative for the production of a variety of aromatic chemicals, where microorganisms are engineered to convert a renewable feedstock under mild production conditions into a valuable chemical building block. This study describes the rational engineering of the solvent-tolerant bacterium Pseudomonas taiwanensis VLB120 toward accumulation of L-phenylalanine and its conversion into the chemical building block t-cinnamate. We recently reported rational engineering of Pseudomonas toward L-tyrosine accumulation by the insertion of genetic modifications that allow both enhanced flux and prevent aromatics degradation. Building on this knowledge, three genes encoding for enzymes involved in the degradation of L-phenylalanine were deleted to allow accumulation of 2.6 mM of L-phenylalanine from 20 mM glucose. The amino acid was subsequently converted into the aromatic model compound t-cinnamate by the expression of a phenylalanine ammonia-lyase (PAL) from Arabidopsis thaliana. The engineered strains produced t-cinnamate with yields of 23 and 39% Cmol Cmol−1 from glucose and glycerol, respectively. Yields were improved up to 48% Cmol Cmol−1 from glycerol when two enzymes involved in the shikimate pathway were additionally overexpressed, however with negative impact on strain performance and reproducibility. Production titers were increased in fed-batch fermentations, in which 33.5 mM t-cinnamate were produced solely from glycerol, in a mineral medium without additional complex supplements. The aspect of product toxicity was targeted by the utilization of a streamlined, genome-reduced strain, which improves upon the already high tolerance of P. taiwanensis VLB120 toward t-cinnamate.
Collapse
Affiliation(s)
- Maike Otto
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christoph Lenzen
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Melanie Filbig
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
7
|
RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1. J Bacteriol 2018; 200:JB.00205-18. [PMID: 29760208 DOI: 10.1128/jb.00205-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen of humans, particularly those with cystic fibrosis. As a global regulator, RpoN controls a group of virulence-related factors and quorum-sensing (QS) genes in P. aeruginosa To gain further insights into the direct targets of RpoN in vivo, the present study focused on identifying the direct targets of RpoN regulation in QS and the type VI secretion system (T6SS). We performed chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) that identified 1,068 binding sites of RpoN, mostly including metabolic genes, a group of genes in QS (lasI, rhlI, and pqsR) and the T6SS (hcpA and hcpB). The direct targets of RpoN have been verified by electrophoretic mobility shifts assays (EMSA), lux reporter assay, reverse transcription-quantitative PCR, and phenotypic detection. The ΔrpoN::Tc mutant resulted in the reduced production of pyocyanin, motility, and proteolytic activity. However, the production of rhamnolipids and biofilm formation were higher in the ΔrpoN::Tc mutant than in the wild type. In summary, the results indicated that RpoN had direct and profound effects on QS and the T6SS.IMPORTANCE As a global regulator, RpoN controls a wide range of biological pathways, including virulence in P. aeruginosa PAO1. This work shows that RpoN plays critical and global roles in the regulation of bacterial pathogenicity and fitness. ChIP-seq provided a useful database to characterize additional functions and targets of RpoN in the future. The functional characterization of RpoN-mediated regulation will improve the current understanding of the regulatory network of quorum sensing and virulence in P. aeruginosa and other bacteria.
Collapse
|
8
|
Chong H, Ching CB. Development of Colorimetric-Based Whole-Cell Biosensor for Organophosphorus Compounds by Engineering Transcription Regulator DmpR. ACS Synth Biol 2016; 5:1290-1298. [PMID: 27346389 DOI: 10.1021/acssynbio.6b00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is useful for whole-cell biosensors to be based on colorimetric detection because the output signal can be easily visualized. However, colorimetric-based whole-cell biosensors suffer higher detection limits as compared to bioluminescence- or fluorescence-based biosensors. In this work, we attempt to reduce the detection limit for a colorimetric-based whole-cell biosensor by applying directed evolution techniques on a transcription regulator, DmpR, to alter the expression level of its cognate promoter, which was fused to mRFP1 to output red coloration in the presence of organophosphate pesticides containing a phenolic group. We selected the two best-performing mutants, DM01 and DM12, which were able to develop red coloration in the presence of parathion as low as 10 μM after just 6 h of induction at 30 °C. This suggests that engineering of the transcription regulator in the sensing domain is useful for improving various properties of whole-cell biosensors, such as reducing the detection limit for simple colorimetric detection of organophosphate pesticides.
