1
|
Chen L, Wang P, Tan L, Li H, Wang D. Genetic Transformation of Torenia fournieri L. with the Bacillus thuringiensis Cry1Ab Gene Confers Resistance to Mythimna separata (Walker). PLANTS (BASEL, SWITZERLAND) 2024; 13:3568. [PMID: 39771266 PMCID: PMC11678925 DOI: 10.3390/plants13243568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Torenia fournieri L. is a popular ornamental plant in the genus Torenia, widely used in commercial landscaping, especially during the summer. Additionally, Torenia has served as a model ornamental plant in many studies exploring ornamental characteristics and pest control through genetic engineering. To date, no research has been reported on developing insect-resistant Torenia expressing genes from Bacillus thuringiensis (Bt). In this study, a recombinant vector carrying the Cry1Ab gene from Bt, pBI121-Cry1Ab, was constructed and transferred into T. fournieri via Agrobacterium tumefaciens-mediated transformation. A total of 13 shoots survived on the kanamycin selection medium, among which four putative transgenic lines, designated L1, L2, L7, and L11, were molecularly confirmed by PCR and Southern blot analysis, indicating successful integration of the Cry1Ab gene into the genomes of these lines. Quantitative real-time PCR and ELISA results further verified the successful expression of the Cry1Ab gene in the leaves of all four transgenic lines. Insect bioassay results demonstrated that all four transgenic lines showed strong resistance to the insect pest, Mythimna separata, with mortality rates ranging from 59.9% to 100.0%, in contrast to a larval mortality rate of 16.2% in the wild-type Torenia. Additionally, these transgenic lines significantly decreased in larval survival rates compared to those fed on wild-type plants. Furthermore, these transgenic lines activated superoxide dismutase (SOD) activity at 12 and 24 h, and catalase (CAT) activity at 72 h, while suppressing SOD activity at 72 h, and peroxidase (POD) activity over time. Our findings indicate that these transgenic lines exhibit high resistance to the insect pest and provide new insights into controlling insect pests in ornamental plants through genetic approaches.
Collapse
Affiliation(s)
- Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (P.W.); (L.T.)
| | - Pei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (P.W.); (L.T.)
- Qingdao Smart Village Development Service Center, Qingdao 266000, China
| | - Lixia Tan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (P.W.); (L.T.)
| | - Houhua Li
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China; (P.W.); (L.T.)
| |
Collapse
|
2
|
Bao J, O’Donohue B, Sommerville KD, Mitter N, O’Brien C, Hayward A. Tissue Culture Innovations for Propagation and Conservation of Myrteae-A Globally Important Myrtaceae Tribe. PLANTS (BASEL, SWITZERLAND) 2024; 13:2244. [PMID: 39204680 PMCID: PMC11359692 DOI: 10.3390/plants13162244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Myrteae is the most species-rich tribe in the Myrtaceae family, represented by a range of socioeconomically and ecologically significant species. Many of these species, including commercially relevant ones, have become increasingly threatened in the wild, and now require conservation actions. Tissue culture presents an appropriate in vitro tool to facilitate medium-term and long-term wild germplasm conservation, as well as for commercial propagation to maintain desirable traits of commercial cultivars. So far, tissue culture has not been extensively achieved for Myrteae. Here, tissue culture for Eugenia, one of the most species-rich genera in Myrteae, is reviewed, giving directions for other related Myrteae. This review also focuses on ex situ conservation of Australian Myrteae, including using seed banking and field banking. Despite some progress, challenges to conserve these species remain, mostly due to the increasing threats in the wild and limited research. Research into in vitro methods (tissue culture and cryopreservation) is paramount given that at least some of the species are 'non-orthodox'. There is an urgent need to develop long-term in vitro conservation for capturing the remaining germplasm of threatened Myrteae.
Collapse
Affiliation(s)
- Jingyin Bao
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.O.); (N.M.); (C.O.)
| | - Billy O’Donohue
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.O.); (N.M.); (C.O.)
| | - Karen D. Sommerville
- Australian Institute of Botanical Science, The Royal Botanic Gardens and Domain Trust, Mount Annan, NSW 2567, Australia;
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.O.); (N.M.); (C.O.)
| | - Chris O’Brien
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.O.); (N.M.); (C.O.)
| | - Alice Hayward
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.O.); (N.M.); (C.O.)
| |
Collapse
|
3
|
Mekapogu M, Song HY, Lim SH, Jung JA. Genetic Engineering and Genome Editing Advances to Enhance Floral Attributes in Ornamental Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2023; 12:3983. [PMID: 38068619 PMCID: PMC10707928 DOI: 10.3390/plants12233983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
The ornamental horticulture industry is a highly dynamic and rapidly changing market. Constant development of novel cultivars with elite traits is essential to sustain competitiveness. Conventional breeding has been used to develop cultivars, which is often laborious. Biotechnological strategies such as genetic engineering have been crucial in manipulating and improving various beneficial traits that are technically not possible through cross-breeding. One such trait is the highly desired blue-colored flower in roses and chrysanthemums, which can be achieved through transgenic technology. Advances in genome sequencing platforms have enhanced the opportunities to access the whole genome sequence in various ornamentals, facilitating the dissection of the molecular genetics and regulatory controls of different traits. The recent advent of genome editing tools, including CRISPR/Cas9, has revolutionized plant breeding. CRISPR/Cas9-based gene editing offers efficient and highly precise trait modification, contributing to various beneficial advancements. Although genome editing in ornamentals is currently in its infancy, the recent increase in the availability of ornamental genome sequences provides a platform to extend the frontiers of future genome editing in ornamentals. Hence, this review depicts the implication of various commercially valuable ornamental attributes, and details the research attempts and achievements in enhancing floral attributes using genetic engineering and genome editing in ornamental plants.
Collapse
Affiliation(s)
| | | | | | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
4
|
Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int J Mol Sci 2022; 23:ijms232012284. [PMID: 36293140 PMCID: PMC9603847 DOI: 10.3390/ijms232012284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant.
