1
|
DeMichele E, Sosnowski O, Buret AG, Allain T. Regulatory Functions of Hypoxia in Host-Parasite Interactions: A Focus on Enteric, Tissue, and Blood Protozoa. Microorganisms 2023; 11:1598. [PMID: 37375100 PMCID: PMC10303274 DOI: 10.3390/microorganisms11061598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Body tissues are subjected to various oxygenic gradients and fluctuations and hence can become transiently hypoxic. Hypoxia-inducible factor (HIF) is the master transcriptional regulator of the cellular hypoxic response and is capable of modulating cellular metabolism, immune responses, epithelial barrier integrity, and local microbiota. Recent reports have characterized the hypoxic response to various infections. However, little is known about the role of HIF activation in the context of protozoan parasitic infections. Growing evidence suggests that tissue and blood protozoa can activate HIF and subsequent HIF target genes in the host, helping or hindering their pathogenicity. In the gut, enteric protozoa are adapted to steep longitudinal and radial oxygen gradients to complete their life cycle, yet the role of HIF during these protozoan infections remains unclear. This review focuses on the hypoxic response to protozoa and its role in the pathophysiology of parasitic infections. We also discuss how hypoxia modulates host immune responses in the context of protozoan infections.
Collapse
Affiliation(s)
- Emily DeMichele
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (E.D.); (O.S.); (A.G.B.)
- Inflammation Research Network, University of Calgary, Calgary, AB T2N 1N4, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
2
|
Lundregan SL, Mäkinen H, Buer A, Holand H, Jensen H, Husby A. Infection by a helminth parasite is associated with changes in DNA methylation in the house sparrow. Ecol Evol 2022; 12:e9539. [PMID: 36447599 PMCID: PMC9702581 DOI: 10.1002/ece3.9539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.
Collapse
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Hannu Mäkinen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Amberly Buer
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Håkon Holand
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Davhana N, ElBakri A, Bessong P, Samie A. Association of genetic polymorphism at tumor necrosis factor-α gene promoter - 1031T/C and parasitic infections among children in Northern South Africa. Heliyon 2020; 6:e05129. [PMID: 33083607 PMCID: PMC7553974 DOI: 10.1016/j.heliyon.2020.e05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 11/02/2022] Open
Abstract
Intestinal parasitic diseases are common in developing countries including South Africa and have been documented to be the most common in children under the age of five. The present study aimed to identify any potential association that may exist between TNF-α promoter gene polymorphism and parasitic infections. A total of 199 blood samples were evaluated from children who were part of the MAL-ED study cohort. The DNA was used to investigate polymorphism in the promoter region of the TNF-α gene at position -1031T/C. The polymorphisms were detected by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) assay. The TC genotype at position -1031 was significantly higher in healthy controls children than in children who were infected with Entamoeba species (59.9% vs 29.4%, P = 0.015) and Entamoeba coli (59.1% vs 30.8%, P = 0.046), indicating that TC genotype may be protective against Entamoeba infections and Entamoeba coli infections. The CC genotype at position -1031 was more common among children with parasite and diarrhea and the results was statistically significant (P = 0.04). This study has revealed that the CC genotype may be is a risk factor for symptomatic parasitic infections while the TC genotype might be protective of Entamoeba infections among children in Dzimauli community.
Collapse
|
4
|
Diaz-Valencia JD, Pérez-Yépez EA, Ayala-Sumuano JT, Franco E, Meza I. A surface membrane protein of Entamoeba histolytica functions as a receptor for human chemokine IL-8: its role in the attraction of trophozoites to inflammation sites. Int J Parasitol 2015; 45:915-23. [PMID: 26343219 DOI: 10.1016/j.ijpara.2015.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 01/17/2023]
Abstract
Entamoeba histolytica trophozoites respond to the presence of IL-8, moving by chemotaxis towards the source of the chemokine. IL-8 binds to the trophozoite membrane and triggers a response that activates signaling pathways that in turn regulate actin/myosin cytoskeleton organisation to initiate migration towards the chemokine, suggesting the presence of a receptor for IL-8 in the parasite. Antibodies directed to the human IL-8 receptor (CXCR1) specifically recognised a 29 kDa protein in trophozoite membrane fractions. The same protein was immunoprecipitated by this antibody from total amebic extracts. Peptide analysis of the immunoprecipitated protein revealed a sequence with high homology to a previously identified amebic outer membrane peroxiredoxin and a motif within the third loop of human CXCR1, which is an important site for IL-8 binding and activation of signaling processes. Immunodetection assays demonstrated that the anti-human CXCR1 antibody binds to the 29 kDa protein in a different but close site to where IL-8 binds to the trophozoite surface membrane, suggesting that human and amebic receptors for this chemokine share common epitopes. In the context of the human intestinal environment, a receptor for IL-8 could be a great advantage for E. histolytica trophozoite survival, as they could reach an inflammatory milieu containing abundant nutrients. In addition, it has been suggested that the high content of accessible thiol groups of the protein and its peroxidase activity could provide protection in the oxygen rich milieu of colonic lesions, allowing trophozoite invasion of other tissues and escape from the host immune response.