Collapse
Affiliation(s)
- Huiqing Chong
- Temasek Laboratories, National University of Singapore 117411, Singapore
| | - Chi Bun Ching
- Temasek Laboratories, National University of Singapore 117411, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117585, Singapore
| |
Collapse
|
9
|
Leyn SA, Suvorova IA, Kazakov AE, Ravcheev DA, Stepanova VV, Novichkov PS, Rodionov DA. Comparative genomics and evolution of transcriptional regulons in Proteobacteria. Microb Genom 2016; 2:e000061. [PMID: 28348857 PMCID: PMC5343134 DOI: 10.1099/mgen.0.000061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022] Open
Abstract
Comparative genomics approaches are broadly used for analysis of transcriptional regulation in bacterial genomes. In this work, we identified binding sites and reconstructed regulons for 33 orthologous groups of transcription factors (TFs) in 196 reference genomes from 21 taxonomic groups of Proteobacteria. Overall, we predict over 10 600 TF binding sites and identified more than 15 600 target genes for 1896 TFs constituting the studied orthologous groups of regulators. These include a set of orthologues for 21 metabolism-associated TFs from Escherichia coli and/or Shewanella that are conserved in five or more taxonomic groups and several additional TFs that represent non-orthologous substitutions of the metabolic regulators in some lineages of Proteobacteria. By comparing gene contents of the reconstructed regulons, we identified the core, taxonomy-specific and genome-specific TF regulon members and classified them by their metabolic functions. Detailed analysis of ArgR, TyrR, TrpR, HutC, HypR and other amino-acid-specific regulons demonstrated remarkable differences in regulatory strategies used by various lineages of Proteobacteria. The obtained genomic collection of in silico reconstructed TF regulons contains a large number of new regulatory interactions that await future experimental validation. The collection provides a framework for future evolutionary studies of transcriptional regulatory networks in Bacteria. It can be also used for functional annotation of putative metabolic transporters and enzymes that are abundant in the reconstructed regulons.
Collapse
Affiliation(s)
- Semen A Leyn
- 1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Inna A Suvorova
- 1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Alexey E Kazakov
- 2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Vita V Stepanova
- 1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry A Rodionov
- 4Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,1A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1. mSphere 2016; 1:mSphere00020-16. [PMID: 27303730 PMCID: PMC4894688 DOI: 10.1128/msphere.00020-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/06/2016] [Indexed: 02/01/2023] Open
Abstract
Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux of glycine through several pathways, including the metabolism of glycine to produce other amino acids, entry into the trichloroacetic acid cycle, and the production of virulence factors such as hydrogen cyanide. In this study, we characterized GcsR, a transcriptional regulator that activates the expression of genes involved in P. aeruginosa PAO1 glycine metabolism. Our work reveals that GcsR is the founding member of a novel class of TyrR-like EBPs that likely regulate glycine metabolism in Pseudomonadales. Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1. In an effort to clarify and have an overall better understanding of the role of GcsR in glycine metabolism, a combination of transcriptome sequencing and electrophoretic mobility shift assays was used to identify target genes of this transcriptional regulator. It was found that GcsR binds to an 18-bp consensus sequence (TGTAACG-N4-CGTTCCG) upstream of the gcs2 operon, consisting of the gcvH2, gcvP2, glyA2, sdaA, and gcvT2 genes. The proteins encoded by these genes, namely, the GCS (GcvH2-GcvP2-GcvT2), serine hydroxymethyltransferase (GlyA2), and serine dehydratase (SdaA), form a metabolic pathway for the conversion of glycine into pyruvate, which can enter the central metabolism. GcsR activates transcription of the gcs2 operon in response to glycine. Interestingly, GcsR belongs to a family of transcriptional regulators known as TyrR-like enhancer-binding proteins (EBPs). Until this study, TyrR-like EBPs were only known to function in regulating aromatic amino acid metabolism. GcsR is the founding member of a new class of TyrR-like EBPs that function in the regulation of glycine metabolism. Indeed, homologs of GcsR and its target genes are present in almost all sequenced genomes of the Pseudomonadales order, suggesting that this genetic regulatory mechanism is a common theme for pseudomonads. IMPORTANCE Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux of glycine through several pathways, including the metabolism of glycine to produce other amino acids, entry into the trichloroacetic acid cycle, and the production of virulence factors such as hydrogen cyanide. In this study, we characterized GcsR, a transcriptional regulator that activates the expression of genes involved in P. aeruginosa PAO1 glycine metabolism. Our work reveals that GcsR is the founding member of a novel class of TyrR-like EBPs that likely regulate glycine metabolism in Pseudomonadales.
