1
|
Singh AA, Singh AK. Role of bacterial quorum sensing in plant growth promotion. World J Microbiol Biotechnol 2024; 41:18. [PMID: 39724256 DOI: 10.1007/s11274-024-04232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing. Phytochemicals present in plant root exudates and QS signal molecules as well as volatile organic compounds (VOCs) produced by microorganisms work in coordination to establish intra- and inter-species communications. Interestingly, a number of plant growth promoting rhziobacterial (PGPR) activities like effective/enhanced root colonization, nutrient uptake, nodulation, nitrogen fixation, production of plant hormones, antimicrobial compounds and induction of plant defences can be attributed directly or indirectly to their quorum sensing and quenching abilities. Although not completely understood, root development, stress tolerance and defence against phytopathogens are some of the implications of such abilities which might prove beneficial for sustainable agriculture. Deciphering the mechanism of these interactions would be instrumental in improving crop health. Plant beneficial microorganisms employing QS and QS inhibition (QSI) strategies have been discussed in this review.
Collapse
Affiliation(s)
- Aparna Anil Singh
- Department of Microbiology, Tolani College of Arts and Science, Adipur, Kachchh, 370205, Gujarat, India.
| | - Anil Kumar Singh
- Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India
| |
Collapse
|
2
|
Mendes SG, Combo SI, Allain T, Domingues S, Buret AG, Da Silva GJ. Co-regulation of biofilm formation and antimicrobial resistance in Acinetobacter baumannii: from mechanisms to therapeutic strategies. Eur J Clin Microbiol Infect Dis 2023; 42:1405-1423. [PMID: 37897520 PMCID: PMC10651561 DOI: 10.1007/s10096-023-04677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/30/2023]
Abstract
In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap (biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 β-lactamase, EpsA, and PTK. Finally, this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine development, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic targets, as combined approaches may confer synergistic benefits for effective and safer treatments.
Collapse
Affiliation(s)
- Sérgio G Mendes
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Sofia I Combo
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Thibault Allain
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Andre G Buret
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada
| | - Gabriela J Da Silva
- Departments of Biological Sciences, Inflammation Research Network, University of Calgary, 2500 University Dr. N.W, Calgary, T2N 1N4, Canada.
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
- Centre for Neuroscience and Cell Biology, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
3
|
Ferreiro MD, Gallegos MT. Distinctive features of the Gac-Rsm pathway in plant-associated Pseudomonas. Environ Microbiol 2021; 23:5670-5689. [PMID: 33939255 DOI: 10.1111/1462-2920.15558] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023]
Abstract
Productive plant-bacteria interactions, either beneficial or pathogenic, require that bacteria successfully sense, integrate and respond to continuously changing environmental and plant stimuli. They use complex signal transduction systems that control a vast array of genes and functions. The Gac-Rsm global regulatory pathway plays a key role in controlling fundamental aspects of the apparently different lifestyles of plant beneficial and phytopathogenic Pseudomonas as it coordinates adaptation and survival while either promoting plant health (biocontrol strains) or causing disease (pathogenic strains). Plant-interacting Pseudomonas stand out for possessing multiple Rsm proteins and Rsm RNAs, but the physiological significance of this redundancy is not yet clear. Strikingly, the components of the Gac-Rsm pathway and the controlled genes/pathways are similar, but the outcome of its regulation may be opposite. Therefore, identifying the target mRNAs bound by the Rsm proteins and their mode of action (repression or activation) is essential to explain the resulting phenotype. Some technical considerations to approach the study of this system are also given. Overall, several important features of the Gac-Rsm cascade are now understood in molecular detail, particularly in Pseudomonas protegens CHA0, but further questions remain to be solved in other plant-interacting Pseudomonas.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
4
|
Leal C, Fontaine F, Aziz A, Egas C, Clément C, Trotel-Aziz P. Genome sequence analysis of the beneficial Bacillus subtilis PTA-271 isolated from a Vitis vinifera (cv. Chardonnay) rhizospheric soil: assets for sustainable biocontrol. ENVIRONMENTAL MICROBIOME 2021; 16:3. [PMID: 33902737 PMCID: PMC8067347 DOI: 10.1186/s40793-021-00372-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/07/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Bacillus subtilis strains have been widely studied for their numerous benefits in agriculture, including viticulture. Providing several assets, B. subtilis spp. are described as promising plant-protectors against many pathogens and as influencers to adaptations in a changing environment. This study reports the draft genome sequence of the beneficial Bacillus subtilis PTA-271, isolated from the rhizospheric soil of healthy Vitis vinifera cv. Chardonnay at Champagne Region in France, attempting to draw outlines of its full biocontrol capacity. RESULTS The PTA-271 genome has a size of 4,001,755 bp, with 43.78% of G + C content and 3945 protein coding genes. The draft genome of PTA-271 putatively highlights a functional swarming motility system hypothesizing a colonizing capacity and a strong interacting capacity, strong survival capacities and a set of genes encoding for bioactive substances. Predicted bioactive compounds are known to: stimulate plant growth or defenses such as hormones and elicitors, influence beneficial microbiota, and counteract pathogen aggressiveness such as effectors and many kinds of detoxifying enzymes. CONCLUSIONS Plurality of the putatively encoded biomolecules by Bacillus subtilis PTA-271 genome suggests environmentally robust biocontrol potential of PTA-271, protecting plants against a broad spectrum of pathogens.
Collapse
Affiliation(s)
- Catarina Leal
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Florence Fontaine
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Aziz Aziz
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Conceiçao Egas
- UC-Biotech_CNC, Biocant Park, Biotechnology Innovation Center, P-3060-197, Cantanhede, Portugal
| | - Christophe Clément
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France
| | - Patricia Trotel-Aziz
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, BP1039, Cedex 2, F-51687, Reims, France.
| |
Collapse
|
5
|
Ashrafudoulla M, Mizan MFR, Park SH, Ha SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry: a comprehensive review. Crit Rev Food Sci Nutr 2020; 61:1827-1851. [PMID: 32436440 DOI: 10.1080/10408398.2020.1767031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The contamination of seafood with Vibrio species can have severe repercussions in the seafood industry. Vibrio species can form mature biofilms and persist on the surface of several seafoods such as crabs, oysters, mussels, and shrimp, for extended duration. Several conventional approaches have been employed to inhibit the growth of planktonic cells and prevent the formation of Vibrio biofilms. Since Vibrio biofilms are mostly resistant to these control measures, novel alternative methods need to be urgently developed. In this review, we propose environmentally friendly approaches to suppress Vibrio biofilm formation using a hypothesized mechanism of action.
Collapse
Affiliation(s)
- Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| | - Si Hong Park
- Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong, Gyunggi-do, Republic of Korea
| |
Collapse
|
6
|
Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, Chen J, Chen J, Lin Z, Qian H. Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5024-5038. [PMID: 32255613 DOI: 10.1021/acs.jafc.0c00073] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microorganisms colonizing the plant rhizosphere provide a number of beneficial functions for their host. Although an increasing number of investigations clarified the great functional capabilities of rhizosphere microbial communities, the understanding of the precise mechanisms underlying the impact of rhizosphere microbiome assemblies is still limited. Also, not much is known about the various beneficial functions of the rhizosphere microbiome. In this review, we summarize the current knowledge of biotic and abiotic factors that shape the rhizosphere microbiome as well as the rhizosphere microbiome traits that are beneficial to plants growth and disease-resistance. We give particular emphasis on the impact of plant root metabolites on rhizosphere microbiome assemblies and on how the microbiome contributes to plant growth, yield, and disease-resistance. Finally, we introduce a new perspective and a novel method showing how a synthetic microbial community construction provides an effective approach to unravel the plant-microbes and microbes-microbes interplays.
