1
|
Okabe N, Hovanesyan M, Azarapetian S, Dai W, Weisinger B, Parabucki A, Balter SR, Shohami E, Segal Y, Carmichael ST. Theta Frequency Electromagnetic Stimulation Enhances Functional Recovery After Stroke. Transl Stroke Res 2025; 16:194-206. [PMID: 37962771 PMCID: PMC11976812 DOI: 10.1007/s12975-023-01202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023]
Abstract
Extremely low-frequency, low-intensity electromagnetic field (ELF-EMF) therapy is a non-invasive brain stimulation method that can modulate neuroprotection and neuroplasticity. ELF-EMF was recently shown to enhance recovery in human stroke in a small pilot clinical trial (NCT04039178). ELF-EMFs encompass a wide range of frequencies, typically ranging from 1 to 100 Hz, and their effects can vary depending on the specific frequency employed. However, whether and to what extent the effectiveness of ELF-EMFs depends on the frequency remains unclear. In the present study, we aimed to assess the efficacy of different frequency-intensity protocols of ELF-EMF in promoting functional recovery in a mouse cortical stroke model with treatment initiated 4 days after the stroke, employing a series of motor behavior tests. Our findings demonstrate that a theta-frequency ELF-EMF (5 Hz) effectively enhances functional recovery in a reach-to-grasp task, whereas neither gamma-frequency (40 Hz) nor combination frequency (5-16-40 Hz) ELF-EMFs induce a significant effect. Importantly, our histological analysis reveals that none of the ELF-EMF protocols employed in our study affect infarct volume, inflammatory, or glial activation, suggesting that the observed beneficial effects may be mediated through non-neuroprotective mechanisms. Our data indicate that ELF-EMFs have an influence on functional recovery after stroke, and this effect is contingent upon the specific frequency used. These findings underscore the critical importance of optimizing the protocol parameters to maximize the beneficial effects of ELF-EMF. Further research is warranted to elucidate the underlying mechanisms and refine the protocol parameters for optimal therapeutic outcomes in stroke rehabilitation.
Collapse
Affiliation(s)
- Naohiko Okabe
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| | - Mary Hovanesyan
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Srbui Azarapetian
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Weiye Dai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | | | | | | | - Esther Shohami
- BrainQ Technologies, Ltd., Jerusalem, Israel
- Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaron Segal
- BrainQ Technologies, Ltd., Jerusalem, Israel
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Xie G, Wang T, Deng L, Zhou L, Zheng X, Zhao C, Li L, Sun H, Liao J, Yuan K. Repetitive transcranial magnetic stimulation for motor function in stroke: a systematic review and meta-analysis of randomized controlled studies. Syst Rev 2025; 14:47. [PMID: 39994795 PMCID: PMC11849290 DOI: 10.1186/s13643-025-02794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE This study aimed to systematically evaluate the safety and effectiveness of repetitive transcranial magnetic stimulation (rTMS) in treating motor dysfunction in stroke patients. METHODS A systematic search was conducted in five online databases, namely, Medline, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, and SPORTDiscus, from their inception to July 29, 2024. Studies meeting the predetermined inclusion criteria were included. The data were analyzed using RevMan 5.4.1 software and Stata 15.0. The subgroup analysis was conducted based on various disease stages and intervention frequencies. The overall effects were estimated using either the fixed effects model or the random effects model, with standardized mean differences (SMDs). The level of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) framework. RESULTS A total of 70 studies encompassing 2951 stroke survivors were included. The results of the quantitative analysis revealed that the application of 1 Hz rTMS over the contralesional primary motor cortex (M1) significantly improved motor function during both the early stage (< 1 month) with moderate effect size (n = 443, SMD = 0.44, 95% CI 0.24 to 0.63, P < 0.00001, I2 = 47%, fixed-effect model) and recovery period (1-6 months) with moderate effect size (n = 233, SMD = 0.61, 95% CI 0.34 to 0.87, P < 0.0001, I2 = 33%, fixed-effect model). In the context of activities of daily living (ADLs), the application of 1 Hz rTMS over the contralesional M1 can lead to improvements in ADLs among individuals in the early stages of stroke with moderate effect size (n = 343, SMD = 0.67, 95% CI 0.44 to 0.89, I2 = 79%, P < 0.00001, fixed-effect model). However, evidence to support that 1 Hz rTMS over contralesional M1 can improve motor dysfunction in the chronic phase of stroke (> 6 months) is insufficient. CONCLUSION Moderate- to high-quality evidence suggests that 1 Hz rTMS over the contralesional M1 may enhance motor function and independence in ADL during the early stages of stroke and the recovery period (within 6 months) with moderate effect. Nonetheless, as for the efficacy of 3, 5, 10, and 20 Hz rTMS in the treatment of motor dysfunction after stroke, it needs to be further determined. It is important to interpret these findings with caution in clinical practice due to the small sample sizes and low quality of the studies reviewed. SYSTEMATIC REVIEW REGISTRATION INPLASY, Registration number is INPLASY202360042. DOI number is https://doi.org/10.37766/inplasy2023.6.0042 .
Collapse
Affiliation(s)
- Guanli Xie
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tao Wang
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Li Deng
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Liming Zhou
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Xia Zheng
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Chongyu Zhao
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Li Li
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Haoming Sun
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Jianglong Liao
- Kunming Municipal Hospital of Chinese Medicine, & Kunming Combination of Chinese and Western Medicine Minimally Invasive Spine Technology Center, Kunming, Yunnan, China.
| | - Kai Yuan
- Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Cai G, Zhang C, Xu J, Jiang J, Chen G, Chen J, Liu Q, Xu G, Lan Y. Efficacy of Transcranial Magnetic Stimulation in Post-Stroke Motor Recovery: Impact of Impairment Severity. IEEE Trans Neural Syst Rehabil Eng 2025; 33:881-889. [PMID: 40031445 DOI: 10.1109/tnsre.2025.3543859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Stroke is a leading cause of impairment, with 70% of survivors experiencing upper limb motor deficits. While transcranial magnetic stimulation (TMS) is widely used in rehabilitation, the impact of impairment severity on treatment outcomes remains unclear. This study evaluated TMS effectiveness in post-stroke motor impairment and explored its neural mechanisms. Fifty-five stroke patients were divided into TMS (n =27) and control (n =28) groups. The TMS group received two weeks of intermittent theta-burst stimulation (iTBS), while controls received sham stimulation. Patients were stratified into mild/moderate (Fugl-Meyer Assessment [FMA] ) and severe (FMA <30) impairment subgroups. Motor function and electroencephalography (EEG) metrics were assessed before and after treatment. Overall FMA improvement showed no difference between groups, but the TMS-mild/moderate impairment group demonstrated significantly greater improvement compared to others. This group exhibited higher global and local alpha band power and global alpha efficiency. FMA improvement positively correlated with local alpha power changes. TMS of ipsilesional M1 improves motor function in mild/moderate impairments but shows limited efficacy in severe cases. EEG suggests TMS promotes recovery by modulating alpha activity and enhancing network efficiency. These findings support stratified treatment approaches and highlight the need for alternative interventions in severe impairment.
Collapse
|
4
|
Zhang JJY, Ang J, Saffari SE, Tor PC, Lo YL, Wan KR. Repetitive Transcranial Magnetic Stimulation for Motor Recovery After Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials With Low Risk of Bias. Neuromodulation 2025; 28:16-42. [PMID: 39320286 DOI: 10.1016/j.neurom.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) has shown promising results in enhancing motor recovery after stroke, but nuances regarding its use, such as the impact of the type and site of stimulation, are not yet established. We aimed to perform a systematic review and meta-analysis of randomized controlled trials (RCTs) with low risk of bias to investigate the effect of rTMS on motor recovery after both ischemic and hemorrhagic stroke. MATERIALS AND METHODS Three databases were searched systematically for all RCTs reporting comparisons between rTMS (including theta-burst stimulation) and either no stimulation or sham stimulation up to August 19, 2022. The primary outcome measure was the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). Secondary outcome measures comprised the Action Research Arm Test, Box and Block Test, Modified Ashworth Scale for the wrist, and modified Rankin Scale (mRS). RESULTS A total of 37 articles reporting 48 unique comparisons were included. Pooled mean FMA-UE scores were significantly higher in the experimental group than the control group after intervention (MD = 5.4 [MD = 10.7 after correction of potential publication bias], p < 0.001) and at the last follow-up (MD = 5.2, p = 0.031). On subgroup analysis, the improvements in FMA-UE scores, both after intervention and at the last follow-up, were significant in the acute/subacute stage of stroke (within six months) and for patients with more severe baseline motor impairment. Both contralesional and ipsilesional stimulation yielded significant improvements in FMA-UE at the first assessment after rTMS but not at the last follow-up, while the improvements from bilateral rTMS only achieved statistical significance at the last follow-up. Among the secondary outcome measures, only mRS was significantly improved in the rTMS group after intervention (MD = -0.5, p = 0.013) and at the last follow-up (MD = -0.9, p = 0.001). CONCLUSIONS Current literature supports the use of rTMS for motor recovery after stroke, especially when done within six months and for patients with more severe stroke at baseline. Future studies with larger sample sizes may be helpful in clarifying the potential of rTMS in poststroke rehabilitation.
