1
|
Münch PC, Franzosa EA, Stecher B, McHardy AC, Huttenhower C. Identification of Natural CRISPR Systems and Targets in the Human Microbiome. Cell Host Microbe 2021; 29:94-106.e4. [PMID: 33217332 PMCID: PMC7813156 DOI: 10.1016/j.chom.2020.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 01/13/2023]
Abstract
Many bacteria resist invasive DNA by incorporating sequences into CRISPR loci, which enable sequence-specific degradation. CRISPR systems have been well studied from isolate genomes, but culture-independent metagenomics provide a new window into their diversity. We profiled CRISPR loci and cas genes in the body-wide human microbiome using 2,355 metagenomes, yielding functional and taxonomic profiles for 2.9 million spacers by aligning the spacer content to each sample's metagenome and corresponding gene families. Spacer and repeat profiles agree qualitatively with those from isolate genomes but expand their diversity by approximately 13-fold, with the highest spacer load present in the oral microbiome. The taxonomy of spacer sequences parallels that of their source community, with functional targets enriched for viral elements. When coupled with cas gene systems, CRISPR-Cas subtypes are highly site and taxon specific. Our analysis provides a comprehensive collection of natural CRISPR-cas loci and targets in the human microbiome.
Collapse
Affiliation(s)
- Philipp C Münch
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany; Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany
| | - Eric A Franzosa
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig-Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alice C McHardy
- Department for Computational Biology of Infection Research, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Yahara K, Suzuki M, Hirabayashi A, Suda W, Hattori M, Suzuki Y, Okazaki Y. Long-read metagenomics using PromethION uncovers oral bacteriophages and their interaction with host bacteria. Nat Commun 2021; 12:27. [PMID: 33397904 PMCID: PMC7782811 DOI: 10.1038/s41467-020-20199-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages), or bacterial viruses, are very diverse and highly abundant worldwide, including as a part of the human microbiomes. Although a few metagenomic studies have focused on oral phages, they relied on short-read sequencing. Here, we conduct a long-read metagenomic study of human saliva using PromethION. Our analyses, which integrate both PromethION and HiSeq data of >30 Gb per sample with low human DNA contamination, identify hundreds of viral contigs; 0-43.8% and 12.5-56.3% of the confidently predicted phages and prophages, respectively, do not cluster with those reported previously. Our analyses demonstrate enhanced scaffolding, and the ability to place a prophage in its host genomic context and enable its taxonomic classification. Our analyses also identify a Streptococcus phage/prophage group and nine jumbo phages/prophages. 86% of the phage/prophage group and 67% of the jumbo phages/prophages contain remote homologs of antimicrobial resistance genes. Pan-genome analysis of the phages/prophages reveals remarkable diversity, identifying 0.3% and 86.4% of the genes as core and singletons, respectively. Furthermore, our study suggests that oral phages present in human saliva are under selective pressure to escape CRISPR immunity. Our study demonstrates the power of long-read metagenomics utilizing PromethION in uncovering bacteriophages and their interaction with host bacteria.
Collapse
Affiliation(s)
- Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Microbiome Science, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Science, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo City, Japan
| | - Yusuke Okazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
3
|
Garriss G, Henriques-Normark B. Lysogeny in Streptococcus pneumoniae. Microorganisms 2020; 8:E1546. [PMID: 33036379 PMCID: PMC7600539 DOI: 10.3390/microorganisms8101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial viruses, or bacteriophages, are major contributors to the evolution, pathogenesis and overall biology of their host bacteria. During their life cycle, temperate bacteriophages form stable associations with their host by integrating into the chromosome, a process called lysogeny. Isolates of the human pathogen Streptococcus pneumoniae are frequently lysogenic, and genomic studies have allowed the classification of these phages into distinct phylogenetic groups. Here, we review the recent advances in the characterization of temperate pneumococcal phages, with a focus on their genetic features and chromosomal integration loci. We also discuss the contribution of phages, and specific phage-encoded features, to colonization and virulence. Finally, we discuss interesting research perspectives in this field.
Collapse
Affiliation(s)
- Geneviève Garriss
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital, Bioclinicum, 171 76 Stockholm, Sweden
- Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
4
|
Lopatina A, Medvedeva S, Artamonova D, Kolesnik M, Sitnik V, Ispolatov Y, Severinov K. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180092. [PMID: 30905291 PMCID: PMC6452258 DOI: 10.1098/rstb.2018.0092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated the diversity of CRISPR spacers of Thermus communities from two locations in Italy, two in Chile and one location in Russia. Among the five sampling sites, a total of more than 7200 unique spacers belonging to different CRISPR-Cas systems types and subtypes were identified. Most of these spacers are not found in CRISPR arrays of sequenced Thermus strains. Comparison of spacer sets revealed that samples within the same area (separated by few to hundreds of metres) have similar spacer sets, which appear to be largely stable at least over the course of several years. While at further distances (hundreds of kilometres and more) the similarity of spacer sets is decreased, there are still multiple common spacers in Thermus communities from different continents. The common spacers can be reconstructed in identical or similar CRISPR arrays, excluding their independent appearance and suggesting an extensive migration of thermophilic bacteria over long distances. Several new Thermus phages were isolated in the sampling sites. Mapping of spacers to bacteriophage sequences revealed examples of local acquisition of spacers from some phages and distinct patterns of targeting of phage genomes by different CRISPR-Cas systems. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
Collapse
Affiliation(s)
- Anna Lopatina
- 1 Institute of Molecular Genetics, Russian Academy of Sciences , Moscow , Russia.,2 Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,7 Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Sofia Medvedeva
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia.,4 Pasteur Institute , Paris , France
| | - Daria Artamonova
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Matvey Kolesnik
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Vasily Sitnik
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Yaroslav Ispolatov
- 5 Department of Physics, University of Santiago de Chile , Santiago , Chile
| | - Konstantin Severinov
- 1 Institute of Molecular Genetics, Russian Academy of Sciences , Moscow , Russia.,3 Skolkovo Institute of Science and Technology , Skolkovo , Russia.,6 Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey , Piscataway, NJ , USA.,7 Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
5
|
Gong T, Zeng J, Tang B, Zhou X, Li Y. CRISPR‐Cas systems in oral microbiome: From immune defense to physiological regulation. Mol Oral Microbiol 2020; 35:41-48. [PMID: 31995666 DOI: 10.1111/omi.12279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Tao Gong
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
6
|
Armitage GC. A brief history of periodontics in the United States of America: Pioneers and thought-leaders of the past, and current challenges. Periodontol 2000 2019; 82:12-25. [PMID: 31850629 DOI: 10.1111/prd.12303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper summarizes historical events in periodontology in the United States over the past 200 years. The contributions of some of the key thought-leaders of the past are highlighted. Throughout the 20th century, the evolution of thought, leading to the views currently held regarding the pathogenesis and treatment of periodontal diseases, was significantly influenced by: (1) major changes in health-care education; (2) the emergence of periodontics as a specialty of dentistry; (3) the publication of peer-reviewed journals with an emphasis on periodontology; (4) formation of the National Institute of Dental and Craniofacial Research (NIDCR); and (5) expansion of periodontal research programs by the NIDCR. The two major future challenges facing periodontal research are development of a better understanding of the ecological complexities of host-microbial interactions in periodontal health and disease, and identification of the relevant mechanisms involved in the predictable regeneration of damaged periodontal tissues.
Collapse
Affiliation(s)
- Gary C Armitage
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Filamentation initiated by Cas2 and its association with the acquisition process in cells. Int J Oral Sci 2019; 11:29. [PMID: 31578319 PMCID: PMC6802651 DOI: 10.1038/s41368-019-0063-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/18/2019] [Accepted: 07/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cas1-and-Cas2-mediated new spacer acquisition is an essential process for bacterial adaptive immunity. The process is critical for the ecology of the oral microflora and oral health. Although molecular mechanisms for spacer acquisition are known, it has never been established if this process is associated with the morphological changes of bacteria. In this study, we demonstrated a novel Cas2-induced filamentation phenotype in E. coli that was regulated by co-expression of the Cas1 protein. A 30 amino acid motif at the carboxyl terminus of Cas2 is necessary for this function. By imaging analysis, we provided evidence to argue that Cas-induced filamentation is a step coupled with new spacer acquisition during which filaments are characterised by polyploidy with asymmetric cell division. This work may open new opportunities to investigate the adaptive immune response and microbial balance for oral health.
