1
|
Zhou H, Hua J, Li H, Song X, Luo S. Structurally diverse specialized metabolites of maize and their extensive biological functions. J Cell Physiol 2024; 239:e30955. [PMID: 36745523 DOI: 10.1002/jcp.30955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Maize originated in southern Mexico and various hybrid varieties have been bred during domestication. All maize tissues are rich in specialized plant metabolites (SPMs), which allow the plants to resist the stresses of herbivores and pathogens or environmental factors. To date, a total of 95 terpenoids, 91 phenolics, 31 alkaloids, and 6 other types of compounds have been identified from maize. Certain volatile sesquiterpenes released by maize plants attract the natural enemies of maize herbivores and provide an indirect defensive function. Kauralexins and dolabralexins are the most abundant diterpenoids in maize and are known to regulate and stabilize the maize rhizosphere microbial community. Benzoxazinoids and benzoxazolinones are the main alkaloids in maize and are found in maize plants at the highest concentrations at the seedling stage. These two kinds of alkaloids directly resist herbivory and pathogenic infection. Phenolics enhance the cross-links between maize cell walls. Meanwhile, SPMs also regulate plant-plant relationships. In conclusion, SPMs in maize show a large diversity of chemical structures and broad-spectrum biological activities. We use these to provide ideas and information to enable the improvement of maize resistances through breeding and to promote the rapid development of the maize industry.
Collapse
Affiliation(s)
- Huiwen Zhou
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Hongdi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Xinyu Song
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Yactayo-Chang JP, Block AK. The impact of climate change on maize chemical defenses. Biochem J 2023; 480:1285-1298. [PMID: 37622733 DOI: 10.1042/bcj20220444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Climate change is increasingly affecting agriculture, both at the levels of crops themselves, and by altering the distribution and damage caused by insect or microbial pests. As global food security depends on the reliable production of major crops such as maize (Zea mays), it is vital that appropriate steps are taken to mitigate these negative impacts. To do this a clear understanding of what the impacts are and how they occur is needed. This review focuses on the impact of climate change on the production and effectiveness of maize chemical defenses, including volatile organic compounds, terpenoid phytoalexins, benzoxazinoids, phenolics, and flavonoids. Drought, flooding, heat stress, and elevated concentrations of atmospheric carbon dioxide, all impact the production of maize chemical defenses, in a compound and tissue-specific manner. Furthermore, changes in stomatal conductance and altered soil conditions caused by climate change can impact environmental dispersal and effectiveness certain chemicals. This can alter both defensive barrier formation and multitrophic interactions. The production of defense chemicals is controlled by stress signaling networks. The use of similar networks to co-ordinate the response to abiotic and biotic stress can lead to complex integration of these networks in response to the combinatorial stresses that are likely to occur in a changing climate. The impact of multiple stressors on maize chemical defenses can therefore be different from the sum of the responses to individual stressors and challenging to predict. Much work remains to effectively leverage these protective chemicals in climate-resilient maize.
Collapse
Affiliation(s)
- Jessica P Yactayo-Chang
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| | - Anna K Block
- United States Department of Agriculture-Agricultural Research Service, Chemistry Research Unit, Gainesville, FL, U.S.A
| |
Collapse
|
3
|
Pothiraj G, Shanmugam V, Tyagi A, Hussain Z, Aggarwal R, Haritha MM, Manikandan K, Singh AK, Krishnan G. Physiological race characterisation of Fusarium oxysporum strains infecting tomato employing candidate pathogenicity genes and host resistance. World J Microbiol Biotechnol 2022; 39:66. [PMID: 36585513 DOI: 10.1007/s11274-022-03505-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023]
Abstract
Physiological races of 14 strains of Fusarium oxysporum f.sp. lycopersici were established by PCR profiling SIX gene expressions. No amplification of the SIX4 (Avr1) gene was observed in any of the 14 strains. Based on amplification of the SIX3 (Avr2) gene, 6 strains were distinguished as race 2. Race 2 strains are known to contain identical SIX3 sequences and differ from race 3 strains by single point mutations. Hence, based on polymorphic amplicons of the SIX3 gene detected by stringent PCR conditions, 8 strains were identified as race 3. The identity of the physiological races of the strains was validated by inoculating on three germplasm lines, EC-814916, FEB-2 and Pusa Rohini carrying I-2, I-3 and no I gene, respectively. The race 2 and race 3 strains were avirulent on EC-814916 and FEB-2 lines, respectively. All the 14 fungal strains were pathogenic on Pusa Rohini, the Fusarium wilt susceptible cultivar lacking R genes and exhibited different levels of virulence. In evaluating two other potential pathogenicity genes, Fow1 and Fow2 as markers for virulence, their expressions were observed among both the races of the Fol strains, and hence are not potential candidates for physiological race discrimination. However, strong expressions of the genes in the root tissues inoculated with the highly virulent strain, TOFU-IHBT in comparison to the uninoculated control indicated their roles in fungal pathogenicity. To understand the role of these pathogenicity genes in countering the host defence mechanisms, their expressions in response to ROS and phenolics, the earliest known defence mechanisms of host plants were assessed. In H2O2, the Fow2 gene expressed 1.4-fold greater than that of the control. On the contrary, in relation to the control, the expressions of Fow1 were strongly repressed exhibiting 0.7-to 0.8-fold lesser at 0.1 mM through 3 mM concentrations than that of the control indicating that the gene is modulated by the phenolic acid indicating the roles of Fow2 and Fow1 in alleviating oxidative stress and targeted by the phenolic acid, respectively.