Collapse
Affiliation(s)
- John J Y Zhang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Jensen Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| | - Seyed Ehsan Saffari
- Centre for Quantitative Medicine, Duke-National University of Singapore Medical School, Singapore; Program in Health Services and Systems Research, Duke-National University of Singapore Medical School, Singapore
| | - Phern-Chern Tor
- Department of Mood and Anxiety, Institute of Mental Health, Singapore
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore; Duke-National University of Singapore Medical School, Singapore
| | - Kai Rui Wan
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Singapore
| |
Collapse
|
5
|
Abdelkader AA, Afifi LM, Maher EA, Atteya AA, El Salmawy DA. Comparison of Bilateral Versus Unilateral 5 Hz or 1 Hz Repetitive Transcranial Magnetic Stimulation in Subacute Stroke: Assessment of Motor Function in a Randomized Controlled Study. J Clin Neurophysiol 2024; 41:478-483. [PMID: 38935659 DOI: 10.1097/wnp.0000000000000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Repetitive transcranial magnetic stimulation (rTMS) can enhance brain plasticity after stroke. At low frequencies, rTMS has an inhibitory effect, whereas at high frequencies, it has an excitatory effect. Combining both frequencies in bilateral stimulation is a new rTMS protocol under investigation, especially in the subacute stage. METHODS Fifty-five patients with subacute stroke were divided into four groups according to the rTMS protocol delivered: bilateral, inhibitory, excitatory, and control groups. All groups received concomitant task-oriented physiotherapy. Pretreatment to posttreatment assessment was performed twice, immediately after sessions and 1 month later. Volitional motor control was evaluated by Fugl-Meyer and Wolf motor function tests, and for spasticity, the Ashworth scale was used. RESULTS All groups showed significant improvement. Bilateral, inhibitory, and excitatory groups showed same efficacy, but the bilateral protocol was superior in spasticity. No correlations were found between improvement and stroke duration and site except for spasticity. CONCLUSIONS Bilateral rTMS shows a comparable effect to inhibitory and excitatory rTMS in improving motor disability in subacute stroke. However, it is superior for spasticity.
Collapse
Affiliation(s)
- Ann A Abdelkader
- Clinical Neurophysiology Unit, Department of Neurology, Kasr Alaini Hospital, Cairo University, Cairo, Egypt; and
| | - Lamia M Afifi
- Clinical Neurophysiology Unit, Department of Neurology, Kasr Alaini Hospital, Cairo University, Cairo, Egypt; and
| | - Eman A Maher
- Clinical Neurophysiology Unit, Department of Neurology, Kasr Alaini Hospital, Cairo University, Cairo, Egypt; and
| | | | - Dina A El Salmawy
- Clinical Neurophysiology Unit, Department of Neurology, Kasr Alaini Hospital, Cairo University, Cairo, Egypt; and
| |
Collapse
|
6
|
Kim HM, Jo HS, Kim EJ, Na JM, Park HK, Han JY, Kim KH, Choi I, Song MK. The Effect of Repetitive Transcranial Magnetic Stimulation on Cognition in Diffuse Axonal Injury in a Rat Model. Neurol Int 2024; 16:689-700. [PMID: 39051213 PMCID: PMC11270180 DOI: 10.3390/neurolint16040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Diffuse axonal injury (DAI) following sudden acceleration and deceleration can lead to cognitive function decline. Various treatments have been proposed. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive stimulation technique, is a potential treatment for enhancing neuroplasticity in cases of brain injury. The therapeutic efficacy of rTMS on cognitive function remains unconfirmed. This study investigated the effects of rTMS and the underlying molecular biomechanisms using a rat model of DAI. Sprague-Dawley rats (n = 18) were randomly divided into two groups: one receiving rTMS after DAI and the other without brain stimulation. All rats were subjected to sudden acceleration and deceleration using a DAI modeling machine to induce damage. MRI was performed to confirm the DAI lesion. The experimental group received rTMS at a frequency of 1 Hz over the frontal cortex for 10 min daily for five days. To assess spatial memory, we conducted the Morris water maze (MWM) test one day post-brain damage and one day after the five-day intervention. A video tracking system recorded the escape latency. After post-MWM tests, all rats were euthanized, and their brain tissues, particularly from the hippocampus, were collected for immunohistochemistry and western blot analyses. The escape latency showed no difference on the MWM test after DAI, but a significant difference was observed after rTMS between the two groups. Immunohistochemistry and western blot analyses indicated increased expression of BDNF, VEGF, and MAP2 in the hippocampal brain tissue of the DAI-T group. In conclusion, rTMS improved cognitive function in the DAI rat model. The increased expression of BDNF, VEGF, and MAP2 in the DAI-T group supports the potential use of rTMS in treating cognitive impairments associated with DAI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Insung Choi
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju 61469, Republic of Korea; (H.-M.K.); (H.-S.J.); (E.-J.K.); (J.-M.N.); (H.-K.P.); white-- (J.-Y.H.); (K.-H.K.)
| | - Min-Keun Song
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School & Hospital, Gwangju 61469, Republic of Korea; (H.-M.K.); (H.-S.J.); (E.-J.K.); (J.-M.N.); (H.-K.P.); white-- (J.-Y.H.); (K.-H.K.)
| |
Collapse
|
7
|
Zhang M, Chen L, Ren Z, Wang Z, Luo W. Applications of TMS in individuals with methamphetamine use disorder: A review. Heliyon 2024; 10:e25565. [PMID: 38420394 PMCID: PMC10900420 DOI: 10.1016/j.heliyon.2024.e25565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Methamphetamine abuse results in a host of social and medical issues. Methamphetamine use disorder (MUD) can hinder the brain and impair cognitive functions and mental health. Transcranial magnetic stimulation (TMS) is a non-invasive approach in the treatment of MUD. Recent studies have demonstrated encouraging and positive effects of TMS on the craving, affective symptoms, sleep quality, and cognitive functions in individuals with MUD. The regulation of specific brain activities through TMS has also been found to be a contributing factor to these positive outcomes. It is essential to employ more techniques, participants, and stimulation parameters and targets in the future.