Collapse
|
8
|
Nasko DJ, Ferrell BD, Moore RM, Bhavsar JD, Polson SW, Wommack KE. CRISPR Spacers Indicate Preferential Matching of Specific Virioplankton Genes. mBio 2019; 10:e02651-18. [PMID: 30837341 PMCID: PMC6401485 DOI: 10.1128/mbio.02651-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 01/21/2023] Open
Abstract
Viral infection exerts selection pressure on marine microbes, as virus-induced cell lysis causes 20 to 50% of cell mortality, resulting in fluxes of biomass into oceanic dissolved organic matter. Archaeal and bacterial populations can defend against viral infection using the clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) system, which relies on specific matching between a spacer sequence and a viral gene. If a CRISPR spacer match to any gene within a viral genome is equally effective in preventing lysis, no viral genes should be preferentially matched by CRISPR spacers. However, if there are differences in effectiveness, certain viral genes may demonstrate a greater frequency of CRISPR spacer matches. Indeed, homology search analyses of bacterioplankton CRISPR spacer sequences against virioplankton sequences revealed preferential matching of replication proteins, nucleic acid binding proteins, and viral structural proteins. Positive selection pressure for effective viral defense is one parsimonious explanation for these observations. CRISPR spacers from virioplankton metagenomes preferentially matched methyltransferase and phage integrase genes within virioplankton sequences. These virioplankton CRISPR spacers may assist infected host cells in defending against competing phage. Analyses also revealed that half of the spacer-matched viral genes were unknown, some genes matched several spacers, and some spacers matched multiple genes, a many-to-many relationship. Thus, CRISPR spacer matching may be an evolutionary algorithm, agnostically identifying those genes under stringent selection pressure for sustaining viral infection and lysis. Investigating this subset of viral genes could reveal those genetic mechanisms essential to virus-host interactions and provide new technologies for optimizing CRISPR defense in beneficial microbes.IMPORTANCE The CRISPR-Cas system is one means by which bacterial and archaeal populations defend against viral infection which causes 20 to 50% of cell mortality in the ocean. We tested the hypothesis that certain viral genes are preferentially targeted for the initial attack of the CRISPR-Cas system on a viral genome. Using CASC, a pipeline for CRISPR spacer discovery, and metagenome data from oceanic microbes and viruses, we found a clear subset of viral genes with high match frequencies to CRISPR spacers. Moreover, we observed a many-to-many relationship of spacers and viral genes. These high-match viral genes were involved in nucleotide metabolism, DNA methylation, and viral structure. It is possible that CRISPR spacer matching is an evolutionary algorithm pointing to those viral genes most important to sustaining infection and lysis. Studying these genes may advance the understanding of virus-host interactions in nature and provide new technologies for leveraging CRISPR-Cas systems in beneficial microbes.
Collapse
Affiliation(s)
- Daniel J Nasko
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jaysheel D Bhavsar
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Shawn W Polson
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
9
|
Lam TJ, Ye Y. CRISPRs for Strain Tracking and Their Application to Microbiota Transplantation Data Analysis. CRISPR J 2019; 2:41-50. [PMID: 30820491 PMCID: PMC6390457 DOI: 10.1089/crispr.2018.0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022] Open
Abstract
CRISPR-Cas systems are adaptive immune systems naturally found in bacteria and archaea. Prokaryotes use these immune systems to defend against invaders, which include phages, plasmids, and other mobile genetic elements. Relying on the integration of spacers derived from invader sequences (protospacers) into CRISPR loci (forming spacers flanked by repeats), CRISPR-Cas systems are able to store the memory of past immunological encounters. While CRISPR-Cas systems have evolved in response to invading mobile genetic elements, invaders have also developed mechanisms to avoid detection. As a result of an arms race between CRISPR-Cas systems and their targets, CRISPR arrays typically undergo rapid turnover of spacers through the acquisition and loss events. Additionally, microbiomes of different individuals rarely share spacers. Here, we present a computational pipeline, CRISPRtrack, for strain tracking based on CRISPR spacer content, and we applied it to fecal transplantation microbiome data to study the retention of donor strains in recipients. Our results demonstrate the potential use of CRISPRs as a simple yet effective tool for donor-strain tracking in fecal transplantation and as a general purpose tool for quantifying microbiome similarity.
Collapse
Affiliation(s)
- Tony J Lam
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana
| | - Yuzhen Ye
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana
| |
Collapse
|
10
|
Phylogenetic relationship of prophages is affected by CRISPR selection in Group A Streptococcus. BMC Microbiol 2019; 19:24. [PMID: 30691408 PMCID: PMC6348661 DOI: 10.1186/s12866-019-1393-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group A Streptococcus (GAS) is a major human pathogen, which is associated with a wide spectrum of invasive diseases, such as pharyngitis, scarlet fever, rheumatic fever, and streptococcal toxic shock syndrome (STSS). It is hypothesized that differences in GAS pathogenicity are related to the acquisition of diverse bacteriophages (phages). Nevertheless, the GAS genome also harbors clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (cas) genes, which play an important role in eliminating foreign DNA, including those of phages. However, the structure of prophages in GAS strains is mosaic, and the phylogenetic relationship between prophages and CRISPR is not clear. In this study, we analyzed CRISPR and prophage structure using 118 complete genome sequences of GAS strains to elucidate the relationship between two genomic elements. Additionally, phylogenetic and M-type analyses were performed. RESULTS Of the 118 GAS strains, 80 harbored type I-C and/or II-A CRISPR/cas loci. A total of 553 spacer sequences were identified from CRISPR/cas loci and sorted into 229 patterns. We identified and classified 373 prophages into 14 groups. Some prophage groups shared a common integration site, and were related to M-type. We further investigated the correlation between spacer sequences and prophages. Of the 229 spacer sequence patterns, 203 were similar to that of other GAS prophages. No spacer showed similarity with that of a specific prophage group with mutL integration site. Moreover, the average number of prophages in strains with type II-A CRISPR was significantly less than that in type I-C CRISPR and non-CRISPR strains. However, there was no statistical difference between the average number of prophages in type I-C strains and that in non-CRISPR strains. CONCLUSIONS Our results indicated that type II-A CRISPR may play an important role in eliminating phages and that the prophage integration site may be an important criterion for the acceptance of foreign DNA by GAS. M type, spacer sequence, and prophage group data were correlated with the phylogenetic relationships of GAS. Therefore, we hypothesize that genetic characteristics and/or phylogenetic relationships of GAS may be estimated by analyzing its spacer sequences.
Collapse
|
11
|
Steier L, de Oliveira SD, de Figueiredo JAP. Bacteriophages in Dentistry-State of the Art and Perspectives. Dent J (Basel) 2019; 7:E6. [PMID: 30634460 PMCID: PMC6473837 DOI: 10.3390/dj7010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/02/2022] Open
Abstract
Bacteriophages, viruses capable of killing bacteria, were discovered in 1915, but the interest in their study has been limited since the advent of antibiotics. Their use in dentistry is still very limited. The authors reviewed studies about bacteriophage structure, mode of action, uses in oral health, and possible future uses in dentistry associated with their possible action over biofilm, as well as the advantages and limitations of phage therapy.
Collapse
Affiliation(s)
- Liviu Steier
- Visiting Professor, Post-Graduate Program in Dentistry, Federal University of Rio Grande do Sul-UFRGS, Porto Alegre 90035-003, Brazil.
| | - Silvia Dias de Oliveira
- Department of Biodiversity and Ecology, Pontifical Catholic University of Rio Grande do Sul-PUCRS, Porto Alegre 90619-900, Brazil.
| | | |
Collapse
|
12
|
Sharma N, Bhatia S, Sodhi AS, Batra N. Oral microbiome and health. AIMS Microbiol 2018; 4:42-66. [PMID: 31294203 PMCID: PMC6605021 DOI: 10.3934/microbiol.2018.1.42] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
The oral microbiome is diverse in its composition due to continuous contact of oral cavity with the external environment. Temperatures, diet, pH, feeding habits are important factors that contribute in the establishment of oral microbiome. Both culture dependent and culture independent approaches have been employed in the analysis of oral microbiome. Gene-based methods like PCR amplification techniques, random amplicon cloning, PCR-RELP, T-RELP, DGGE and DNA microarray analysis have been applied to increase oral microbiome related knowledge. Studies revealed that microbes from the phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria, Neisseria, TM7 predominately inhabits the oral cavity. Culture-independent molecular techniques revealed the presence of genera Megasphaera, Parvimonas and Desulfobulbus in periodontal disease. Bacteria, fungi and protozoa colonize themselves on various surfaces in oral cavity. Microbial biofilms are formed on the buccal mucosa, dorsum of the tongue, tooth surfaces and gingival sulcus. Various studies demonstrate relationship between unbalanced microflora and development of diseases like tooth caries, periodontal diseases, type 2 diabetes, circulatory system related diseases etc. Transcriptome-based remodelling of microbial metabolism in health and disease associated states has been well reported. Human diets and habitat can trigger virus activation and influence phage members of oral microbiome. As it is said, "Mouth, is the gateway to the total body wellness, thus oral microbiome influences overall health of an individual".