Collapse
Affiliation(s)
- J Daniel Diaz-Valencia
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF 07630, Mexico
| | - Eloy Andrés Pérez-Yépez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF 07630, Mexico
| | | | - Elizabeth Franco
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF 07630, Mexico
| | - Isaura Meza
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF 07630, Mexico.
| |
Collapse
|
5
|
Kumar G, Abd-Elfattah A, El-Matbouli M. Differential modulation of host genes in the kidney of brown trout Salmo trutta during sporogenesis of Tetracapsuloides bryosalmonae (Myxozoa). Vet Res 2014; 45:101. [PMID: 25297457 PMCID: PMC4198790 DOI: 10.1186/s13567-014-0101-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/24/2014] [Indexed: 01/06/2023] Open
Abstract
Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. In Europe, spores of T. bryosalmonae develop in the kidney of infected brown trout Salmo trutta and are released via urine to infect the freshwater bryozoan Fredericella sultana. The transcriptomes of kidneys of infected and non-infected brown trout were compared by suppressive subtractive hybridization. Differential screening and a subsequent NCBI BLAST analysis of expressed sequence tags revealed 21 transcripts with functions that included cell stress and cell growth, ribonucleoprotein, signal transduction, ion transporter, immune response, hemoglobin and calcium metabolisms. Quantitative real time PCR was used to verify the presence of these selected transcripts in brown trout kidney at sporogonic stages of T. bryosalmonae development. Expression of cold-inducible RNA-binding protein, cyclin-dependent kinase inhibitor 2A, prothymosin alpha, transforming protein RhoA, immunoglobulin light chain and major histocompatibility complex class I were up-regulated significantly in infected brown trout. Expression of both the hemoglobin subunit beta and stanniocalcin precursor were down-regulated significantly in infected brown trout. This study suggests that cell stress and cell growth processes, signal transduction activities, erythropoiesis and calcium homeostasis of the host are modulated during sporogonic stages of parasite development, which may support the sporogenesis of T. bryosalmonae in the kidney of brown trout.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Ahmed Abd-Elfattah
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
6
|
The expression of mitochondrial, cytoplasmic and extracellular superoxide dismutase in the colonic wall of pigs suffering from swine dysenteria. Pol J Vet Sci 2013; 16:463-7. [PMID: 24195279 DOI: 10.2478/pjvs-2013-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of 3 types of peroxide dismutase (SOD1, SOD2 and SOD3) was studied with Real-Time PCR in the colonic wall of domestic pig suffering from swine dysentery. The expression of enzymes was studied separately in the mucosa and the muscular membrane. It was found that in the mucosa the expression of SOD1 (cytoplasmic) did not change, while the levels of expression of mitochondrial SOD2 and extracellular SOD3 were raised in inflamed colon. More dramatic changes were seen in the muscular mebrane where expression of SOD1 rose twice, this of SOD2 rose ca. 5-fold and the expression of SOD3 rose dramatically, even 30-fold. The obtained data are contradictory to findings in other types of colonic inflammation, which were studied either in the whole colonic wall, or in mucosa alone. The results show a very strong reaction of antioxidant systems in the muscular membrane in the enteritis.