Collapse
Affiliation(s)
- Mingming Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Lei Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Ziwei Ren
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Zhiyan Wang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, 116029, China
- Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China
| |
Collapse
|
8
|
Liang S, Wang W, Yu F, Pan L, Xu D, Hu R, Tian S, Xiang J, Zhu Y. Repetitive peripheral magnetic stimulation combined with transcranial magnetic stimulation in rehabilitation of upper extremity hemiparesis following stroke: a pilot study. J Rehabil Med 2024; 56:jrm19449. [PMID: 38298134 PMCID: PMC10847975 DOI: 10.2340/jrm.v56.19449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
OBJECTIVE To investigate the effect of combined repetitive peripheral magnetic stimulation and transcranial magnetic stimulation on upper extremity function in subacute stroke patients. DESIGN Pilot study. SUBJECTS Subacute stroke patients. METHODS Included patients were randomized into 3 groups: a central-associated peripheral stimulation (CPS) group, a central-stimulation-only (CS) group, and a control (C) group. The CPS group underwent a new paired associative stimulation (combined repetitive peripheral magnetic stimulation and transcranial magnetic stimulation), the CS group underwent repetitive transcranial magnetic stimulation, and the C group underwent sham stimulation. All 3 groups received physiotherapy after the stimulation or sham stimulation. The treatment comprised 20 once-daily sessions. Primary outcome was the Fugl-Meyer Assessment Upper Extremity (FMA-UE) score, and secondary outcomes were the Barthel Index and Comprehensive Functional Assessment scores, and neurophysiological assessments were mainly short-interval intracortical inhibition. A 3-group (CPS, CS, C) × 2-time (before, after intervention) repeated measures analysis of variance was conducted to determine whether changes in scores were significantly different between the 3 groups. RESULTS A total of 45 patients were included in the analysis. Between-group comparisons on the FMA-UE demonstrated a significant improvement (group × time interaction, F2,42 = 4.86; p = 0.013; C vs CS, p = 0.020; C vs CPS, p = 0.016; CS vs CPS, p = 0.955). Correlation analysis did not find any substantial positive correlation between changes in FMA-UE and short-interval intracortical inhibition variables (C, r = -0.196, p = 0.483; CS, r = -0.169, p = 0.546; CPS, r = -0.424, p = 0.115). CONCLUSION This study suggests that the real-stimulus (CS and CPS) groups had better outcomes than the control (C) group. In addition, the CPS group showed a better trend in clinical and neurophysiological assessments compared with the CS group.
Collapse
Affiliation(s)
- Sijie Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Weining Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengyun Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Li Pan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongyan Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiping Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan Tian
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Xiang
- Department of Rehabilitation Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yulian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Jayan J, Narayan SK, Haniffa YN, Kumar N. Somatosensory evoked potentials amplitude is enhanced after non-invasive brain stimulation in chronic ischemic stroke: Preliminary results from a randomised control trial. J Stroke Cerebrovasc Dis 2024; 33:107418. [PMID: 37951083 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/13/2023] Open
Abstract
OBJECTIVE To investigate the effects of transcranial electrical and magnetic non-invasive brain stimulation (NIBS) protocols on somatosensory evoked potential (SEP) in chronic ischemic stroke. METHODS 33 patients were randomly assigned to one of the four treatment groups of the transcranial direct current stimulation (tDCS) and/or repetitive transcranial magnetic stimulation (rTMS) protocol. SEP parameters were recorded before and after ten days of the treatment session. All the statistical analyses were carried out using SPSS version 19. RESULTS It was found that there is a statistically significant improvement in the N20-P22 mean amplitude after treatment sessions in all groups except the group where tDCS and rTMS groups were sham. On paired t-tests, the difference betweeen post and pre-stimulation SEP amplitudes for the real tDCS and real rTMS coupled group was 1.045 ± 0.732 (p value = 0.005). For sham tDCS+real rTMS group, 1.05 ± 0.96 (P = 0.04); for real tDCS+sham rTMS 0.543 ± 0.332 (P = 0.01) and for double sham stimulation, 0.204 ± 0.648 (P = 0.4) respectively CONCLUSION: In ischemic stroke patients, either or coupled true transcranial tDCS and rTMS was found to be safe and significantly enhanced the amplitude of cortical somatosensory potentials when combined with standard physiotherapy, in the interim analysis of an ongoing randomised controlled trial. CLINICAL TRIAL REGISTRY OF INDIA CTRI/2019/11/022009 SIGNIFICANCE: The results of this research indicates the importance of RCTs in developing robust improved NIBS protocols coupled to physiotherapy to enhance the sensory-motor functional recovery following ischemic stroke.
Collapse
Affiliation(s)
- Jeshma Jayan
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Puducherry, India
| | - Sunil K Narayan
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Puducherry, India.
| | - Yasmin Nesha Haniffa
- Department of Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantri Nagar, Puducherry, India
| | - Navin Kumar
- Department of Physical Medicine and Rehabilitation, Jawaharlal Institute of Postgraduate Medical Education Research, Dhanvantri Nagar, Puducherry, India
| |
Collapse
|
10
|
Keser Z, Ikramuddin S, Shekhar S, Feng W. Neuromodulation for Post-Stroke Motor Recovery: a Narrative Review of Invasive and Non‑Invasive Tools. Curr Neurol Neurosci Rep 2023; 23:893-906. [PMID: 38015351 DOI: 10.1007/s11910-023-01319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW Stroke remains a leading disabling condition, and many survivors have permanent disability despite acute stroke treatment and subsequent standard-of-care rehabilitation therapies. Adjunctive neuromodulation is an emerging frontier in the field of stroke recovery. In this narrative review, we aim to highlight and summarize various neuromodulation techniques currently being investigated to enhance recovery and reduce impairment in patients with stroke. RECENT FINDINGS For motor recovery, repetitive transcranial magnetic simulation (rTMS) and direct current stimulation (tDCS) have shown promising results in many smaller-scale trials. Still, their efficacy has yet to be proven in large-scale pivotal trials. A promising large-scale study investigating higher dose tDCS combined with constraint movement therapy to enhance motor recovery is currently underway. MRI-guided tDCS studies in subacute and chronic post-stroke aphasia showed promising benefits for picture-naming recovery. rTMS, particularly inhibitory stimulation over the contralesional homolog, could represent a pathway forward in post-stroke motor recovery in the setting of a well-designed and adequately powered clinical trial. Recently evidenced-based guideline actually supported Level A (definite efficacy) for the use of low-frequency rTMS of the primary motor cortex for hand motor recovery in the post-acute stage of stroke based on the meta-analysis result. Adjunctive vagal nerve stimulation has recently received FDA approval to enhance upper limb motor recovery in chronic ischemic stroke with moderate impairment, and progress has been made to implement it in real-world practice. Despite a few small and large-scale studies in epidural stimulation (EDS), further research on the utilization of EDS in post-stroke recovery is needed. Deep brain stimulation or stent-based neuromodulation has yet to be further tested regarding safety and efficacy. Adjunctive neuromodulation to rehabilitation therapy is a promising avenue for promoting post-stroke recovery and decreasing the overall burden of disability. The pipeline for neuromodulation technology remains strong as they span from the preclinical stage to the post-market stage. We are optimistic to see that more neuromodulation tools will be available to stroke survivors in the not-to-distant future.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Salman Ikramuddin
- Department of Neurology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shashank Shekhar
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Chang H, Sheng Y, Liu J, Yang H, Pan X, Liu H. Noninvasive Brain Imaging and Stimulation in Post-Stroke Motor Rehabilitation: A Review. IEEE Trans Cogn Dev Syst 2023; 15:1085-1101. [DOI: 10.1109/tcds.2022.3232581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Hui Chang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yixuan Sheng
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Jinbiao Liu
- Research Centre for Augmented Intelligence, Zhejiang Laboratory, Artificial Intelligence Research Institute, Hangzhou, China
| | - Hongyu Yang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Xiangyu Pan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
12
|
Chen R, Dadario NB, Cook B, Sun L, Wang X, Li Y, Hu X, Zhang X, Sughrue ME. Connectomic insight into unique stroke patient recovery after rTMS treatment. Front Neurol 2023; 14:1063408. [PMID: 37483442 PMCID: PMC10359072 DOI: 10.3389/fneur.2023.1063408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
An improved understanding of the neuroplastic potential of the brain has allowed advancements in neuromodulatory treatments for acute stroke patients. However, there remains a poor understanding of individual differences in treatment-induced recovery. Individualized information on connectivity disturbances may help predict differences in treatment response and recovery phenotypes. We studied the medical data of 22 ischemic stroke patients who received MRI scans and started repetitive transcranial magnetic stimulation (rTMS) treatment on the same day. The functional and motor outcomes were assessed at admission day, 1 day after treatment, 30 days after treatment, and 90 days after treatment using four validated standardized stroke outcome scales. Each patient underwent detailed baseline connectivity analyses to identify structural and functional connectivity disturbances. An unsupervised machine learning (ML) agglomerative hierarchical clustering method was utilized to group patients according to outcomes at four-time points to identify individual phenotypes in recovery trajectory. Differences in connectivity features were examined between individual clusters. Patients were a median age of 64, 50% female, and had a median hospital length of stay of 9.5 days. A significant improvement between all time points was demonstrated post treatment in three of four validated stroke scales utilized. ML-based analyses identified distinct clusters representing unique patient trajectories for each scale. Quantitative differences were found to exist in structural and functional connectivity analyses of the motor network and subcortical structures between individual clusters which could explain these unique trajectories on the Barthel Index (BI) scale but not on other stroke scales. This study demonstrates for the first time the feasibility of using individualized connectivity analyses in differentiating unique phenotypes in rTMS treatment responses and recovery. This personalized connectomic approach may be utilized in the future to better understand patient recovery trajectories with neuromodulatory treatment.