Collapse
Affiliation(s)
- Neetu Sharma
- Department of Microbiology, GGDSD College, Sector 32 C Chandigarh, India
| | - Sonu Bhatia
- Department of Biotechnology, GGDSD College, Sector 32 C Chandigarh, India
| | | | - Navneet Batra
- Department of Biotechnology, GGDSD College, Sector 32 C Chandigarh, India
| |
Collapse
|
13
|
Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 2017; 15:259-270. [PMID: 28316330 PMCID: PMC7097736 DOI: 10.1038/nrmicro.2017.14] [Citation(s) in RCA: 828] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The respiratory tract is a complex organ system that is responsible for the exchange of oxygen and carbon dioxide. The human respiratory tract spans from the nostrils to the lung alveoli and is inhabited by niche-specific communities of bacteria. The microbiota of the respiratory tract probably acts as a gatekeeper that provides resistance to colonization by respiratory pathogens. The respiratory microbiota might also be involved in the maturation and maintenance of homeostasis of respiratory physiology and immunity. The ecological and environmental factors that direct the development of microbial communities in the respiratory tract and how these communities affect respiratory health are the focus of current research. Concurrently, the functions of the microbiome of the upper and lower respiratory tract in the physiology of the human host are being studied in detail. In this Review, we will discuss the epidemiological, biological and functional evidence that support the physiological role of the respiratory microbiota in the maintenance of human health.
Collapse
Affiliation(s)
- Wing Ho Man
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- Spaarne Gasthuis Academy, Spaarnepoort 1, Hoofddorp, 2134 TM The Netherlands
| | - Wouter A.A. de Steenhuijsen Piters
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584 EA The Netherlands
- The University of Edinburgh/MRC Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ UK
| |
Collapse
|
14
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
15
|
Westra ER, Dowling AJ, Broniewski JM, van Houte S. Evolution and Ecology of CRISPR. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032428] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Edze R. Westra
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Andrea J. Dowling
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Jenny M. Broniewski
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| | - Stineke van Houte
- Environment and Sustainability Institute and Centre for Ecology and Conservation, Biosciences, University of Exeter, Tremough Campus, Penryn TR10 9FE, United Kingdom;
| |
Collapse
|
16
|
Sampaio-Maia B, Caldas IM, Pereira ML, Pérez-Mongiovi D, Araujo R. The Oral Microbiome in Health and Its Implication in Oral and Systemic Diseases. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:171-210. [PMID: 27926431 DOI: 10.1016/bs.aambs.2016.08.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The oral microbiome can alter the balance between health and disease, locally and systemically. Within the oral cavity, bacteria, archaea, fungi, protozoa, and viruses may all be found, each having a particular role, but strongly interacting with each other and with the host, in sickness or in health. A description on how colonization occurs and how the oral microbiome dynamically evolves throughout the host's life is given. In this chapter the authors also address oral and nonoral conditions in which oral microorganisms may play a role in the etiology and progression, presenting the up-to-date knowledge on oral dysbiosis as well as the known underlying pathophysiologic mechanisms involving oral microorganisms in each condition. In oral pathology, oral microorganisms are associated with several diseases, namely dental caries, periodontal diseases, endodontic infections, and also oral cancer. In systemic diseases, nonoral infections, adverse pregnancy outcomes, cardiovascular diseases, and diabetes are among the most prevalent pathologies linked with oral cavity microorganisms. The knowledge on how colonization occurs, how oral microbiome coevolves with the host, and how oral microorganisms interact with each other may be a key factor to understand diseases etiology and progression.
Collapse
Affiliation(s)
| | - I M Caldas
- Universidade do Porto, Portugal; Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; Universidade de Coimbra, Portugal
| | | | - D Pérez-Mongiovi
- Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - R Araujo
- Universidade do Porto, Portugal; Flinders University, Adelaide, SA, Australia
| |
Collapse
|
17
|
Zhou H, Zhao H, Zheng J, Gao Y, Zhang Y, Zhao F, Wang J. CRISPRs provide broad and robust protection to oral microbial flora of gingival health against bacteriophage challenge. Protein Cell 2016; 6:541-545. [PMID: 26123805 PMCID: PMC4491054 DOI: 10.1007/s13238-015-0182-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Huiyue Zhou
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hui Zhao
- Wenzhou People's Hospital, Wenzhou, 325000 China
| | | | - Yuan Gao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yanming Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
18
|
Mangericao TC, Peng Z, Zhang X. Computational prediction of CRISPR cassettes in gut metagenome samples from Chinese type-2 diabetic patients and healthy controls. BMC SYSTEMS BIOLOGY 2016; 10 Suppl 1:5. [PMID: 26818725 PMCID: PMC4895601 DOI: 10.1186/s12918-015-0248-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background CRISPR has been becoming a hot topic as a powerful technique for genome editing for human and other higher organisms. The original CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats coupled with CRISPR-associated proteins) is an important adaptive defence system for prokaryotes that provides resistance against invading elements such as viruses and plasmids. A CRISPR cassette contains short nucleotide sequences called spacers. These unique regions retain a history of the interactions between prokaryotes and their invaders in individual strains and ecosystems. One important ecosystem in the human body is the human gut, a rich habitat populated by a great diversity of microorganisms. Gut microbiomes are important for human physiology and health. Metagenome sequencing has been widely applied for studying the gut microbiomes. Most efforts in metagenome study has been focused on profiling taxa compositions and gene catalogues and identifying their associations with human health. Less attention has been paid to the analysis of the ecosystems of microbiomes themselves especially their CRISPR composition. Results We conducted a preliminary analysis of CRISPR sequences in a human gut metagenomic data set of Chinese individuals of type-2 diabetes patients and healthy controls. Applying an available CRISPR-identification algorithm, PILER-CR, we identified 3169 CRISPR cassettes in the data, from which we constructed a set of 1302 unique repeat sequences and 36,709 spacers. A more extensive analysis was made for the CRISPR repeats: these repeats were submitted to a more comprehensive clustering and classification using the web server tool CRISPRmap. All repeats were compared with known CRISPRs in the database CRISPRdb. A total of 784 repeats had matches in the database, and the remaining 518 repeats from our set are potentially novel ones. Conclusions The computational analysis of CRISPR composition based contigs of metagenome sequencing data is feasible. It provides an efficient approach for finding potential novel CRISPR arrays and for analysing the ecosystem and history of human microbiomes. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0248-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tatiana C Mangericao
- MOE Key Lab of Bioinformatics/Bioinformatics Division, TNLIST/Center for Synthetic and Systems Biology, and Department of Automation, Tsinghua University, Beijing, 100084, China. .,Department of Bioengineering, Instituto Superior Técnico (IST), Lisbon, Portugal.