Collapse
Affiliation(s)
- Govindan Pothiraj
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.,Nammazhvar College of Agriculture and Technology, Ramanathapuram, 623708, Tamil Nadu, India
| | | | - Aditya Tyagi
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Zakir Hussain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Rashmi Aggarwal
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | | | | | - Awani Kumar Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Gopala Krishnan
- ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| |
Collapse
|
4
|
Soal NC, Coetzee MPA, van der Nest MA, Hammerbacher A, Wingfield BD. Phenolic degradation by catechol dioxygenases is associated with pathogenic fungi with a necrotrophic lifestyle in the Ceratocystidaceae. G3 (BETHESDA, MD.) 2022; 12:jkac008. [PMID: 35077565 PMCID: PMC8896014 DOI: 10.1093/g3journal/jkac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022]
Abstract
Fungal species of the Ceratocystidaceae grow on their host plants using a variety of different lifestyles, from saprophytic to highly pathogenic. Although many genomes of fungi in the Ceratocystidaceae are publicly available, it is not known how the genes that encode catechol dioxygenases (CDOs), enzymes involved in the degradation of phenolic plant defense compounds, differ among members of the Ceratocystidaceae. The aim of this study was therefore to identify and characterize the genes encoding CDOs in the genomes of Ceratocystidaceae representatives. We found that genes encoding CDOs are more abundant in pathogenic necrotrophic species of the Ceratocystidaceae and less abundant in saprophytic species. The loss of the CDO genes and the associated 3-oxoadipate catabolic pathway appears to have occurred in a lineage-specific manner. Taken together, this study revealed a positive association between CDO gene copy number and fungal lifestyle in Ceratocystidaceae representatives.
Collapse
Affiliation(s)
- Nicole C Soal
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
- Biotechnology Platform, Agricultural Research Council (ARC), Pretoria 0110, South Africa
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
5
|
Chen Q, Lu X, Guo X, Xu M, Tang Z. A source-sink model explains the difference in the metabolic mechanism of mechanical damage to young and senescing leaves in Catharanthus roseus. BMC PLANT BIOLOGY 2021; 21:154. [PMID: 33771114 PMCID: PMC7995597 DOI: 10.1186/s12870-021-02934-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 03/18/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Mechanical damage is an unavoidable threat to the growth and survival of plants. Although a wound to senescing (lower) leaves improves plant vitality, a wound to younger (upper) leaves often causes damage to or death of the whole plant. Source-sink models are often used to explain how plants respond to biotic or abiotic stresses. In this study, a source-sink model was used to explain the difference in the metabolic mechanism of mechanical damage to young and senescing leaves of Catharanthus roseus. RESULTS In our study, GC-MS and LC-QTOF-MS metabolomics techniques were used to explore the differences in source-sink allocation and metabolic regulation in different organs of Catharanthus roseus after mechanical damage to the upper/lower leaves (WUL/WLL). Compared with that of the control group, the energy supplies of the WUL and WLL groups were increased and delivered to the secondary metabolic pathway through the TCA cycle. The two treatment groups adopted different secondary metabolic response strategies. The WLL group increased the input to the defense response after damage by increasing the accumulation of phenolics. A source-sink model was applied to the defensive responses to local (damaged leaves) and systemic (whole plant) damage. In the WUL group, the number of sinks increased due to damage to young leaves, and the tolerance response was emphasized. CONCLUSION The accumulation of primary and secondary metabolites was significantly different between the two mechanical damage treatments. Catharanthus roseus uses different trade-offs between tolerance (repair) and defense to respond to mechanical damage. Repairing damage and chemical defenses are thought to be more energetically expensive than growth development, confirming the trade-offs and allocation of resources seen in this source-sink model.
Collapse
Affiliation(s)
- Qi Chen
- School of Life Sciences Nantong University, Nantong, 226010, P. R. China
| | - Xueyan Lu
- Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiaorui Guo
- Northeast Forestry University, Harbin, 150040, P. R. China
| | - Mingyuan Xu
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150040, P. R. China.
| | - Zhonghua Tang
- Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
6
|
Chittem K, Yajima WR, Goswami RS, del Río Mendoza LE. Transcriptome analysis of the plant pathogen Sclerotinia sclerotiorum interaction with resistant and susceptible canola (Brassica napus) lines. PLoS One 2020; 15:e0229844. [PMID: 32160211 PMCID: PMC7065775 DOI: 10.1371/journal.pone.0229844] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Sclerotinia stem rot is an economically important disease of canola (Brassica napus) and is caused by the fungal pathogen Sclerotinia sclerotiorum. This study evaluated the differential gene expression patterns of S. sclerotiorum during disease development on two canola lines differing in susceptibility to this pathogen. Sequencing of the mRNA libraries derived from inoculated petioles and mycelium grown on liquid medium generated approximately 164 million Illumina reads, including 95 million 75-bp-single reads, and 69 million 50-bp-paired end reads. Overall, 36% of the quality filter-passed reads were mapped to the S. sclerotiorum reference genome. On the susceptible line, 1301 and 1214 S. sclerotiorum genes were differentially expressed at early (8-16 hours post inoculation (hpi)) and late (24-48 hpi) infection stages, respectively, while on the resistant line, 1311 and 1335 genes were differentially expressed at these stages, respectively. Gene ontology (GO) categories associated with cell wall degradation, detoxification of host metabolites, peroxisome related activities like fatty acid ß-oxidation, glyoxylate cycle, oxidoreductase activity were significantly enriched in the up-regulated gene sets on both susceptible and resistant lines. Quantitative RT-PCR of six selected DEGs further validated the RNA-seq differential gene expression analysis. The regulation of effector genes involved in host defense suppression or evasion during the early infection stage, and the expression of effectors involved in host cell death in the late stage of infection provide supporting evidence for a two-phase infection model involving a brief biotrophic phase during early stages of infection. The findings from this study emphasize the role of peroxisome related pathways along with cell wall degradation and detoxification of host metabolites as the key mechanisms underlying pathogenesis of S. sclerotiorum on B. napus.