Collapse
|
11
|
Yuan Y, Zhong M, Shu S, Du N, Sun J, Guo S. Proteomic and Physiological Analyses Reveal Putrescine Responses in Roots of Cucumber Stressed by NaCl. FRONTIERS IN PLANT SCIENCE 2016; 7:1035. [PMID: 27471514 PMCID: PMC4945654 DOI: 10.3389/fpls.2016.01035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/01/2016] [Indexed: 05/03/2023]
Abstract
Soil salinity is a major environmental constraint that threatens agricultural productivity. Different strategies have been developed to improve crop salt tolerance, among which the effects of polyamines have been well-reported. To gain a better understanding of the cucumber (Cucumis sativus L.) responses to NaCl and unravel the underlying mechanism of exogenous putrescine (Put) alleviating salt-induced damage, comparative proteomic analysis was conducted on cucumber roots treated with NaCl, and/or Put for 7 days. The results showed that exogenous Put restored the root growth inhibited by NaCl. Sixty-two differentially expressed proteins implicated in various biological processes were successfully identified by MALDI-TOF/TOF MS. The four largest categories included proteins involved in defense response (24.2%), protein metabolism (24.2%), carbohydrate metabolism (19.4%), and amino acid metabolism (14.5%). Exogenous Put up-regulated most identified proteins involved in carbohydrate metabolism, implying an enhancement in energy generation. Proteins involved in defense response and protein metabolism were differently regulated by Put, which indicated the roles of Put in stress resistance and proteome rearrangement. Put also increased the abundance of proteins involved in amino acid metabolism. Meanwhile, physiological analysis showed that Put could further up-regulated the levels of free amino acids in salt stressed-roots. In addition, Put also improved endogenous polyamines contents by regulating the transcription levels of key enzymes in polyamine metabolism. Taken together, these results suggest that Put may alleviate NaCl-induced growth inhibition through degradation of misfolded/damaged proteins, activation of stress defense, and the promotion of carbohydrate metabolism to generate more energy.
Collapse
Affiliation(s)
- Yinghui Yuan
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Min Zhong
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Nanshan Du
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Jin Sun
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural UniversitySuqian, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural UniversitySuqian, China
- *Correspondence: Shirong Guo
| |
Collapse
|
12
|
Stability of the GraA Antitoxin Depends on Growth Phase, ATP Level, and Global Regulator MexT. J Bacteriol 2015; 198:787-96. [PMID: 26668267 DOI: 10.1128/jb.00684-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacterial type II toxin-antitoxin systems consist of a potentially poisonous toxin and an antitoxin that inactivates the toxic protein by binding to it. Most of the toxins regulate stress survival, but their activation depends on the stability of the antitoxin that has to be degraded in order for the toxin to be able to attack its cellular targets. The degradation of antitoxins is usually rapid and carried out by ATP-dependent protease Lon or Clp, which is activated under stress conditions. The graTA system of Pseudomonas putida encodes the toxin GraT, which can affect the growth rate and stress tolerance of bacteria but is under most conditions inactivated by the unusually stable antitoxin GraA. Here, we aimed to describe the stability features of the antitoxin GraA by analyzing its degradation rate in total cell lysates of P. putida. We show that the degradation rate of GraA depends on the growth phase of bacteria being fastest in the transition from exponential to stationary phase. In accordance with this, higher ATP levels were shown to stabilize GraA. Differently from other antitoxins, the main cellular proteases Lon and Clp are not involved in GraA stability. Instead, GraA seems to be degraded through a unique pathway involving an endoprotease that cleaves the antitoxin into two unequal parts. We also identified the global transcriptional regulator MexT as a factor for destabilization of GraA, which indicates that the degradation of GraA may be induced by conditions similar to those that activate MexT. IMPORTANCE Toxin-antitoxin (TA) modules are widespread in bacterial chromosomes and have important roles in stress tolerance. As activation of a type II toxin is triggered by proteolytic degradation of the antitoxin, knowledge about the regulation of the antitoxin stability is critical for understanding the activation of a particular TA module. Here, we report on the unusual degradation pathway of the antitoxin GraA of the recently characterized GraTA system. While GraA is uncommonly stable in the exponential and late-stationary phases, its degradation increases in the transition phase. The degradation pathway of GraA involves neither Lon nor Clp, which usually targets antitoxins, but rather an unknown endoprotease and the global regulator MexT, suggesting a new type of regulation of antitoxin stability.