Collapse
|
7
|
Blastocystis spp., Cryptosporidium spp., and Entamoeba histolytica exhibit similar symptomatic and epidemiological patterns in healthcare-seeking patients in Karachi. Parasitol Res 2012; 111:1357-68. [PMID: 22763702 DOI: 10.1007/s00436-012-2972-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/15/2012] [Indexed: 12/14/2022]
Abstract
In this study, we collected data on the incidence of enteric parasites in healthcare-seeking individuals along with their symptoms to quantify the potential roles of factors such as age, sex, and seasonality in infection. We performed analysis to identify factors which could help differentiate parasitic infection from other causes of gastrointestinal illness in a community. The size of the patient population (n = 339), patient selection methodology, collection methods, and statistical analysis followed approaches from similar studies in core clinical journals. Ethical approval was obtained from the University of Karachi's Ethical Review Board. Fecal specimens (n = 339) submitted by symptomatic patients were collected from two clinical laboratories, along with information about the patients' age, sex, and symptoms. We found that symptoms of fever, vomiting, and constipation were 100 % predictive of finding a parasitic infection, while diarrhea was 88 % predictive of a parasitic infection. Gastrointestinal parasite-positive patients reported diarrhea (~60 %), vomiting (~30 %), fever (~25 %) and constipation (~25 %), while parasite-negative patients exhibited a symptomatic profile without fever, vomiting, and constipation. The distribution of symptoms in parasite-positive patients remained relatively invariant regardless of the parasite identified. Blastocystis spp.-mono-infected patients reported a similar profile to patients positive for Entamoeba histolytica/Entamoeba dispar and Cryptosporidium spp. Most parasitic infections exhibited a strong seasonal pattern, with a peak incidence in summer months. Infection by Blastocystis spp. was the most prevalent, and it was the only infection mathematically correlated to rainfall by Pearson's method. We observed no increase in healthcare-seeking behavior following a stressful community event, namely, the attempted assassination of Benazir Bhutto in Karachi. The data suggest that parasitological testing would produce a high yield of positive results when performed on healthcare-seeking patients in Karachi in 2007 with symptoms of fever, vomiting, or constipation and a low yield when performed on patients noting only abdominal pain. Parasitological testing also produces a higher yield on patients seen in summer months.
Collapse
|
8
|
The expression of REG 1A and REG 1B is increased during acute amebic colitis. Parasitol Int 2011; 60:296-300. [PMID: 21586335 DOI: 10.1016/j.parint.2011.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/31/2023]
Abstract
Entamoeba histolytica, a protozoan parasite, is an important cause of diarrhea and colitis in the developing world. Amebic colitis is characterized by ulceration of the intestinal mucosa. We performed microarray analysis of intestinal biopsies during acute and convalescent amebiasis in order to identify genes potentially involved in tissue injury or repair. Colonic biopsy samples were obtained from 8 patients during acute E. histolytica colitis and again 60 days after recovery. Gene expression in the biopsies was evaluated using microarray, and confirmed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). REG 1A and REG 1B were the most up-regulated of all genes in the human intestine in acute versus convalescent E. histolytica disease: as determined by microarray, the levels of induction were 7.4-fold and 10.7 fold for REG 1A and B; p=0.003 and p=0.006 respectively. Increased expression of REG 1A and REG 1B protein in the colonic crypt epithelial cells during acute amebiasis was similarly observed by immunohistochemistry. Because REG 1 protein is anti-apoptotic and pro-proliferative, and since E. histolytica induces apoptosis of the intestinal epithelium as part of its disease process, we next tested if REG 1 might be protective during amebiasis by preventing parasite-induced apoptosis. Intestinal epithelial cells from REG 1-/- mice were found to be more susceptible to spontaneous, and parasite-induced, apoptosis in vitro (p=0.03). We concluded that REG 1A and REG 1B were upregulated during amebiasis and may function to protect the intestinal epithelium from parasite-induced apoptosis.