| | - Zhanhao Peng
- MOE Key Lab of Bioinformatics/Bioinformatics Division, TNLIST/Center for Synthetic and Systems Biology, and Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics/Bioinformatics Division, TNLIST/Center for Synthetic and Systems Biology, and Department of Automation, Tsinghua University, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Glurich I, Acharya A, Brilliant MH, Shukla SK. Progress in oral personalized medicine: contribution of 'omics'. J Oral Microbiol 2015; 7:28223. [PMID: 26344171 PMCID: PMC4561229 DOI: 10.3402/jom.v7.28223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Precision medicine (PM), representing clinically applicable personalized medicine, proactively integrates and interprets multidimensional personal health data, including clinical, 'omics', and environmental profiles, into clinical practice. Realization of PM remains in progress. OBJECTIVE The focus of this review is to provide a descriptive narrative overview of: 1) the current status of oral personalized medicine; and 2) recent advances in genomics and related 'omic' and emerging research domains contributing to advancing oral-systemic PM, with special emphasis on current understanding of oral microbiomes. DESIGN A scan of peer-reviewed literature describing oral PM or 'omic'-based research conducted on humans/data published in English within the last 5 years in journals indexed in the PubMed database was conducted using mesh search terms. An evidence-based approach was used to report on recent advances with potential to advance PM in the context of historical critical and systematic reviews to delineate current state-of-the-art technologies. Special focus was placed on oral microbiome research associated with health and disease states, emerging research domains, and technological advances, which are positioning realization of PM. RESULTS This review summarizes: 1) evolving conceptualization of personalized medicine; 2) emerging insight into roles of oral infectious and inflammatory processes as contributors to both oral and systemic diseases; 3) community shifts in microbiota that may contribute to disease; 4) evidence pointing to new uncharacterized potential oral pathogens; 5) advances in technological approaches to 'omics' research that will accelerate PM; 6) emerging research domains that expand insights into host-microbe interaction including inter-kingdom communication, systems and network analysis, and salivaomics; and 7) advances in informatics and big data analysis capabilities to facilitate interpretation of host and microbiome-associated datasets. Furthermore, progress in clinically applicable screening assays and biomarker definition to inform clinical care are briefly explored. CONCLUSION Advancement of oral PM currently remains in research and discovery phases. Although substantive progress has been made in advancing the understanding of the role of microbiome dynamics in health and disease and is being leveraged to advance early efforts at clinical translation, further research is required to discern interpretable constituency patterns in the complex interactions of these microbial communities in health and disease. Advances in biotechnology and bioinformatics facilitating novel approaches to rapid analysis and interpretation of large datasets are providing new insights into oral health and disease, potentiating clinical application and advancing realization of PM within the next decade.
Collapse
Affiliation(s)
- Ingrid Glurich
- Institute for Oral Systemic Health, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - Amit Acharya
- Institute for Oral Systemic Health, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| | - Murray H Brilliant
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI, USA;
| | - Sanjay K Shukla
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, WI, USA
| |
Collapse
|
20
|
Wang J, Gao Y, Zhao F. Phage-bacteria interaction network in human oral microbiome. Environ Microbiol 2015; 18:2143-58. [DOI: 10.1111/1462-2920.12923] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing China
| | - Yuan Gao
- Computational Genomics Lab, Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing China
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
21
|
Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S, Soberón X, Del Pozo-Yauner L, Ochoa-Leyva A. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J 2015; 13:390-401. [PMID: 26137199 PMCID: PMC4484546 DOI: 10.1016/j.csbj.2015.06.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023] Open
Abstract
The advances in experimental methods and the development of high performance bioinformatic tools have substantially improved our understanding of microbial communities associated with human niches. Many studies have documented that changes in microbial abundance and composition of the human microbiome is associated with human health and diseased state. The majority of research on human microbiome is typically focused in the analysis of one level of biological information, i.e., metagenomics or metatranscriptomics. In this review, we describe some of the different experimental and bioinformatic strategies applied to analyze the 16S rRNA gene profiling and shotgun sequencing data of the human microbiome. We also discuss how some of the recent insights in the combination of metagenomics, metatranscriptomics and viromics can provide more detailed description on the interactions between microorganisms and viruses in oral and gut microbiomes. Recent studies on viromics have begun to gain importance due to the potential involvement of viruses in microbial dysbiosis. In addition, metatranscriptomic combined with metagenomic analysis have shown that a substantial fraction of microbial transcripts can be differentially regulated relative to their microbial genomic abundances. Thus, understanding the molecular interactions in the microbiome using the combination of metagenomics, metatranscriptomics and viromics is one of the main challenges towards a system level understanding of human microbiome.
Collapse
Affiliation(s)
- Shirley Bikel
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Alejandra Valdez-Lara
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Fernanda Cornejo-Granados
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| | - Karina Rico
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F., Mexico
| | | | - Adrián Ochoa-Leyva
- Unidad de Genómica de Poblaciones Aplicada la Salud, Facultad de Química, UNAM, Instituto Nacional de Medicina Genómica (INMEGEN), México, D.F. 14610, Mexico ; Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Avenida Universidad 2001, Cuernavaca C.P. 62210, Mexico
| |
Collapse
|
22
|
Lum AG, Ly M, Santiago-Rodriguez TM, Naidu M, Boehm TK, Pride DT. Global transcription of CRISPR loci in the human oral cavity. BMC Genomics 2015; 16:401. [PMID: 25994215 PMCID: PMC4438527 DOI: 10.1186/s12864-015-1615-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 05/05/2015] [Indexed: 12/26/2022] Open
Abstract
Background Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are active in acquired resistance against bacteriophage and plasmids in a number of environments. In the human mouth, CRISPR loci evolve to counteract oral phage, but the expression of these CRISPR loci has not previously been investigated. We sequenced cDNA from CRISPR loci found in numerous different oral bacteria and compared with oral phage communities to determine whether the transcription of CRISPR loci is specifically targeted towards highly abundant phage present in the oral environment. Results We found that of the 529,027 CRISPR spacer groups studied, 88 % could be identified in transcripts, indicating that the vast majority of CRISPR loci in the oral cavity were transcribed. There were no strong associations between CRISPR spacer repertoires and oral health status or nucleic acid type. We also compared CRISPR repertoires with oral bacteriophage communities, and found that there was no significant association between CRISPR transcripts and oral phage, regardless of the CRISPR type being evaluated. We characterized highly expressed CRISPR spacers and found that they were no more likely than other spacers to match oral phage. By reassembling the CRISPR-bearing reads into longer CRISPR loci, we found that the majority of the loci did not have spacers matching viruses found in the oral cavities of the subjects studied. For some CRISPR types, loci containing spacers matching oral phage were significantly more likely to have multiple spacers rather than a single spacer matching oral phage. Conclusions These data suggest that the transcription of oral CRISPR loci is relatively ubiquitous and that highly expressed CRISPR spacers do not necessarily target the most abundant oral phage. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1615-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew G Lum
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA, 92093-0612, USA.
| | - Melissa Ly
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA, 92093-0612, USA.
| | - Tasha M Santiago-Rodriguez
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA, 92093-0612, USA.
| | - Mayuri Naidu
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA, 92093-0612, USA.
| | - Tobias K Boehm
- College of Dental Medicine, Western University of Health Sciences, 309 E Second Street, Pomona, CA, 91766, USA.
| | - David T Pride
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA, 92093-0612, USA. .,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA, 92093-0612, USA.
| |
Collapse
|
23
|
Edlund A, Santiago-Rodriguez TM, Boehm TK, Pride DT. Bacteriophage and their potential roles in the human oral cavity. J Oral Microbiol 2015; 7:27423. [PMID: 25861745 PMCID: PMC4393417 DOI: 10.3402/jom.v7.27423] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 12/26/2022] Open
Abstract
The human oral cavity provides the perfect portal of entry for viruses and bacteria in the environment to access new hosts. Hence, the oral cavity is one of the most densely populated habitats of the human body containing some 6 billion bacteria and potentially 35 times that many viruses. The role of these viral communities remains unclear; however, many are bacteriophage that may have active roles in shaping the ecology of oral bacterial communities. Other implications for the presence of such vast oral phage communities include accelerating the molecular diversity of their bacterial hosts as both host and phage mutate to gain evolutionary advantages. Additional roles include the acquisitions of new gene functions through lysogenic conversions that may provide selective advantages to host bacteria in response to antibiotics or other types of disturbances, and protection of the human host from invading pathogens by binding to and preventing pathogens from crossing oral mucosal barriers. Recent evidence suggests that phage may be more involved in periodontal diseases than were previously thought, as their compositions in the subgingival crevice in moderate to severe periodontitis are known to be significantly altered. However, it is unclear to what extent they contribute to dysbiosis or the transition of the microbial community into a state promoting oral disease. Bacteriophage communities are distinct in saliva compared to sub- and supragingival areas, suggesting that different oral biogeographic niches have unique phage ecology shaping their bacterial biota. In this review, we summarize what is known about phage communities in the oral cavity, the possible contributions of phage in shaping oral bacterial ecology, and the risks to public health oral phage may pose through their potential to spread antibiotic resistance gene functions to close contacts.