Collapse
|
5
|
Verdonk JC, Ferrante A, Beruto MI, Batt P, Paiva R, Schouten RE, Paiva PDDO. Editorial: Quality of Ornamental Crops: Effect of Genotype, Preharvest, and Improved Production Chains on Quality Attributes of Ornamental Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:918864. [PMID: 35991438 PMCID: PMC9382913 DOI: 10.3389/fpls.2022.918864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Julian C. Verdonk
- Horticulture and Product Physiology, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | | | | | | | - Renato Paiva
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Lavras, Lavras, Brazil
| | - Rob E. Schouten
- Food and Bio Based Research, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
6
|
A Highly Salt-Tolerant Bacterium Brevibacterium sediminis Promotes the Growth of Rice (Oryza sativa L.) Seedlings. Stress 2022. [DOI: 10.3390/stresses2030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Soil salinity has emerged as a serious issue for food security due to global climate change. It is estimated that currently about 62 million hectares or 20 percent of the world’s irrigated land is affected by salinity. Salinity is a serious problem in the coastal areas of Bangladesh. Isolation of salt-tolerant plant growth-promoting bacteria (PGPB) and applying them as bioinoculants in crop plants are considered promising and effective biotechnological approaches to combat soil salinity. This study aimed to screen salt-tolerant PGPB from the root, leaf, and rhizospheric soils of rice plants collected from salt-affected coastal areas including Chattogram, Noakhali, Lakshmipur, and Cox’s Bazar districts of Bangladesh and evaluated their performances on the seedling growth of rice. Out of forty-one salinity-tolerant bacterial isolates screened, Brevibacterium sediminis showed salinity tolerance up to 12% NaCl (w/v). In vitro bioassay revealed that B. sediminis promoted the seedling growth of rice cv. BRRI dhan29 (salinity susceptible) and BINAdhan-10 (salinity tolerant), and the growth-promoting effects were higher in BINAdhan-10. This study for the first time identified B. sediminis strain IBGE3C as a salt-tolerant PGPB from a widely cultivated rice variety, BRRI dhan28 in the Lakshmipur district of Bangladesh. Our results suggest that salt-tolerant PGPB isolated from the root, leaf, and rhizospheric soil of rice plants could be used as a low cost and environmentally friendly option for overcoming the detrimental effects of salt stress on rice plants in the southern coastal regions of Bangladesh. However, further studies are needed for assessing the efficacy of B. sediminis on enhancement of salinity tolerance, and growth and yield of rice under salinity stressed conditions.
Collapse
|
7
|
Zhang G, Yang X, Xu F, Wei D. Combined Analysis of the Transcriptome and Metabolome Revealed the Mechanism of Petal Coloration in Bauhinia variegata. FRONTIERS IN PLANT SCIENCE 2022; 13:939299. [PMID: 35903221 PMCID: PMC9315375 DOI: 10.3389/fpls.2022.939299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Bauhinia variegata petals are colorful, rich in anthocyanins, and have ornamental, nutritional, and medicinal value. However, the regulatory mechanism of anthocyanin accumulation in B. variegata remains unclear. In this study, a combined analysis of the metabolome and transcriptome was performed in red and white B. variegata cultivars in the early, middle, and blooming stages. A total of 46 different anthocyanins were identified, of which 27 showed marked differences in accumulation between the two cultivars, and contribute to their different petal colors. Malvidin 3-O-galactoside, peonidin 3-O-galactoside, cyanidin 3-O-glucoside, cyanidin 3-O-galactoside, and malvidin 3-O-glucoside were much more abundant in the second stage of flowering. In the blooming stage, except for the anthocyanins mentioned, delphinidin 3-O-galactoside and petunidin 3-O-galactoside were the most abundant anthocyanins in the red flowers, indicating that malvidin, peonidin, cyanidin, delphinidin, and petunidin were all responsible for the red color of petals in B. variegata. RNA sequencing identified 2,431 differentially expressed genes (DEGs), of which 26 were involved in the anthocyanin synthesis pathway. Correlations between the anthocyanin biosynthesis-related DEGs and anthocyanin contents were explored, and the DEGs involved in anthocyanin accumulation in B. variegata petals were identified. Eighteen of these DEGs encoded key catalytic enzymes, such as anthocyanidin reductase (ANR) and flavonoid-3'5'-hydroxylase (F3'5'H), and 17 of them encoded transcription factors (TFs) belonging to 14 families (including MYB, NAC, SPL, ERF, and CHR28). These results improve our understanding of the roles of anthocyanins, catalytic enzymes, and TFs in B. variegata petal-color expression.
Collapse
|
8
|
Aiello D, Guarnaccia V, Vitale A, LeBlanc N, Shishkoff N, Polizzi G. Impact of Calonectria Diseases on Ornamental Horticulture: Diagnosis and Control Strategies. PLANT DISEASE 2022; 106:1773-1787. [PMID: 35084942 DOI: 10.1094/pdis-11-21-2610-fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diseases caused by fungi in the genus Calonectria pose a significant threat to the ornamental horticulture industries in Europe and the United States. Calonectria spp. are particularly challenging pathogens to manage in ornamental production systems and the urban landscape for multiple reasons. A high level of species diversity and poorly resolved taxonomy in the genus makes proper pathogen identification and disease diagnosis a challenge, though recent molecular phylogenetic studies have made significant advances in species delimitation. From a disease management perspective, Calonectria spp. produce long-lived survival structures (microsclerotia) that contaminate nursery production systems and can survive multiple years in the absence of a susceptible plant host. Latent infection of plant material is poorly understood but likely contributes to long-distance dissemination of these fungal pathogens, including the clonal Calonectria spp. responsible for the global emergence of boxwood blight. Breeding for disease resistance represents a sustainable strategy for managing Calonectria diseases but is challenging due to the perennial nature of many ornamental plants and high levels of susceptibility in commercial cultivars. Ultimately, long-term sustainable management of Calonectria diseases will require an improved understanding of pathogen biology as well as integration of multiple disease management strategies.
Collapse
Affiliation(s)
- Dalia Aiello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Vladimiro Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Alessandro Vitale
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Nicholas LeBlanc
- Crop Improvement and Protection Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Salinas, CA 93905, U.S.A
| | - Nina Shishkoff
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Frederick, MD 21702, U.S.A
| | - Giancarlo Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| |
Collapse
|
9
|
Sirohi U, Kumar M, Sharma VR, Teotia S, Singh D, Chaudhary V, Yadav MK. CRISPR/Cas9 System: A Potential Tool for Genetic Improvement in Floricultural Crops. Mol Biotechnol 2022; 64:1303-1318. [PMID: 35751797 PMCID: PMC9244459 DOI: 10.1007/s12033-022-00523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Demand of flowers is increasing with time worldwide. Floriculture has become one of the most important commercial trades in agriculture. Although traditional breeding methods like hybridization and mutation breeding have contributed significantly to the development of important flower varieties, flower production and quality of flowers can be significantly improved by employing modern breeding approaches. Novel traits of significance have interest to consumers and producers, such as fragrance, new floral color, change in floral architecture and morphology, vase life, aroma, and resistance to biotic and abiotic stresses, have been introduced by genetic manipulation. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has recently emerged as a powerful genome-editing tool for accurately changing DNA sequences at specific locations. It provides excellent means of genetically improving floricultural crops. CRISPR/Cas system has been utilized in gene editing in horticultural cops. There are few reports on the utilization of the CRISPR/Cas9 system in flowers. The current review summarizes the research work done by employing the CRISPR/Cas9 system in floricultural crops including improvement in flowering traits such as color modification, prolonging the shelf life of flowers, flower initiation, and development, changes in color of ornamental foliage by genome editing. CRISPR/Cas9 gene editing could be useful in developing novel cultivars with higher fragrance and enhanced essential oil and many other useful traits. The present review also highlights the basic mechanism and key components involved in the CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Ujjwal Sirohi
- Present Address: National Institute of Plant Genome Research (NIPGR), New Delhi, 110067 India
- Department of Agricultural Biotechnology, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| | - Mukesh Kumar
- Department of Horticulture, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| | - Vinukonda Rakesh Sharma
- Plant Genetic Resources and Improvement, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001 India
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201306 India
| | - Deepali Singh
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201308 India
| | - Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar Pradesh 250003 India
| | - Manoj Kumar Yadav
- Department of Agricultural Biotechnology, College of Agriculture, SVPUAT, Meerut, Uttar Pradesh 250110 India
| |
Collapse
|
10
|
Li M, Sang M, Wen Z, Meng J, Cheng T, Zhang Q, Sun L. Mapping Floral Genetic Architecture in Prunus mume, an Ornamental Woody Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:828579. [PMID: 35211141 PMCID: PMC8860970 DOI: 10.3389/fpls.2022.828579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Floral traits are both evolutionarily and economically relevant for ornamental plants. However, their underlying genetic architecture, especially in woody ornamental plants, is still poorly understood. We perform mapping experiments aimed at identifying specific quantitative trait loci (QTLs) that control the size, shape, architecture, color, and timing of flowers in mei (Prunus mume). We find that the narrow region of chromosome 1 (5-15 Mb) contains a number of floral QTLs. Most QTLs detected from this mapping study are annotated to candidate genes that regulate various biological functions toward the floral formation. We identify strong pleiotropic control on different aspects of flower morphology (including shape, petal number, pistil number, petal color, and calyx color) and flower timing, but find different genetic systems that mediate whether a flower produces pistils and how many pistils a flower produces. We find that many floral QTLs display pleiotropic effects on shoot length growth but shoot radial growth, implicating a possible association of floral display with light capture. We conduct a transcriptomic study to characterize the genomic signature of floral QTLs expressed in mei. Our mapping results about the genetic control of floral features make it promising to select superior varieties for mei carrying flowers of ornamental value.
