1
|
Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development. PLANT REPRODUCTION 2021; 34:1-19. [PMID: 33492519 PMCID: PMC7902584 DOI: 10.1007/s00497-020-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cell-cell communication. Up to now, several signals, which coordinate the anther´s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Shi H, Yu Y, Gu R, Feng C, Fu Y, Yu X, Yuan J, Sun Q, Ke Y. Male sterile 305 Mutation Leads the Misregulation of Anther Cuticle Formation by Disrupting Lipid Metabolism in Maize. Int J Mol Sci 2020; 21:ijms21072500. [PMID: 32260292 PMCID: PMC7177535 DOI: 10.3390/ijms21072500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 01/24/2023] Open
Abstract
The anther cuticle, which is mainly composed of lipid polymers, functions as physical barriers to protect genetic material intact; however, the mechanism of lipid biosynthesis in maize (Zea mays. L.) anther remains unclear. Herein, we report a male sterile mutant, male sterile 305 (ms305), in maize. It was shown that the mutant displayed a defective anther tapetum development and premature microspore degradation. Three pathways that are associated with the development of male sterile, including phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, as well as cutin, suberine, and wax biosynthesis, were identified by transcriptome analysis. Gas chromatography-mass spectrometry disclosed that the content of cutin in ms305 anther was significantly lower than that of fertile siblings during the abortion stage, so did the total fatty acids, which indicated that ms305 mutation might lead to blocked synthesis of cutin and fatty acids in anther. Lipidome analysis uncovered that the content of phosphatidylcholine, phosphatidylserine, diacylglycerol, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol in ms305 anther was significantly lower when compared with its fertile siblings, which suggested that ms305 mutation disrupted lipid synthesis. In conclusion, our findings indicated that ms305 might affect anther cuticle and microspore development by regulating the temporal progression of the lipidome in maize.
Collapse
Affiliation(s)
- Haichun Shi
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
- Sichuan Nongda Zhenghong Bio. Co., Ltd., Chengdu 610213, China
| | - Yang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; College of Life Sciences, Sichuan University, Chengdu 610064, China; (Y.Y.); (C.F.); (Y.F.); (Q.S.)
| | - Ronghuan Gu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
| | - Chenxi Feng
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; College of Life Sciences, Sichuan University, Chengdu 610064, China; (Y.Y.); (C.F.); (Y.F.); (Q.S.)
| | - Yu Fu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; College of Life Sciences, Sichuan University, Chengdu 610064, China; (Y.Y.); (C.F.); (Y.F.); (Q.S.)
| | - Xuejie Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
- Sichuan Nongda Zhenghong Bio. Co., Ltd., Chengdu 610213, China
| | - Jichao Yuan
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
- Sichuan Nongda Zhenghong Bio. Co., Ltd., Chengdu 610213, China
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education; College of Life Sciences, Sichuan University, Chengdu 610064, China; (Y.Y.); (C.F.); (Y.F.); (Q.S.)
| | - Yongpei Ke
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (H.S.); (R.G.); (X.Y.); (J.Y.)
- Sichuan Nongda Zhenghong Bio. Co., Ltd., Chengdu 610213, China
- Correspondence:
| |
Collapse
|
3
|
Garrido J, Aguilar M, Prieto P. Identification and validation of reference genes for RT-qPCR normalization in wheat meiosis. Sci Rep 2020; 10:2726. [PMID: 32066846 PMCID: PMC7026057 DOI: 10.1038/s41598-020-59580-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/30/2020] [Indexed: 12/23/2022] Open
Abstract
Meiosis is a specialized type of cell division occurring in sexually reproducing organisms to generate haploid cells known as gametes. In flowering plants, male gametes are produced in anthers, being encased in pollen grains. Understanding the genetic regulation of meiosis key events such as chromosome recognition and pairing, synapsis and recombination, is needed to manipulate chromosome associations for breeding purposes, particularly in important cereal crops like wheat. Reverse transcription-quantitative PCR (RT-qPCR) is widely used to analyse gene expression and to validate the results obtained by other transcriptomic analyses, like RNA-seq. Selection and validation of appropriate reference genes for RT-qPCR normalization is essential to obtain reproducible and accurate expression data. In this work, twelve candidate reference genes were evaluated using the mainstream algorithms geNorm, Normfinder, BestKeeper and ΔCt, then ranked from most to least suitable for normalization with RefFinder. Different sets of reference genes were recommended to normalize gene expression data in anther meiosis of bread and durum wheat, their corresponding genotypes in the absence of the Ph1 locus and for comparative studies among wheat genotypes. Comparisons between meiotic (anthers) and somatic (leaves and roots) wheat tissues were also carried out. To the best of our knowledge, our study provides the first comprehensive list of reference genes for robust RT-qPCR normalization to study differentially expressed genes during male meiosis in wheat in a breeding framework.