Collapse
Affiliation(s)
- Kishore Chittem
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - William R. Yajima
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Rubella S. Goswami
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
- USDA-APHIS, Riverdale, Maryland, United States of America
| | - Luis E. del Río Mendoza
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Yu D, Peng Y, Min H, Lai Z. Copper Ions are Required for Cochliobolus heterostrophus in Appressorium Formation and Virulence on Maize. PHYTOPATHOLOGY 2020; 110:494-504. [PMID: 31464158 DOI: 10.1094/phyto-07-19-0254-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cochliobolus heterostrophus is the causal agent of southern corn leaf blight, a destructive disease on maize worldwide. However, how it regulates virulence on maize is still largely unknown. Here, we report that two copper transporter genes, ChCTR1 and ChCTR4, are required for its virulence. chctr1 and chctr4 mutants showed attenuated virulence on maize compared with the wild-type strain TM17 but development phenotypes of those mutants on media with or without infection-related stress agents were the same as the wild-type strain. Moreover, ChCTR1 and ChCTR4 play critical roles in appressorium formation and mutation of ChCTR1 or ChCTR4 suppresses the appressorium formation. Furthermore, copper-chelating agent ammonium tetrathiomolybdate suppressed the appressorium formation and virulence of C. heterostrophus on maize, whereas copper ions enhanced the appressorium formation and virulence on maize. The results indicate that copper ions are required for appressorium formation and virulence of C. heterostrophus on maize and are acquired from the environment by two copper transporters: ChCTR1 and ChCTR4.
Collapse
Affiliation(s)
- Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- Ecology College, Lishui University, Lishui, China
| | - Dandan Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yujiao Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haoxuan Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhibing Lai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Simaan H, Shalaby S, Hatoel M, Karinski O, Goldshmidt-Tran O, Horwitz BA. The AP-1-like transcription factor ChAP1 balances tolerance and cell death in the response of the maize pathogen Cochliobolus heterostrophus to a plant phenolic. Curr Genet 2019; 66:187-203. [PMID: 31312934 DOI: 10.1007/s00294-019-01012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
Fungal pathogens need to contend with stresses including oxidants and antimicrobial chemicals resulting from host defenses. ChAP1 of Cochliobolus heterostrophus, agent of Southern corn leaf blight, encodes an ortholog of yeast YAP1. ChAP1 is retained in the nucleus in response to plant-derived phenolic acids, in addition to its well-studied activation by oxidants. Here, we used transcriptome profiling to ask which genes are regulated in response to ChAP1 activation by ferulic acid (FA), a phenolic abundant in the maize host. Nuclearization of ChAP1 in response to phenolics is not followed by strong expression of genes needed for oxidative stress tolerance. We, therefore, compared the transcriptomes of the wild-type pathogen and a ChAP1 deletion mutant, to study the function of ChAP1 in response to FA. We hypothesized that if ChAP1 is retained in the nucleus under plant-related stress conditions yet in the absence of obvious oxidant stress, it should have additional regulatory functions. The transcriptional signature in response to FA in the wild type compared to the mutant sheds light on the signaling mechanisms and response pathways by which ChAP1 can mediate tolerance to ferulic acid, distinct from its previously known role in the antioxidant response. The ChAP1-dependent FA regulon consists mainly of two large clusters. The enrichment of transport and metabolism-related genes in cluster 1 indicates that C. heterostrophus degrades FA and removes it from the cell. When this fails at increasing stress levels, FA provides a signal for cell death, indicated by the enrichment of cell death-related genes in cluster 2. By quantitation of survival and by TUNEL assays, we show that ChAP1 promotes survival and mitigates cell death. Growth rate data show a time window in which the mutant colony expands faster than the wild type. The results delineate a transcriptional regulatory pattern in which ChAP1 helps balance a survival response for tolerance to FA, against a pathway promoting cell death in the pathogen. A general model for the transition from a phase where the return to homeostasis dominates to a phase leading to the onset of cell death provides a context for understanding these findings.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Samer Shalaby
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.,Rockefeller University, New York, NY, 10065, USA
| | - Maor Hatoel
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Olga Karinski
- Technion Genome Center, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion-Israel Institute of Technology, 32000, Haifa, Israel.