Collapse
Affiliation(s)
- Mingyu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Mengmeng Sang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- School Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Zhenying Wen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Juan Meng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Altman A, Shennan S, Odling-Smee J. Ornamental plant domestication by aesthetics-driven human cultural niche construction. TRENDS IN PLANT SCIENCE 2022; 27:124-138. [PMID: 34629220 DOI: 10.1016/j.tplants.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Unlike plants that were domesticated to secure food, the domestication and breeding of ornamental plants are driven by aesthetic values. Here, we examine the major elements of the extended evolutionary synthesis (EES) theory that bridges the gap between the biology of ornamental plant domestication and the sociocultural motivations behind it. We propose that it involves specific elements of cumulative cultural evolution (CCE), plant gene-human culture coevolution (PGHCC), and niche construction (NC). Moreover, ornamental plant domestication represents an aesthetics-driven dimension of human niche construction that coevolved with socioeconomic changes and the adoption of new scientific technologies. Initially functioning as symbolic and aesthetic assets, ornamental plants became globally marketed material commodities as a result of the co-dependence of human CCE and prestige-competition motivations.
Collapse
Affiliation(s)
- Arie Altman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, POB 12, 76100 Rehovot, Israel; Institute of Archaeology, University College of London, WC1H 0PY, London, UK.
| | - Stephen Shennan
- Institute of Archaeology, University College of London, WC1H 0PY, London, UK
| | | |
Collapse
|
12
|
Rihn A, Khachatryan H, Wei X. Perceived subjective versus objective knowledge: Consumer valuation of genetically modified certification on food producing plants. PLoS One 2021; 16:e0255406. [PMID: 34411110 PMCID: PMC8376035 DOI: 10.1371/journal.pone.0255406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022] Open
Abstract
Previous research has identified subjective and objective knowledge as determinants of consumers' acceptance of genetically modified organisms (GMO) in the medical and food industries. In contrast to a large body of literature on the effects of attitudes or knowledge on food preferences, the extent to which consumers' knowledge affects their valuation of non-GMO food producing plants (i.e., plants grown for food or ornamental purposes) is less understood. This manuscript investigates the relationship between consumers' knowledge of relevant non-GMO certification programs and their acceptance and willingness-to-pay (WTP) for non-GMO plants. The first study used an Internet respondent panel and choice experiment, while the second study utilized an in-person experimental auction. In line with previously reported low public acceptance of genetically modified food products, respondents were receptive of and willing to pay premiums for non-GMO food producing plants. This study found that subjective and objective knowledge impacted the premiums for non-GMO labels, with the high subjective and low objective knowledge group generating the highest WTP. Low subjective and low objective knowledge resulted in the lowest WTP. Findings suggest a disconnect between subjective and objective knowledge of non-GMO certification programs, which in turn influences consumer valuation of those products.
Collapse
Affiliation(s)
- Alicia Rihn
- Department of Agricultural and Resource Economics, University of Tennessee-Knoxville, Knoxville, TN, United States of America
| | - Hayk Khachatryan
- Food and Resource Economics Department and Mid-Florida Research and Education Center, University of Florida, Apopka, FL, United States of America
| | - Xuan Wei
- Food and Resource Economics Department and Mid-Florida Research and Education Center, University of Florida, Apopka, FL, United States of America
| |
Collapse
|
13
|
Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants. Int J Mol Sci 2021; 22:ijms22157956. [PMID: 34360726 PMCID: PMC8348885 DOI: 10.3390/ijms22157956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/19/2023] Open
Abstract
Fungal diseases pose a major threat to ornamental plants, with an increasing percentage of pathogen-driven host losses. In ornamental plants, management of the majority of fungal diseases primarily depends upon chemical control methods that are often non-specific. Host basal resistance, which is deficient in many ornamental plants, plays a key role in combating diseases. Despite their economic importance, conventional and molecular breeding approaches in ornamental plants to facilitate disease resistance are lagging, and this is predominantly due to their complex genomes, limited availability of gene pools, and degree of heterozygosity. Although genetic engineering in ornamental plants offers feasible methods to overcome the intrinsic barriers of classical breeding, achievements have mainly been reported only in regard to the modification of floral attributes in ornamentals. The unavailability of transformation protocols and candidate gene resources for several ornamental crops presents an obstacle for tackling the functional studies on disease resistance. Recently, multiomics technologies, in combination with genome editing tools, have provided shortcuts to examine the molecular and genetic regulatory mechanisms underlying fungal disease resistance, ultimately leading to the subsequent advances in the development of novel cultivars with desired fungal disease-resistant traits, in ornamental crops. Although fungal diseases constitute the majority of ornamental plant diseases, a comprehensive overview of this highly important fungal disease resistance seems to be insufficient in the field of ornamental horticulture. Hence, in this review, we highlight the representative mechanisms of the fungal infection-related resistance to pathogens in plants, with a focus on ornamental crops. Recent progress in molecular breeding, genetic engineering strategies, and RNAi technologies, such as HIGS and SIGS for the enhancement of fungal disease resistance in various important ornamental crops, is also described.