Collapse
Affiliation(s)
- José Garrido
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, 14080, Córdoba, Spain
| | - Miguel Aguilar
- Área de Fisiología Vegetal. Universidad de Córdoba. Campus de Rabanales, edif. C4, 3ª planta, Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, Apartado 4084, 14080, Córdoba, Spain.
| |
Collapse
|
4
|
Zhou X, Shi F, Zhou L, Zhou Y, Liu Z, Ji R, Feng H. iTRAQ-based proteomic analysis of fertile and sterile flower buds from a genetic male sterile line ‘AB01’ in Chinese cabbage (Brassica campestris L. ssp. pekinensis). J Proteomics 2019; 204:103395. [DOI: 10.1016/j.jprot.2019.103395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
|
5
|
van der Linde K, Timofejeva L, Egger RL, Ilau B, Hammond R, Teng C, Meyers BC, Doehlemann G, Walbot V. Pathogen Trojan Horse Delivers Bioactive Host Protein to Alter Maize Anther Cell Behavior in Situ. THE PLANT CELL 2018; 30:528-542. [PMID: 29449414 PMCID: PMC5894838 DOI: 10.1105/tpc.17.00238] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 01/16/2018] [Accepted: 02/13/2018] [Indexed: 05/21/2023]
Abstract
Small proteins are crucial signals during development, host defense, and physiology. The highly spatiotemporal restricted functions of signaling proteins remain challenging to study in planta. The several month span required to assess transgene expression, particularly in flowers, combined with the uncertainties from transgene position effects and ubiquitous or overexpression, makes monitoring of spatiotemporally restricted signaling proteins lengthy and difficult. This situation could be rectified with a transient assay in which protein deployment is tightly controlled spatially and temporally in planta to assess protein functions, timing, and cellular targets as well as to facilitate rapid mutagenesis to define functional protein domains. In maize (Zea mays), secreted ZmMAC1 (MULTIPLE ARCHESPORIAL CELLS1) was proposed to trigger somatic niche formation during anther development by participating in a ligand-receptor module. Inspired by Homer's Trojan horse myth, we engineered a protein delivery system that exploits the secretory capabilities of the maize smut fungus Ustilago maydis, to allow protein delivery to individual cells in certain cell layers at precise time points. Pathogen-supplied ZmMAC1 cell-autonomously corrected both somatic cell division and differentiation defects in mutant Zmmac1-1 anthers. These results suggest that exploiting host-pathogen interactions may become a generally useful method for targeting host proteins to cell and tissue types to clarify cellular autonomy and to analyze steps in cell responses.
Collapse
Affiliation(s)
| | - Ljudmilla Timofejeva
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305
| | - Birger Ilau
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Reza Hammond
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Chong Teng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Gunther Doehlemann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, 50674 Cologne, Germany
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
6
|
Zhang D, Wu S, An X, Xie K, Dong Z, Zhou Y, Xu L, Fang W, Liu S, Liu S, Zhu T, Li J, Rao L, Zhao J, Wan X. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:459-471. [PMID: 28678349 PMCID: PMC5787847 DOI: 10.1111/pbi.12786] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/16/2017] [Accepted: 07/02/2017] [Indexed: 05/19/2023]
Abstract
Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production.