Collapse
|
13
|
Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung. PLoS One 2015; 10:e0134229. [PMID: 26252386 PMCID: PMC4529145 DOI: 10.1371/journal.pone.0134229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 07/07/2015] [Indexed: 11/30/2022] Open
Abstract
Some Pseudomonas aeruginosa strains including Australian Epidemic Strain-1 (AES-1 or AUS-01) cause persistent chronic infection in cystic fibrosis (CF) patients, with greater morbidity and mortality. Factors conferring persistence are largely unknown. Previously we analysed the transcriptomes of AES-1 grown in Luria broth, nematode growth medium for Caenorhabditis elegans assay (both aerobic) and artificial sputum medium (mainly hypoxic). Transcriptional comparisons included chronic AES-1 strains against PAO1 and acute AES-1 (AES-1R) against its chronic isogen (AES-1M), isolated 10.5 years apart from a CF patient and not eradicated in the meantime. Prominent amongst genes downregulated in AES-1M in all comparisons was homogentisate-1-2-dioxygenase (hmgA); an oxygen-dependent gene known to be mutationally deactivated in many chronic infection strains of P. aeruginosa. To investigate if hmgA downregulation and deactivation gave similar virulence persistence profiles, a hmgA mutant made in UCBPP-PA14 utilising RedS-recombinase and AES-1M were assessed in the C. elegans virulence assay, and the C57BL/6 mouse for pulmonary colonisation and TNF-α response. In C. elegans, hmgA deactivation resulted in significantly increased PA14 virulence while hmgA downregulation reduced AES-1M virulence. AES-1M was significantly more persistent in mouse lung and showed a significant increase in TNF-α (p<0.0001), sustained even with no detectable bacteria. PA14ΔhmgA did not show increased TNF-α. This study suggests that hmgA may have a role in P. aeruginosa persistence in chronic infection and the results provide a starting point for clarifying the role of hmgA in chronic AES-1.
Collapse
|
14
|
Coulson TJD, Patten CL. The TyrR transcription factor regulates the divergent akr-ipdC operons of Enterobacter cloacae UW5. PLoS One 2015; 10:e0121241. [PMID: 25811953 PMCID: PMC4374768 DOI: 10.1371/journal.pone.0121241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/30/2015] [Indexed: 12/11/2022] Open
Abstract
The TyrR transcription factor regulates genes involved in the uptake and biosynthesis of aromatic amino acids in Enterobacteriaceae. Genes may be positively or negatively regulated depending on the presence or absence of each aromatic amino acid, all three of which function as cofactors for TyrR. In this report we detail the transcriptional control of two divergently transcribed genes, akr and ipdC, by TyrR, elucidated by promoter fusion expression assays and electrophoretic mobility shift assays to assess protein-DNA interactions. Expression of both genes was shown to be controlled by TyrR via interactions with two TyrR boxes located within the akr-ipdC intergenic region. Expression of ipdC required TyrR bound to the proximal strong box, and is strongly induced by phenylalanine, and to a lesser extent by tryptophan and tyrosine. Down-regulation of akr was reliant on interactions with the weak box, and may also require a second, as yet unidentified protein for further repression. Tyrosine enhanced repression of akr. Electrophoretic mobility shift assays demonstrated that TyrR interacts with both the strong and weak boxes, and that binding of the weak box in vitro requires an intact adjacent strong box. While the strong box shows a high degree of conservation with the TyrR binding site consensus sequence, the weak box has atypical spacing of the two half sites comprising the palindromic arms. Site-directed mutagenesis demonstrated sequence-specific interaction between TyrR and the weak box. This is the first report of TyrR-controlled expression of two divergent protein-coding genes, transcribed from independent promoters. Moreover, the identification of a predicted aldo-keto reductase as a member of the TyrR regulon further extends the function of the TyrR regulon.