| |
Collapse
|
9
|
Malinich EA, Wang K, Mukherjee PK, Kolomiets M, Kenerley CM. Differential expression analysis of Trichoderma virens RNA reveals a dynamic transcriptome during colonization of Zea mays roots. BMC Genomics 2019; 20:280. [PMID: 30971198 PMCID: PMC6458689 DOI: 10.1186/s12864-019-5651-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Background Trichoderma spp. are majorly composed of plant-beneficial symbionts widely used in agriculture as bio-control agents. Studying the mechanisms behind Trichoderma-derived plant benefits has yielded tangible bio-industrial products. To better take advantage of this fungal-plant symbiosis it is necessary to obtain detailed knowledge of which genes Trichoderma utilizes during interaction with its plant host. In this study, we explored the transcriptional activity undergone by T. virens during two phases of symbiosis with maize; recognition of roots and after ingress into the root cortex. Results We present a model of T. virens – maize interaction wherein T. virens experiences global repression of transcription upon recognition of maize roots and then induces expression of a broad spectrum of genes during colonization of maize roots. The genes expressed indicate that, during colonization of maize roots, T. virens modulates biosynthesis of phytohormone-like compounds, secretes a plant-environment specific array of cell wall degrading enzymes and secondary metabolites, remodels both actin-based and cell membrane structures, and shifts metabolic activity. We also highlight transcription factors and signal transduction genes important in future research seeking to unravel the molecular mechanisms of T. virens activity in maize roots. Conclusions T. virens displays distinctly different transcriptional profiles between recognizing the presence of maize roots and active colonization of these roots. A though understanding of these processes will allow development of T. virens as a bio-control agent. Further, the publication of these datasets will target future research endeavors specifically to genes of interest when considering T. virens – maize symbiosis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5651-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Malinich
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Ken Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Prasun K Mukherjee
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Michael Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Charles M Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Mendoza-Martínez AE, Cano-Domínguez N, Aguirre J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2019; 124:253-262. [PMID: 32389287 DOI: 10.1016/j.funbio.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico.
| |
Collapse
|
11
|
Simaan H, Lev S, Horwitz BA. Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front Microbiol 2019; 10:567. [PMID: 30941117 PMCID: PMC6433817 DOI: 10.3389/fmicb.2019.00567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 12/04/2022] Open
Abstract
Host defenses expose fungal pathogens to oxidants and antimicrobial chemicals. The fungal cell employs conserved eukaryotic signaling pathways and dedicated transcription factors to program its response to these stresses. The oxidant-sensitive transcription factor of yeast, YAP1, and its orthologs in filamentous fungi, are central to tolerance to oxidative stress. The C-terminal domain of YAP1 contains cysteine residues that, under oxidizing conditions, form an intramolecular disulfide bridge locking the molecule in a conformation where the nuclear export sequence is masked. YAP1 accumulates in the nucleus, promoting transcription of genes that provide the cell with the ability to counteract oxidative stress. Chemicals including xenobiotics and plant signals can also promote YAP1 nuclearization in yeast and filamentous fungi. This could happen via direct or indirect oxidative stress, or by a different biochemical pathway. Plant phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here we will discuss the evidence that YAP1 and MAPK pathways respond to phenolic compounds. Following this and other examples, we explore here how oxidative-stress sensing networks of fungi might have evolved to detect chemical stressors. Furthermore, we draw functional parallels between fungal YAP1 and mammalian Keap1-Nrf2 signaling systems.
Collapse
Affiliation(s)
- Hiba Simaan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
12
|
Specialized plant biochemistry drives gene clustering in fungi. ISME JOURNAL 2018; 12:1694-1705. [PMID: 29463891 DOI: 10.1038/s41396-018-0075-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 01/31/2023]
Abstract
The fitness and evolution of prokaryotes and eukaryotes are affected by the organization of their genomes. In particular, the physical clustering of genes can coordinate gene expression and can prevent the breakup of co-adapted alleles. Although clustering may thus result from selection for phenotype optimization and persistence, the impact of environmental selection pressures on eukaryotic genome organization has rarely been systematically explored. Here, we investigated the organization of fungal genes involved in the degradation of phenylpropanoids, a class of plant-produced secondary metabolites that mediate many ecological interactions between plants and fungi. Using a novel gene cluster detection method, we identified 1110 gene clusters and many conserved combinations of clusters in a diverse set of fungi. We demonstrate that congruence in genome organization over small spatial scales is often associated with similarities in ecological lifestyle. Additionally, we find that while clusters are often structured as independent modules with little overlap in content, certain gene families merge multiple modules into a common network, suggesting they are important components of phenylpropanoid degradation strategies. Together, our results suggest that phenylpropanoids have repeatedly selected for gene clustering in fungi, and highlight the interplay between genome organization and ecological evolution in this ancient eukaryotic lineage.