Collapse
Affiliation(s)
- Danfeng Zhang
- College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Suowei Wu
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Xueli An
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Ke Xie
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Zhenying Dong
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Yan Zhou
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Liwen Xu
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular BreedingMaize Research CenterBeijing Academy of Agriculture & Forestry SciencesBeijingChina
| | - Wen Fang
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Shensi Liu
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Shuangshuang Liu
- College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Taotao Zhu
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Biotechnology BreedingBeijing Solidwill Sci‐Tech Co. Ltd.BeijingChina
| | - Liqun Rao
- College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular BreedingMaize Research CenterBeijing Academy of Agriculture & Forestry SciencesBeijingChina
| | - Xiangyuan Wan
- College of Bioscience and BiotechnologyHunan Agricultural UniversityChangshaChina
- Advanced Biotechnology and Application Research CenterSchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijingChina
| |
Collapse
|
7
|
Lambing C, Heckmann S. Tackling Plant Meiosis: From Model Research to Crop Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:829. [PMID: 29971082 PMCID: PMC6018109 DOI: 10.3389/fpls.2018.00829] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 05/04/2023]
Abstract
Genetic engineering and traditional plant breeding, which harnesses the natural genetic variation that arises during meiosis, will have key roles to improve crop varieties and thus deliver Food Security in the future. Meiosis, a specialized cell division producing haploid gametes to maintain somatic diploidy following their fusion, assures genetic variation by regulated genetic exchange through homologous recombination. However, meiotic recombination events are restricted in their total number and their distribution along chromosomes limiting allelic variations in breeding programs. Thus, modifying the number and distribution of meiotic recombination events has great potential to improve and accelerate plant breeding. In recent years much progress has been made in understanding meiotic progression and recombination in plants. Many genes and factors involved in these processes have been identified primarily in Arabidopsis thaliana but also more recently in crops such as Brassica, rice, barley, maize, or wheat. These advances put researchers in the position to translate acquired knowledge to various crops likely improving and accelerating breeding programs. However, although fundamental aspects of meiotic progression and recombination are conserved between species, differences in genome size and organization (due to repetitive DNA content and ploidy level) exist, particularly among plants, that likely account for differences in meiotic progression and recombination patterns found between species. Thus, tools and approaches are needed to better understand differences and similarities in meiotic progression and recombination among plants, to study fundamental aspects of meiosis in a variety of plants including crops and non-model species, and to transfer knowledge into crop species. In this article, we provide an overview of tools and approaches available to study plant meiosis, highlight new techniques, give examples of areas of future research and review distinct aspects of meiosis in non-model species.
Collapse
Affiliation(s)
- Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Christophe Lambing, Stefan Heckmann,
| | - Stefan Heckmann
- Independent Research Group Meiosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- *Correspondence: Christophe Lambing, Stefan Heckmann,
| |
Collapse
|
8
|
Walbot V, Egger RL. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:365-95. [PMID: 26735065 DOI: 10.1146/annurev-arplant-043015-111804] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| |
Collapse
|
9
|
Naranjo T. Contribution of Structural Chromosome Mutants to the Study of Meiosis in Plants. Cytogenet Genome Res 2015; 147:55-69. [PMID: 26658116 DOI: 10.1159/000442219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 11/19/2022] Open
Abstract
Dissection of the molecular mechanisms underlying the transition through the complex events of the meiotic process requires the use of gene mutants or RNAi-mediated gene silencing. A considerable number of meiotic mutants have been isolated in plant species such as Arabidopsis thaliana, maize or rice. However, structural chromosome mutants are also important for the identification of the role developed by different chromosome domains in the meiotic process. This review summarizes the contribution of studies carried out in plants using structural chromosome variations. Meiotic events concerning the search of the homologous partner, the control of number and distribution of chiasmata, the mechanism of pairing correction, and chromosome segregation are considered.