Collapse
Affiliation(s)
- Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Wanyue Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Jun Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P.R. China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, P.R. China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| |
Collapse
|
7
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
8
|
Asif M, Imran M. Quorum Sensing Inhibition: Current Advances of the Natural Antimicrobial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019; 7:E581. [PMID: 31752381 PMCID: PMC6920868 DOI: 10.3390/microorganisms7110581] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Surfactants are a broad category of tensio-active biomolecules with multifunctional properties applications in diverse industrial sectors and processes. Surfactants are produced synthetically and biologically. The biologically derived surfactants (biosurfactants) are produced from microorganisms, with Pseudomonas aeruginosa, Bacillus subtilis Candida albicans, and Acinetobacter calcoaceticus as dominant species. Rhamnolipids, sophorolipids, mannosylerithritol lipids, surfactin, and emulsan are well known in terms of their biotechnological applications. Biosurfactants can compete with synthetic surfactants in terms of performance, with established advantages over synthetic ones, including eco-friendliness, biodegradability, low toxicity, and stability over a wide variability of environmental factors. However, at present, synthetic surfactants are a preferred option in different industrial applications because of their availability in commercial quantities, unlike biosurfactants. The usage of synthetic surfactants introduces new species of recalcitrant pollutants into the environment and leads to undesired results when a wrong selection of surfactants is made. Substituting synthetic surfactants with biosurfactants resolves these drawbacks, thus interest has been intensified in biosurfactant applications in a wide range of industries hitherto considered as experimental fields. This review, therefore, intends to offer an overview of diverse applications in which biosurfactants have been found to be useful, with emphases on petroleum biotechnology, environmental remediation, and the agriculture sector. The application of biosurfactants in these settings would lead to industrial growth and environmental sustainability.
Collapse
Affiliation(s)
- Emmanuel O. Fenibo
- World Bank Africa Centre of Excellence, Centre for Oilfield Chemical Research, University of Port Harcourt, Port Harcourt 500272, Nigeria
| | - Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability, University of South Africa, Roodepoort 1709, South Africa;
| | - Ramganesh Selvarajan
- Department of Environmental Science, University of South Africa, Florida Campus, Rooderpoort 1709, South Africa
| | - Chioma B. Chikere
- Department of Microbiology, Faculty of Science, University of Port Harcourt, Port Harcourt 500272, Nigeria;
| |
Collapse
|
10
|
Quorum Sensing in Pseudomonas savastanoi pv. savastanoi and Erwinia toletana: Role in Virulence and Interspecies Interactions in the Olive Knot. Appl Environ Microbiol 2018; 84:AEM.00950-18. [PMID: 30006401 DOI: 10.1128/aem.00950-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
The olive knot disease (Olea europea L.) is caused by the bacterium Pseudomonas savastanoi pv. savastanoi. P. savastanoi pv. savastanoi in the olive knot undergoes interspecies interactions with the harmless endophyte Erwinia toletana; P. savastanoi pv. savastanoi and E. toletana colocalize and form a stable community, resulting in a more aggressive disease. P. savastanoi pv. savastanoi and Etoletana produce the same type of the N-acylhomoserine lactone (AHL) quorum sensing (QS) signal, and they share AHLs in planta In this work, we have further studied the AHL QS systems of P. savastanoi pv. savastanoi and Etoletana in order to determine possible molecular mechanism(s) involved in this bacterial interspecies interaction/cooperation. The AHL QS regulons of P. savastanoi pv. savastanoi and Etoletana were determined, allowing the identification of several QS-regulated genes. Surprisingly, the P. savastanoi pv. savastanoi QS regulon consisted of only a few loci whereas in Etoletana many putative metabolic genes were regulated by QS, among which are several involved in carbohydrate metabolism. One of these loci was the aldolase-encoding gene garL, which was found to be essential for both colocalization of P. savastanoi pv. savastanoi and Etoletana cells inside olive knots as well as knot development. This study further highlighted that pathogens can cooperate with commensal members of the plant microbiome.IMPORTANCE This is a report on studies of the quorum sensing (QS) systems of the olive knot pathogen Pseudomonas savastanoi pv. savastanoi and olive knot cooperator Erwinia toletana These two bacterial species form a stable community in the olive knot, share QS signals, and cooperate, resulting in a more aggressive disease. In this work we further studied the QS systems by determining their regulons as well as by studying QS-regulated genes which might play a role in this cooperation. This represents a unique in vivo interspecies bacterial virulence model and highlights the importance of bacterial interspecies interaction in disease.
Collapse
|
11
|
Noirot-Gros MF, Shinde S, Larsen PE, Zerbs S, Korajczyk PJ, Kemner KM, Noirot PH. Dynamics of Aspen Roots Colonization by Pseudomonads Reveals Strain-Specific and Mycorrhizal-Specific Patterns of Biofilm Formation. Front Microbiol 2018; 9:853. [PMID: 29774013 PMCID: PMC5943511 DOI: 10.3389/fmicb.2018.00853] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/13/2018] [Indexed: 12/20/2022] Open
Abstract
Rhizosphere-associated Pseudomonas fluorescens are known plant growth promoting (PGP) and mycorrhizal helper bacteria (MHB) of many plants and ectomycorrhizal fungi. We investigated the spatial and temporal dynamics of colonization of mycorrhizal and non-mycorrhizal Aspen seedlings roots by the P. fluorescens strains SBW25, WH6, Pf0-1, and the P. protegens strain Pf-5. Seedlings were grown in laboratory vertical plates systems, inoculated with a fluorescently labeled Pseudomonas strain, and root colonization was monitored over a period of 5 weeks. We observed unexpected diversity of bacterial assemblies on seedling roots that changed over time and were strongly affected by root mycorrhization. P. fluorescens SBW25 and WH6 stains developed highly structured biofilms with internal void spaces forming channels. On mycorrhizal roots bacteria appeared encased in a mucilaginous substance in which they aligned side by side in parallel arrangements. The different phenotypic classes of bacterial assemblies observed for the four Pseudomonas strains were summarized in a single model describing transitions between phenotypic classes. Our findings also reveal that bacterial assembly phenotypes are driven by interactions with mucilaginous materials present at roots.
Collapse
Affiliation(s)
| | - Shalaka Shinde
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Sarah Zerbs
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Peter J Korajczyk
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| | - Philippe H Noirot
- Biosciences Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
12
|
Adachi K, Ohtani K, Kawano M, Singh RP, Yousuf B, Sonomoto K, Shimizu T, Nakayama J. Metabolic dependent and independent pH-drop shuts down VirSR quorum sensing in Clostridium perfringens. J Biosci Bioeng 2018; 125:525-531. [PMID: 29373309 DOI: 10.1016/j.jbiosc.2017.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Clostridium perfringens produces various exotoxins and enzymes that cause food poisoning and gas gangrene. The genes involved in virulence are regulated by the agr-like quorum sensing (QS) system, which consists of a QS signal synthesis system and a VirSR two-component regulatory system (VirSR TCS) which is a global regulatory system composed of signal sensor kinase (VirS) and response regulator (VirR). We found that the perfringolysin O gene (pfoA) was transiently expressed during mid-log phase of bacterial growth; its expression was rapidly shut down thereafter, suggesting the existence of a self-quorum quenching (sQQ) system. The sQQ system was induced by the addition of stationary phase culture supernatant (SPCS). Activity of the sQQ system was heat stable, and was present following filtration through the ultrafiltration membrane, suggesting that small molecules acted as sQQ agents. In addition, sQQ was also induced by pure acetic and butyric acids at concentrations equivalent to those in the stationary phase culture, suggesting that organic acids produced by C. perfringens were involved in sQQ. In pH-controlled batch culture, sQQ was greatly diminished; expression level of pfoA extended to late-log growth phase, and was eventually increased by one order of magnitude. Furthermore, hydrochloric acid induced sQQ at the same pH as was used in organic acids. SPCS also suppressed the expression of genes regulated by VirSR TCS. Overall, the expression of virulence factors of C. perfringens was downregulated by the sQQ system, which was mediated by primary acidic metabolites and acidic environments. This suggested the possibility of pH-controlled anti-virulence strategies.