Collapse
Affiliation(s)
- Anna Edlund
- Microbial and Environmental Genomics, J. Craig Venter Institute, La Jolla, CA, USA.,School of Dentistry, University of California, Los Angeles, CA, USA
| | | | - Tobias K Boehm
- Western University College of Dental Medicine, Pomona, CA, USA
| | - David T Pride
- Department of Pathology, University of California, San Diego, CA, USA.,Department of Medicine, University of California, San Diego, CA, USA;
| |
Collapse
|
24
|
Yolken RH, Jones-Brando L, Dunigan DD, Kannan G, Dickerson F, Severance E, Sabunciyan S, Talbot CC, Prandovszky E, Gurnon JR, Agarkova IV, Leister F, Gressitt KL, Chen O, Deuber B, Ma F, Pletnikov MV, Van Etten JL. Chlorovirus ATCV-1 is part of the human oropharyngeal virome and is associated with changes in cognitive functions in humans and mice. Proc Natl Acad Sci U S A 2014; 111:16106-11. [PMID: 25349393 PMCID: PMC4234575 DOI: 10.1073/pnas.1418895111] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroviruses (family Phycodnaviridae) are large DNA viruses known to infect certain eukaryotic green algae and have not been previously shown to infect humans or to be part of the human virome. We unexpectedly found sequences homologous to the chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) in a metagenomic analysis of DNA extracted from human oropharyngeal samples. These samples were obtained by throat swabs of adults without a psychiatric disorder or serious physical illness who were participating in a study that included measures of cognitive functioning. The presence of ATCV-1 DNA was confirmed by quantitative PCR with ATCV-1 DNA being documented in oropharyngeal samples obtained from 40 (43.5%) of 92 individuals. The presence of ATCV-1 DNA was not associated with demographic variables but was associated with a modest but statistically significant decrease in the performance on cognitive assessments of visual processing and visual motor speed. We further explored the effects of ATCV-1 in a mouse model. The inoculation of ATCV-1 into the intestinal tract of 9-11-wk-old mice resulted in a subsequent decrease in performance in several cognitive domains, including ones involving recognition memory and sensory-motor gating. ATCV-1 exposure in mice also resulted in the altered expression of genes within the hippocampus. These genes comprised pathways related to synaptic plasticity, learning, memory formation, and the immune response to viral exposure.
Collapse
Affiliation(s)
- Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics,
| | | | - David D Dunigan
- Nebraska Center for Virology and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900; and
| | - Geetha Kannan
- Department of Psychiatry and Behavioral Sciences, and
| | - Faith Dickerson
- Department of Psychology, Sheppard Pratt Health System, Baltimore, MD 21205
| | - Emily Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics
| | - Sarven Sabunciyan
- Stanley Division of Developmental Neurovirology, Department of Pediatrics
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Department of Pediatrics
| | - James R Gurnon
- Nebraska Center for Virology and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900; and
| | - Irina V Agarkova
- Nebraska Center for Virology and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900; and
| | - Flora Leister
- Stanley Division of Developmental Neurovirology, Department of Pediatrics
| | - Kristin L Gressitt
- Stanley Division of Developmental Neurovirology, Department of Pediatrics
| | - Ou Chen
- Stanley Division of Developmental Neurovirology, Department of Pediatrics
| | - Bryan Deuber
- Stanley Division of Developmental Neurovirology, Department of Pediatrics
| | - Fangrui Ma
- Nebraska Center for Virology and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900; and
| | | | - James L Van Etten
- Nebraska Center for Virology and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900; and
| |
Collapse
|
25
|
Abstract
Respiratory tract infection increases the risk of secondary bacterial infection and causes mortality. Despite advances in the field of targeted molecular diagnostics, there are still failed attempts in identifying a valid causative etiological agent in a large proportion of respiratory tract infections. To date, a comprehensive list of human respiratory infection-associated eukaryotic viruses has been identified. However, there has been little progress towards the characterisation of the viruses that infect bacteria (phages), which are capable of mediating the transfer of virulence genes into non-pathogenic bacterial species to cause respiratory tract infections. With the advent of next-generation-sequencing, the application of an unbiased comparative metagenomic survey on the viral communities within the human respiratory tract may reveal to us how the phage virome changes between healthy individuals and respiratory tract infection patients. With this useful information, it will be feasible to develop an alternative phage-based diagnostic panel for respiratory tract infections. The review herein presents the current status of human airway microbiome research and highlights potential gaps which can be translated into research possibilities for future work on respiratory tract infection diagnosis.
Collapse
Affiliation(s)
- Chun Kiat Lee
- 1School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia2Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, Singapore
| | - Stephen James Bent
- 3The Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
26
|
Abeles SR, Pride DT. Molecular bases and role of viruses in the human microbiome. J Mol Biol 2014; 426:3892-906. [PMID: 25020228 PMCID: PMC7172398 DOI: 10.1016/j.jmb.2014.07.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
Abstract
Viruses are dependent biological entities that interact with the genetic material of most cells on the planet, including the trillions within the human microbiome. Their tremendous diversity renders analysis of human viral communities ("viromes") to be highly complex. Because many of the viruses in humans are bacteriophage, their dynamic interactions with their cellular hosts add greatly to the complexities observed in examining human microbial ecosystems. We are only beginning to be able to study human viral communities on a large scale, mostly as a result of recent and continued advancements in sequencing and bioinformatic technologies. Bacteriophage community diversity in humans not only is inexorably linked to the diversity of their cellular hosts but also is due to their rapid evolution, horizontal gene transfers, and intimate interactions with host nucleic acids. There are vast numbers of observed viral genotypes on many body surfaces studied, including the oral, gastrointestinal, and respiratory tracts, and even in the human bloodstream, which previously was considered a purely sterile environment. The presence of viruses in blood suggests that virome members can traverse mucosal barriers, as indeed these communities are substantially altered when mucosal defenses are weakened. Perhaps the most interesting aspect of human viral communities is the extent to which they can carry gene functions involved in the pathogenesis of their hosts, particularly antibiotic resistance. Persons in close contact with each other have been shown to share a fraction of oral virobiota, which could potentially have important implications for the spread of antibiotic resistance to healthy individuals. Because viruses can have a large impact on ecosystem dynamics through mechanisms such as the transfers of beneficial gene functions or the lysis of certain populations of cellular hosts, they may have both beneficial and detrimental roles that affect human health, including improvements in microbial resilience to disturbances, immune evasion, maintenance of physiologic processes, and altering the microbial community in ways that promote or prevent pathogen colonization.
Collapse
Affiliation(s)
- Shira R Abeles
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - David T Pride
- Department of Medicine, University of California, San Diego, CA 92093, USA; Department of Pathology, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
27
|
Naidu M, Robles-Sikisaka R, Abeles SR, Boehm TK, Pride DT. Characterization of bacteriophage communities and CRISPR profiles from dental plaque. BMC Microbiol 2014; 14:175. [PMID: 24981669 PMCID: PMC4104742 DOI: 10.1186/1471-2180-14-175] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 06/26/2014] [Indexed: 12/26/2022] Open
Abstract
Background Dental plaque is home to a diverse and complex community of bacteria, but has generally been believed to be inhabited by relatively few viruses. We sampled the saliva and dental plaque from 4 healthy human subjects to determine whether plaque was populated by viral communities, and whether there were differences in viral communities specific to subject or sample type. Results We found that the plaque was inhabited by a community of bacteriophage whose membership was mostly subject-specific. There was a significant proportion of viral homologues shared between plaque and salivary viromes within each subject, suggesting that some oral viruses were present in both sites. We also characterized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in oral streptococci, as their profiles provide clues to the viruses that oral bacteria may be able to counteract. While there were some CRISPR spacers specific to each sample type, many more were shared across sites and were highly subject specific. Many CRISPR spacers matched viruses present in plaque, suggesting that the evolution of CRISPR loci may have been specific to plaque-derived viruses. Conclusions Our findings of subject specificity to both plaque-derived viruses and CRISPR profiles suggest that human viral ecology may be highly personalized.