Collapse
Affiliation(s)
- Rong Chen
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Nicholas B. Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Brennan Cook
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Lichun Sun
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaolong Wang
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yujie Li
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaorong Hu
- Xijia Medical Technology Company Limited, Shenzhen, China
| | - Xia Zhang
- Xijia Medical Technology Company Limited, Shenzhen, China
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an, Shaanxi, China
| | - Michael E. Sughrue
- International Joint Research Center on Precision Brain Medicine, XD Group Hospital, Xi'an, Shaanxi, China
- Omniscient Neurotechnology, Sydney, NSW, Australia
- Cingulum Health, Sydney, NSW, Australia
| |
Collapse
|
13
|
Whittier TT, Patrick CM, Fling BW. Somatosensory Information in Skilled Motor Performance: A Narrative Review. J Mot Behav 2023; 55:453-474. [PMID: 37245865 DOI: 10.1080/00222895.2023.2213198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
Historically, research aimed at improving motor performance has largely focused on the neural processes involved in motor execution due to their role in muscle activation. However, accompanying somatosensory and proprioceptive sensory information is also vitally involved in performing motor skills. Here we review research from interdisciplinary fields to provide a description for how somatosensation informs the successful performance of motor skills as well as emphasize the need for careful selection of study methods to isolate the neural processes involved in somatosensory perception. We also discuss upcoming strategies of intervention that have been used to improve performance via somatosensory targets. We believe that a greater appreciation for somatosensation's role in motor learning and control will enable researchers and practitioners to develop and apply methods for the enhancement of human performance that will benefit clinical, healthy, and elite populations alike.
Collapse
Affiliation(s)
- Tyler T Whittier
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Christopher M Patrick
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| | - Brett W Fling
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
14
|
Jiang C, Li Z, Wang J, Liu L, Luo G, Zheng X. Effectiveness of repetitive transcranial magnetic stimulation combined with a brief exposure procedure for post-stroke posttraumatic stress disorder. J Affect Disord 2023; 326:89-95. [PMID: 36717030 DOI: 10.1016/j.jad.2023.01.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
The incidence of posttraumatic stress disorder (PTSD) following stroke ranges from 6.5 % to 25 %. Presently few studies have focused on its treatment. Repetitive transcranial magnetic stimulation (rTMS) is often applied as a rehabilitation method after stroke, and it also represents a novel approach to PTSD. The aim of this study was to explore the effect of rTMS (or combined with a brief stroke re-exposure) on treating post-stroke PTSD. Sixty participants with post-stroke PTSD were randomly assigned into three groups (rTMS + brief exposure group, TMS + BE; rTMS alone group, TMS; sham treatment group, ST) and received 10 sessions of treatment accordingly over two weeks. Changes in PTSD symptoms (Impact of Event Scale-Revised, IES-R) were evaluated at pre-treatment (T1), the end of the first (T2), and the end of the second treatment week (T3). At the three-month follow-up (T4), a PTSD interview and IES-R assessment were given. Results showed that from T1 to T3, IES-R (and its intrusion subscale) scores of TMS + BE group and TMS group were significantly lower than the ST group, and the effect remained at three-month follow-up. The treatment effect was comparable between TMS + BE group and TMS group at T3, however, it was better for TMS + BE group than TMS group at T2, indicating a brief exposure promotes the effect of rTMS. At follow-up, the rates of PTSD were lower in TMS + BE group and TMS group than ST group. In conclusion, rTMS can effectively treat post-stroke PTSD and the effects may be accelerated by combining a brief exposure procedure. TRIAL REGISTRATION: Chinese Clinical Trial Registry, identifier: ChiCTR2100043444.
Collapse
Affiliation(s)
- Che Jiang
- Department of Neurosurgery, General Hospital of Southern Theater Command, 111 Liuhua Road, Guangzhou 510010, Guangdong, China.
| | - Zhensheng Li
- Department of Neurology, General Hospital of Southern Theatre Command, 111 Liuhua Road, Guangzhou 510010, Guangdong, China
| | - Jiajia Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, 111 Liuhua Road, Guangzhou 510010, Guangdong, China
| | - Leiyuan Liu
- Department of Neurosurgery, General Hospital of Southern Theater Command, 111 Liuhua Road, Guangzhou 510010, Guangdong, China
| | - Gaoquan Luo
- Department of Neurosurgery, General Hospital of Southern Theater Command, 111 Liuhua Road, Guangzhou 510010, Guangdong, China
| | - Xifu Zheng
- School of Psychology, South China Normal University, Guangzhou 510631, Guangdong, China.
| |
Collapse
|
15
|
Katai S, Maeda M, Katsuyama S, Maruyama Y, Midorikawa M, Okushima T, Yoshida K. Cortical reorganization correlates with motor recovery after low-frequency repetitive transcranial magnetic stimulation combined with occupational therapy in chronic subcortical stroke patients. NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Non-invasive brain stimulation as therapeutic approach for ischemic stroke: Insights into the (sub)cellular mechanisms. Pharmacol Ther 2022; 235:108160. [PMID: 35183592 DOI: 10.1016/j.pharmthera.2022.108160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023]
Abstract
Although spontaneous recovery can occur following ischemic stroke due to endogenous neuronal reorganization and neuroplastic events, the degree of functional improvement is highly variable, causing many patients to remain permanently impaired. In the last decades, non-invasive brain stimulation (NIBS) techniques have emerged as potential add-on interventions to the standard neurorehabilitation programs to improve post-stroke recovery. Due to their ability to modulate cortical excitability and to induce neuroreparative processes in the brain, multiple studies have assessed the safety, efficacy and (sub)cellular mechanisms of NIBS following ischemic stroke. In this review, an overview will be provided of the different NIBS techniques that are currently being investigated in (pre)clinical stroke studies. The NIBS therapies that will be discussed include transcranial magnetic stimulation, transcranial direct current stimulation and extremely low frequency electromagnetic stimulation. First, an overview will be given of the cellular mechanisms induced by NIBS that are associated with enhanced stroke outcome in preclinical models. Furthermore, the current knowledge on safety and efficacy of these NIBS techniques in stroke patients will be reviewed.
Collapse
|
17
|
Wu Q, Peng T, Liu L, Zeng P, Xu Y, Yang X, Zhao Y, Fu C, Huang S, Huang Y, Zhou H, Liu Y, Tang H, He L, Xu K. The Effect of Constraint-Induced Movement Therapy Combined With Repetitive Transcranial Magnetic Stimulation on Hand Function in Preschool Children With Unilateral Cerebral Palsy: A Randomized Controlled Preliminary Study. Front Behav Neurosci 2022; 16:876567. [PMID: 35449560 PMCID: PMC9017424 DOI: 10.3389/fnbeh.2022.876567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Constraint-induced movement therapy (CIMT) combined with repetitive transcranial magnetic stimulation (rTMS) have shown great potential in improving function in schoolchildren with unilateral cerebral palsy attributed to perinatal stroke. However, the prospect of application in preschool children with unilateral cerebral palsy (UCP) attributed to various brain disorders remains unclear. In this prospective, assessor-blinded, randomized controlled study, 40 preschool children with UCP (aged 2.5–6 years) were randomized to receive 10 days of CIMT combined with active or sham rTMS. Assessments were performed at baseline, 2 weeks, and 6 months post-intervention to investigate upper limb extremity, social life ability, and perceived changes by parents and motor-evoked potentials. Overall, 35 participants completed the trial. The CIMT plus active stimulation group had greater gains in the affected hand function (range of motion, accuracy, and fluency) than the CIMT plus sham stimulation group (P < 0.05), but there was no significant difference in muscular tone, social life ability, and perceived changes by parents between the two groups (P > 0.05). In addition, there was no significant difference in hand function between children with and without motor-evoked potential (P > 0.05). No participants reported severe adverse events during the study session. In short, the treatment of CIMT combined with rTMS is safe and feasible for preschool children with UCP attributed to various brain disorders. Randomized controlled studies with large samples and long-term effects are warranted.