Collapse
Affiliation(s)
- Keika Adachi
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Kaori Ohtani
- Department of Bacteriology, Graduate School of Medical Science, University of Kanazawa, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8203, Japan; Miyarisan Pharmaceutical Co. Ltd., 1-10-3 Kaminakazato, Kita-ku, Tokyo 114-0016, Japan
| | - Michio Kawano
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Ravindra Pal Singh
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Basit Yousuf
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Tohru Shimizu
- Department of Bacteriology, Graduate School of Medical Science, University of Kanazawa, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8203, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan.
| |
Collapse
|
13
|
Bacon CW, Hinton DM, Mitchell TR. Is Quorum Signaling by Mycotoxins a New Risk-Mitigating Strategy for Bacterial Biocontrol of Fusarium verticillioides and Other Endophytic Fungal Species? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7071-7080. [PMID: 27958725 DOI: 10.1021/acs.jafc.6b03861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. In this work, we hypothesize and review work that quorum sensing inhibitors are produced either by fungi or by pathogenic bacteria for competitive purposes, altering the efficiency of the biocontrol organisms. Recently, quorum sensing inhibitors have been isolated from several fungi, including Fusarium species, three of which are mycotoxins. Thus, we further postulate that other mycotoxins are inhibitors or quenching metabolites that prevent the protective abilities and activities of endophytic biocontrol bacteria within intercellular spaces. To test the aforementioned suppositions, we review work detailing the use of bioassay bacteria for several mycotoxins for quorum activity. We specifically focus on the quorum use of endophytic bacteria as biocontrols for mycotoxic fungal endophytes, such as the Fusarium species and the fumonisin mycotoxins.
Collapse
Affiliation(s)
- Charles W Bacon
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture , Athens, Georgia 30605, United States
| | - Dorothy M Hinton
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture , Athens, Georgia 30605, United States
| | - Trevor R Mitchell
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture , Athens, Georgia 30605, United States
| |
Collapse
|
14
|
Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae. mBio 2017; 8:mBio.00398-17. [PMID: 28536283 PMCID: PMC5442451 DOI: 10.1128/mbio.00398-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts. In the plant pathogen Pectobacterium wasabiae (formerly Erwinia carotovora), two signaling networks-the N-acyl homoserine lactone (AHL) quorum-sensing system and the Gac/Rsm signal transduction pathway-control the expression of secreted plant cell wall-degrading enzymes, its major virulence determinants. We show that the AHL system controls the Gac/Rsm system by affecting the expression of the regulatory RNA RsmB. This regulation is mediated by ExpR2, the quorum-sensing receptor that responds to the P. wasabiae cognate AHL but also to AHLs produced by other bacterial species. As a consequence, this level of regulation allows P. wasabiae to bypass the Gac-dependent regulation of RsmB in the presence of exogenous AHLs or AHL-producing bacteria. We provide in vivo evidence that this pivotal role of RsmB in signal transduction is important for the ability of P. wasabiae to induce virulence in response to other AHL-producing bacteria in multispecies plant lesions. Our results suggest that the signaling architecture in P. wasabiae was coopted to prime the bacteria to eavesdrop on other bacteria and quickly join the efforts of other species, which are already exploiting host resources.IMPORTANCE Quorum-sensing mechanisms enable bacteria to communicate through small signal molecules and coordinate group behaviors. Often, bacteria have various quorum-sensing receptors and integrate information with other signal transduction pathways, presumably allowing them to respond to different ecological contexts. The plant pathogen Pectobacterium wasabiae has two N-acyl homoserine lactone receptors with apparently the same regulatory functions. Our work revealed that the receptor with the broadest signal specificity is also responsible for establishing the link between the main signaling pathways regulating virulence in P. wasabiae This link is essential to provide P. wasabiae with the ability to induce virulence earlier in response to higher densities of other bacterial species. We further present in vivo evidence that this novel regulatory link enables P. wasabiae to join related bacteria in the effort to degrade host tissue in multispecies plant lesions. Our work provides support for the hypothesis that interspecies interactions are among the major factors influencing the network architectures observed in bacterial quorum-sensing pathways.
Collapse
|
15
|
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol J 2017; 11:53-62. [PMID: 28553416 PMCID: PMC5427689 DOI: 10.2174/1874285801711010053] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 01/08/2023] Open
Abstract
A biofilm is a group of microorganisms, that causes health problems for the patients with indwelling medical devices via attachment of cells to the surface matrix. It increases the resistance of a microorganism for antimicrobial agents and developed the human infection. Current strategies are removed or prevent the microbial colonies from the medical devices, which are attached to the surfaces. This will improve the clinical outcomes in favor of the patients suffering from serious infectious diseases. Moreover, the identification and inhibition of genes, which have the major role in biofilm formation, could be the effective approach for health care systems. In a current review article, we are highlighting the biofilm matrix and molecular mechanism of antimicrobial resistance in bacterial biofilms.
Collapse
Affiliation(s)
- Shriti Singh
- Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi- 221 005 UP India
| | - Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology; Morehouse School of Medicine, Atlanta, GA, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Lareen A, Burton F, Schäfer P. Plant root-microbe communication in shaping root microbiomes. PLANT MOLECULAR BIOLOGY 2016; 90:575-87. [PMID: 26729479 PMCID: PMC4819777 DOI: 10.1007/s11103-015-0417-8] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/01/2015] [Indexed: 05/02/2023]
Abstract
A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production.
Collapse
Affiliation(s)
- Andrew Lareen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Frances Burton
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
17
|
Venturi V, Keel C. Signaling in the Rhizosphere. TRENDS IN PLANT SCIENCE 2016; 21:187-198. [PMID: 26832945 DOI: 10.1016/j.tplants.2016.01.005] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 05/20/2023]
Abstract
Signaling studies in the rhizosphere have focused on close interactions between plants and symbiotic microorganisms. However, this focus is likely to expand to other microorganisms because the rhizomicrobiome is important for plant health and is able to influence the structure of the microbial community. We discuss here the shaping of the rhizomicrobiome and define which aspects can be considered signaling. We divide signaling in the rhizosphere into three categories: (i) between microbes, (ii) from plants to microorganisms, and (iii) from microorganisms to plants. Signals act on diverse organisms including the plant. Mycorrhizal and rhizobial interkingdom signaling has revealed its pivotal role in establishing associations, and the recent discovery of signaling with non-symbiotic microorganisms indicates the important role of communication in shaping the rhizomicrobiome.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy.