Collapse
Affiliation(s)
| | | | | | | | - David T Pride
- Department of Pathology, University of California, San Diego, CA, USA.
| |
Collapse
|
28
|
Robles-Sikisaka R, Naidu M, Ly M, Salzman J, Abeles SR, Boehm TK, Pride DT. Conservation of streptococcal CRISPRs on human skin and saliva. BMC Microbiol 2014; 14:146. [PMID: 24903519 PMCID: PMC4063239 DOI: 10.1186/1471-2180-14-146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/21/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are utilized by bacteria to resist encounters with their viruses. Human body surfaces have numerous bacteria that harbor CRISPRs, and their content can provide clues as to the types and features of viruses they may have encountered. RESULTS We investigated the conservation of CRISPR content from streptococci on skin and saliva of human subjects over 8-weeks to determine whether similarities existed in the CRISPR spacer profiles and whether CRISPR spacers were a stable component of each biogeographic site. Most of the CRISPR sequences identified were unique, but a small proportion of spacers from the skin and saliva of each subject matched spacers derived from previously sequenced loci of S. thermophilus and other streptococci. There were significant proportions of CRISPR spacers conserved over the entire 8-week study period for all subjects, and salivary CRISPR spacers sampled in the mornings showed significantly higher levels of conservation than any other time of day. We also found substantial similarities in the spacer repertoires of the skin and saliva of each subject. Many skin-derived spacers matched salivary viruses, supporting that bacteria of the skin may encounter viruses with similar sequences to those found in the mouth. Despite the similarities between skin and salivary spacer repertoires, the variation present was distinct based on each subject and body site. CONCLUSIONS The conservation of CRISPR spacers in the saliva and the skin of human subjects over the time period studied suggests a relative conservation of the bacteria harboring them.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David T Pride
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, MC 0612, La Jolla, CA 92093-0612, USA.
| |
Collapse
|
29
|
Heler R, Marraffini LA, Bikard D. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol Microbiol 2014; 93:1-9. [PMID: 24806524 DOI: 10.1111/mmi.12640] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 12/11/2022]
Abstract
Clustered, regularly interspaced, short palindromic repeats (CRISPR) loci and their associated genes (cas) confer bacteria and archaea with adaptive immunity against phages and other invading genetic elements. A fundamental requirement of any immune system is the ability to build a memory of past infections in order to deal more efficiently with recurrent infections. The adaptive feature of CRISPR-Cas immune systems relies on their ability to memorize DNA sequences of invading molecules and integrate them in between the repetitive sequences of the CRISPR array in the form of 'spacers'. The transcription of a spacer generates a small antisense RNA that is used by RNA-guided Cas nucleases to cleave the invading nucleic acid in order to protect the cell from infection. The acquisition of new spacers allows the CRISPR-Cas immune system to rapidly adapt against new threats and is therefore termed 'adaptation'. Recent studies have begun to elucidate the genetic requirements for adaptation and have demonstrated that rather than being a stochastic process, the selection of new spacers is influenced by several factors. We review here our current knowledge of the CRISPR adaptation mechanism.
Collapse
Affiliation(s)
- Robert Heler
- Laboratory of Bacteriology, The Rockefeller University, New York, NY, 10065, USA
| | | | | |
Collapse
|
30
|
Chylinski K, Makarova KS, Charpentier E, Koonin EV. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 2014; 42:6091-105. [PMID: 24728998 PMCID: PMC4041416 DOI: 10.1093/nar/gku241] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The CRISPR-Cas systems of archaeal and bacterial adaptive immunity are classified into three types that differ by the repertoires of CRISPR-associated (cas) genes, the organization of cas operons and the structure of repeats in the CRISPR arrays. The simplest among the CRISPR-Cas systems is type II in which the endonuclease activities required for the interference with foreign deoxyribonucleic acid (DNA) are concentrated in a single multidomain protein, Cas9, and are guided by a co-processed dual-tracrRNA:crRNA molecule. This compact enzymatic machinery and readily programmable site-specific DNA targeting make type II systems top candidates for a new generation of powerful tools for genomic engineering. Here we report an updated census of CRISPR-Cas systems in bacterial and archaeal genomes. Type II systems are the rarest, missing in archaea, and represented in ∼5% of bacterial genomes, with an over-representation among pathogens and commensals. Phylogenomic analysis suggests that at least three cas genes, cas1, cas2 and cas4, and the CRISPR repeats of the type II-B system were acquired via recombination with a type I CRISPR-Cas locus. Distant homologs of Cas9 were identified among proteins encoded by diverse transposons, suggesting that type II CRISPR-Cas evolved via recombination of mobile nuclease genes with type I loci.
Collapse
Affiliation(s)
- Krzysztof Chylinski
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden Max F. Perutz Laboratories, University of Vienna, Vienna 1030, Austria
| | - Kira S Makarova
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
| | - Emmanuelle Charpentier
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umeå 90187, Sweden Helmholtz Centre for Infection Research, Department of Regulation in Infection Biology, Braunschweig 38124, Germany Hannover Medical School, Hannover 30625, Germany
| | - Eugene V Koonin
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
31
|
Armitage GC. Learned and unlearned concepts in periodontal diagnostics: a 50-year perspective. Periodontol 2000 2014; 62:20-36. [PMID: 23574462 DOI: 10.1111/prd.12006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the past 50 years, conceptual changes in the field of periodontal diagnostics have paralleled those associated with a better scientific understanding of the full spectrum of processes that affect periodontal health and disease. Fifty years ago, concepts regarding the diagnosis of periodontal diseases followed the classical pathology paradigm. It was believed that the two basic forms of destructive periodontal disease were chronic inflammatory periodontitis and 'periodontosis'- a degenerative condition. In the subsequent 25 years it was shown that periodontosis was an infection. By 1987, major new concepts regarding the diagnosis and pathogenesis of periodontitis included: (i) all cases of untreated gingivitis do not inevitably progress to periodontitis; (ii) progression of untreated periodontitis is often episodic; (iii) some sites with untreated periodontitis do not progress; (iv) a rather small population of specific bacteria ('periodontal pathogens') appear to be the main etiologic agents of chronic inflammatory periodontitis; and (v) tissue damage in periodontitis is primarily caused by inflammatory and immunologic host responses to infecting agents. The concepts that were in place by 1987 are still largely intact in 2012. However, in the decades to come, it is likely that new information on the human microbiome will change our current concepts concerning the prevention, diagnosis and treatment of periodontal diseases.
Collapse
|
32
|
Human oral viruses are personal, persistent and gender-consistent. ISME JOURNAL 2014; 8:1753-67. [PMID: 24646696 DOI: 10.1038/ismej.2014.31] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/30/2013] [Accepted: 01/24/2014] [Indexed: 12/31/2022]
Abstract
Viruses are the most abundant members of the human oral microbiome, yet relatively little is known about their biodiversity in humans. To improve our understanding of the DNA viruses that inhabit the human oral cavity, we examined saliva from a cohort of eight unrelated subjects over a 60-day period. Each subject was examined at 11 time points to characterize longitudinal differences in human oral viruses. Our primary goals were to determine whether oral viruses were specific to individuals and whether viral genotypes persisted over time. We found a subset of homologous viral genotypes across all subjects and time points studied, suggesting that certain genotypes may be ubiquitous among healthy human subjects. We also found significant associations between viral genotypes and individual subjects, indicating that viruses are a highly personalized feature of the healthy human oral microbiome. Many of these oral viruses were not transient members of the oral ecosystem, as demonstrated by the persistence of certain viruses throughout the entire 60-day study period. As has previously been demonstrated for bacteria and fungi, membership in the oral viral community was significantly associated with the sex of each subject. Similar characteristics of personalized, sex-specific microflora could not be identified for oral bacterial communities based on 16S rRNA. Our findings that many viruses are stable and individual-specific members of the oral ecosystem suggest that viruses have an important role in the human oral ecosystem.