Collapse
|
14
|
Giovannini A, Laura M, Nesi B, Savona M, Cardi T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. PLANT CELL REPORTS 2021; 40:461-478. [PMID: 33388891 PMCID: PMC7778708 DOI: 10.1007/s00299-020-02632-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/27/2020] [Indexed: 05/05/2023]
Abstract
We review the main genes underlying commercial traits in cut flower species and critically discuss the possibility to apply genome editing approaches to produce novel variation and phenotypes. Promoting flowering and flower longevity as well as creating novelty in flower structure, colour range and fragrances are major objectives of ornamental plant breeding. The novel genome editing techniques add new possibilities to study gene function and breed new varieties. The implementation of such techniques, however, relies on detailed information about structure and function of genomes and genes. Moreover, improved protocols for efficient delivery of editing reagents are required. Recent results of the application of genome editing techniques to elite ornamental crops are discussed in this review. Enabling technologies and genomic resources are reviewed in relation to the implementation of such approaches. Availability of the main gene sequences, underlying commercial traits and in vitro transformation protocols are provided for the world's best-selling cut flowers, namely rose, lily, chrysanthemum, lisianthus, tulip, gerbera, freesia, alstroemeria, carnation and hydrangea. Results obtained so far are described and their implications for the improvement of flowering, flower architecture, colour, scent and shelf-life are discussed.
Collapse
Affiliation(s)
- A. Giovannini
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - M. Laura
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - B. Nesi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via dei Fiori 8, 51017 Pescia, Italy
| | - M. Savona
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - T. Cardi
- CREA Research Centre for Vegetable and Ornamental Crops (CREA OF), Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| |
Collapse
|
15
|
Darqui FS, Radonic LM, Beracochea VC, Hopp HE, López Bilbao M. Peculiarities of the Transformation of Asteraceae Family Species: The Cases of Sunflower and Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:767459. [PMID: 34899788 PMCID: PMC8662702 DOI: 10.3389/fpls.2021.767459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 05/17/2023]
Abstract
The Asteraceae family is the largest and most diversified family of the Angiosperms, characterized by the presence of numerous clustered inflorescences, which have the appearance of a single compound flower. It is estimated that this family represents around 10% of all flowered species, with a great biodiversity, covering all environments on the planet, except Antarctica. Also, it includes economically important crops, such as lettuce, sunflower, and chrysanthemum; wild flowers; herbs, and several species that produce molecules with pharmacological properties. Nevertheless, the biotechnological improvement of this family is limited to a few species and their genetic transformation was achieved later than in other plant families. Lettuce (Lactuca sativa L.) is a model species in molecular biology and plant biotechnology that has easily adapted to tissue culture, with efficient shoot regeneration from different tissues, organs, cells, and protoplasts. Due to this plasticity, it was possible to obtain transgenic plants tolerant to biotic or abiotic stresses as well as for the production of commercially interesting molecules (molecular farming). These advances, together with the complete sequencing of lettuce genome allowed the rapid adoption of gene editing using the CRISPR system. On the other hand, sunflower (Helianthus annuus L.) is a species that for years was considered recalcitrant to in vitro culture. Although this difficulty was overcome and some publications were made on sunflower genetic transformation, until now there is no transgenic variety commercialized or authorized for cultivation. In this article, we review similarities (such as avoiding the utilization of the CaMV35S promoter in transformation vectors) and differences (such as transformation efficiency) in the state of the art of genetic transformation techniques performed in these two species.
Collapse
Affiliation(s)
- Flavia Soledad Darqui
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Laura Mabel Radonic
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Valeria Cecilia Beracochea
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - H. Esteban Hopp
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marisa López Bilbao
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- *Correspondence: Marisa López Bilbao,
| |
Collapse
|
16
|
Shinoyama H, Ichikawa H, Nishizawa-Yokoi A, Skaptsov M, Toki S. Simultaneous TALEN-mediated knockout of chrysanthemum DMC1 genes confers male and female sterility. Sci Rep 2020; 10:16165. [PMID: 32999297 PMCID: PMC7527520 DOI: 10.1038/s41598-020-72356-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 08/30/2020] [Indexed: 02/06/2023] Open
Abstract
Genome editing has become one of the key technologies for plant breeding. However, in polyploid species such as chrysanthemum, knockout of all loci of multiple genes is needed to eliminate functional redundancies. We identified six cDNAs for the CmDMC1 genes involved in meiotic homologous recombination in chrysanthemum. Since all six cDNAs harbored a homologous core region, simultaneous knockout via TALEN-mediated genome editing should be possible. We isolated the CmDMC1 loci corresponding to the six cDNAs and constructed a TALEN-expression vector bearing a CmDMC1 target site containing the homologous core region. After transforming two chrysanthemum cultivars with the TALEN-expression vector, seven lines exhibited disruption of all six CmDMC1 loci at the target site as well as stable male and female sterility at 10–30 °C. This strategy to produce completely sterile plants could be widely applicable to prevent the risk of transgene flow from transgenic plants to their wild relatives.
Collapse
Affiliation(s)
- Harue Shinoyama
- Fukui Agricultural Experiment Station, Fukui, 918-8215, Japan. .,Department of Bioscience, Fukui Prefectural University, Awara, 910-4103, Japan.
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Mikhail Skaptsov
- South Siberian Botanical Garden, Altai State University, Barnaul, Russia, 656049
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8604, Japan.,Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| |
Collapse
|
17
|
Mekapogu M, Vasamsetti BMK, Kwon OK, Ahn MS, Lim SH, Jung JA. Anthocyanins in Floral Colors: Biosynthesis and Regulation in Chrysanthemum Flowers. Int J Mol Sci 2020; 21:ijms21186537. [PMID: 32906764 PMCID: PMC7554973 DOI: 10.3390/ijms21186537] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) is an economically important ornamental crop across the globe. As floral color is the major factor determining customer selection, manipulation of floral color has been a major objective for breeders. Anthocyanins are one of the main pigments contributing to a broad variety of colors in the ray florets of chrysanthemum. Manipulating petal pigments has resulted in the development of a vast range of floral colors. Although the candidate genes involved in anthocyanin biosynthesis have been well studied, the genetic and transcriptional control of floral color remains unclear. Despite advances in multi-omics technology, these methods remain in their infancy in chrysanthemum, owing to its large complex genome and hexaploidy. Hence, there is a need to further elucidate and better understand the genetic and molecular regulatory mechanisms in chrysanthemum, which can provide a basis for future advances in breeding for novel and diverse floral colors in this commercially beneficial crop. Therefore, this review describes the significance of anthocyanins in chrysanthemum flowers, and the mechanism of anthocyanin biosynthesis under genetic and environmental factors, providing insight into the development of novel colored ray florets. Genetic and molecular regulatory mechanisms that control anthocyanin biosynthesis and the various breeding efforts to modify floral color in chrysanthemum are detailed.