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Abstract
SUMMARY Autoinduction (AI), the response to self-produced chemical signals, is widespread in the bacterial world. This process controls vastly different target functions, such as luminescence, nutrient acquisition, and biofilm formation, in different ways and integrates additional environmental and physiological cues. This diversity raises questions about unifying principles that underlie all AI systems. Here, we suggest that such core principles exist. We argue that the general purpose of AI systems is the homeostatic control of costly cooperative behaviors, including, but not limited to, secreted public goods. First, costly behaviors require preassessment of their efficiency by cheaper AI signals, which we encapsulate in a hybrid "push-pull" model. The "push" factors cell density, diffusion, and spatial clustering determine when a behavior becomes effective. The relative importance of each factor depends on each species' individual ecological context and life history. In turn, "pull" factors, often stress cues that reduce the activation threshold, determine the cellular demand for the target behavior. Second, control is homeostatic because AI systems, either themselves or through accessory mechanisms, not only initiate but also maintain the efficiency of target behaviors. Third, AI-controlled behaviors, even seemingly noncooperative ones, are generally cooperative in nature, when interpreted in the appropriate ecological context. The escape of individual cells from biofilms, for example, may be viewed as an altruistic behavior that increases the fitness of the resident population by reducing starvation stress. The framework proposed here helps appropriately categorize AI-controlled behaviors and allows for a deeper understanding of their ecological and evolutionary functions.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
19
|
Hamedi J, Mohammadipanah F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J Ind Microbiol Biotechnol 2014; 42:157-71. [PMID: 25410828 DOI: 10.1007/s10295-014-1537-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
Abstract
Plant growth promoting (PGP) bacteria are involved in various interactions known to affect plant fitness and soil quality, thereby increasing the productivity of agriculture and stability of soil. Although the potential of actinobacteria in antibiotic production is well-investigated, their capacity to enhance plant growth is not fully surveyed. Due to the following justifications, PGP actinobacteria (PGPA) can be considered as a more promising taxonomical group of PGP bacteria: (1) high numbers of actinobacteria per gram of soil and their filamentous nature, (2) genome dedicated to the secondary metabolite production (~5 to 10 %) is distinctively more than that of other bacteria and (3) number of plant growth promoter genera reported from actinobacteria is 1.3 times higher than that of other bacteria. Mechanisms by which PGPA contribute to the plant growth by association are: (a) enhancing nutrients availability, (b) regulation of plant metabolism, (c) decreasing environmental stress, (d) control of phytopathogens and (e) improvement of soil texture. Taxonomical and chemical diversity of PGPA and their biotechnological application along with their associated challenges are summarized in this paper.
Collapse
Affiliation(s)
- Javad Hamedi
- Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran,
| | | |
Collapse
|
20
|
González JF, Venturi V. A novel widespread interkingdom signaling circuit. TRENDS IN PLANT SCIENCE 2013; 18:167-74. [PMID: 23089307 DOI: 10.1016/j.tplants.2012.09.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/14/2012] [Accepted: 09/21/2012] [Indexed: 05/08/2023]
Abstract
Extensive communication is believed to occur between eukaryotes and prokaryotes via signaling molecules; this field of research is now called interkingdom signaling. Recently, it has been discovered that many different plant-associated bacteria possess a protein closely related to the quorum-sensing (QS) LuxR-family protein that binds and responds to plant compounds. This LuxR protein does not have a cognate N-acyl homoserine lactone (AHL) signal synthase and therefore is regarded as a 'solo' or 'orphan'. The protein is involved in interkingdom signaling in rhizobia, xanthomonads, and pseudomonads, regulating processes important for plant-bacteria interaction. In this review, we focus on this new interkingdom signaling circuit, which is widespread among pathogenic and beneficial plant-associated bacteria.
Collapse
Affiliation(s)
- Juan F González
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | |
Collapse
|
21
|
Biosurfactants in agriculture. Appl Microbiol Biotechnol 2013; 97:1005-16. [PMID: 23280539 PMCID: PMC3555348 DOI: 10.1007/s00253-012-4641-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 12/02/2022]
Abstract
Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant–microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.
Collapse
|
22
|
Venturi V, Fuqua C. Chemical signaling between plants and plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:17-37. [PMID: 23915131 DOI: 10.1146/annurev-phyto-082712-102239] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Center for Genetic Engineering and Biotechnology, 34149 Trieste, Italy.
| | | |
Collapse
|
23
|
Specificity of associations between bacteria and the coral Pocillopora meandrina during early development. Appl Environ Microbiol 2012; 78:7467-75. [PMID: 22904048 DOI: 10.1128/aem.01232-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Relationships between corals and specific bacterial associates are thought to play an important role in coral health. In this study, the specificity of bacteria associating with the coral Pocillopora meandrina was investigated by exposing coral embryos to various strains of cultured marine bacteria, sterile seawater, or raw seawater and examining the identity, density, and location of incorporated cells. The isolates utilized in this experiment included members of the Roseobacter and SAR11 clades of the Alphaproteobacteria, a Pseudoalteromonas species of the Gammaproteobacteria, and a Synechococcus species of the Cyanobacteria phylum. Based on terminal restriction fragment length polymorphism analysis of small-subunit rRNA genes, similarities in bacterial communities associated with 170-h-old planulae were observed regardless of treatment, suggesting that bacteria may have been externally associated from the outset of the experiment. Microscopic examination of P. meandrina planulae by fluorescence in situ hybridization with bacterial and Roseobacter clade-specific oligonucleotide probes revealed differences in the densities and locations of planulae-associated cells. Planulae exposed to either raw seawater or strains of Pseudoalteromonas and Roseobacter harbored the highest densities of internally associated cells, of which 20 to 100% belonged to the Roseobacter clade. Planulae exposed to sterile seawater or strains of the SAR11 clade and Synechococcus did not show evidence of prominent bacterial associations. Additional analysis of the raw-seawater-exposed planulae via electron microscopy confirmed the presence of internally associated prokaryotic cells, as well as virus-like particles. These results suggest that the availability of specific microorganisms may be an important factor in the establishment of coral-bacterial relationships.
Collapse
|
24
|
Hense BA, Müller J, Kuttler C, Hartmann A. Spatial heterogeneity of autoinducer regulation systems. SENSORS 2012; 12:4156-71. [PMID: 22666024 PMCID: PMC3355405 DOI: 10.3390/s120404156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/15/2012] [Accepted: 03/21/2012] [Indexed: 12/25/2022]
Abstract
Autoinducer signals enable coordinated behaviour of bacterial populations, a phenomenon originally described as quorum sensing. Autoinducer systems are often controlled by environmental substances as nutrients or secondary metabolites (signals) from neighbouring organisms. In cell aggregates and biofilms gradients of signals and environmental substances emerge. Mathematical modelling is used to analyse the functioning of the system. We find that the autoinducer regulation network generates spatially heterogeneous behaviour, up to a kind of multicellularity-like division of work, especially under nutrient-controlled conditions. A hybrid push/pull concept is proposed to explain the ecological function. The analysis allows to explain hitherto seemingly contradicting experimental findings.
Collapse
Affiliation(s)
- Burkhard A. Hense
- Institute of Biomathematics and Biometry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-89-3187-4035; Fax: +49-89-3187-3029
| | - Johannes Müller
- Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany; E-Mails: (J.M.); (C.K.)
| | - Christina Kuttler
- Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany; E-Mails: (J.M.); (C.K.)