Collapse
Affiliation(s)
- Qianwen Wu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingting Peng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peishan Zeng
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunxian Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xubo Yang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yiting Zhao
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaoqiong Fu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shiya Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuan Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Hongyu Zhou
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- Department of Rehabilitation, Kunming Children's Hospital, Kunming, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Lu He
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Kaishou Xu ; orcid.org/0000-0002-0639-3488
| |
Collapse
|
18
|
Low-Frequency rTMS over Contralesional M1 Increases Ipsilesional Cortical Excitability and Motor Function with Decreased Interhemispheric Asymmetry in Subacute Stroke: A Randomized Controlled Study. Neural Plast 2022; 2022:3815357. [PMID: 35035473 PMCID: PMC8756161 DOI: 10.1155/2022/3815357] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Objective To determine the long-term effects of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) over the contralesional M1 preceding motor task practice on the interhemispheric asymmetry of the cortical excitability and the functional recovery in subacute stroke patients with mild to moderate arm paresis. Methods Twenty-four subacute stroke patients were randomly allocated to either the experimental or control group. The experimental group underwent rTMS over the contralesional M1 (1 Hz), immediately followed by 30 minutes of motor task practice (10 sessions within 2 weeks). The controls received sham rTMS and the same task practice. Following the 2-week intervention period, the task practice was continued twice weekly for another 10 weeks in both groups. Outcomes were evaluated at baseline (T0), at the end of the 2-week stimulation period (T1), and at 12-week follow-up (T2). Results The MEP (paretic hand) and interhemispheric asymmetry, Fugl-Meyer motor assessment, Action Research Arm Test, and box and block test scores improved more in the experimental group than controls at T1 (p < 0.05). The beneficial effects were largely maintained at T2. Conclusion LF-rTMS over the contralesional M1 preceding motor task practice was effective in enhancing the ipsilesional cortical excitability and upper limb function with reducing interhemispheric asymmetry in subacute stroke patients with mild to moderate arm paresis. Significance. Adding LF-rTMS prior to motor task practice may reduce interhemispheric asymmetry of cortical excitabilities and promote upper limb function recovery in subacute stroke with mild to moderate arm paresis.
Collapse
|
19
|
Jin Y, Pu T, Guo Z, Jiang B, Mu Q. Placebo effect of rTMS on post-stroke motor rehabilitation: a meta-analysis. Acta Neurol Belg 2021; 121:993-999. [PMID: 32772334 DOI: 10.1007/s13760-020-01460-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that placebo repetitive transcranial magnetic stimulation (rTMS) was effective on post-stroke motor rehabilitation. However, the placebo effect has not been systematically assessed. Therefore, this meta-analysis was conducted to resolve this issue and explore potential influencing factors further. PubMed, Embase, web of science and the Cochrane Library were searched for published randomised controlled trials (RCTs) with placebo rTMS treatment of stroke recovery until May 2019. The placebo effect size (Hedges' g) was estimated using the motor outcome of pre- and post- placebo rTMS treatment. Meta-regression analysis was also performed to explore potential influencing factors for the placebo effect. Twenty-six placebo-controlled trials (including 381 patients in placebo group) were selected. Effect size results (Hedges' g = 0.466, 95% CI 0.207-0.726; P < 0.05) showed a medium and significant placebo rTMS effect on improving post-stroke motor recovery. The mean ratio of the effect size of sham to real stimulation was 56%. Meta-regression analysis did not find significant result except for the treatment sessions, which was significantly correlated with the placebo effect size (r = 0.465, p = 0.031). In the follow-up observations (1, 2 and 3 months), the sham rTMS groups manifested gradually increased motor improvement, which was similar to the real group, but the amplitude was lower, which was sustained for at least 3 months. Placebo effect of rTMS on post-stroke motor recovery was medium but significant. Regarding different sham styles, the number of stimulation sessions had an impact on the effect.
Collapse
Affiliation(s)
- Yu Jin
- Department of Radiology and Institute of Rehabilitation and Imaging of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, 97 South Renmin Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Ting Pu
- Department of Big Data Center, Sichuan Cancer Hospital and Institute, Chengdu, 610000, China
| | - Zhiwei Guo
- Department of Radiology and Institute of Rehabilitation and Imaging of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, 97 South Renmin Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Binghu Jiang
- Department of Radiology and Institute of Rehabilitation and Imaging of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, 97 South Renmin Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Qiwen Mu
- Department of Radiology and Institute of Rehabilitation and Imaging of Brain Function, Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, 97 South Renmin Road, Shunqing District, Nanchong, 637000, Sichuan, China.
- Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
20
|
Mantell KE, Sutter EN, Shirinpour S, Nemanich ST, Lench DH, Gillick BT, Opitz A. Evaluating transcranial magnetic stimulation (TMS) induced electric fields in pediatric stroke. NEUROIMAGE-CLINICAL 2021; 29:102563. [PMID: 33516935 PMCID: PMC7847946 DOI: 10.1016/j.nicl.2021.102563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
Numerical TMS simulations were performed over and around perinatal stroke lesions. The presence of brain lesions locally affects the electric field distribution. Brain lesions do not significantly change the mean electric field strength. Model driven approaches can inform TMS dosing in a pediatric stroke population.
Transcranial magnetic stimulation (TMS) is an increasingly popular tool for stroke rehabilitation. Consequently, researchers have started to explore the use of TMS in pediatric stroke. However, the application of TMS in a developing brain with pathologies comes with a unique set of challenges. The effect of TMS-induced electric fields has not been explored in children with stroke lesions. Here, we used finite element method (FEM) modeling to study how the electric field strength is affected by the presence of a lesion. We created individual realistic head models from MRIs (n = 6) of children with unilateral cerebral palsy due to perinatal stroke. We conducted TMS electric field simulations for coil locations over lesioned and non-lesioned hemispheres. We found that the presence of a lesion can strongly affect the electric field distribution. On the group level, the mean electric field strength did not differ between lesioned and non-lesioned hemispheres but exhibited a greater variability in the lesioned hemisphere. Other factors such as coil-to-cortex distance have a strong influence on the TMS electric field even in the presence of lesions. Our study has important implications for the delivery of TMS in children with brain lesions with respect to TMS dosing and coil placement.
Collapse
Affiliation(s)
- Kathleen E Mantell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Ellen N Sutter
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA
| | - Samuel T Nemanich
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - Daniel H Lench
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
21
|
Edwards JD, Black SE, Boe S, Boyd L, Chaves A, Chen R, Dukelow S, Fung J, Kirton A, Meltzer J, Moussavi Z, Neva J, Paquette C, Ploughman M, Pooyania S, Rajji TK, Roig M, Tremblay F, Thiel A. Canadian Platform for Trials in Noninvasive Brain Stimulation (CanStim) Consensus Recommendations for Repetitive Transcranial Magnetic Stimulation in Upper Extremity Motor Stroke Rehabilitation Trials. Neurorehabil Neural Repair 2021; 35:103-116. [PMID: 33410386 DOI: 10.1177/1545968320981960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective. To develop consensus recommendations for the use of repetitive transcranial magnetic stimulation (rTMS) as an adjunct intervention for upper extremity motor recovery in stroke rehabilitation clinical trials. Participants. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) convened a multidisciplinary team of clinicians and researchers from institutions across Canada to form the CanStim Consensus Expert Working Group. Consensus Process. Four consensus themes were identified: (1) patient population, (2) rehabilitation interventions, (3) outcome measures, and (4) stimulation parameters. Theme leaders conducted comprehensive evidence reviews for each theme, and during a 2-day Consensus Meeting, the Expert Working Group used a weighted dot-voting consensus procedure to achieve consensus on recommendations for the use of rTMS as an adjunct intervention in motor stroke recovery rehabilitation clinical trials. Results. Based on best available evidence, consensus was achieved for recommendations identifying the target poststroke population, rehabilitation intervention, objective and subjective outcomes, and specific rTMS parameters for rehabilitation trials evaluating the efficacy of rTMS as an adjunct therapy for upper extremity motor stroke recovery. Conclusions. The establishment of the CanStim platform and development of these consensus recommendations is a first step toward the translation of noninvasive brain stimulation technologies from the laboratory to clinic to enhance stroke recovery.