Collapse
|
13
|
Yu P, Wang C, Chen P, Lee M. YAP1 homologue-mediated redox sensing is crucial for a successful infection by Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2017; 18:783-797. [PMID: 27239957 PMCID: PMC6638302 DOI: 10.1111/mpp.12438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 05/20/2023]
Abstract
Monilinia fructicola (G. Winter) Honey is a devastating pathogen on Rosaceae which causes blossom blight and fruit rot. Only a few studies related to the plant-pathogen interaction have been published and there is limited knowledge on the relationship between oxidative stress and successful infection in M. fructicola. In this study, we cloned and characterized a redox-responsive transcription factor MFAP1, a YAP1 homologue. MfAP1-silenced strains were generated by polyethylene glycol-mediated protoplast transformation or Agrobacterium T-DNA-mediated transformation. Pathogenicity assay demonstrated that MfAP1-silenced strains caused smaller lesions on rose and peach petals. Transformants carrying extra copies of MfAP1, driven by the native promoter, were generated for MfAP1 overexpression. Interestingly, MfAP1-overexpressing strains also caused smaller lesions on rose petals. Strains carrying two copies of MfAP1 accumulated reactive oxygen species (ROS) at higher levels and exhibited delayed accumulation of MfAP1 transcripts compared with the wild-type during pathogenesis. By the analysis of ROS production and the expression patterns of redox- and virulence-related genes in the wild-type strain and an MfAP1-overexpressing strain, we found that the M. fructicola wild-type strain responded to oxidative stress at the infection site, activated the expression of MfAP1 and up-regulated the genes required for ROS detoxification and fungal virulence. In contrast, MfAP1 expression in the MfAP1-overexpressing strain was suppressed after the induction of a strong oxidative burst at the infection site, altering the expression of ROS detoxification and virulence-related genes. Our results highlight the importance of MfAP1 and ROS accumulation in the successful infection of M. fructicola.
Collapse
Affiliation(s)
- Pei‐Ling Yu
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Chih‐Li Wang
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Pei‐Yin Chen
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Miin‐Huey Lee
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| |
Collapse
|
14
|
Shalaby S, Larkov O, Lamdan NL, Goldshmidt-Tran O, Horwitz BA. Plant phenolic acids induce programmed cell death of a fungal pathogen: MAPK signaling and survival of Cochliobolus heterostrophus. Environ Microbiol 2016; 18:4188-4199. [PMID: 27631532 DOI: 10.1111/1462-2920.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/09/2016] [Indexed: 11/29/2022]
Abstract
Plant aromatic compounds provide signals and a nutrient source to pathogens, and also act as stressors. Structure-activity relationships suggest two pathways sensing these compounds in the maize pathogen Cochliobolus heterostrophus, one triggering a stress response, and one inducing enzymes for their degradation. Focusing on the stress pathway, we found that ferulic acid causes rapid appearance of TUNEL-positive nuclei, dispersion of histone H1:GFP, hyphal shrinkage, and eventually membrane damage. These hallmarks of programmed cell death (PCD) were not seen upon exposure to caffeic acid, a very similar compound. Exposure to ferulic acid dephosphorylated two MAP kinases: Hog1 (stress activated) and Chk1 (pathogenicity related), while increasing phosphorylation of Mps1 (cell integrity related). Mutants lacking Hog1 or Chk1 are hypersensitive to ferulic acid while Mps1 mutants are not. These results implicate three MAPK pathways in the stress response. Ferulic acid and the antifungal fludioxonil have opposite additive effects on survival and on dephosphorylation of Hog1, which is thus implicated in survival. The results may explain why some fungal pathogens of plants undergo cell death early in host invasion, when phenolics are released from plant tissue.
Collapse
Affiliation(s)
- Samer Shalaby
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Olga Larkov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Netta-Li Lamdan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| |
Collapse
|
15
|
Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass. J Chem Ecol 2015; 41:781-92. [DOI: 10.1007/s10886-015-0619-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/28/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
|
16
|
Bloem E, Haneklaus S, Schnug E. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. FRONTIERS IN PLANT SCIENCE 2015; 5:779. [PMID: 25642233 PMCID: PMC4295439 DOI: 10.3389/fpls.2014.00779] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/16/2014] [Indexed: 05/19/2023]
Abstract
Until the 1970's of the last century sulfur (S) was mainly regarded as a pollutant being the main contributor of acid rain, causing forest dieback in central Europe. When Clean Air Acts came into force at the start of the 1980's SO2 contaminations in the air were consequently reduced within the next years. S changed from an unwanted pollutant into a lacking plant nutrient in agriculture since agricultural fields were no longer "fertilized" indirectly by industrial pollution. S deficiency was first noticed in Brassica crops that display an especially high S demand because of its content of S-containing secondary metabolites, the glucosinolates. In Scotland, where S depositions decreased even faster than in continental Europe, an increasing disease incidence with Pyrenopeziza brassicae was observed in oilseed rape in the beginning 1990's and the concept of sulfur-induced-resistance (SIR) was developed after a relationship between the S status and the disease incidence was uncovered. Since then a lot of research was carried out to unravel the background of SIR in the metabolism of agricultural crops and to identify metabolites, enzymes and reactions, which are potentially activated by the S metabolism to combat fungal pathogens. The S status of the crop is affecting many different plant features such as color and scent of flowers, pigments in leaves, metabolite concentrations and the release of gaseous S compounds which are directly influencing the desirability of a crop for a variety of different organisms from microorganisms, over insects and slugs to the point of grazing animals. The present paper is an attempt to sum up the knowledge about the effect of the S nutritional status of agricultural crops on parameters that are directly related to their health status and by this to SIR. Milestones in SIR research are compiled, open questions are addressed and future projections were developed.