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; E-Mail:
| |
Collapse
|
25
|
Rosen R, Ron EZ. Proteomics of a plant pathogen: Agrobacterium tumefaciens. Proteomics 2011; 11:3134-42. [DOI: 10.1002/pmic.201100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/13/2011] [Accepted: 03/14/2011] [Indexed: 12/31/2022]
|
26
|
XerR, a negative regulator of XccR in Xanthomonas campestris pv. campestris, relieves its repressor function in planta. Cell Res 2011; 21:1131-42. [PMID: 21483448 DOI: 10.1038/cr.2011.64] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We previously reported that XccR, a LuxR-type regulator of Xanthomonas campestris pv. campestris (Xcc), activates the downstream proline iminopeptidase virulence gene (pip) in response to certain host plant factor(s). In this report, we further show that the expression of the xccR gene was repressed in the culture medium by an NtrC-type response regulator, which we named XerR (XccR expression-related, repressor), and that this repression was relieved when the bacteria were grown in planta. Such a regulatory mechanism is reinforced by the observations that XerR directly bound to the xccR promoter in vitro, and that mutations at the phosphorylation-related residues of XerR resulted in the loss of its repressor function. Furthermore, the expression level of xccR increased even in XerR-overexpressing Xcc cells when they were vacuum infiltrated into cabbage plants. We also preliminarily characterized the host factor(s) involved in the above mentioned interactions between Xcc and the host plant, showing that a plant material(s) with molecular weight(s) less than 1 kDa abolished the binding of XerR to the xccR promoter, while the same material enhanced the binding of XccR to the luxXc box in the pip promoter. Taken together, our results implicate XerR in a new layer of the regulatory mechanism controlling the expression of the virulence-related xccR/pip locus and provide clues to the identification of plant signal molecules that interact with XerR and XccR to enhance the virulence of Xcc.
Collapse
|
27
|
Kalia VC, Purohit HJ. Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 2011; 37:121-40. [PMID: 21271798 DOI: 10.3109/1040841x.2010.532479] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Emergence of antibiotic and multi-drug resistant pathogenic bacteria has created the need for new drugs and drug targets. During pathogenesis bacteria release signals which regulate virulence and pathogenicity related genes. Such bacteria co-ordinate their virulent behaviour in a cell density dependent phenomenon termed as quorum sensing (QS). In contrast, microbes interfere with QS system by quenching the signals, termed quorum quenching (QQ). As a consequence of disrupted QS, pathogens become susceptible to antibiotics and drugs. In this article, the biodiversity of organisms with potential to quench QS signals and the use of QQ molecules as antibacterial drugs have been reviewed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Mall Road, Delhi-110007, India.
| | | |
Collapse
|
28
|
Sun L, Wang X, Qu S, Liu H, Jia Z, Dong H. HrpN Ea Induces Chinese Cabbage Resistance to Bacterial Soft Rot by Inhibiting the Bacterial Attachment to Root Surfaces. PLANT DISEASE 2010; 94:1441-1447. [PMID: 30743395 DOI: 10.1094/pdis-02-10-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
HrpNEa is a harpin protein produced by the bacterial plant pathogen Erwinia amylovora. When applied to aerial parts of plants, the protein induces systemic acquired resistance in a variety of plant species. Here, we report that treating Chinese cabbage roots with HrpNEa induces resistance of the plant to Pectobacterium carotovora subsp. carotovora, the pathogen that invades roots and causes bacterial soft rot in cruciferous plants. Treating Chinese cabbage roots with HrpNEa significantly decreased severities of soft rot symptoms on the plant. The root treatment decreased the number of P. carotovora subsp. carotovora cells attached to root surfaces and inhibited the ability of P. carotovora subsp. carotovora to produce quorum-sensing signals, which regulate pathogenicity in a bacterial population-dependent manner. The inhibitory effects of HrpNEa on the root attachment and quorum-sensing signals accompanied the induced expression of several defense response genes. These results suggest that HrpNEa induces Chinese cabbage resistance to bacterial soft rot by inhibiting the bacterial attachment to root surfaces.
Collapse
Affiliation(s)
- Lijun Sun
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, and Nanjing Institute for Comprehensive Utilization of Wild Plant, Nanjing, 210042
| | - Xiaomeng Wang
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shuping Qu
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Huimin Liu
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhenhua Jia
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hansong Dong
- Key Laboratory of Monitoring and Management of Plant Pathogens and Insect Pests, Ministry of Agriculture of P. R. China, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
29
|
Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A. Dynamic regulation ofN-acyl-homoserine lactone production and degradation inPseudomonas putidaIsoF. FEMS Microbiol Ecol 2010; 72:22-34. [DOI: 10.1111/j.1574-6941.2009.00828.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
30
|
Evans TJ, Ind A, Komitopoulou E, Salmond GPC. Phage-selected lipopolysaccharide mutants of Pectobacterium atrosepticum exhibit different impacts on virulence. J Appl Microbiol 2010; 109:505-514. [PMID: 20132374 DOI: 10.1111/j.1365-2672.2010.04669.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS To positively select Pectobacterium atrosepticum (Pa) mutants with cell surface defects and to assess the impact of these mutations on phytopathogenesis. METHODS AND RESULTS Several phages were isolated from treated sewage effluent and were found to require bacterial lipopolysaccharide (LPS) for infection. Two strains with distinct mutations in LPS were obtained by transposon mutagenesis. Along with a third LPS mutant, these strains were characterized with respect to various virulence-associated phenotypes, including growth rate, motility and exoenzyme production, demonstrating that LPS mutations are pleiotropic. Two of the strains were deficient in the synthesis of the O-antigen portion of LPS, and both were less virulent than the wild type. A waaJ mutant, which has severe defects in LPS biosynthesis, was dramatically impaired in potato tuber rot assays. The infectivity of these novel phages on 32 additional strains of Pa was tested, showing that most Pa isolates were sensitive to the LPS-dependent phages. CONCLUSIONS Native LPS is crucial for optimal growth, survival and virulence of Pa in vivo, but simultaneously renders such strains susceptible to phage infection. SIGNIFICANCE AND IMPACT OF THE STUDY This work demonstrates the power of phages to select and identify the virulence determinants on the bacterial surface, and as potential biocontrol agents for Pa infections.
Collapse
Affiliation(s)
- T J Evans
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - A Ind
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - G P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
31
|
Development and Optimization of Method for Generating Unmarked A. tumefaciens Mutants*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Abstract
Bacteria can modulate their behavior by releasing and responding to the accumulation of signal molecules. This population co-ordination, referred to as quorum sensing, is prevalent in Gram-negative and Gram-positive bacteria. The essential constituents of quorum-sensing systems include a signal producer, or synthase, and a cognate transcriptional regulator that responds to the accumulated signal molecules. With the availability of bacterial genome sequences and an increased elucidation of quorum-sensing circuits, genes that code for additional transcriptional regulators, usually in excess of the synthase, have been identified. These additional regulators are referred to as 'orphan' regulators, because they are not directly associated with a synthase. Here, we review orphan regulators characterized in various Gram-negative bacteria and their role in expanding the bacterial regulatory network.