Collapse
|
9
|
Golan L, Gonen E, Yagel S, Rosenshine I, Shpigel NY. Enterohemorrhagic Escherichia coli induce attaching and effacing lesions and hemorrhagic colitis in human and bovine intestinal xenograft models. Dis Model Mech 2010; 4:86-94. [PMID: 20959635 PMCID: PMC3014348 DOI: 10.1242/dmm.005777] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important cause of diarrhea, hemorrhagic colitis and hemolytic uremic syndrome in humans worldwide. The two major virulence determinants of EHEC are the Shiga toxins (Stx) and the type III secretion system (T3SS), including the injected effectors. Lack of a good model system hinders the study of EHEC virulence. Here, we investigated whether bovine and human intestinal xenografts in SCID mice can be useful for studying EHEC and host tissue interactions. Fully developed, germ-free human and bovine small intestine and colon were established by subcutaneous transplantation of human and bovine fetal gut into SCID mice. Xenografts were allowed to develop for 3–4 months and thereafter were infected by direct intraluminal inoculation of Stx-negative derivatives of EHEC O157:H7, strain EDL933. The small intestine and colon xenografts closely mimicked the respective native tissues. Upon infection, EHEC induced formation of typical attaching and effacing lesions and tissue damage that resembled hemorrhagic colitis in colon xenografts. By contrast, xenografts infected with an EHEC mutant deficient in T3SS remained undamaged. Furthermore, EHEC did not attach to or damage the epithelium of small intestinal tissue, and these xenografts remained intact. EHEC damaged the colon in a T3SS-dependent manner, and this model is therefore useful for studying the molecular details of EHEC interactions with live human and bovine intestinal tissue. Furthermore, we demonstrate that Stx and gut microflora are not essential for EHEC virulence in the human gut.
Collapse
Affiliation(s)
- Lilach Golan
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
10
|
Peterson KM, Shu J, Duggal P, Haque R, Mondal D, Petri WA. Association between TNF-alpha and Entamoeba histolytica diarrhea. Am J Trop Med Hyg 2010; 82:620-5. [PMID: 20348510 DOI: 10.4269/ajtmh.2010.09-0493] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An association between tumor necrosis factor alpha (TNF-alpha) and Entamoeba histolytica diarrhea was assessed in a cohort of 138 non-related Bangladeshi children who have been prospectively followed since 2001. Peripheral blood mononuclear cells (PBMCs) obtained at study entry were purified, cultured, and stimulated with soluble amebic antigen before cytokine measurement from supernatant. Higher levels of TNF-alpha were associated with increased risk of first (P = 0.01) and recurrent E. histolytica-related diarrheal episodes (P = 0.005). Children who developed E. histolytica diarrhea had significantly higher TNF-alpha protein levels than those who experienced asymptomatic E. histolytica infection (P value = 0.027) or no infection (P value = 0.017). Microarray studies performed using RNA isolated from acute and convalescent whole blood and colon biopsy samples revealed higher but non-significant TNF-alpha messenger RNA (mRNA) levels in subjects with acute E. histolytica diarrhea compared with convalescence. We conclude that there is an association between higher TNF-alpha production and E. histolytica diarrhea.
Collapse
Affiliation(s)
- Kristine M Peterson
- Division of Infectious Diseases, University of Virginia Health Systems, PO BOX 801337, Building MR4, Room 2115, 409 Lane Road, Charlottesville, VA, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Mumy KL, Chen X, Kelly CP, McCormick BA. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events. Am J Physiol Gastrointest Liver Physiol 2008; 294:G599-609. [PMID: 18032477 PMCID: PMC3212754 DOI: 10.1152/ajpgi.00391.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Saccharomyces boulardii is gaining in popularity as a treatment for a variety of diarrheal diseases as well as inflammatory bowel disease. This study was designed to examine the effect of this yeast on infection by Shigella flexneri, a highly infectious and human host-adapted enteric pathogen. We investigated key interactions between the bacteria and host cells in the presence of the yeast in addition to a number of host responses including proinflammatory events and markers. Although the presence of the yeast during infection did not alter the number of bacteria that was able to attach or invade human colon cancer-derived T-84 cells, it did positively impact the tight junction protein zonula occluden-2 and significantly increase the barrier integrity of model epithelia. The yeast also decreased ERK, JNK, and NF-kappaB activation in response to S. flexneri, events likely responsible for the observed reductions in IL-8 secretion and the transepithelial migration of polymorphonuclear leukocytes across T-84 monolayers. These results, suggesting that the yeast allowed for a dampened inflammatory response, were confirmed in vivo utilizing a highly relevant model of human fetal colonic tissue transplanted into scid mice. Furthermore, a cell-free S. boulardii culture supernatant was also capable of reducing IL-8 secretion by infected T-84 cells. These data suggest that although the use of S. boulardii during infection with S. flexneri may alleviate symptoms associated with the inflammatory response of the host, it would not prevent infection.