Collapse
Affiliation(s)
- Tomás Naranjo
- Departamento de Genética, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
10
|
Liu J, Pang C, Wei H, Song M, Meng Y, Ma J, Fan S, Yu S. iTRAQ-facilitated proteomic profiling of anthers from a photosensitive male sterile mutant and wild-type cotton (Gossypium hirsutum L.). J Proteomics 2015; 126:68-81. [PMID: 26047712 DOI: 10.1016/j.jprot.2015.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 11/28/2022]
Abstract
Male sterility is a common phenomenon in flowering plants, and it has been successfully developed in several crops by taking advantage of heterosis. Cotton (Gossypium hirsutum L.) is an important economic crop, used mainly for the production of textile fiber. Using a space mutation breeding technique, a novel photosensitive genetic male sterile mutant CCRI9106 was isolated from the wild-type upland cotton cultivar CCRI040029. To use CCRI9106 in cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility. Here, histological and iTRAQ-facilitated proteomic analyses of anthers were performed to explore male sterility mechanisms of the mutant. Scanning and transmission electron microscopy of the anthers showed that the development of pollen wall in CCRI9106 was severely defective with a lack of exine formation. At the protein level, 6121 high-confidence proteins were identified and 325 of them showed differential expression patterns between mutant and wild-type anthers. The proteins up- or down-regulated in MT anthers were mainly involved in exine formation, protein degradation, calcium ion binding,etc. These findings provide valuable information on the proteins involved in anther and pollen development, and contribute to elucidate the mechanism of male sterility in upland cotton.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China
| | - Yanyan Meng
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South Central University for Nationalities, Wuhan 430064, Hubei Province, China
| | - Jianhui Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan Province, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan Province, China.
| |
Collapse
|
11
|
Shemesh-Mayer E, Ben-Michael T, Rotem N, Rabinowitch HD, Doron-Faigenboim A, Kosmala A, Perlikowski D, Sherman A, Kamenetsky R. Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development. FRONTIERS IN PLANT SCIENCE 2015; 6:271. [PMID: 25972879 PMCID: PMC4411974 DOI: 10.3389/fpls.2015.00271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/05/2015] [Indexed: 05/18/2023]
Abstract
Commercial cultivars of garlic, a popular condiment, are sterile, making genetic studies and breeding of this plant challenging. However, recent fertility restoration has enabled advanced physiological and genetic research and hybridization in this important crop. Morphophysiological studies, combined with transcriptome and proteome analyses and quantitative PCR validation, enabled the identification of genes and specific processes involved in gametogenesis in fertile and male-sterile garlic genotypes. Both genotypes exhibit normal meiosis at early stages of anther development, but in the male-sterile plants, tapetal hypertrophy after microspore release leads to pollen degeneration. Transcriptome analysis and global gene-expression profiling showed that >16,000 genes are differentially expressed in the fertile vs. male-sterile developing flowers. Proteome analysis and quantitative comparison of 2D-gel protein maps revealed 36 significantly different protein spots, 9 of which were present only in the male-sterile genotype. Bioinformatic and quantitative PCR validation of 10 candidate genes exhibited significant expression differences between male-sterile and fertile flowers. A comparison of morphophysiological and molecular traits of fertile and male-sterile garlic flowers suggests that respiratory restrictions and/or non-regulated programmed cell death of the tapetum can lead to energy deficiency and consequent pollen abortion. Potential molecular markers for male fertility and sterility in garlic are proposed.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Tomer Ben-Michael
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Neta Rotem
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Haim D. Rabinowitch
- The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Robert H. Smith Institute of Plant Science and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Adi Doron-Faigenboim
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of SciencesPoznan, Poland
| | - Dawid Perlikowski
- Department of Environmental Stress Biology, Institute of Plant Genetics of the Polish Academy of SciencesPoznan, Poland
| | - Amir Sherman
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
| | - Rina Kamenetsky
- Agricultural Research Organization, The Volcani Center, Institute of Plant ScienceBet Dagan, Israel
| |
Collapse
|
12
|