Collapse
Affiliation(s)
- Manjulatha Mekapogu
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
| | - Bala Murali Krishna Vasamsetti
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - Oh-Keun Kwon
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
| | - Myung-Suk Ahn
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyoung National University, Anseong 17579, Korea;
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
- Correspondence:
| |
Collapse
|
18
|
Wan Y, Zhang Y, Zhang M, Hong A, Yang H, Liu Y. Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ 2020; 8:e9316. [PMID: 32551203 PMCID: PMC7292015 DOI: 10.7717/peerj.9316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/17/2020] [Indexed: 11/22/2022] Open
Abstract
Insufficient light intensity inhibits the growth of cultivated herbaceous peony and decreases its economic value. Owing to the increased demand for shade-tolerant herbaceous peony, the selection of appropriate parents for hybridization is essential. Paeonia anomala, Paeonia intermedia and Paeonia veitchii can grow under shade conditions in their natural habitats; however, their photosynthetic capacities under shade have not been studied. In this study, we simulated low light intensity (30% sunlight) and evaluated the morphological, photosynthetic and chlorophyll fluorescence parameters of these three species. Moreover, the shade tolerance of these species as well as two common cultivars (Paeonia lactiflora ‘Da Fugui’, which is suitable for solar greenhouse cultivation, and P. lactiflora ‘Qiao Ling’, which is not suitable for solar greenhouse cultivation) was evaluated. The results showed that under shade, the leaf area of P. anomala and P. intermedia increased, the single flowering period of P. intermedia and P. veitchii was prolonged, and the flower color of P. veitchii faded. With respect to P. anomala, P. intermedia and P. veitchii, shade eliminated the photosynthetic ‘lunch break’ phenomenon and decreased photoinhibition at midday. Furthermore, the maximum photochemical efficiency (Fv/Fm) and maximum primary photochemical yield (Fv/Fo) of photosystem II (PSII) in the three species improved significantly, and their changes in light dissipation were different. The shade tolerance of the tested accessions was in the order P. veitchii > P. intermedia > P. anomala > ‘Da Fugui’ > ‘Qiao Ling’, showing that the three wild species were better adapted to low light intensity than the cultivars. Thus, P. anomala, P. intermedia and P. veitchii could potentially be used in the development of shade-tolerant herbaceous peony cultivars.
Collapse
Affiliation(s)
- Yingling Wan
- College of Landscape Architecture, Beijing Forestry University, Beijing, Beijing, P. R. China
| | - Yixuan Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing, Beijing, P. R. China
| | - Min Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing, Beijing, P. R. China
| | - Aiying Hong
- Management Office, Caozhou Peony Garden, Heze, Shandong province, P. R. China
| | - HuiYan Yang
- Management Office, Caozhou Peony Garden, Heze, Shandong province, P. R. China
| | - Yan Liu
- College of Landscape Architecture, Beijing Forestry University, Beijing, Beijing, P. R. China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, Beijing, P. R. China.,National Engineering Research Center for Floriculture, Beijing, Beijing, P. R. China
| |
Collapse
|
19
|
Boutigny AL, Dohin N, Pornin D, Rolland M. Overview and detectability of the genetic modifications in ornamental plants. HORTICULTURE RESEARCH 2020; 7:11. [PMID: 32025314 PMCID: PMC6994484 DOI: 10.1038/s41438-019-0232-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 05/04/2023]
Abstract
The market of ornamental plants is extremely competitive, and for many species genetic engineering can be used to introduce original traits of high commercial interest. However, very few genetically modified (GM) ornamental varieties have reached the market so far. Indeed, the authorization process required for such plants has a strong impact on the profitability of the development of such products. Considering the numerous scientific studies using genetic modification on ornamental species of interest, a lot of transformed material has been produced, could be of commercial interest and could therefore be unintentionally released on the market. The unintentional use of GM petunia in breeding programs has indeed recently been observed. This review lists scientific publications using GM ornamental plants and tries to identify whether these plants could be detected by molecular biology tools commonly used by control laboratories.
Collapse
Affiliation(s)
- Anne-Laure Boutigny
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - Nicolas Dohin
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - David Pornin
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - Mathieu Rolland
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| |
Collapse
|
20
|
Target-specific gene delivery in plant systems and their expression: Insights into recent developments. J Biosci 2020. [DOI: 10.1007/s12038-020-0008-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Erpen-Dalla Corte L, M. Mahmoud L, S. Moraes T, Mou Z, W. Grosser J, Dutt M. Development of Improved Fruit, Vegetable, and Ornamental Crops Using the CRISPR/Cas9 Genome Editing Technique. PLANTS (BASEL, SWITZERLAND) 2019; 8:E601. [PMID: 31847196 PMCID: PMC6963220 DOI: 10.3390/plants8120601] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Horticultural crops, including fruit, vegetable, and ornamental plants are an important component of the agriculture production systems and play an important role in sustaining human life. With a steady growth in the world's population and the consequent need for more food, sustainable and increased fruit and vegetable crop production is a major challenge to guarantee future food security. Although conventional breeding techniques have significantly contributed to the development of important varieties, new approaches are required to further improve horticultural crop production. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has emerged as a valuable genome-editing tool able to change DNA sequences at precisely chosen loci. The CRISPR/Cas9 system was developed based on the bacterial adaptive immune system and comprises of an endonuclease guided by one or more single-guide RNAs to generate double-strand breaks. These breaks can then be repaired by the natural cellular repair mechanisms, during which genetic mutations are introduced. In a short time, the CRISPR/Cas9 system has become a popular genome-editing technique, with numerous examples of gene mutation and transcriptional regulation control in both model and crop plants. In this review, various aspects of the CRISPR/Cas9 system are explored, including a general presentation of the function of the CRISPR/Cas9 system in bacteria and its practical application as a biotechnological tool for editing plant genomes, particularly in horticultural crops.
Collapse
Affiliation(s)
| | - Lamiaa M. Mahmoud
- Pomology Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt;
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| | - Tatiana S. Moraes
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba 13416-000, SP, Brazil;
| | - Zhonglin Mou
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32603, USA;
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA;
| |
Collapse
|
22
|
Skaliter O, Ravid J, Shklarman E, Ketrarou N, Shpayer N, Ben Ari J, Dvir G, Farhi M, Yue Y, Vainstein A. Ectopic Expression of PAP1 Leads to Anthocyanin Accumulation and Novel Floral Color in Genetically Engineered Goldenrod ( Solidago canadensis L.). FRONTIERS IN PLANT SCIENCE 2019; 10:1561. [PMID: 31827486 PMCID: PMC6890609 DOI: 10.3389/fpls.2019.01561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/07/2019] [Indexed: 05/29/2023]
Abstract
Floral pigmentation is of major importance to the ornamental industry, which is constantly searching for cultivars with novel colors. Goldenrod (Solidago canadensis) has monochromatic yellow carotenoid-containing flowers that cannot be modified using classical breeding approaches due to a limited gene pool. To generate Solidago with novel colors through metabolic engineering, we first developed a procedure for its regeneration and transformation. Applicability of different cytokinins for adventitious regeneration was examined in the commercial cv. Tara, with zeatin yielding higher efficiency than 6-benzylaminopurine or thidiazuron. A comparison of regeneration of commercial cvs. Tara, Golden Glory and Ivory Glory revealed Tara to be the most potent, with an efficiency of 86% (number of shoots per 100 leaf explants). Agrobacterium-based transformation efficiency was highest for cv. Golden Glory (5 independent transgenic shoots per 100 explants) based on kanamycin selection and the GUS reporter gene. In an attempt to promote anthocyanin biosynthesis, we generated transgenic Solidago expressing snapdragon (Antirrhinum majus) Rosea1 and Delila, as well as Arabidopsis thaliana PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) transcription factors. Transgenic cv. Golden Glory expressing cauliflower mosaic virus 35S-driven PAP1 generated red flowers that accumulated delphinidin and its methylated derivatives, as compared to control yellow flowers in the GUS-expressing plants. The protocol described here allows efficient engineering of Solidago for novel coloration and improved agricultural traits.