Collapse
Affiliation(s)
- Arati V Patankar
- Department of Molecular Biology and Immunology, Center at Fort Worth, University of North Texas Health Science, Fort Worth, TX 75080, USA
| | | |
Collapse
|
33
|
Yang M, Sun K, Zhou L, Yang R, Zhong Z, Zhu J. Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation. Can J Microbiol 2009; 55:210-4. [DOI: 10.1139/w08-128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the most important signal transduction pathways in bacteria, quorum sensing, is involved in many regulatory circuits in rhizobia, especially in the control of communication between rhizobia and their plant hosts. In this study, we identified 3 autoinducer synthase genes — mrlI1, mrlI2, and mrlI3 — in Mesorhizobium loti NZP 2213. We found that MrlI1 and MrlI2 could synthesize distinct N-acyl homoserine lactone (AHL) autoinducers in rich medium cultures, and the expression of mrlI1 was shown to be growth-phase-dependent. MrlI3 did not produce any detectable AHL molecules under the culture conditions tested. To investigate whether these AHL synthases affect nodulation, we examined the nodulation of AHL-deficient mutants on their native plant host Lotus corniculatus and found that the efficiency of nodulation of bacteria with mutations of any of these 3 synthase genes was reduced, suggesting that quorum sensing systems in M. loti may play an important role in successful establishment of rhizobium–legume symbiosis.
Collapse
Affiliation(s)
- Menghua Yang
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Kejing Sun
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Lei Zhou
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Ruifu Yang
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zengtao Zhong
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jun Zhu
- Department of Microbiology, MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing, China
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| |
Collapse
|
34
|
von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-Kopplin P, Durner J. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. PLANTA 2008; 229:73-85. [PMID: 18766372 DOI: 10.1007/s00425-008-0811-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/18/2008] [Indexed: 05/18/2023]
Abstract
The bacterial quorum sensing signals N-acyl-L: -homoserine lactones enable bacterial cells to regulate gene expression depending on population density, in order to undertake collective actions such as the infection of host cells. Only little is known about the molecular ways of plants reacting to these bacterial signals. In this study we show that the contact of Arabidopsis thaliana roots with N-hexanoyl-DL: -homoserine-lactone (C6-HSL) resulted in distinct transcriptional changes in roots and shoots, respectively. Interestingly, unlike most other bacterial signals, C6-HSL influenced only a few defense-related transcripts. Instead, several genes associated with cell growth as well as genes regulated by growth hormones showed changes in their expression after C6-HSL treatment. C6-HSL did not induce plant systemic resistance against Pseudomonas syringae. The inoculation of roots with different types of AHLs led predominantly for short chain N-butyryl-DL: -homoserine lactone and C6-HSL to root elongation. Determination of plant hormone concentrations in root and shoot tissues supported alterations of auxin to cytokinin ratio. Finally, we provide evidence that Arabidopsis takes up bacterial C6-HSL and allows systemic distribution throughout the plant. In sum, the bacterial quorum sensing signal C6-HSL does induce transcriptional changes in Arabidopsis and may contribute to tuning plant growth to the microbial composition of the rhizosphere.
Collapse
Affiliation(s)
- Uta von Rad
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Munich/Neuherberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dyé F. A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 2008; 159:699-708. [DOI: 10.1016/j.resmic.2008.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/22/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
|
36
|
Bais HP, Broeckling CD, Vivanco JM. Root Exudates Modulate Plant—Microbe Interactions in the Rhizosphere. SECONDARY METABOLITES IN SOIL ECOLOGY 2008. [DOI: 10.1007/978-3-540-74543-3_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
|
38
|
Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. ISME JOURNAL 2007; 2:19-26. [DOI: 10.1038/ismej.2007.92] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Zhang L, Jia Y, Wang L, Fang R. A proline iminopeptidase gene upregulatedin plantaby a LuxR homologue is essential for pathogenicity ofXanthomonas campestrispv.campestris. Mol Microbiol 2007; 65:121-36. [PMID: 17581124 DOI: 10.1111/j.1365-2958.2007.05775.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expression of bacterial genes is often regulated by complex mechanisms, some of which involve host cues. Analysis of the Xanthomonas campestris pv. campestris (Xcc) genome sequence revealed the presence of an xccR/pip locus. The upstream gene xccR is a luxR homologue, while pip codes for a proline iminopeptidase. A lux box-like element, named luxXc box, locates in the pip promoter region. In this work, we show that disruption of either xccR or pip resulted in significantly attenuated virulence of Xcc. Under medium culture conditions, the pip expression was significantly enhanced by overexpression of XccR and the luxXc box is necessary for this enhancement. We further show that expression of a pip promoter-gusA fusion either inserted in the bacterial chromosome or resided in a plasmid was markedly induced when the bacteria grew in planta. Disruption of either xccR or the luxXc box abolished the in planta induction, while disruption of pip enhanced the induction. Taken together, these data demonstrate that pip is indispensable for Xcc virulence and suggest a model for Xcc-host interaction in which the pathogen senses some host factor(s) to activate XccR that subsequently interacts with the luxXc box to induce the expression of pip for facilitating Xcc infection.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
40
|
Bejerano-Sagie M, Xavier KB. The role of small RNAs in quorum sensing. Curr Opin Microbiol 2007; 10:189-98. [PMID: 17387037 DOI: 10.1016/j.mib.2007.03.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 03/14/2007] [Indexed: 11/16/2022]
Abstract
Quorum sensing is a form of cell-cell signaling in bacteria that provides information regarding population density, species composition, and environmental and metabolic signals. It enables community-wide coordination of gene expression, and presumably benefits group behaviors. Multiple regulatory small RNAs (sRNAs) act centrally in quorum sensing, integrating signals with other environmental stimuli, to produce an appropriate output.
Collapse
|
41
|
Valls M, Genin S, Boucher C. Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum. PLoS Pathog 2006; 2:e82. [PMID: 16933989 PMCID: PMC1557829 DOI: 10.1371/journal.ppat.0020082] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 07/06/2006] [Indexed: 11/19/2022] Open
Abstract
In many plant and animal bacterial pathogens, the Type III secretion system (TTSS) that directly translocates effector proteins into the eukaryotic host cells is essential for the development of disease. In all species studied, the transcription of the TTSS and most of its effector substrates is tightly regulated by a succession of consecutively activated regulators. However, the whole genetic programme driven by these regulatory cascades is still unknown, especially in bacterial plant pathogens. Here, we have characterised the programme triggered by HrpG, a host-responsive regulator of the TTSS activation cascade in the plant pathogen Ralstonia solanacearum. We show through genome-wide expression analysis that, in addition to the TTSS, HrpG controls the expression of a previously undescribed TTSS-independent pathway that includes a number of other virulence determinants and genes likely involved in adaptation to life in the host. Functional studies revealed that this second pathway co-ordinates the bacterial production of plant cell wall-degrading enzymes, exopolysaccharide, and the phytohormones ethylene and auxin. We provide experimental evidence that these activities contribute to pathogenicity. We also show that the ethylene produced by R. solanacearum is able to modulate the expression of host genes and can therefore interfere with the signalling of plant defence responses. These results provide a new, integrated view of plant bacterial pathogenicity, where a common regulator activates synchronously upon infection the TTSS, other virulence determinants and a number of adaptive functions, which act co-operatively to cause disease. Most pathogenic bacteria have the ability to switch between free-living growth and life within the host tissues. However, the mechanisms that co-ordinate changes in gene expression during the passage between these alternative ecological niches are still largely unknown. A well-studied regulation pathway triggered in response to the host environment is that controlling the transcription of the Type III secretion system (TTSS) genes. The TTSS is a major pathogenicity determinant that delivers bacterial effector proteins directly into the host cell cytosol to promote disease. Here, Valls and colleagues show that the TTSS regulatory pathway is directly connected with other circuits driving the expression of diverse pathogenicity and host-adaptation activities. The authors have identified and characterised the genes co-regulated along with the TTSS via the HrpG regulator. They have found that, in addition to the TTSS, HrpG controls the transcription of a previously unknown TTSS-independent pathway that is essential to pathogenicity and alters the bacterial production of plant cell wall-degrading enzymes, exopolysaccharide, and the phytohormones ethylene and auxin. These findings reveal an important degree of co-ordination between adaptation and virulence functions at the transcriptional level and contribute to a better understanding of the infection process.