Collapse
Affiliation(s)
- Elke Bloem
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institute, Institute for Crop and Soil ScienceBraunschweig, Germany
| | | | | |
Collapse
|
17
|
Shalaby S, Horwitz BA. Plant phenolic compounds and oxidative stress: integrated signals in fungal-plant interactions. Curr Genet 2014; 61:347-57. [PMID: 25407462 DOI: 10.1007/s00294-014-0458-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Upon invasion of a host, fungal pathogens are exposed to a variety of stresses. Plants release reactive oxygen species, and mount a variety of preformed and induced chemical defenses. Phenolic compounds are one example: they are ubiquitous in plants, and an invading pathogen encounters them already at the leaf surface, or for soil-borne pathogens, in the rhizosphere. Phenolic and related aromatic compounds show varying degrees of toxicity to cells. Some compounds are quite readily metabolized, and others less so. It was known already from classical studies that phenolic substrates induce the expression of the enzymes for their degradation. Recently, the ability to degrade phenolics was shown to be a virulence factor. Conversely, phenolic compounds can increase the effectiveness of antifungals. Phenolics are known antioxidants, yet they have been shown to elicit cellular responses that would usually be triggered to counter oxidant stress. Here, we review the evidence for a connection between the fungal response to phenolics as small-molecule signals, and the response to oxidants. The connections proposed here should enable genetic screens to identify specific fungal receptors for plant phenolics. Furthermore, understanding how the pathogen detects plant phenolic compounds as a stress signal may facilitate new antifungal strategies.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion, Israel Institute of Technology, 3200000, Haifa, Israel
| | | |
Collapse
|
18
|
Sharma V, Bhandari P, Singh B, Bhatacharya A, Shanmugam V. Chitinase Expression Due to Reduction in Fusaric Acid Level in an Antagonistic Trichoderma harzianum S17TH. Indian J Microbiol 2014; 53:214-20. [PMID: 24426111 DOI: 10.1007/s12088-012-0335-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/06/2012] [Indexed: 11/28/2022] Open
Abstract
To study the effect of reduction in phytotoxin level on fungal chitinases, antagonistic Trichoderma spp. were screened for their ability to reduce the level of fusaric acid (FA), the phytotoxin produced by Fusarium spp. A T. harzianum isolate S17TH was able to tolerate high levels of FA (up to 500 ppm) but was unable to reduce the toxin to a significant level (non-toxic) added to minimal synthetic broth (MSB). However, the isolate was able to reduce 400 ppm FA in the liquid medium after 7 days to a non-toxic level and displayed similar level of antagonism over the control (without FA). In studies of the effect of the reduction in FA (400 ppm) level on chitinase gene expression in PCR assays, nag1 was significantly repressed but ech42 expression was only slightly repressed. Chitinase activity was either reduced or absent in the extracellular proteins of MSB supplemented with 400 ppm FA, which could be attributed to the effect of residual FA or its breakdown products through unknown mechanisms. Selection of S17TH as a toxin insensitive isolate that could commensurate the negative effect on chitinase activity makes it a potential antagonist against Fusarium spp.
Collapse
Affiliation(s)
- Vivek Sharma
- Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, 176 061 HP India
| | - Pamita Bhandari
- Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, 176 061 HP India
| | - Bikram Singh
- Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, 176 061 HP India
| | - Amita Bhatacharya
- Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, 176 061 HP India
| | - Veerubommu Shanmugam
- Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, 176 061 HP India
| |
Collapse
|
19
|
No plant functional diversity effects on foliar fungal pathogens in experimental tree communities. FUNGAL DIVERS 2014. [DOI: 10.1007/s13225-013-0273-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Zhang N, MohdZainudin NAI, Scher K, Condon BJ, Horwitz BA, Turgeon BG. Iron, oxidative stress, and virulence: roles of iron-sensitive transcription factor Sre1 and the redox sensor ChAp1 in the maize pathogen Cochliobolus heterostrophus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1473-1485. [PMID: 23980626 DOI: 10.1094/mpmi-02-13-0055-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The gene SRE1, encoding the GATA transcription factor siderophore biosynthesis repressor (Sre1), was identified in the genome of the maize pathogen Cochliobolus heterostrophus and deleted. Mutants were altered in sensitivity to iron, oxidative stress, and virulence to the host. To gain insight into mechanisms of this combined regulation, genetic interactions among SRE1 (the nonribosomal peptide synthetase encoding gene NPS6, which is responsible for extracellular siderophore biosynthesis) and ChAP1 (encoding a transcription factor regulating redox homeostasis) were studied. To identify members of the Sre1 regulon, expression of candidate iron and oxidative stress-related genes was assessed in wild-type (WT) and sre1 mutants using quantitative reverse-transcription polymerase chain reaction. In sre1 mutants, NPS6 and NPS2 genes, responsible for siderophore biosynthesis, were derepressed under iron replete conditions, whereas the high-affinity reductive iron uptake pathway associated gene, FTR1, was not, in contrast to outcomes with other well-studied fungal models. C. heterostrophus L-ornithine-N(5)- monooxygenase (SIDA2), ATP-binding cassette (ABC6), catalase (CAT1), and superoxide dismutase (SOD1) genes were also derepressed under iron-replete conditions in sre1 mutants. Chap1nps6 double mutants were more sensitive to oxidative stress than either Chap1 or nps6 single mutants, while Chap1sre1 double mutants showed a modest increase in resistance compared with single Chap1 mutants but were much more sensitive than sre1 mutants. These findings suggest that the NPS6 siderophore indirectly contributes to redox homeostasis via iron sequestration, while Sre1 misregulation may render cells more sensitive to oxidative stress. The double-mutant phenotypes are consistent with a model in which iron sequestration by NPS6 defends the pathogen against oxidative stress. C. heterostrophus sre1, nps6, Chap1, Chap1nps6, and Chap1sre1 mutants are all reduced in virulence toward the host, compared with the WT.