Collapse
Affiliation(s)
- Jodi D Edwards
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada
| | - Sandra E Black
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Shaun Boe
- Dalhousie University, Halifax, Nova Scotia, Canada
| | - Lara Boyd
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Arthur Chaves
- Memorial University, St John's, Newfoundland, Canada
| | - Robert Chen
- Toronto Western Hospital, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | | | - Joyce Fung
- McGill University, Montreal, Quebec, Canada
| | - Adam Kirton
- University of Calgary, Calgary, Alberta, Canada
| | | | | | - Jason Neva
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | - Tarek K Rajji
- University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Marc Roig
- McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
22
|
The role of left prefrontal transcranial magnetic stimulation in episodic migraine prophylaxis. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-019-0140-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Abstract
Objective
The aim of the study was to examine the prophylactic role of repetitive transcranial magnetic stimulation (rTMS) on the frequency, and severity of migraine attacks in episodic migraineurs who failed medical treatment.
Methods
A randomized double-blinded placebo-controlled study was designed to assess the effect of 5 Hz rTMS applied over the left dorsolateral prefrontal cortex (LDLPFC ) in 33 migraineurs. Patients were followed up for 1 month before receiving rTMS, and for another month after the sessions by a headache diary. The primary outcome measure was the achievement of 50% reduction in the number of migraine attacks. Secondary outcome measures included migraine days, assessment of migraine attack severity, disability by HIT-6, and side-effects to the procedure.
Results
The study revealed that 69.2% of the active treatment group achieved 50% or more reduction in the number of migraine attacks versus 25% of cases in the control group (p = 0.02). The absolute number of migraine attacks was reduced by 3.1 vs 1.5 in the active and control group, respectively. The number of cases with severe HIT-6 scores was reduced by 46.2% in active treatment group versus a 7.1% reduction in the control group (p = 0.02).
Conclusion
High-frequency rTMS applied to LDLPFC can reduce the number of migraine attacks by 50% or more in almost 70% of a sample of episodic migraineurs with a concomitant decrease in functional disability.
Trial registration
ClinicalTrials.gov, Identifier: NCT04031781. Registered 23 July 2019—retrospectively registered at https://clinicaltrials.gov/ct2/show/NCT04031781?term=Migraine+Prophylaxis&recrs=ce&type=Intr&cond=Migraine&rank=9
Collapse
|
23
|
Gong Y, Long XM, Xu Y, Cai XY, Ye M. Effects of repetitive transcranial magnetic stimulation combined with transcranial direct current stimulation on motor function and cortex excitability in subacute stroke patients: A randomized controlled trial. Clin Rehabil 2020; 35:718-727. [PMID: 33222502 DOI: 10.1177/0269215520972940] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore effects of repetitive transcranial magnetic stimulation (rTMS) combined with transcranial direct current stimulation (tDCS) on motor function and cortex excitability in subacute stroke patients. DESIGN Randomized controlled trial. SETTING Inpatient hospitals. SUBJECTS Sixty-five participants were randomly assigned to four groups: sham, 1Hz rTMS, cathodic tDCS combined with 1Hz rTMS (tDCS-/rTMS-) and anodic tDCS combined with 1Hz rTMS (tDCS+/rTMS-). INTERVENTIONS Four interventions were used, including sham, 1Hz rTMS, and cathodal or anodal tDCS, followed by 1Hz rTMS over contralesional motor cortex, which continued for four weeks. MAIN MEASURES Outcome measures were motor function and cortical excitability, evaluated by Fugl-Meyer Assessment, National Institutes of Health Stroke Scale and Barthel Index, resting Motion Threshold, Motor Evoked Potentials and Central Motor Conduction Time, assessed at baseline, four weeks and eight weeks. RESULTS At four weeks after interventions, Fugl-Meyer Assessment lower limb change score in tDCS+/rTMS- group was significantly larger than other three groups (P < 0.001). There were significant differences in bilateral Motor Evoked Potentials changes between tDCS+/rTMS- group and sham group (P < 0.05). At eight weeks, compared to other groups, National Institutes of Health Stroke Scale (P = 0.003), Barthel Index (P = 0.002), FMA lower limb score (P < 0.001), and bilateral resting Motion Threshold, Motor Evoked Potentials (P < 0.05) showed significant changes in tDCS+/rTMS- group. Furthermore, Fugl-Meyer Assessment lower limb change score was associated with increased ipsilesional Motor Evoked Potentials (r = 0.703 P < 0.001) in tDCS+/rTMS- group. CONCLUSION 1Hz rTMS combined with anode tDCS stimulation protocol could be a preferable rehabilitative strategy for motor recovery in subacute stroke patients.
Collapse
Affiliation(s)
- Yan Gong
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Physical Medicine and Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xian-Ming Long
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Xu
- Department of Physical Medicine and Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xiu-Ying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ming Ye
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
24
|
Tscherpel C, Grefkes C. Funktionserholung nach Schlaganfall und die therapeutische Rolle der nicht-invasiven Hirnstimulation. KLIN NEUROPHYSIOL 2020. [DOI: 10.1055/a-1272-9435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungIm Bereich der non-invasiven Hirnstimulation stellen die transkranielle Magnetstimulation (engl. transcranial magnetic stimulation, TMS) sowie die transkranielle Gleichstromstimulation (engl. transcranial direct current stimulation, tDCS) bis heute die wichtigsten Techniken zur Modulation kortikaler Erregbarkeit dar. Beide Verfahren induzieren Nacheffekte, welche die Zeit der reinen Stimulation überdauern, und ebnen damit den Weg für ihren therapeutischen Einsatz beim Schlaganfall. In diesem Übersichtsartikel diskutieren wir die aktuelle Datenlage TMS- und tDCS-vermittelter Therapien für die häufigsten schlaganfallbedingten Defizite wie Hemiparese, Aphasie und Neglect. Darüber hinaus adressieren wir mögliche Einschränkungen der gegenwärtigen Ansätze und zeigen Ansatzpunkte auf, um Neuromodulation nach Schlaganfall effektiver zu gestalten und damit das Outcome der Patienten zu verbessern.
Collapse
Affiliation(s)
- Caroline Tscherpel
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
- Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
| | - Christian Grefkes
- Klinik und Poliklinik für Neurologie, Universitätsklinik Köln
- Institut für Neurowissenschaften und Medizin (INM-3), Forschungszentrum Jülich
| |
Collapse
|
25
|
Ekechukwu END, Olowoyo P, Nwankwo KO, Olaleye OA, Ogbodo VE, Hamzat TK, Owolabi MO. Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries-A Systematic Review. Front Neurol 2020; 11:337. [PMID: 32695058 PMCID: PMC7336355 DOI: 10.3389/fneur.2020.00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Given the limited healthcare resources in low and middle income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required. Objective: A systematic review of literature was conducted to identify pragmatic solutions and outcomes capable of enhancing stroke recovery and quality of life of stroke survivors for low- and middle- income countries. Methods: PubMed, HINARI, and Directory of Open Access Journals databases were searched for published Randomized Controlled Trials (RCTs) till November 2018. Only completed trials published in English with non-pharmacological interventions on adult stroke survivors were included in the review while published protocols, pilot studies and feasibility analysis of trials were excluded. Obtained data were synthesized thematically and descriptively analyzed. Results: One thousand nine hundred and ninety six studies were identified while 347 (65.22% high quality) RCTs were found to be eligible for the review. The most commonly assessed variables (and outcome measure utility) were activities of daily living [75.79% of the studies, with Barthel Index (37.02%)], motor function [66.57%; with Fugl Meyer scale (71.88%)], and gait [31.12%; with 6 min walk test (38.67%)]. Majority of the innovatively high technology interventions such as robot therapy (95.24%), virtual reality (94.44%), transcranial direct current stimulation (78.95%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries. Several traditional and low-cost interventions such as constraint-induced movement therapy (CIMT), resistant and aerobic exercises (R&AE), task oriented therapy (TOT), body weight supported treadmill training (BWSTT) were reported to significantly contribute to the recovery of motor function, activity, participation, and improvement of quality of life after stroke. Conclusion: Several pragmatic, in terms of affordability, accessibility and utility, stroke rehabilitation solutions, and outcome measures that can be used in resource-limited settings were found to be effective in facilitating and enhancing post-stroke recovery and quality of life.