Collapse
|
33
|
Gogleva AA, Gelfand MS, Artamonova II. Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs. BMC Genomics 2014; 15:202. [PMID: 24628983 PMCID: PMC4004331 DOI: 10.1186/1471-2164-15-202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 03/04/2014] [Indexed: 08/30/2023] Open
Abstract
Background CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a prokaryotic adaptive defence system that provides resistance against alien replicons such as viruses and plasmids. Spacers in a CRISPR cassette confer immunity against viruses and plasmids containing regions complementary to the spacers and hence they retain a footprint of interactions between prokaryotes and their viruses in individual strains and ecosystems. The human gut is a rich habitat populated by numerous microorganisms, but a large fraction of these are unculturable and little is known about them in general and their CRISPR systems in particular. Results We used human gut metagenomic data from three open projects in order to characterize the composition and dynamics of CRISPR cassettes in the human-associated microbiota. Applying available CRISPR-identification algorithms and a previously designed filtering procedure to the assembled human gut metagenomic contigs, we found 388 CRISPR cassettes, 373 of which had repeats not observed previously in complete genomes or other datasets. Only 171 of 3,545 identified spacers were coupled with protospacers from the human gut metagenomic contigs. The number of matches to GenBank sequences was negligible, providing protospacers for 26 spacers. Reconstruction of CRISPR cassettes allowed us to track the dynamics of spacer content. In agreement with other published observations we show that spacers shared by different cassettes (and hence likely older ones) tend to the trailer ends, whereas spacers with matches in the metagenomes are distributed unevenly across cassettes, demonstrating a preference to form clusters closer to the active end of a CRISPR cassette, adjacent to the leader, and hence suggesting dynamical interactions between prokaryotes and viruses in the human gut. Remarkably, spacers match protospacers in the metagenome of the same individual with frequency comparable to a random control, but may match protospacers from metagenomes of other individuals. Conclusions The analysis of assembled contigs is complementary to the approach based on the analysis of original reads and hence provides additional data about composition and evolution of CRISPR cassettes, revealing the dynamics of CRISPR-phage interactions in metagenomes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-202) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Irena I Artamonova
- N, I, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str, 3, Moscow 119991, Russia.
| |
Collapse
|
34
|
Watanabe T, Nozawa T, Aikawa C, Amano A, Maruyama F, Nakagawa I. CRISPR regulation of intraspecies diversification by limiting IS transposition and intercellular recombination. Genome Biol Evol 2013; 5:1099-114. [PMID: 23661565 PMCID: PMC3698921 DOI: 10.1093/gbe/evt075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mobile genetic elements (MGEs) and genetic rearrangement are considered as major driving forces of bacterial diversification. Previous comparative genome analysis of Porphyromonas gingivalis, a pathogen related to periodontitis, implied such an important relationship. As a counterpart system to MGEs, clustered regularly interspaced short palindromic repeats (CRISPRs) in bacteria may be useful for genetic typing. We found that CRISPR typing could be a reasonable alternative to conventional methods for characterizing phylogenetic relationships among 60 highly diverse P. gingivalis isolates. Examination of genetic recombination along with multilocus sequence typing suggests the importance of such events between different isolates. MGEs appear to be strategically located at the breakpoint gaps of complicated genome rearrangements. Of these MGEs, insertion sequences (ISs) were found most frequently. CRISPR analysis identified 2,150 spacers that were clustered into 1,187 unique ones. Most of these spacers exhibited no significant nucleotide similarity to known sequences (97.6%: 1,158/1,187). Surprisingly, CRISPR spacers exhibiting high nucleotide similarity to regions of P. gingivalis genomes including ISs were predominant. The proportion of such spacers to all the unique spacers (1.6%: 19/1,187) was the highest among previous studies, suggesting novel functions for these CRISPRs. These results indicate that P. gingivalis is a bacterium with high intraspecies diversity caused by frequent insertion sequence (IS) transposition, whereas both the introduction of foreign DNA, primarily from other P. gingivalis cells, and IS transposition are limited by CRISPR interference. It is suggested that P. gingivalis CRISPRs could be an important source for understanding the role of CRISPRs in the development of bacterial diversity.
Collapse
Affiliation(s)
- Takayasu Watanabe
- Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The CRISPR (clusters of regularly interspaced short palindromic repeats)–Cas adaptive immune system is an important defense system in bacteria, providing targeted defense against invasions of foreign nucleic acids. CRISPR–Cas systems consist of CRISPR loci and cas (CRISPR-associated) genes: sequence segments of invaders are incorporated into host genomes at CRISPR loci to generate specificity, while adjacent cas genes encode proteins that mediate the defense process. We pursued an integrated approach to identifying putative cas genes from genomes and metagenomes, combining similarity searches with genomic neighborhood analysis. Application of our approach to bacterial genomes and human microbiome datasets allowed us to significantly expand the collection of cas genes: the sequence space of the Cas9 family, the key player in the recently engineered RNA-guided platforms for genome editing in eukaryotes, is expanded by at least two-fold with metagenomic datasets. We found genes in cas loci encoding other functions, for example, toxins and antitoxins, confirming the recently discovered potential of coupling between adaptive immunity and the dormancy/suicide systems. We further identified 24 novel Cas families; one novel family contains 20 proteins, all identified from the human microbiome datasets, illustrating the importance of metagenomics projects in expanding the diversity of cas genes.
Collapse
Affiliation(s)
- Quan Zhang
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA, Department of Biology, Indiana University, Bloomington, IN 47405, USA and National Center for Genome Analysis Support, Indiana University, Bloomington, IN 47408, USA
| | | | | |
Collapse
|
36
|
Li M, Wang R, Zhao D, Xiang H. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res 2013; 42:2483-92. [PMID: 24265226 PMCID: PMC3936756 DOI: 10.1093/nar/gkt1154] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system mediates adaptive immunity against foreign nucleic acids in prokaryotes. However, efficient adaptation of a native CRISPR to purified viruses has only been observed for the type II-A system from a Streptococcus thermophilus industry strain, and rarely reported for laboratory strains. Here, we provide a second native system showing efficient adaptation. Infected by a newly isolated virus HHPV-2, Haloarcula hispanica type I-B CRISPR system acquired spacers discriminatively from viral sequences. Unexpectedly, in addition to Cas1, Cas2 and Cas4, this process also requires Cas3 and at least partial Cascade proteins, which are involved in interference and/or CRISPR RNA maturation. Intriguingly, a preexisting spacer partially matching a viral sequence is also required, and spacer acquisition from upstream and downstream sequences of its target sequence (i.e. priming protospacer) shows different strand bias. These evidences strongly indicate that adaptation in this system strictly requires a priming process. This requirement, if validated also true for other CRISPR systems as implied by our bioinformatic analysis, may help to explain failures to observe efficient adaptation to purified viruses in many laboratory strains, and the discrimination mechanism at the adaptation level that has confused scientists for years.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | |
Collapse
|
37
|
Resident viruses and their interactions with the immune system. Nat Immunol 2013; 14:654-9. [PMID: 23778792 PMCID: PMC3760236 DOI: 10.1038/ni.2614] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/16/2013] [Indexed: 02/08/2023]
Abstract
The human body is colonized with a diverse resident microflora that includes viruses. Recent studies of metagenomes have begun to characterize the composition of the human 'virobiota' and its associated genes (the 'virome'), and have fostered the emerging field of host-virobiota interactions. In this Perspective, we explore how resident viruses interact with the immune system. We review recent findings that highlight the role of the immune system in shaping the composition of the virobiota and consider how resident viruses may impact host immunity. Finally, we discuss the implications of virobiota-immune system interactions for human health.
Collapse
|
38
|
Mick E, Stern A, Sorek R. Holding a grudge: persisting anti-phage CRISPR immunity in multiple human gut microbiomes. RNA Biol 2013; 10:900-6. [PMID: 23439321 PMCID: PMC3737347 DOI: 10.4161/rna.23929] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 12/13/2022] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) system of bacteria and archaea constitutes a mechanism of acquired adaptive immunity against phages, which is based on genome-encoded markers of previously infecting phage sequences ("spacers"). As a repository of phage sequences, these spacers make the system particularly suitable for elucidating phage-bacteria interactions in metagenomic studies. Recent metagenomic analyses of CRISPRs associated with the human microbiome intriguingly revealed conserved "memory spacers" shared by bacteria in multiple unrelated, geographically separated individuals. Here, we discuss possible avenues for explaining this phenomenon by integrating insights from CRISPR biology and phage-bacteria ecology, with a special focus on the human gut. We further explore the growing body of evidence for the role of CRISPR/Cas in regulating the interplay between bacteria and lysogenic phages, which may be intimately related to the presence of memory spacers and sheds new light on the multifaceted biological and ecological modes of action of CRISPR/Cas.