Collapse
Affiliation(s)
- Marc Valls
- Laboratoire des Interactions Plantes-Microorganismes (CNRS-INRA), Chemin de Borde Rouge, Castanet Tolosan Cedex, France
| | - Stéphane Genin
- Laboratoire des Interactions Plantes-Microorganismes (CNRS-INRA), Chemin de Borde Rouge, Castanet Tolosan Cedex, France
- * To whom correspondence should be addressed. E-mail: (SG); (CB)
| | - Christian Boucher
- Laboratoire des Interactions Plantes-Microorganismes (CNRS-INRA), Chemin de Borde Rouge, Castanet Tolosan Cedex, France
- * To whom correspondence should be addressed. E-mail: (SG); (CB)
| |
Collapse
|
42
|
Vial L, Cuny C, Gluchoff-Fiasson K, Comte G, Oger PM, Faure D, Dessaux Y, Bally R, Wisniewski-Dyé F. N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule. FEMS Microbiol Ecol 2006; 58:155-68. [PMID: 17064258 DOI: 10.1111/j.1574-6941.2006.00153.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Forty Azospirillum strains were tested for their ability to synthesize N-acyl-homoserine lactones (AHLs). AHL production was detected for four strains belonging to the lipoferum species and isolated from a rice rhizosphere. AHL molecules were structurally identified for two strains: Azospirillum lipoferum TVV3 produces 3O,C(8)-HSL (N-3-oxo-octanoyl-homoserine-lactone), C(8)-HSL (N-3-octanoyl-homoserine-lactone), 3O,C(10)-HSL (N-3-oxo-decanoyl-homoserine-lactone), 3OH,C(10)-HSL (N-3-hydroxy-decanoyl-homoserine-lactone) and C(10)-HSL (N-3-decanoyl-homoserine-lactone), whereas A. lipoferum B518 produced 3O,C(6)-HSL (N-3-oxo-hexanoyl-homoserine-lactone), C(6)-HSL (N-3-hexanoyl-homoserine-lactone), 3O,C(8)-HSL, 3OH,C(8)-HSL and C(8)-HSL. Genes involved in AHL production were characterized for A. lipoferum TVV3 by generating a genomic library and complementing an AHL-deficient strain with sensor capabilities. Those genes, designated alpI and alpR, were found to belong to the luxI and luxR families, respectively. When cloned in a suitable heterologous host, alpI and alpR could direct the synthesis of the five cognate AHLs present in A. lipoferum TVV3. These two adjacent genes were found to be located on a 85 kb plasmid. Southern hybridization experiments with probes alpI/R indicated that genes involved in AHL production in the three other AHL-producing strains were not closely related to alpI and alpR. This study demonstrates that AHL-based quorum-sensing is not widespread among the genus Azospirillum and could be found only in some A. lipoferum strains.
Collapse
Affiliation(s)
- Ludovic Vial
- UMR-CNRS 5557 Ecologie Microbienne, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, Fauvart M, Beullens S, Heusdens C, Lambrichts I, De Vos DE, Vanderleyden J, Vermant J, Michiels J. Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci U S A 2006; 103:14965-70. [PMID: 16990436 PMCID: PMC1595459 DOI: 10.1073/pnas.0511037103] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Swarming motility is suggested to be a social phenomenon that enables groups of bacteria to coordinately and rapidly move atop solid surfaces. This multicellular behavior, during which the apparently organized bacterial populations are embedded in an extracellular slime layer, has previously been linked with biofilm formation and virulence. Many population density-controlled activities involve the activation of complex signaling pathways using small diffusible molecules, also known as autoinducers. In Gram-negative bacteria, quorum sensing (QS) is achieved primarily by means of N-acylhomoserine lactones (AHLs). Here, we report on a dual function of AHL molecules in controlling swarming behavior of Rhizobium etli, the bacterial symbiotic partner of the common bean plant. The major swarming regulator of R. etli is the cinIR QS system, which is specifically activated in swarming cells by its cognate AHL and other long-chain AHLs. This signaling role of long-chain AHLs is required for high-level expression of the cin and rai QS systems. Besides this signaling function, the long-chain AHLs also have a direct role in surface movement of swarmer cells as these molecules possess significant surface activity and induce liquid flows, known as Marangoni flows, as a result of gradients in surface tension at biologically relevant concentrations. These results point to an as-yet-undisclosed direct role of long-chain AHL molecules as biosurfactants.
Collapse
Affiliation(s)
- Ruth Daniels
- *Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Sven Reynaert
- Department of Chemical Engineering, Applied Rheology and Polymer Processing Section, Katholieke Universiteit Leuven, de Croylaan 46, B-3001 Leuven, Belgium
| | - Hans Hoekstra
- Department of Chemical Engineering, Applied Rheology and Polymer Processing Section, Katholieke Universiteit Leuven, de Croylaan 46, B-3001 Leuven, Belgium
| | - Christel Verreth
- *Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Joost Janssens
- *Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium; and
| | - Kristien Braeken
- *Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Maarten Fauvart
- *Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Serge Beullens
- *Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Christophe Heusdens
- *Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute, Hasselt University, Agoralaan, B-3590 Diepenbeek, Belgium
| | - Dirk E. De Vos
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium; and
| | - Jos Vanderleyden
- *Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Vermant
- Department of Chemical Engineering, Applied Rheology and Polymer Processing Section, Katholieke Universiteit Leuven, de Croylaan 46, B-3001 Leuven, Belgium
| | - Jan Michiels
- *Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Scott RA, Weil J, Le PT, Williams P, Fray RG, von Bodman SB, Savka MA. Long- and short-chain plant-produced bacterial N-acyl-homoserine lactones become components of phyllosphere, rhizosphere, and soil. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:227-39. [PMID: 16570653 DOI: 10.1094/mpmi-19-0227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two N-acyl-homoserine lactone (acyl-HSL) synthase genes, lasI from Pseudomonas aeruginosa and yenI from Yersinia enterocolitica, were introduced into tobacco, individually and in combination. Liquid chromatograph-tandem mass spectrometry and thin-layer chromatography confirmed products of lasI and yenI activity in single and cotransformants. Cotransformants expressing plastid-localized LasI and YenI synthases produced the major acyl-HSLs for each synthase in all tissues tested. Total acyl-HSL signals accumulated in leaf tissue up to 3 pmol/mg of fresh weight, half as much in stem tissue, and approximately 10-fold less in root tissues. Acyl-HSLs were present in aqueous leaf washes from greenhouse-grown transgenic plants. Transgenic lines grown for 14 days under axenic conditions produced detectable levels of acyl-HSLs in root exudates. Ethyl acetate extractions of rhizosphere and nonrhizosphere soil from transgenically grown plants contained active acyl-HSLs, whereas plant-free soil or rhizosphere and nonrhizosphere soil from wild-type plants lacked detectable amounts of acyl-HSLs. This work shows that bioactive acyl-HSLs are exuded from leaves and roots and accumulate in the phytosphere of plants engineered to produce acyl-HSLs. These data further suggest that plants that are bioengineered to synthesize acyl-HSLs can foster beneficial plant-bacteria communications or deter deleterious interactions. Therefore, it is feasible to use bioengineered plants to supplement soils with specific acyl-HSLs to modulate bacterial phenotypes and plant-associated bacterial community structures.