Liu J, Pang C, Wei H, Song M, Meng Y, Fan S, Yu S. Proteomic analysis of anthers from wild-type and photosensitive genetic male sterile mutant cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2014; 14:390. [PMID: 25547499 PMCID: PMC4311434 DOI: 10.1186/s12870-014-0390-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/17/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Male sterility is a common phenomenon in flowering plant species, and it has been successfully developed in several crops by taking advantage of heterosis. Using space mutation breeding of upland cotton, a novel photosensitive genetic male sterile (PGMS) mutant was isolated. To take advantage of the PGMS lines in cotton hybrid breeding, it is of great importance to study the molecular mechanisms of its male sterility. RESULTS Delayed degradation of the PGMS anther tapetum occurred at different developmental stages as shown by analysis of anther cross-sections. To gain detailed insights into the cellular defects that occurred during PGMS pollen development, we used a differential proteomic approach to investigate the protein profiles of mutant and wild-type anthers at the tetrad, uninucleate and binucleate pollen stages. This approach identified 62 differentially expressed protein spots, including 19 associated with energy and metabolic pathways, 7 involved with pollen tube growth, 5 involved with protein metabolism, and 4 involved with pollen wall development. The remaining 27 protein spots were classified into other functional processes, such as protein folding and assembly (5 spots), and stress defense (4 spots). These differentially expressed proteins strikingly affected pollen development in the PGMS mutant anther and resulted in abnormal pollen grain formation, which may be the key reason for its male sterility. CONCLUSIONS This work represents the first study using comparative proteomics between fertile and PGMS cotton plants to identify PGMS-related proteins. The results demonstrate the presence of a complicated metabolic network in anther development and advance our understanding of the molecular mechanisms of microgamete formation, providing insights into the molecular mechanisms of male sterility.
Collapse
Affiliation(s)
- Ji Liu
- />College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi Province China
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Chaoyou Pang
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Hengling Wei
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Meizhen Song
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Yanyan Meng
- />Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Soiences, South Central University for Nationalities, Wuhan, 430064 Hubei Province China
| | - Shuli Fan
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| | - Shuxun Yu
- />College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi Province China
- />State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan Province China
| |
Collapse
|
13
|
Transcriptomes and proteomes define gene expression progression in pre-meiotic maize anthers. G3-GENES GENOMES GENETICS 2014; 4:993-1010. [PMID: 24939185 PMCID: PMC4065268 DOI: 10.1534/g3.113.009738] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Plants lack a germ line; consequently, during reproduction adult somatic cells within flowers must switch from mitotic proliferation to meiosis. In maize (Zea mays L.) anthers, hypoxic conditions in the developing tassel trigger pre-meiotic competence in the column of pluripotent progenitor cells in the center of anther lobes, and within 24 hr these newly specified germinal cells have patterned their surrounding neighbors to differentiate as the first somatic niche cells. Transcriptomes were analyzed by microarray hybridization in carefully staged whole anthers during initial specification events, after the separation of germinal and somatic lineages, during the subsequent rapid mitotic proliferation phase, and during final pre-meiotic germinal and somatic cell differentiation. Maize anthers exhibit a highly complex transcriptome constituting nearly three-quarters of annotated maize genes, and expression patterns are dynamic. Laser microdissection was applied to begin assigning transcripts to tissue and cell types and for comparison to transcriptomes of mutants defective in cell fate specification. Whole anther proteomes were analyzed at three developmental stages by mass spectrometric peptide sequencing using size-fractionated proteins to evaluate the timing of protein accumulation relative to transcript abundance. New insights include early and sustained expression of meiosis-associated genes (77.5% of well-annotated meiosis genes are constitutively active in 0.15 mm anthers), an extremely large change in transcript abundances and types a few days before meiosis (including a class of 1340 transcripts absent specifically at 0.4 mm), and the relative disparity between transcript abundance and protein abundance at any one developmental stage (based on 1303 protein-to-transcript comparisons).