Collapse
Affiliation(s)
- Oded Skaliter
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jasmin Ravid
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elena Shklarman
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Nadav Ketrarou
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Shpayer
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Julius Ben Ari
- The Laboratory for Mass Spectrometry and Chromatography, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gony Dvir
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Moran Farhi
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuling Yue
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander Vainstein
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
23
|
Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. HORTICULTURE RESEARCH 2019; 6:109. [PMID: 31666962 PMCID: PMC6804895 DOI: 10.1038/s41438-019-0193-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 05/05/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a leading flower with applied value worldwide. Developing new chrysanthemum cultivars with novel characteristics such as new flower colors and shapes, plant architectures, flowering times, postharvest quality, and biotic and abiotic stress tolerance in a time- and cost-efficient manner is the ultimate goal for breeders. Various breeding strategies have been employed to improve the aforementioned traits, ranging from conventional techniques, including crossbreeding and mutation breeding, to a series of molecular breeding methods, including transgenic technology, genome editing, and marker-assisted selection (MAS). In addition, the recent extensive advances in high-throughput technologies, especially genomics, transcriptomics, proteomics, metabolomics, and microbiomics, which are collectively referred to as omics platforms, have led to the collection of substantial amounts of data. Integration of these omics data with phenotypic information will enable the identification of genes/pathways responsible for important traits. Several attempts have been made to use emerging molecular and omics methods with the aim of accelerating the breeding of chrysanthemum. However, applying the findings of such studies to practical chrysanthemum breeding remains a considerable challenge, primarily due to the high heterozygosity and polyploidy of the species. This review summarizes the recent achievements in conventional and modern molecular breeding methods and emerging omics technologies and discusses their future applications for improving the agronomic and horticultural characteristics of chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
24
|
Polturak G, Aharoni A. "La Vie en Rose": Biosynthesis, Sources, and Applications of Betalain Pigments. MOLECULAR PLANT 2018; 11:7-22. [PMID: 29081360 DOI: 10.1016/j.molp.2017.10.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 05/19/2023]
Abstract
Betalains are tyrosine-derived red-violet and yellow pigments found exclusively in plants of the Caryophyllales order, which have drawn both scientific and economic interest. Nevertheless, research into betalain chemistry, biochemistry, and function has been limited as comparison with other major classes of plant pigments such as anthocyanins and carotenoids. The core biosynthetic pathway of this pigment class has only been fully elucidated in the past few years, opening up the possibility for betalain pigment engineering in plants and microbes. In this review, we discuss betalain metabolism in light of recent advances in the field, with a current survey of characterized genes and enzymes that take part in betalain biosynthesis, catabolism, and transcriptional regulation, and an outlook of what is yet to be discovered. A broad view of currently used and potential new sources for betalains, including utilization of natural sources or metabolic engineering, is provided together with a summary of potential applications of betalains in research and commercial use.
Collapse
Affiliation(s)
- Guy Polturak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
25
|
Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, Shuilin H. Biotechnological Advancements for Improving Floral Attributes in Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:530. [PMID: 28473834 PMCID: PMC5397496 DOI: 10.3389/fpls.2017.00530] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
Developing new ornamental cultivars with improved floral attributes is a major goal in floriculture. Biotechnological approach together with classical breeding methods has been used to modify floral color, appearance as well as for increasing disease resistance. Transgenic strategies possess immense potential to produce novel flower phenotypes that are not found in nature. Adoption of Genetic engineering has supported the idea of floral trait modification. Ornamental plant attributes like floral color, fragrance, disease resistance, and vase life can be improved by means of genetic manipulation. Therefore, we witness transgenic plant varieties of high aesthetic and commercial value. This review focuses on biotechnological advancements in manipulating key floral traits that contribute in development of diverse ornamental plant lines. Data clearly reveals that regulation of biosynthetic pathways related to characteristics like pigment production, flower morphology and fragrance is both possible and predictable. In spite of their great significance, small number of genetically engineered varieties of ornamental plants has been field tested. Today, novel flower colors production is regarded as chief commercial benefit obtained from transgenic plants. But certain other floral traits are much more important and have high commercial potential. Other than achievements such as novel architecture, modified flower color, etc., very few reports are available regarding successful transformation of other valuable horticultural characteristics. Our review also summarized biotechnological efforts related to enhancement of fragrance and induction of early flowering along with changes in floral anatomy and morphology.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Noreen Khalid
- Department of Botany, Government College Women University SialkotSialkot, Pakistan
| | | | - He Shuilin
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
26
|
Mathur V, Javid L, Kulshrestha S, Mandal A, Reddy AA. World Cultivation of Genetically Modified Crops: Opportunities and Risks. SUSTAINABLE AGRICULTURE REVIEWS 2017. [DOI: 10.1007/978-3-319-58679-3_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF. Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 2016; 34:1073-1090. [PMID: 27396521 DOI: 10.1016/j.biotechadv.2016.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 01/15/2023]
Abstract
Cut flower markets are developing in many countries as the international demand for cut flowers is rapidly growing. Developing new varieties with modified characteristics is an important aim in floriculture. Production of transgenic ornamental plants can shorten the time required in the conventional breeding of a cultivar. Biotechnology tools in combination with conventional breeding methods have been used by cut flower breeders to change flower color, plant architecture, post-harvest traits, and disease resistance. In this review, we describe advances in genetic engineering that have led to the development of new cut flower varieties.
Collapse
Affiliation(s)
- Pejman Azadi
- Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Hedayat Bagheri
- Department of Plant Biotechnology, Faculty of Agriculture Science, Buali Sina University, Hamedan, Iran
| | - Ayoub Molaahmad Nalousi
- Department of Horticultural Science, Faculty of Agriculture Science, University of Guilan, Rasht, Iran
| | - Farzad Nazari
- Department of Horticultural Science, College of Agriculture, University of Kurdistan, Sanandaj, Iran
| | | |
Collapse
|
28
|
Hattan JI, Shindo K, Ito T, Shibuya Y, Watanabe A, Tagaki C, Ohno F, Sasaki T, Ishii J, Kondo A, Misawa N. Identification of a novel hedycaryol synthase gene isolated from Camellia brevistyla flowers and floral scent of Camellia cultivars. PLANTA 2016; 243:959-72. [PMID: 26744017 DOI: 10.1007/s00425-015-2454-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/18/2015] [Indexed: 05/13/2023]
Abstract
A novel terpene synthase (Tps) gene isolated from Camellia brevistyla was identified as hedycaryol synthase, which was shown to be expressed specifically in flowers. Camellia plants are very popular because they bloom in winter when other plants seldom flower. Many ornamental cultivars of Camellia have been bred mainly in Japan, although the fragrance of their flowers has not been studied extensively. We analyzed floral scents of several Camellia cultivars by gas chromatography-mass spectrometry (GC-MS) and found that Camellia brevistyla produced various sesquiterpenes in addition to monoterpenes, whereas Camellia japonica and its cross-lines produced only monoterpenes, including linalool as the main product. From a flower of C. brevistyla, we isolated one cDNA encoding a terpene synthase (TPS) comprised of 554 amino acids, which was phylogenetically positioned to a sole gene clade. The cDNA, designated CbTps1, was expressed in mevalonate-pathway-engineered Escherichia coli, which carried the Streptomyces mevalonate-pathway gene cluster in addition to the acetoacetate-CoA ligase gene. A terpene product was purified from recombinant E. coli cultured with lithium acetoacetate, and analyzed by (1)H-nulcear magnetic resonance spectroscopy ((1)H-NMR) and GC-MS. It was shown that a sesquiterpene hedycaryol was produced, because (1)H-NMR signals of the purified product were very broad, and elemol, a thermal rearrangement product from hedycaryol, was identified by GC-MS analysis. Spectroscopic data of elemol were also determined. These results indicated that the CbTps1 gene encodes hedycaryol synthase. Expression analysis of CbTps1 showed that it was expressed specifically in flowers, and hedycaryol is likely to be one of the terpenes that attract insects for pollination of C. brevistyla. A linalool synthase gene, which was isolated from a flower of Camellia saluenensis, is also described.