Collapse
Affiliation(s)
| | - Cheryl L. Patten
- Department of Biology, University of New Brunswick, Fredericton, Canada
- * E-mail:
| |
Collapse
|
15
|
GenR, an IclR-type regulator, activates and represses the transcription of gen genes involved in 3-hydroxybenzoate and gentisate catabolism in Corynebacterium glutamicum. J Bacteriol 2013; 195:1598-609. [PMID: 23354754 DOI: 10.1128/jb.02216-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes required for 3-hydroxybenzoate and gentisate catabolism in Corynebacterium glutamicum are closely clustered in three operons. GenR, an IclR-type regulator, can activate the transcription of genKH and genDFM operons in response to 3-hydroxybenzoate and gentisate, and it can repress its own expression. Footprinting analyses demonstrated that GenR bound to four sites with different affinities. Two GenR-binding sites (DFMn01 and DFMn02) were found to be located between positions --41 and --84 upstream of the --35 and --10 regions of the genDFM promoter, which was involved in positive regulation of genDFM transcription. The GenR binding site R-KHn01 (located between positions --47 and --16) overlapped the --35 region of the genKH promoter sequence and is involved in positive regulation of its transcription. The binding site R-KHn02, at which GenR binds to its own promoter, was found within a footprint extending from position --44 to --67. It appeared to be involved in negative regulation of the activity of the genR promoter. A consensus motif with a 5-bp imperfect palindromic sequence [ATTCC-N(7(5))-GGAAT] was identified among all four GenR binding sites and found to be necessary to GenR regulation through site-directed mutagenesis. The results reveal a new regulatory function of the IclR family in the catabolism of aromatic compounds.
Collapse
|
16
|
Involvement of the global Crp regulator in cyclic AMP-dependent utilization of aromatic amino acids by Pseudomonas putida. J Bacteriol 2011; 194:406-12. [PMID: 22081386 DOI: 10.1128/jb.06353-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phhAB operon encodes a phenylalanine hydroxylase involved in the conversion of L-phenylalanine into L-tyrosine in Pseudomonas putida. The phhAB promoter is transcribed by RNA polymerase sigma-70 and is unusual in that the specific regulator PhhR acts as an enhancer protein that binds to two distant upstream sites (-75 to -92 and -132 to -149). There is an integration host factor (IHF) binding site that overlaps the proximal PhhR box, and, consequently, IHF acts as an inhibitor of transcription. Use of L-phenylalanine is compromised in a crp-deficient background due to reduced expression from the phhAB promoter. Electrophoretic mobility shift assays and DNase I footprinting assays reveal that Crp binds at a site centered at -109 only in the presence of cyclic AMP (cAMP). We show, using circular permutation analysis, that the simultaneous binding of Crp/cAMP and PhhR bends DNA to bring positive regulators and RNA polymerase into close proximity. This nucleoprotein complex promotes transcription from phhA only in response to L-phenylalanine.