Collapse
|
14
|
Differential proteomic studies of the genic male-sterile line and fertile line anthers of upland cotton (Gossypium hirsutum L.). Genes Genomics 2014. [DOI: 10.1007/s13258-014-0176-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Zhou A, Pawlowski WP. Regulation of meiotic gene expression in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:413. [PMID: 25202317 PMCID: PMC4142721 DOI: 10.3389/fpls.2014.00413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 05/06/2023]
Abstract
With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been assembled. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa), wheat (Triticum aestivum), petunia (Petunia hybrida), sunflower (Helianthus annuus), and maize (Zea mays). Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs that might be involved in the regulation of meiotic transcription patterns.
Collapse
Affiliation(s)
| | - Wojciech P. Pawlowski
- *Correspondence: Wojciech P. Pawlowski, School of Integrative Plant Sciences, Cornell University, 401 Bradfield Hall, Ithaca, NY 14853, USA e-mail:
| |
Collapse
|
16
|
Wang D, Skibbe DS, Walbot V. Maize Male sterile 8 (Ms8), a putative β-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. PLANT REPRODUCTION 2013; 26:329-38. [PMID: 23887707 DOI: 10.1007/s00497-013-0230-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 07/11/2013] [Indexed: 05/07/2023]
Abstract
Precise somatic and reproductive cell proliferation and differentiation in anthers are crucial for male fertility. Loss of function of the Male sterile 8 (Ms8) gene causes male sterility with multiple phenotypic defects first visible in the epidermal and tapetal cells. Here, we document the cloning of Ms8, which is a putative β-1,3-galactosyltransferase. Ms8 transcript is abundant in immature anthers with a peak at the meiotic stage; RNA expression is highly correlated with protein accumulation. Co-immunoprecipitation coupled with mass spectrometry sequencing identified several MS8-associated proteins, including arabinogalactan proteins, prohibitins, and porin. We discuss the hypotheses that arabinogalactan protein might be an MS8 substrate and that MS8 might be involved in maintenance of mitochondrial integrity.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA,
| | | | | |
Collapse
|
17
|
Herget M, Scheibinger M, Guo Z, Jan TA, Adams CM, Cheng AG, Heller S. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis. PLoS One 2013; 8:e66026. [PMID: 23750277 PMCID: PMC3672136 DOI: 10.1371/journal.pone.0066026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 05/07/2013] [Indexed: 11/23/2022] Open
Abstract
Mechanosensitive hair cells and supporting cells comprise the sensory epithelia of the inner ear. The paucity of both cell types has hampered molecular and cell biological studies, which often require large quantities of purified cells. Here, we report a strategy allowing the enrichment of relatively pure populations of vestibular hair cells and non-sensory cells including supporting cells. We utilized specific uptake of fluorescent styryl dyes for labeling of hair cells. Enzymatic isolation and flow cytometry was used to generate pure populations of sensory hair cells and non-sensory cells. We applied mass spectrometry to perform a qualitative high-resolution analysis of the proteomic makeup of both the hair cell and non-sensory cell populations. Our conservative analysis identified more than 600 proteins with a false discovery rate of <3% at the protein level and <1% at the peptide level. Analysis of proteins exclusively detected in either population revealed 64 proteins that were specific to hair cells and 103 proteins that were only detectable in non-sensory cells. Statistical analyses extended these groups by 53 proteins that are strongly upregulated in hair cells versus non-sensory cells and vice versa by 68 proteins. Our results demonstrate that enzymatic dissociation of styryl dye-labeled sensory hair cells and non-sensory cells is a valid method to generate pure enough cell populations for flow cytometry and subsequent molecular analyses.
Collapse
Affiliation(s)
- Meike Herget
- Department of Otolaryngology – HNS, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Mirko Scheibinger
- Department of Otolaryngology – HNS, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Zhaohua Guo
- Department of Otolaryngology – HNS, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Taha A. Jan
- Department of Otolaryngology – HNS, Stanford University, Stanford, California, United States of America
| | - Christopher M. Adams
- Mass Spectrometry Core, Stanford University, Stanford, California, United States of America
| | - Alan G. Cheng
- Department of Otolaryngology – HNS, Stanford University, Stanford, California, United States of America
| | - Stefan Heller
- Department of Otolaryngology – HNS, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|