Collapse
Affiliation(s)
- Jun-ichiro Hattan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Tomoko Ito
- Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yurica Shibuya
- Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Arisa Watanabe
- Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Chie Tagaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Fumina Ohno
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Tetsuya Sasaki
- Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa, Ishikawa, 920-8203, Japan
| | - Jun Ishii
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
29
|
da Silva JAT, Dobránszki J, Cardoso JC, Chandler SF, Zeng S. Methods for genetic transformation in Dendrobium. PLANT CELL REPORTS 2016; 35:483-504. [PMID: 26724929 DOI: 10.1007/s00299-015-1917-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 05/07/2023]
Abstract
The genetic transformation of Dendrobium orchids will allow for the introduction of novel colours, altered architecture and valuable traits such as abiotic and biotic stress tolerance. The orchid genus Dendrobium contains species that have both ornamental value and medicinal importance. There is thus interest in producing cultivars that have increased resistance to pests, novel horticultural characteristics such as novel flower colours, improved productivity, longer flower spikes, or longer post-harvest shelf-life. Tissue culture is used to establish clonal plants while in vitro flowering allows for the production of flowers or floral parts within a sterile environment, expanding the selection of explants that can be used for tissue culture or genetic transformation. The latter is potentially the most effective, rapid and practical way to introduce new agronomic traits into Dendrobium. Most (69.4 %) Dendrobium genetic transformation studies have used particle bombardment (biolistics) while 64 % have employed some form of Agrobacterium-mediated transformation. A singe study has explored ovary injection, but no studies exist on floral dip transformation. While most of these studies have involved the use of selector or reporter genes, there are now a handful of studies that have introduced genes for horticulturally important traits.
Collapse
Affiliation(s)
- Jaime A Teixeira da Silva
- , P. O. Box 7, Miki-cho Post Office, Ikenobe 3011-2, Miki-cho, Kita-gun, Kagawa-ken, 761-0799, Japan.
| | - Judit Dobránszki
- Research Institute of Nyíregyháza, University of Debrecen, P.O. Box 12, Nyíregyháza, 4400, Hungary.
| | - Jean Carlos Cardoso
- Department of Rural Development, Centro de Ciências Agrárias, UFSCar, Via Anhanguera, Km 174, CP 153, Araras City, CEP 13.600-970, Brazil.
| | - Stephen F Chandler
- School of Applied Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
30
|
Folta A, Bargsten JW, Bisseling T, Nap JP, Mlynarova L. Compact tomato seedlings and plants upon overexpression of a tomato chromatin remodelling ATPase gene. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:581-91. [PMID: 25974127 PMCID: PMC11388966 DOI: 10.1111/pbi.12400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the AtCHR12/23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato (Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated SlCHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of SlCHR1 show reduced growth in all developmental stages of tomato. This confirms that SlCHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non-GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.
Collapse
Affiliation(s)
- Adam Folta
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Joachim W Bargsten
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Ton Bisseling
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jan-Peter Nap
- Applied Bioinformatics, Bioscience, Plant Research International, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- Expertise Centre ALIFE, Institute for Life Science & Technology, Hanze University of Applied Sciences Groningen, Groningen, The Netherlands
| | - Ludmila Mlynarova
- Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
31
|
Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT, Chen JJW, Ko SS, Chan MT, Shih MC. Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:284-98. [PMID: 25917508 PMCID: PMC11389087 DOI: 10.1111/pbi.12383] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 05/04/2023]
Abstract
Orchids exhibit a range of unique flower shapes and are a valuable ornamental crop. MADS-box transcription factors are key regulatory components in flower initiation and development. Changing the flower shape and flowering time can increase the value of the orchid in the ornamental horticulture industry. In this study, 28 MADS-box genes were identified from the transcriptome database of the model orchid Erycina pusilla. The full-length genomic sequences of these MADS-box genes were obtained from BAC clones. Of these, 27 were MIKC-type EpMADS (two truncated forms) and one was a type I EpMADS. Eleven EpMADS genes contained introns longer than 10 kb. Phylogenetic analysis classified the 24 MIKC(c) genes into nine subfamilies. Three specific protein motifs, AG, FUL and SVP, were identified and used to classify three subfamilies. The expression profile of each EpMADS gene correlated with its putative function. The phylogenetic analysis was highly correlated with the protein domain identification and gene expression results. Spatial expression of EpMADS6, EpMADS12 and EpMADS15 was strongly detected in the inflorescence meristem, floral bud and seed via in situ hybridization. The subcellular localization of the 28 EpMADS proteins was also investigated. Although EpMADS27 lacks a complete MADS-box domain, EpMADS27-YFP was localized in the nucleus. This characterization of the orchid MADS-box family genes provides useful information for both orchid breeding and studies of flowering and evolution.
Collapse
Affiliation(s)
- Choun-Sea Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Tran Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - De-Chih Liao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Jung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Lun Chou
- Department of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-yi, Taiwan
| | - Jeremy J W Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Swee-Suak Ko
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Tsair Chan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
Olsen A, Lütken H, Hegelund JN, Müller R. Ethylene resistance in flowering ornamental plants - improvements and future perspectives. HORTICULTURE RESEARCH 2015; 2:15038. [PMID: 26504580 PMCID: PMC4591681 DOI: 10.1038/hortres.2015.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 05/20/2023]
Abstract
Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques.