Collapse
Affiliation(s)
- Echezona Nelson Dominic Ekechukwu
- Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria
- LANCET Physiotherapy and Wellness and Research Centre, Enugu, Nigeria
| | - Paul Olowoyo
- Department of Medicine, Federal Teaching Hospital, Ido Ekiti, Nigeria
- College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Kingsley Obumneme Nwankwo
- Stroke Control Innovations Initiative of Nigeria, Abuja, Nigeria
- Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria
| | - Olubukola A Olaleye
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Talhatu Kolapo Hamzat
- Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa Ojo Owolabi
- Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- University College Hospital, Ibadan, Nigeria
- Blossom Specialist Medical Centre, Ibadan, Nigeria
| |
Collapse
|
26
|
Park HK, Song MK, Kim WI, Han JY. Regulation of gene expression after combined scalp acupuncture and transcranial magnetic stimulation in middle cerebral artery occlusion mice. Restor Neurol Neurosci 2020; 38:253-263. [PMID: 32444581 DOI: 10.3233/rnn-190963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of combined repetitive transcranial magnetic stimulation (rTMS) and scalp acupuncture stimulation (SAS) on middle cerebral artery occlusion (MCAO) mice has not yet been reported. The regulation of gene expression after combined stimulation remains unclear. OBJECTIVE To analyze gene expression patterns through ribonucleic acid (RNA) sequencing. METHODS Thirty-six 8-weeks-old C57BL/6J male mice weighing 50-60 grams were used for this experiment. The MCAO was induced with 60-min occlusion and subsequent reperfusion of the middle cerebral artery. Experimental mice were randomly assigned to four groups, with nine mice in each group, as follows: control group (no treatment), SAS group (10 minutes SAS), rTMS group (1 Hz rTMS), and combined group (1 Hz rTMS and SAS). Stimulation was performed from the 3rd day to the 7th day after the induction of MCAO. All mice were sacrificed, and brain tissues were taken from the motor area of the MCAO lesion. We analyzed their gene expression profiles using RNA sequencing technology. RESULTS After stimulation, the grip strength increased in the SAS and rTMS group compared to the control and combined group. The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) was the key up-regulated protein in the SAS group while src homologus and collagene gene (SHC) and p90 ribosomal protein S6 kinases (p90RSK) were key up-regulated proteins in the rTMS group. However, the C-terminal src kinase-homologous kinase (CHK) was down-regulated whereas p90RSK was up-regulated in the combined group based on the RNA sequencing analysis. CONCLUSIONS Each stimulation method showed different patterns with neurotrophin signaling pathway including NFκB, SHC, p90RSK, and CHK. These can be used in further mechanistic studies about gene expression related to neurorecovery.
Collapse
Affiliation(s)
- Hyeng-Kyu Park
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital & Medical School, Gwangju, Republic of Korea
| | - Min-Keun Song
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital & Medical School, Gwangju, Republic of Korea
| | - Wang-In Kim
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital & Medical School, Gwangju, Republic of Korea
| | - Jae-Young Han
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital & Medical School, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Effects of Combined Transcranial Direct Current Stimulation with Cognitive Training in Girls with Rett Syndrome. Brain Sci 2020; 10:brainsci10050276. [PMID: 32370253 PMCID: PMC7287589 DOI: 10.3390/brainsci10050276] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Transcranial Direct Current Stimulation (tDCS) combined with traditional rehabilitative techniques has not been widely applied to Rett Syndrome (RTT). The aim of this study was to examine the effects of combined cognitive traditional training with tDCS applied to attention and language measures in subjects with RTT. Methods: 31 subjects with RTT were randomly allocated into two groups: non-sham tDCS (n = 18) and sham tDCS (n = 13). The former received the integrated intervention non-sham tDCS plus cognitive empowerment during the treatment phase. The latter received sham stimulation plus cognitive empowerment. All participants underwent neurological and cognitive assessment to evaluate attention and language measures: before integrated treatment (pre-test phase), at the conclusion of the treatment (post-test phase), and at 1 month after the conclusion of the treatment (follow-up phase). Results: the results indicated longer attention time in the non-sham tDCS group compared to the sham tDCS group with a stable trend also in the follow-up phase; an increase of the number of vowel/phoneme sounds in the non-sham tDCS group; and an improvement in the neurophysiological parameters in the non-sham tDCS group. Conclusions: This study supports the use of tDCS as a promising and alternative approach in the RTT rehabilitation field.
Collapse
|
28
|
Li H, Shang J, Zhang C, Lu R, Chen J, Zhou X. Repetitive Transcranial Magnetic Stimulation Alleviates Neurological Deficits After Cerebral Ischemia Through Interaction Between RACK1 and BDNF exon IV by the Phosphorylation-Dependent Factor MeCP2. Neurotherapeutics 2020; 17:651-663. [PMID: 31912469 PMCID: PMC7283432 DOI: 10.1007/s13311-019-00771-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is acknowledged as a form of neurostimulation, especially for functional recovery. The foundational knowledge of molecular mechanism is limited regarding its role in cerebral ischemia, for which the present study was designed. Primary neurons were treated with oxygen-glucose deprivation (OGD) and repetitive magnetic stimulation (rMS), in which brain-derived neurotrophic factor (BDNF) and transcription of BDNF exons were examined. Then, adenovirus vectors carrying siRACK1 sequence were delivered to primary neurons, followed by detection of the transcription of BDNF exons and the extent of methyl CpG binding protein 2 (MeCP2) phosphorylation. Results showed that BDNF and the transcription of BDNF exons were upregulated by rMS and OGD treatment, but decreased by extra treatment of RACK1 siRNA. Then, the mechanism investigations demonstrated that rMS increased the extent of MeCP2 phosphorylation to promote the interaction between RACK1 and BDNF exon IV. The aforementioned findings were further confirmed in vivo in middle cerebral artery occlusion (MCAO)-induced rat models, as indicated by improved neurological functions and reduced area of cerebral infarction. The study offers potential evidence for improvement of neurological deficits, highlighting the important role of rTMS for treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hongzhan Li
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China
| | - Jianqing Shang
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China
| | - Chengliang Zhang
- Department of Neurology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 29, Xinglong Alley, Changzhou, 213003, Jiangsu Province, China
| | - Rulan Lu
- Department of Neurology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 29, Xinglong Alley, Changzhou, 213003, Jiangsu Province, China
| | - Junpao Chen
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China
| | - Xianju Zhou
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China.
- Department of Neurology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 29, Xinglong Alley, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
29
|
Enhancing Stroke Recovery Across the Life Span With Noninvasive Neurostimulation. J Clin Neurophysiol 2020; 37:150-163. [DOI: 10.1097/wnp.0000000000000543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Zhao CG, Qin J, Sun W, Ju F, Zhao YL, Wang R, Sun XL, Mou X, Yuan H. rTMS Regulates the Balance Between Proliferation and Apoptosis of Spinal Cord Derived Neural Stem/Progenitor Cells. Front Cell Neurosci 2020; 13:584. [PMID: 32116552 PMCID: PMC7025559 DOI: 10.3389/fncel.2019.00584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique that uses electromagnetic fields to stimulate the brain. rTMS can restore an impaired central nervous system and promote proliferation of neural stem/progenitor cells (NSPCs), but optimal stimulus parameters and mechanisms underlying these effects remain elusive. The purpose of this study is to investigate the effect of different rTMS stimulus parameters on proliferation and apoptosis of spinal cord-derived NSPCs, the expression of brain-derived neurotrophic factor (BDNF) after rTMS, and the potentially underlying pathways. NSPCs were isolated from mice spinal cord and stimulated by different frequencies (1/10/20 Hz), intensities (0.87/1.24/1.58 T), and number of pulses (400/800/1,500/3,000) once a day for five consecutive days. NSPC proliferation was analyzed by measuring the neurosphere diameter and Brdu staining, apoptosis was detected by cell death enzyme-linked immunosorbent assay (ELISA) and flow cytometry, and NSPC viability was assessed by cell counting kit-8 assay. We found that specific parameters of frequency (1/10/20 Hz), intensity (1.24/1.58 T), and number of pulses (800/1,500/3,000) promote proliferation and apoptosis (p < 0.05 for all), but 20 Hz, 1.58 T, and 1,500 pulses achieved the optimal response for the NSPC viability. In addition, rTMS significantly promoted the expression of BDNF at the mRNA and protein level, while also increasing Akt phosphorylation (Thr308 and Ser473; p < 0.05). Overall, we identified the most appropriate rTMS parameters for further studies on NSPCs in vitro and in vivo. Furthermore, the effect of magnetic stimulation on NSPC proliferation might be correlated to BDNF/Akt signaling pathway.