Collapse
Affiliation(s)
- Russell A Scott
- Department of Biological Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Compant S, Duffy B, Nowak J, Clément C, Barka EA. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 2005; 71:4951-9. [PMID: 16151072 PMCID: PMC1214602 DOI: 10.1128/aem.71.9.4951-4959.2005] [Citation(s) in RCA: 903] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Stéphane Compant
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne, UPRES EA 2069, UFR Sciences, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | |
Collapse
|
46
|
Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T. CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 2005; 56:1648-63. [PMID: 15916613 DOI: 10.1111/j.1365-2958.2005.04648.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA-binding protein CsrA represses biofilm formation, while the non-coding RNAs CsrB and CsrC activate this process by sequestering CsrA. We now provide evidence that the pgaABCD transcript, required for the synthesis of the polysaccharide adhesin PGA (poly-beta-1,6-N-acetyl-d-glucosamine) of Escherichia coli, is the key target of biofilm regulation by CsrA. csrA disruption causes an approximately threefold increase in PGA production and an approximately sevenfold increase in expression of a pgaA'-'lacZ translational fusion. A DeltacsrBDeltacsrC mutant exhibits a modest decrease in pgaA'-'lacZ expression, while the response regulator UvrY, a transcriptional activator of csrB and csrC, stimulates this expression. Biofilm formation is not regulated by csrA, csrB or uvrY in a DeltapgaC mutant, which cannot synthesize PGA. Gel mobility shift and toeprint analyses demonstrate that CsrA binds cooperatively to pgaA mRNA and competes with 30S ribosome subunit for binding. CsrA destabilizes the pgaA transcript in vivo. RNA footprinting and boundary analyses identify six apparent CsrA binding sites in the pgaA mRNA leader, the most extensive arrangement of such sites in any mRNA examined to date. Substitution mutations in CsrA binding sites overlapping the Shine-Dalgarno sequence and initiation codon partially relieve repression by CsrA. These studies define the crucial mechanisms, though not the only means, by which the Csr system influences biofilm formation.
Collapse
Affiliation(s)
- Xin Wang
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Road N.E., Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
47
|
Molina L, Rezzonico F, Défago G, Duffy B. Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 2005; 187:3206-13. [PMID: 15838048 PMCID: PMC1082838 DOI: 10.1128/jb.187.9.3206-3213.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacterial-cell-density-dependent manner. Two standard autoinducer biosensors, Agrobacterium tumefaciens NTL4 and Vibrio harveyi BB886, detected AHL in stationary-phase cultures of E. amylovora. A putative AHL synthase gene, eamI, was partially sequenced, which revealed homology with autoinducer genes from other bacterial pathogens (e.g., carI, esaI, expI, hsII, yenI, and luxI). E. amylovora was also found to carry eamR, a convergently transcribed gene with homology to luxR AHL activator genes in pathogens such as Erwinia carotovora. Heterologous expression of the Bacillus sp. strain A24 acyl-homoserine lactonase gene aiiA in E. amylovora abolished induction of AHL biosensors, impaired extracellular polysaccharide production and tolerance to hydrogen peroxide, and reduced virulence on apple leaves.
Collapse
Affiliation(s)
- Lázaro Molina
- Swiss Federal Institute of Technology (ETHZ), Institute for Plant Sciences, Phytopathology Group, Zürich, Switzerland.
| | | | | | | |
Collapse
|
48
|
Morrissey JP, Dow JM, Mark GL, O'Gara F. Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO Rep 2005; 5:922-6. [PMID: 15459741 PMCID: PMC1299160 DOI: 10.1038/sj.embor.7400263] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- John P. Morrissey
- John P. Morrissey is at the Department of Microbiology, University College Cork, Ireland
| | - J. Maxwell Dow
- J. Maxwell Dow, G. Louise Mark and Fergal O'Gara are at the BIOMERIT Research Centre in the Department of Microbiology at University College Cork, Ireland
| | - G. Louise Mark
- J. Maxwell Dow, G. Louise Mark and Fergal O'Gara are at the BIOMERIT Research Centre in the Department of Microbiology at University College Cork, Ireland
| | - Fergal O'Gara
- J. Maxwell Dow, G. Louise Mark and Fergal O'Gara are at the BIOMERIT Research Centre in the Department of Microbiology at University College Cork, Ireland
| |
Collapse
|
49
|
Chin-A-Woeng TFC, van den Broek D, Lugtenberg BJJ, Bloemberg GV. The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:244-253. [PMID: 15782638 DOI: 10.1094/mpmi-18-0244] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The rhizobacterium Pseudomonas chlororaphis PCL1391 produces the antifungal metabolite phenazine-1-carboxamide (PCN), which is a crucial trait in its competition with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici in the rhizosphere. The expression of the PCN biosynthetic gene cluster in PCL1391 is population density-dependent and is regulated by the quorum-sensing genes phzI and phzR via synthesis of the autoinducer N-hexanoyl-L-homoserine lactone (C6-HSL). Here, we describe the identification of an additional regulatory gene of PCN biosynthesis in PCL1391. A mutation in the psrA gene (Pseudomonas sigma regulator), the gene product of which is a member of the TetR/AcrR family of transcriptional regulators, resulted in increased production of autoinducer molecules and PCN. Expression studies showed that inactivation of psrA resulted in increased expression of the phzI and phzR genes and the phz biosynthetic operon and that introduction of functional copies of psrA represses the expression of these genes, resulting in reduced production of autoinducer signal and PCN. Surprisingly, inactivation of psrA in the phzI or phzR quorum-sensing mutants, which do not produce detectable amounts of PCN and autoinducers by themselves, restored PCN biosynthesis. This phenomenon was accompanied by the appearance of compounds with autoinducer activities migrating at the positions of C4-HSL and C6-HSL on C18 reverse phase-thin-layer chromatography. These observations indicate that PsrA also represses at least one silent, yet unidentified, quorum-sensing system or autoinducer biosynthetic pathway in PCL1391. The expression of psrA declines at the onset of the stationary phase at the same moment at which quorum-sensing (-regulated) genes are activated. In addition, expression studies in a psrA- and a multicopy psrA background showed that psrA is autoregulated. Multiple copies of psrA repress its own expression. Mutation of gacS, encoding the sensor kinase member of a two-component global regulatory system significantly reduced production of autoinducers and PCN. We show a novel link between global regulation and quorum sensing via the PsrA regulator.
Collapse
Affiliation(s)
- Thomas F C Chin-A-Woeng
- Leiden University, Institute of Biology, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
50
|
Espinosa-Urgel M. Plant-associated Pseudomonas populations: molecular biology, DNA dynamics, and gene transfer. Plasmid 2004; 52:139-50. [PMID: 15518872 DOI: 10.1016/j.plasmid.2004.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/03/2004] [Indexed: 10/25/2022]
Abstract
Bacteria of the genus Pseudomonas are usual colonizers of plant leaves, roots, and seeds, establishing at relatively high cell densities on plant surfaces, where they aggregate and form microcolonies similar to those observed during biofilm development on abiotic surfaces. These plant-associated biofilms undergo chromosomal rearrangements and are hot spots for conjugative plasmid transfer, favored by the close proximity between cells and the constant supply of nutrients coming from the plant in the form of exudates or leachates. The molecular determinants known to be involved in bacterial colonization of the different plant surfaces, and the mechanisms of horizontal gene transfer in plant-associated Pseudomonas populations are summarized in this review.
Collapse
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
| |
Collapse
|