Collapse
Affiliation(s)
- Andreas Olsen
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 9-13, 2630 Taastrup, Denmark
| | - Henrik Lütken
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 9-13, 2630 Taastrup, Denmark
| | - Josefine Nymark Hegelund
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 9-13, 2630 Taastrup, Denmark
| | - Renate Müller
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 9-13, 2630 Taastrup, Denmark
| |
Collapse
|
33
|
Wang H, Dong B, Jiang J, Fang W, Guan Z, Liao Y, Chen S, Chen F. Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern. FRONTIERS IN PLANT SCIENCE 2014; 5:738. [PMID: 25566305 PMCID: PMC4273617 DOI: 10.3389/fpls.2014.00738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/04/2014] [Indexed: 05/19/2023]
Abstract
Chrysanthemum is one of important ornamental species in the world. Its highly heterozygous state complicates molecular analysis, so it is of interest to derive haploid forms. A total of 2579 non-fertilized chrysanthemum ovules pollinated by Argyranthemum frutescens were cultured in vitro to isolate haploid progeny. One single regenerant emerged from each of three of the 105 calli produced. Chromosome counts and microsatellite fingerprinting showed that only one of the regenerants was a true haploid. Nine doubled haploid derivatives were subsequently generated by colchicine treatment of 80 in vitro cultured haploid nodal segments. Morphological screening showed that the haploid plant was shorter than the doubled haploids, and developed smaller leaves, flowers, and stomata. An in vitro pollen germination test showed that few of the haploid's pollen were able to germinate and those which did so were abnormal. Both the haploid and the doubled haploids produced yellow flowers, whereas those of the maternal parental cultivar were mauve. Methylation-sensitive amplification polymorphism (MSAP) profiling was further used to detect alterations in cytosine methylation caused by the haploidization and/or the chromosome doubling processes. While 52.2% of the resulting amplified fragments were cytosine methylated in the maternal parent's genome, the corresponding proportions for the haploid's and doubled haploids' genomes were, respectively, 47.0 and 51.7%, demonstrating a reduction in global cytosine methylation caused by haploidization and a partial recovery following chromosome doubling.
Collapse
Affiliation(s)
- Haibin Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & EquipmentNanjing, China
| | - Bin Dong
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yuan Liao
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & EquipmentNanjing, China
| |
Collapse
|
34
|
Zhao J, Li ZT, Chen J, Henny RJ, Gray DJ, Chen J. Purple-leaved Ficus lyrata plants produced by overexpressing a grapevine VvMybA1 gene. PLANT CELL REPORTS 2013; 32:1783-93. [PMID: 23926030 DOI: 10.1007/s00299-013-1491-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/18/2013] [Accepted: 07/30/2013] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE This study established an efficient method of regenerating plants of Ficus lyrata and producing purple-leaved F. lyrata plants through genetic transformation using a VvMybA1 gene of grapevine. ABSTRACT Ficus lyrata, a species with unique violin- or guitar-shaped leaves, was regenerated from leaf-derived calli cultured on Murashige and Skoog (MS) basal medium supplemented with 4.5 μM N-phenyl-N'-1, 2, 3-thiadiazol-5-yl urea (TDZ) and 0.5 μM α-naphthalene acetic acid (NAA). Leaf discs were inoculated with Agrobacterium tumefaciens strain EHA 105 harboring a binary vector DEAT that contains the VvMybA1 gene and neomycin phosphotransferase (npt II) gene and subsequently cultured on the established regeneration medium supplemented with 100 mg l(-1) kanamycin. Results showed that 87.5 % of the leaf discs produced kanamycin-resistant callus, and 68.8 % of them produced adventitious shoots. Transgenic plants with three leaf colors including green, green-purple, and purple were produced. Regular and quantitative real-time PCR analyses confirmed the integration of transgenes into the host genome. Semi-quantitative RT-PCR analysis indicated that the VvMybA1 gene was responsible for the purple-colored phenotype. Purple-leaved plants with strong color stability grew vigorously in a greenhouse. This study illustrated the feasibility of using a genetically engineered VvMybA1 gene for drastic modification of leaf color of an important woody ornamental plant.
Collapse
Affiliation(s)
- Jietang Zhao
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2725 S. Binion Road, Apopka, FL, 32703, USA
| | | | | | | | | | | |
Collapse
|
35
|
Noda N, Aida R, Kishimoto S, Ishiguro K, Fukuchi-Mizutani M, Tanaka Y, Ohmiya A. Genetic Engineering of Novel Bluer-Colored Chrysanthemums Produced by Accumulation of Delphinidin-Based Anthocyanins. ACTA ACUST UNITED AC 2013; 54:1684-95. [DOI: 10.1093/pcp/pct111] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Nishihara M, Shimoda T, Nakatsuka T, Arimura GI. Frontiers of torenia research: innovative ornamental traits and study of ecological interaction networks through genetic engineering. PLANT METHODS 2013; 9:23. [PMID: 23803155 PMCID: PMC3701481 DOI: 10.1186/1746-4811-9-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/21/2013] [Indexed: 05/04/2023]
Abstract
Advances in research in the past few years on the ornamental plant torenia (Torenia spps.) have made it notable as a model plant on the frontier of genetic engineering aimed at studying ornamental characteristics and pest control in horticultural ecosystems. The remarkable advantage of torenia over other ornamental plant species is the availability of an easy and high-efficiency transformation system for it. Unfortunately, most of the current torenia research is still not very widespread, because this species has not become prominent as an alternative to other successful model plants such as Arabidopsis, snapdragon and petunia. However, nowadays, a more global view using not only a few selected models but also several additional species are required for creating innovative ornamental traits and studying horticultural ecosystems. We therefore introduce and discuss recent research on torenia, the family Scrophulariaceae, for secondary metabolite bioengineering, in which global insights into horticulture, agriculture and ecology have been advanced. Floral traits, in torenia particularly floral color, have been extensively studied by manipulating the flavonoid biosynthetic pathways in flower organs. Plant aroma, including volatile terpenoids, has also been genetically modulated in order to understand the complicated nature of multi-trophic interactions that affect the behavior of predators and pollinators in the ecosystem. Torenia would accordingly be of great use for investigating both the variation in ornamental plants and the infochemical-mediated interactions with arthropods.
Collapse
Affiliation(s)
| | - Takeshi Shimoda
- National Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Japan
| | - Takashi Nakatsuka
- Department of Biological and Environmental Science, Graduate School of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Gen-ichiro Arimura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
37
|
Santamaria ME, Martínez M, Cambra I, Grbic V, Diaz I. Understanding plant defence responses against herbivore attacks: an essential first step towards the development of sustainable resistance against pests. Transgenic Res 2013; 22:697-708. [PMID: 23793555 DOI: 10.1007/s11248-013-9725-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
Abstract
Plant-herbivore relationships are complex interactions encompassing elaborate networks of molecules, signals and strategies used to overcome defences developed by each other. Herbivores use multiple feeding strategies to obtain nutrients from host plants. In turn, plants respond by triggering defence mechanisms to inhibit, block or modify the metabolism of the pest. As part of these defences, herbivore-challenged plants emit volatiles to attract natural enemies and warn neighbouring plants of the imminent threat. In response, herbivores develop a variety of strategies to suppress plant-induced protection. Our understanding of the plant-herbivore interphase is limited, although recent molecular approaches have revealed the participation of a battery of genes, proteins and volatile metabolites in attack-defence processes. This review describes the intricate and dynamic defence systems governing plant-herbivore interactions by examining the diverse strategies plants employ to deny phytophagous arthropods the ability to breach newly developed mechanisms of plant resistance. A cornerstone of this understanding is the use of transgenic tools to unravel the complex networks that control these interactions.
Collapse
Affiliation(s)
- M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Universidad Politécnica de Madrid, Campus Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|