Collapse
Affiliation(s)
- Eran Mick
- Department of Systems Biology; Harvard Medical School; Boston, MA USA
| | - Adi Stern
- Department of Microbiology and Immunology; University of California; San Francisco, CA USA
- Department of Integrative Biology; University of California; Berkeley, CA USA
| | - Rotem Sorek
- Department of Molecular Genetics; Weizmann Institute of Science; Rehovot, Israel
| |
Collapse
|
39
|
Díez-Villaseñor C, Guzmán NM, Almendros C, García-Martínez J, Mojica FJ. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol 2013; 10:792-802. [PMID: 23445770 PMCID: PMC3737337 DOI: 10.4161/rna.24023] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/09/2013] [Accepted: 02/15/2013] [Indexed: 12/20/2022] Open
Abstract
Prokaryotes immunize themselves against transmissible genetic elements by the integration (acquisition) in clustered regularly interspaced short palindromic repeats (CRISPR) loci of spacers homologous to invader nucleic acids, defined as protospacers. Following acquisition, mono-spacer CRISPR RNAs (termed crRNAs) guide CRISPR-associated (Cas) proteins to degrade (interference) protospacers flanked by an adjacent motif in extrachomosomal DNA. During acquisition, selection of spacer-precursors adjoining the protospacer motif and proper orientation of the integrated fragment with respect to the leader (sequence leading transcription of the flanking CRISPR array) grant efficient interference by at least some CRISPR-Cas systems. This adaptive stage of the CRISPR action is poorly characterized, mainly due to the lack of appropriate genetic strategies to address its study and, at least in Escherichia coli, the need of Cas overproduction for insertion detection. In this work, we describe the development and application in Escherichia coli strains of an interference-independent assay based on engineered selectable CRISPR-spacer integration reporter plasmids. By using this tool without the constraint of interference or cas overexpression, we confirmed fundamental aspects of this process such as the critical requirement of Cas1 and Cas2 and the identity of the CTT protospacer motif for the E. coli K12 system. In addition, we defined the CWT motif for a non-K12 CRISPR-Cas variant, and obtained data supporting the implication of the leader in spacer orientation, the preferred acquisition from plasmids harboring cas genes and the occurrence of a sequential cleavage at the insertion site by a ruler mechanism.
Collapse
Affiliation(s)
- César Díez-Villaseñor
- Departamento de Fisiología, Genética y Microbiología; Universidad de Alicante; Alicante; Spain
| | - Noemí M. Guzmán
- Departamento de Fisiología, Genética y Microbiología; Universidad de Alicante; Alicante; Spain
| | - Cristóbal Almendros
- Departamento de Fisiología, Genética y Microbiología; Universidad de Alicante; Alicante; Spain
| | - Jesús García-Martínez
- Departamento de Fisiología, Genética y Microbiología; Universidad de Alicante; Alicante; Spain
| | - Francisco J.M. Mojica
- Departamento de Fisiología, Genética y Microbiología; Universidad de Alicante; Alicante; Spain
| |
Collapse
|
40
|
Zhang Q, Rho M, Tang H, Doak TG, Ye Y. CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes. Genome Biol 2013; 14:R40. [PMID: 23628424 PMCID: PMC4053933 DOI: 10.1186/gb-2013-14-4-r40] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/29/2013] [Indexed: 12/26/2022] Open
Abstract
Background Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets. Results We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs. Conclusions We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders.
Collapse
|
41
|
Association between living environment and human oral viral ecology. ISME JOURNAL 2013; 7:1710-24. [PMID: 23598790 DOI: 10.1038/ismej.2013.63] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/16/2013] [Accepted: 03/18/2013] [Indexed: 01/21/2023]
Abstract
The human oral cavity has an indigenous microbiota known to include a robust community of viruses. Very little is known about how oral viruses are spread throughout the environment or to which viruses individuals are exposed. We sought to determine whether shared living environment is associated with the composition of human oral viral communities by examining the saliva of 21 human subjects; 11 subjects from different households and 10 unrelated subjects comprising 4 separate households. Although there were many viral homologues shared among all subjects studied, there were significant patterns of shared homologues in three of the four households that suggest shared living environment affects viral community composition. We also examined CRISPR (clustered regularly interspaced short palindromic repeat) loci, which are involved in acquired bacterial and archaeal resistance against invading viruses by acquiring short viral sequences. We analyzed 2 065 246 CRISPR spacers from 5 separate repeat motifs found in oral bacterial species of Gemella, Veillonella, Leptotrichia and Streptococcus to determine whether individuals from shared living environments may have been exposed to similar viruses. A significant proportion of CRISPR spacers were shared within subjects from the same households, suggesting either shared ancestry of their oral microbiota or similar viral exposures. Many CRISPR spacers matched virome sequences from different subjects, but no pattern specific to any household was found. Our data on viromes and CRISPR content indicate that shared living environment may have a significant role in determining the ecology of human oral viruses.
Collapse
|
42
|
Cugini C, Klepac-Ceraj V, Rackaityte E, Riggs JE, Davey ME. Porphyromonas gingivalis: keeping the pathos out of the biont. J Oral Microbiol 2013; 5:19804. [PMID: 23565326 PMCID: PMC3617648 DOI: 10.3402/jom.v5i0.19804] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/21/2023] Open
Abstract
The primary goal of the human microbiome initiative has been to increase our understanding of the structure and function of our indigenous microbiota and their effects on human health and predisposition to disease. Because of its clinical importance and accessibility for in vivo study, the oral biofilm is one of the best-understood microbial communities associated with the human body. Studies have shown that there is a succession of select microbial interactions that directs the maturation of a defined community structure, generating the formation of dental plaque. Although the initiating factors that lead to disease development are not clearly defined, in many individuals there is a fundamental shift from a health-associated biofilm community to one that is pathogenic in nature and a central player in the pathogenic potential of this community is the presence of Porphyromonas gingivalis. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions, which is attributed to its arsenal of specialized virulence factors. Hence, this organism is regarded as a primary etiologic agent of periodontal disease progression. In this review, we summarize some of the latest information regarding what is known about its role in periodontitis, including pathogenic potential as well as ecological and nutritional parameters that may shift this commensal to a virulent state. We also discuss parallels between the development of pathogenic biofilms and the human cellular communities that lead to cancer, specifically we frame our viewpoint in the context of 'wounds that fail to heal'.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA ; Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
43
|
Seth-Smith HMB, Harris SR, Skilton RJ, Radebe FM, Golparian D, Shipitsyna E, Duy PT, Scott P, Cutcliffe LT, O'Neill C, Parmar S, Pitt R, Baker S, Ison CA, Marsh P, Jalal H, Lewis DA, Unemo M, Clarke IN, Parkhill J, Thomson NR. Whole-genome sequences of Chlamydia trachomatis directly from clinical samples without culture. Genome Res 2013; 23:855-66. [PMID: 23525359 PMCID: PMC3638141 DOI: 10.1101/gr.150037.112] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of whole-genome sequencing as a tool for the study of infectious bacteria is of growing clinical interest. Chlamydia trachomatis is responsible for sexually transmitted infections and the blinding disease trachoma, which affect hundreds of millions of people worldwide. Recombination is widespread within the genome of C. trachomatis, thus whole-genome sequencing is necessary to understand the evolution, diversity, and epidemiology of this pathogen. Culture of C. trachomatis has, until now, been a prerequisite to obtain DNA for whole-genome sequencing; however, as C. trachomatis is an obligate intracellular pathogen, this procedure is technically demanding and time consuming. Discarded clinical samples represent a large resource for sequencing the genomes of pathogens, yet clinical swabs frequently contain very low levels of C. trachomatis DNA and large amounts of contaminating microbial and human DNA. To determine whether it is possible to obtain whole-genome sequences from bacteria without the need for culture, we have devised an approach that combines immunomagnetic separation (IMS) for targeted bacterial enrichment with multiple displacement amplification (MDA) for whole-genome amplification. Using IMS-MDA in conjunction with high-throughput multiplexed Illumina sequencing, we have produced the first whole bacterial genome sequences direct from clinical samples. We also show that this method can be used to generate genome data from nonviable archived samples. This method will prove a useful tool in answering questions relating to the biology of many difficult-to-culture or fastidious bacteria of clinical concern.
Collapse
Affiliation(s)
- Helena M B Seth-Smith
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|