Collapse
Affiliation(s)
- Karen L. Mumy
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Charlestown, Massachusetts,Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts
| | - Xinhua Chen
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Charlestown, Massachusetts,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ciarán P. Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Beth A. McCormick
- Department of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Charlestown, Massachusetts,Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Kammanadiminti SJ, Dey I, Chadee K. Induction of monocyte chemotactic protein 1 in colonic epithelial cells by Entamoeba histolytica is mediated via the phosphatidylinositol 3-kinase/p65 pathway. Infect Immun 2007; 75:1765-70. [PMID: 17283105 PMCID: PMC1865671 DOI: 10.1128/iai.01442-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role intestinal epithelial cells play in the pathogenesis of amebic colitis is poorly understood. Herein, we demonstrate that secreted and soluble ameba (Entamoeba histolytica) proteins (SAP) induce expression of the chemoattractant monocyte chemotactic protein (MCP) in the colonic epithelial cell lines Caco-2, T84, and LS174T. MCP-1 mRNA induction was both dose and time dependent, with peak induction occurring at 8 h and with 100 mug/ml of SAP. Significant increase in MCP-1 protein expression was observed after 12 h. SAP failed to activate any of the mitogen-activated protein kinase pathways or IkappaB kinase activity. Moreover, inhibiting the classical pathway of NF-kappaB activation did not affect SAP-induced MCP-1 expression. Instead, we find that SAP-induced MCP-1 expression is dependent on posttranslational modification of the NFkappaB p65 subunit. SAP induced phosphorylation of p65 and enhanced NF-kappaB transcriptional activity, which are phosphatidylinositol 3-kinase (PI3 kinase) dependent. Treatment with PI3 kinase inhibitor LY290004 significantly abrogated the activation of Akt, p65, and MCP-1 mRNA induction. We conclude that colonic epithelial cells play a role in the initiation of inflammation by secreting chemokines in response to soluble ameba components.
Collapse
Affiliation(s)
- Srinivas J Kammanadiminti
- Department of Microbiology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary T2N 4N1, Alberta, Canada
| | | | | |
Collapse
|
13
|
Pelosof LC, Davis PH, Zhang Z, Zhang X, Stanley SL. Co-ordinate but disproportionate activation of apoptotic, regenerative and inflammatory pathways characterizes the liver response to acute amebic infection. Cell Microbiol 2006; 8:508-22. [PMID: 16469061 DOI: 10.1111/j.1462-5822.2005.00642.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver has the remarkable ability to respond to injury with repair and regeneration. The protozoan parasite Entamoeba histolytica is the major cause of liver abscess worldwide. We report a transcriptional analysis of the response of mouse liver to E. histolytica infection, the first study looking at acute liver infection by a non-viral pathogen. Focusing on early time points, we identified 764 genes with altered transcriptional levels in amebic liver abscess. The response to infection is rapid and complex, with concurrent increased expression of genes linked to host defence through IL-1, TLR2, or interferon-induced pathways, liver regeneration via activation of IL-6 pathways, and genes associated with programmed cell death possibly through TNFalpha or Fas pathways. A comparison of amebic liver infection with the liver response to partial hepatectomy or toxins reveals striking similarities between amebic liver abscess and non-infectious injury in key components of the liver regeneration pathways. However, the response in amebic liver abscess is biased towards apoptosis when compared with acute liver injury from hepatectomy, toxins, or other forms of liver infection. E. histolytica infection of the liver simultaneously activates inflammatory, regenerative and apoptotic pathways, but the sum of these early responses is biased towards programmed cell death.
Collapse
Affiliation(s)
- Lorraine C Pelosof
- Department of Medicine, Division of Infectious Diseases, Campus Box 8051, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
14
|
Blazquez S, Zimmer C, Guigon G, Olivo-Marin JC, Guillén N, Labruyère E. Human tumor necrosis factor is a chemoattractant for the parasite Entamoeba histolytica. Infect Immun 2006; 74:1407-11. [PMID: 16428794 PMCID: PMC1360330 DOI: 10.1128/iai.74.2.1407-1411.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an analysis of the molecular factors triggering amebiasis, we investigated the chemotaxis of Entamoeba histolytica toward tumor necrosis factor (TNF) in vitro, using quantitative imaging techniques. Our findings enabled us to propose a hitherto unknown role for TNF as a chemokinetic and chemoattractant agent for this parasite.