Collapse
|
17
|
Paczkowski S, Schütz S. Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol 2011; 91:917-35. [PMID: 21720824 PMCID: PMC3145088 DOI: 10.1007/s00253-011-3417-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/12/2022]
Abstract
Volatile emission during vertebrate decay is a complex process that is understood incompletely. It depends on many factors. The main factor is the metabolism of the microbial species present inside and on the vertebrate. In this review, we combine the results from studies on volatile organic compounds (VOCs) detected during this decay process and those on the biochemical formation of VOCs in order to improve our understanding of the decay process. Micro-organisms are the main producers of VOCs, which are by- or end-products of microbial metabolism. Many microbes are already present inside and on a vertebrate, and these can initiate microbial decay. In addition, micro-organisms from the environment colonize the cadaver. The composition of microbial communities is complex, and communities of different species interact with each other in succession. In comparison to the complexity of the decay process, the resulting volatile pattern does show some consistency. Therefore, the possibility of an existence of a time-dependent core volatile pattern, which could be used for applications in areas such as forensics or food science, is discussed. Possible microbial interactions that might alter the process of decay are highlighted.
Collapse
Affiliation(s)
- Sebastian Paczkowski
- Department of Forest Zoology and Forest Conservation, Büsgeninstitut, Georg August University, Büsgenweg 3, 37077 Göttingen, Germany.
| | | |
Collapse
|
18
|
A putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa. J Bacteriol 2010; 192:5962-71. [PMID: 20870774 DOI: 10.1128/jb.01021-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyomelanin overproduction is a common phenotype among Pseudomonas aeruginosa isolates recovered from cystic fibrosis and urinary tract infections. Its prevalence suggests that it contributes to the persistence of the producing microbial community, yet little is known about the mechanisms of its production. Using transposon mutagenesis, we identified factors that contribute to melanogenesis in a clinical isolate of P. aeruginosa. In addition to two enzymes already known to be involved in its biosynthesis (homogentisate dioxygenase and hydroxyphenylpyruvate dioxygenase), we identified 26 genes that encode regulatory, metabolic, transport, and hypothetical proteins that contribute to the production of homogentisic acid (HGA), the monomeric precursor of pyomelanin. One of these, PA14_57880, was independently identified four times and is predicted to encode the ATP-binding cassette of an ABC transporter homologous to proteins in Pseudomonas putida responsible for the extrusion of organic solvents from the cytosol. Quantification of HGA production by P. aeruginosa PA14 strains missing the predicted subcomponents of this transporter confirmed its role in HGA production: mutants unable to produce the ATP-binding cassette (PA14_57880) or the permease (PA14_57870) produced substantially less extracellular HGA after growth for 20 h than the parental strain. In these mutants, concurrent accumulation of intracellular HGA was observed. In addition, quantitative real-time PCR revealed that intracellular accumulation of HGA elicits upregulation of these transport genes. Based on their involvement in homogentisic acid transport, we rename the genes of this operon hatABCDE.
Collapse
|
19
|
Pmr, a histone-like protein H1 (H-NS) family protein encoded by the IncP-7 plasmid pCAR1, is a key global regulator that alters host function. J Bacteriol 2010; 192:4720-31. [PMID: 20639326 DOI: 10.1128/jb.00591-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone-like protein H1 (H-NS) family proteins are nucleoid-associated proteins (NAPs) conserved among many bacterial species. The IncP-7 plasmid pCAR1 is transmissible among various Pseudomonas strains and carries a gene encoding the H-NS family protein, Pmr. Pseudomonas putida KT2440 is a host of pCAR1, which harbors five genes encoding the H-NS family proteins PP_1366 (TurA), PP_3765 (TurB), PP_0017 (TurC), PP_3693 (TurD), and PP_2947 (TurE). Quantitative reverse transcription-PCR (qRT-PCR) demonstrated that the presence of pCAR1 does not affect the transcription of these five genes and that only pmr, turA, and turB were primarily transcribed in KT2440(pCAR1). In vitro pull-down assays revealed that Pmr strongly interacted with itself and with TurA, TurB, and TurE. Transcriptome comparisons of the pmr disruptant, KT2440, and KT2440(pCAR1) strains indicated that pmr disruption had greater effects on the host transcriptome than did pCAR1 carriage. The transcriptional levels of some genes that increased with pCAR1 carriage, such as the mexEF-oprN efflux pump genes and parI, reverted with pmr disruption to levels in pCAR1-free KT2440. Transcriptional levels of putative horizontally acquired host genes were not altered by pCAR1 carriage but were altered by pmr disruption. Identification of genome-wide Pmr binding sites by ChAP-chip (chromatin affinity purification coupled with high-density tiling chip) analysis demonstrated that Pmr preferentially binds to horizontally acquired DNA regions. The Pmr binding sites overlapped well with the location of the genes differentially transcribed following pmr disruption on both the plasmid and the chromosome. Our findings indicate that Pmr is a key factor in optimizing gene transcription on pCAR1 and the host chromosome.