Collapse
|
21
|
Shalaby S, Larkov O, Lamdan NL, Horwitz BA. Genetic interaction of the stress response factors ChAP1 and Skn7 in the maize pathogen Cochliobolus heterostrophus. FEMS Microbiol Lett 2013; 350:83-9. [PMID: 24164316 DOI: 10.1111/1574-6968.12314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 11/27/2022] Open
Abstract
The transcription factors ChAP1 and Skn7 of the maize pathogen Cochliobolus heterostrophus are orthologs of Yap1 and Skn7 in yeast, where they are predicted to work together in a complex. Previous work showed that in C. heterostrophus, as in yeast, ChAP1 accumulates in the nucleus in response to reactive oxygen species (ROS). The expression of genes whose products counteract oxidative stress depends on ChAP1, as shown by impaired ability of a Δchap1 mutant to induce these 'antioxidant' genes. In this study, we found that under oxidative stress, antioxidant gene expression is also partially impaired in the Δskn7 mutant but to a milder extent than in the Δchap1 mutant, whereas in the double mutant - Δchap1-Δskn7 - none of the tested genes was induced, with the exception of one catalase gene, CAT2. Both single mutants are capable of infecting the plant, showing similar virulence to the WT. The double mutant, however, showed clearly decreased virulence, pointing to additive contributions of ChAP1 and Skn7. Possible mechanisms are discussed, including additive regulation of gene expression by oxidative stress.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
22
|
Ronen M, Shalaby S, Horwitz BA. Role of the transcription factor ChAP1 in cytoplasmic redox homeostasis: imaging with a genetically encoded sensor in the maize pathogen Cochliobolus heterostrophus. MOLECULAR PLANT PATHOLOGY 2013; 14:786-90. [PMID: 23745603 PMCID: PMC6638657 DOI: 10.1111/mpp.12047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The redox-sensitive transcription factor ChAP1 [Cochliobolus heterostrophus YAP1 (Yeast Activator Protein 1) orthologue] of C. heterostrophus is required for oxidative stress tolerance. It is not known, however, to what extent the intracellular redox state changes on exposure of the fungus to oxidants, and whether ChAP1 is involved in the return of the cell to redox homeostasis. In order to answer these questions, we expressed a ratiometric redox-sensitive fluorescent protein sensor, pHyper, in C. heterostrophus. The fluorescence ratio was sensitive to extracellular hydrogen peroxide (H2O2) concentrations that had been shown previously to inhibit the germination of conidia and growth of the pathogen in culture. chap1 mutants showed a slower return to redox homeostasis than the wild-type on exposure to H2O2. Plant extracts that mimic oxidants in their ability to promote nuclear retention of ChAP1 reduced, rather than oxidized, the fungal cells. This result is consistent with other data suggesting that ChAP1 responds to plant-derived signals other than oxidants. pHyper should be a useful reporter of the intracellular redox state in filamentous fungi.
Collapse
Affiliation(s)
- Mordechai Ronen
- Department of Plant Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | |
Collapse
|
23
|
Redox regulation of an AP-1-like transcription factor, YapA, in the fungal symbiont Epichloe festucae. EUKARYOTIC CELL 2013; 12:1335-48. [PMID: 23893078 DOI: 10.1128/ec.00129-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One of the central regulators of oxidative stress in Saccharomyces cerevisiae is Yap1, a bZIP transcription factor of the AP-1 family. In unstressed cells, Yap1 is reduced and cytoplasmic, but in response to oxidative stress, it becomes oxidized and accumulates in the nucleus. To date, there have been no reports on the role of AP-1-like transcription factors in symbiotic fungi. An ortholog of Yap1, named YapA, was identified in the genome of the grass symbiont Epichloë festucae and shown to complement an S. cerevisiae Δyap1 mutant. Hyphae of the E. festucae ΔyapA strain were sensitive to menadione and diamide but resistant to H2O2, KO2, and tert-butyl hydroperoxide (t-BOOH). In contrast, conidia of the ΔyapA strain were very sensitive to H2O2 and failed to germinate. Using a PcatA-eGFP degron-tagged reporter, YapA was shown to be required for expression of a spore-specific catalase gene, catA. Although YapA-EGFP localized to the nucleus in response to host reactive oxygen species during seedling infection, there was no difference in whole-plant and cellular phenotypes of plants infected with the ΔyapA strain compared to the wild-type strain. Homologs of the S. cerevisiae and Schizosaccharomyces pombe redox-sensing proteins (Gpx3 and Tpx1, respectively) did not act as redox sensors for YapA in E. festucae. In response to oxidative stress, YapA-EGFP localized to the nuclei of E. festucae ΔgpxC, ΔtpxA, and ΔgpxC ΔtpxA cells to the same degree as that in wild-type cells. These results show that E. festucae has a robust system for countering oxidative stress in culture and in planta but that Gpx3- or Tpx1-like thiol peroxidases are dispensable for activation of YapA.