Collapse
Affiliation(s)
- Samantha Blazquez
- Cell Biology of Parasitism Unit, INSERM U389, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
15
|
Roxström-Lindquist K, Ringqvist E, Palm D, Svärd S. Giardia lamblia-induced changes in gene expression in differentiated Caco-2 human intestinal epithelial cells. Infect Immun 2006; 73:8204-8. [PMID: 16299316 PMCID: PMC1307045 DOI: 10.1128/iai.73.12.8204-8208.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parasitic protozoan Giardia lamblia is a worldwide cause of diarrhea, but the mechanism of disease remains elusive. The parasite colonizes the small intestinal epithelium, known to be a sensor for the presence of enteric pathogens, without invading or causing severe inflammation. In this study we investigated the epithelial cell response to G. lamblia. Differentiated Caco-2 cells were infected with G. lamblia isolate WB-A11, and the transcriptome of the intestinal cells was analyzed after 1.5, 6, and 18 h of interaction, using oligonucleotide microarrays. A large number of genes displayed changed expression patterns, showing the complexity of the interaction between G. lamblia and intestinal cells. A novel chemokine profile (CCL2, CCL20, CXCL1, CXCL2, and CXCL3) was induced that was different from the response induced by enteric pathogens causing intestinal inflammation. Several genes involved in stress regulation changed their expression. These findings indicate that the intestinal epithelium senses the G. lamblia infection, and this is important for induction of innate and adaptive immunity. The induced stress response can be important in the pathogenesis.
Collapse
Affiliation(s)
- Katarina Roxström-Lindquist
- Department of Parasitology, Microbiology and Tumor Biology Center, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
16
|
Raffatellu M, Chessa D, Wilson RP, Tükel C, Akçelik M, Bäumler AJ. Capsule-mediated immune evasion: a new hypothesis explaining aspects of typhoid fever pathogenesis. Infect Immun 2006; 74:19-27. [PMID: 16368953 PMCID: PMC1346610 DOI: 10.1128/iai.74.1.19-27.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Manuela Raffatellu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616-8645, USA
| | | | | | | | | | | |
Collapse
|
17
|
Marion S, Guillén N. Genomic and proteomic approaches highlight phagocytosis of living and apoptotic human cells by the parasite Entamoeba histolytica. Int J Parasitol 2005; 36:131-9. [PMID: 16386742 DOI: 10.1016/j.ijpara.2005.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/17/2005] [Accepted: 10/24/2005] [Indexed: 11/15/2022]
Abstract
Phagocytosis plays a major role during the invasive process of the human intestine by the pathogenic amoeba E. histolytica. This parasite is the etiologic agent causing amoebic dysentery, a worldwide disease causing 50 million of clinical cases leading to about 100,000 deaths annually. The invasive process is characterized by a local acute inflammation and the destruction of the intestinal tissue at the invasion site. The recent sequencing of the E. histolytica genome has opened the way to large-scale approaches to study parasite virulence such as processes involved in human cell phagocytosis. In particular, two different studies have recently described the phagosome proteome, providing new insights into the process of phagocytosis by this pathogenic protozoan. It has been previously described that E. histolytica induces apoptosis and phagocytosis of the human target cells. Induction of apoptosis by the trophozoites is thought to be involved in the close regulation of the inflammatory response occurring during infection. Little is known about the molecular mechanisms responsible for induction of apoptosis or in the recognition of apoptotic cells by E. histolytica. In this review, we comment on the recent data we obtained after isolation of the early phagosomes and the identification of its associated proteins. We focus on the surface molecules potentially involved in human cell recognition. In particular, we propose several parasite molecules, potentially involved in the induction of apoptosis and/or the phagocytosis of human apoptotic cells.
Collapse
Affiliation(s)
- Sabrina Marion
- Unité de Biologie Cellulaire du Parasitisme, INSERM U389, Institut Pasteur: 28 rue du Dr Roux 75724 Paris Cedex 15, France
| | | |
Collapse
|