Collapse
|
20
|
Palmer GC, Palmer KL, Jorth PA, Whiteley M. Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. J Bacteriol 2010; 192:2722-8. [PMID: 20304990 PMCID: PMC2876504 DOI: 10.1128/jb.00112-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/08/2010] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen often associated with chronic infections in the lungs of individuals with the heritable disease cystic fibrosis (CF). Previous work from our laboratory demonstrated that aromatic amino acids within CF lung secretions (sputum) not only serve as carbon and energy sources but also enhance synthesis of the cell signaling molecule Pseudomonas quinolone signal (PQS). The present study investigates the role of the aromatic amino acid-responsive regulator PhhR in mediating these phenotypes. Transcriptome analysis revealed that PhhR controls four putative transcriptional units (phhA, hpd, hmgA, and dhcA) involved in aromatic amino acid catabolism; however, genes involved in PQS biosynthesis were unaffected. The phhA, hpd, hmgA, and dhcA promoters were mapped by primer extension, and purified His(6)-PhhR was shown to bind the phhA, hpd, and dhcA promoters in vitro by use of electrophoretic mobility shift assays. Our work characterizes a transcriptional regulator of catabolic genes induced during P. aeruginosa growth in CF sputum.
Collapse
Affiliation(s)
- Gregory C. Palmer
- Section of Molecular Genetics and Microbiology, The Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas
| | - Kelli L. Palmer
- Section of Molecular Genetics and Microbiology, The Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas
| | - Peter A. Jorth
- Section of Molecular Genetics and Microbiology, The Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas
| | - Marvin Whiteley
- Section of Molecular Genetics and Microbiology, The Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
21
|
Abstract
Pseudomonas putida DOT-T1E was used as a model to develop a "phenomics" platform to investigate the ability of P. putida to grow using different carbon, nitrogen, and sulfur sources and in the presence of stress molecules. Results for growth of wild-type DOT-T1E on 90 different carbon sources revealed the existence of a number of previously uncharted catabolic pathways for compounds such as salicylate, quinate, phenylethanol, gallate, and hexanoate, among others. Subsequent screening on the subset of compounds on which wild-type DOT-TIE could grow with four knockout strains in the global regulatory genes Deltacrc, Deltacrp, DeltacyoB, and DeltaptsN allowed analysis of the global response to nutrient supply and stress. The data revealed that most global regulator mutants could grow in a wide variety of substrates, indicating that metabolic fluxes are physiologically balanced. It was found that the Crc mutant did not differ much from the wild-type regarding the use of carbon sources. However, certain pathways are under the preferential control of one global regulator, i.e., metabolism of succinate and d-fructose is influenced by CyoB, and l-arginine is influenced by PtsN. Other pathways can be influenced by more than one global regulator; i.e., l-valine catabolism can be influenced by CyoB and Crp (cyclic AMP receptor protein) while phenylethylamine is affected by Crp, CyoB, and PtsN. These results emphasize the cross talk required in order to ensure proper growth and survival. With respect to N sources, DOT-T1E can use a wide variety of inorganic and organic nitrogen sources. As with the carbon sources, more than one global regulator affected growth with some nitrogen sources; for instance, growth with nucleotides, dipeptides, d-amino acids, and ethanolamine is influenced by Crp, CyoB, and PtsN. A surprising finding was that the Crp mutant was unable to flourish on ammonium. Results for assayed sulfur sources revealed that CyoB controls multiple points in methionine/cysteine catabolism while PtsN and Crc are needed for N-acetyl-l-cysteamine utilization. Growth of global regulator mutants was also influenced by stressors of different types (antibiotics, oxidative agents, and metals). Overall and in combination with results for growth in the presence of various stressors, these phenomics assays provide multifaceted insights into the complex decision-making process involved in nutrient supply, optimization, and survival.
Collapse
|