Collapse
|
24
|
Hammerbacher A, Schmidt A, Wadke N, Wright LP, Schneider B, Bohlmann J, Brand WA, Fenning TM, Gershenzon J, Paetz C. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. PLANT PHYSIOLOGY 2013; 162:1324-36. [PMID: 23729780 PMCID: PMC3707561 DOI: 10.1104/pp.113.218610] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/28/2013] [Indexed: 05/03/2023]
Abstract
Norway spruce (Picea abies) forests suffer periodic fatal attacks by the bark beetle Ips typographus and its fungal associate, Ceratocystis polonica. Norway spruce protects itself against fungal and bark beetle invasion by the production of terpenoid resins, but it is unclear whether resins or other defenses are effective against the fungus. We investigated stilbenes, a group of phenolic compounds found in Norway spruce bark with a diaryl-ethene skeleton with known antifungal properties. During C. polonica infection, stilbene biosynthesis was up-regulated, as evidenced by elevated transcript levels of stilbene synthase genes. However, stilbene concentrations actually declined during infection, and this was due to fungal metabolism. C. polonica converted stilbenes to ring-opened, deglycosylated, and dimeric products. Chromatographic separation of C. polonica protein extracts confirmed that these metabolites arose from specific fungal enzyme activities. Comparison of C. polonica strains showed that rapid conversion of host phenolics is associated with higher virulence. C. polonica is so well adapted to its host's chemical defenses that it is even able to use host phenolic compounds as its sole carbon source.
Collapse
Affiliation(s)
- Almuth Hammerbacher
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Namita Wadke
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Louwrance P. Wright
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Bernd Schneider
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Joerg Bohlmann
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | - Willi A. Brand
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| | | | | | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (A.H., A.S., N.W., L.P.W., B.S., T.M.F., J.G., C.P.)
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T 1ZA (J.B.); and
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany (W.A.B.)
| |
Collapse
|
25
|
Teillet A, Dybal K, Kerry BR, Miller AJ, Curtis RHC, Hedden P. Transcriptional changes of the root-knot nematode Meloidogyne incognita in response to Arabidopsis thaliana root signals. PLoS One 2013; 8:e61259. [PMID: 23593446 PMCID: PMC3625231 DOI: 10.1371/journal.pone.0061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 03/11/2013] [Indexed: 12/02/2022] Open
Abstract
Root-knot nematodes are obligate parasites that invade roots and induce the formation of specialized feeding structures. Although physiological and molecular changes inside the root leading to feeding site formation have been studied, very little is known about the molecular events preceding root penetration by nematodes. In order to investigate the influence of root exudates on nematode gene expression before plant invasion and to identify new genes potentially involved in parasitism, sterile root exudates from the model plant Arabidopsis thaliana were produced and used to treat Meloidogyne incognita pre-parasitic second-stage juveniles. After confirming the activity of A. thaliana root exudates (ARE) on M. incognita stylet thrusting, six new candidate genes identified by cDNA-AFLP were confirmed by qRT-PCR as being differentially expressed after incubation for one hour with ARE. Using an in vitro inoculation method that focuses on the events preceding the root penetration, we show that five of these genes are differentially expressed within hours of nematode exposure to A. thaliana roots. We also show that these genes are up-regulated post nematode penetration during migration and feeding site initiation. This study demonstrates that preceding root invasion plant-parasitic nematodes are able to perceive root signals and to respond by changing their behaviour and gene expression.
Collapse
Affiliation(s)
- Alice Teillet
- Rothamsted Research, Harpenden, Herts, United Kingdom.
| | | | | | | | | | | |
Collapse
|
26
|
Shalaby S, Horwitz BA, Larkov O. Structure-activity relationships delineate how the maize pathogen Cochliobolus heterostrophus uses aromatic compounds as signals and metabolites. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:931-940. [PMID: 22452657 DOI: 10.1094/mpmi-01-12-0015-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The necrotrophic maize pathogen Cochliobolus heterostrophus senses plant-derived phenolic compounds, which promote nuclear retention of the redox-sensitive transcription factor ChAP1 and alter gene expression. The intradiol dioxygenase gene CCHD1 is strongly upregulated by coumaric and caffeic acids. Plant phenolics are potential nutrients but some of them are damaging compounds that need to be detoxified. Using coumaric acid as an inducer (16 to 160 μM), we demonstrated the rapid and simultaneous upregulation of most of the β-ketoadipate pathway genes in C. heterostrophus. A cchd1 deletion mutant provided genetic evidence that protocatechuic acid is an intermediate in catabolism of a wide range of aromatic acids. Aromatics catabolism was slowed for compounds showing toxicity, and this was strongly correlated with nuclear retention of GFP-ChAP1. The activity of a structure series of compounds showed complementary requirements for upregulation of CCHD1 and for ChAP1 nuclear retention. Thus, there is an inverse correlation between the ability to metabolize a compound and the stress response (ChAP1 nuclear retention) that it causes. The ability to metabolize phenolics and to respond to them as signals should be an advantage to plant pathogens and may explain the presence of at least two response pathways detecting these compounds.
Collapse
Affiliation(s)
- Samer Shalaby
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|