Collapse
Affiliation(s)
- Chen-Guang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Qin
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fen Ju
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Lin Zhao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Long Sun
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiang Mou
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Wei W, Zhu T, Wang X, Li L, Zou Q, Lv Y. Altered Topological Organization in the Sensorimotor Network After Application of Different Frequency rTMS. Front Neurosci 2020; 13:1377. [PMID: 31920525 PMCID: PMC6930905 DOI: 10.3389/fnins.2019.01377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
The application of repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) could influence the intrinsic brain activity in the sensorimotor network (SMN). However, how rTMS modulates the topological organization of the SMN remains unclear. In this study, we employed resting-state fMRI to investigate the topological alterations in the functional SMN after application of different frequency rTMS over the left M1. To accomplish this, we collected MRI data from 45 healthy participants who were randomly divided into three groups based on rTMS frequency (HF, high-frequency 3 Hz; LF, low-frequency 1 Hz; and SHAM). Individual large-scale functional SMN was constructed by correlating the mean time series among 29 regions of interest (ROI) in the SMN and was fed into graph-based network analyses at multiple levels of global organization and nodal centrality. Our results showed that compared with the network metrics before rTMS stimulation, the left paracentral lobule (PCL) exhibited reduced nodal degree and betweenness centrality in the LF group after rTMS, while the right supplementary motor area (SMA) exhibited reduced nodal betweenness centrality in the HF group after rTMS. Moreover, rTMS-related alterations in nodal metrics might have been attributable to the changes in connectivity patterns and local activity of the affected nodes. These findings reflected the potential of using rTMS over M1 as an effective intervention to promote motor function rehabilitation.
Collapse
Affiliation(s)
- Wei Wei
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Tingting Zhu
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiaoyu Wang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Lingyu Li
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yating Lv
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
32
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1164] [Impact Index Per Article: 232.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
33
|
van Lieshout ECC, van der Worp HB, Visser-Meily JMA, Dijkhuizen RM. Timing of Repetitive Transcranial Magnetic Stimulation Onset for Upper Limb Function After Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2019; 10:1269. [PMID: 31849827 PMCID: PMC6901630 DOI: 10.3389/fneur.2019.01269] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/15/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention to promote upper limb recovery after stroke. We aimed to identify differences in the efficacy of rTMS treatment on upper limb function depending on the onset time post-stroke. Methods: We searched PubMed, Embase, and the Cochrane Library to identify relevant RCTs from their inception to February 2018. RCTs on the effects of rTMS on upper limb function in adult patients with stroke were included. Study quality and risk of bias were assessed independently by two authors. Meta-analyses were performed for outcomes on individual upper limb outcome measures (function or activity) and for function and activity measures jointly, categorized by timing of treatment initiation. Timing of treatment initiation post-stroke was categorized as follows: acute to early subacute (<1 month), early subacute (1–3 months), late subacute (3–6 months), and chronic (>6 months). Results: We included 38 studies involving 1,074 stroke patients. Subgroup analysis demonstrated benefit of rTMS applied within the first month post-stroke [MD = 9.31; 95% confidence interval (6.27–12.34); P < 0.0001], but not in the early subacute phase (1–3 months post-stroke) [MD = 1.14; 95% confidence interval (−5.32 to 7.59), P = 0.73) or chronic phase (>6 months post-stroke) [MD = 1.79; 95% confidence interval (−2.00 to 5.59]; P = 0.35), when assessed with a function test [Fugl-Meyer Arm test (FMA)]. There were no studies within the late subacute phase (3–6 months post-stroke) that used the FMA. Tests at the level of function revealed improved upper limb function after rTMS [SMD = 0.43; 95% confidence interval (0.02–0.75); P = 0.0001], but tests at the level of activity did not, independent of rTMS onset post-stroke [SMD = 0.17; 95% confidence interval (−0.09 to 0.44); P = 0.19]. Heterogeneities in the results of the individual studies included in the main analyses were large, as suggested by funnel plot asymmetry. Conclusions: Based on the FMA, rTMS seems more beneficial only when started in the first month post-stroke. Tests at the level of function are likely more sensitive to detect beneficial rTMS effects on upper limb function than tests at the level of activity. However, heterogeneities in treatment designs and outcomes are high. Future rTMS trials should include the FMA and work toward a core set of outcome measures.
Collapse
Affiliation(s)
- Eline C C van Lieshout
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands.,Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, De Hoogstraat Rehabilitation, Utrecht, Netherlands
| | - H Bart van der Worp
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Johanna M A Visser-Meily
- Center of Excellence for Rehabilitation Medicine, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, De Hoogstraat Rehabilitation, Utrecht, Netherlands.,Department of Rehabilitation, Physical Therapy Science and Sports, UMC Utrecht Brain Center, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
34
|
Kim JS, Kim DH, Kim HJ, Jung KJ, Hong J, Kim DY. Effect of Repetitive Transcranial Magnetic Stimulation in Post-stroke Patients with Severe Upper-Limb Motor Impairment. BRAIN & NEUROREHABILITATION 2019; 13:e3. [PMID: 36744269 PMCID: PMC9879525 DOI: 10.12786/bn.2020.13.e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 11/08/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been known to improve the motor function through modulation of excitability in the cerebral cortex. However, most studies with rTMS were limited to post-stroke patients with mild to moderate motor impairments. The effect of rTMS on severe upper-limb motor impairment remains unclear. Therefore, this study investigated the effects of rTMS on the upper extremity function in post-stroke patients with severe upper-limb motor impairment. Subjects were divided into 3 groups, low-, high-frequency rTMS and control group were received stimulation 10 times for 2 weeks. The motor scale of Fugl-Meyer Assessment (FMA) and cortical excitability on the unaffected hemisphere were measured before and after performing 10 rTMS sessions. The motor scale of upper extremity FMA (UE-FMA) and shoulder component of the UE-FMA were significantly improved in both low- and high-frequency rTMS groups. However, no significant improvement was observed in the wrist and hand components. No significant differences were noted in low- and high-frequency rTMS groups. The amplitude of motor evoked potential on the unaffected hemisphere showed a significant decrease in the low- and high-frequency stimulation groups. rTMS may be helpful in improving upper extremity motor function even in post-stroke patients with severe upper-limb motor impairment.
Collapse
Affiliation(s)
- Ju Sun Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Hyun Kim
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Seoul, Korea
| | - Hyun Jung Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Kang Jae Jung
- Department of Physical Medicine and Rehabilitation, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Korea
| | - Juntaek Hong
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Deog Young Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Jin JN, Wang X, Li Y, Wang H, Liu ZP, Yin T. rTMS combined with motor training changed the inter-hemispheric lateralization. Exp Brain Res 2019; 237:2735-2746. [PMID: 31435692 DOI: 10.1007/s00221-019-05621-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/06/2019] [Indexed: 01/10/2023]
Abstract
Repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) can be an effective method for enhancing motor function. However, the effects of rTMS-MT on inter-hemispheric lateralization remain unclear. Nineteen healthy volunteers were recruited. The volunteers were randomized to receive 2 weeks of rTMS-MT or MT to improve the motor function of the nondominant hand. Hand dexterity was tested by the Nine-Hole Peg Test. Resting motor threshold (RMT), motor evoked potentials (MEP) and electroencephalography (EEG) in the resting state with eyes closed were recorded, to calculate inter-hemispheric lateralization before and after rTMS-MT or MT. rTMS-MT and MT improved the dexterity and MEP amplitude of the nondominant hand. Furthermore, there were significant changes in the lateralization of not only power spectral density, but also information transmission efficiency between regions following rTMS-MT, especially between the central cortices of both hemispheres. However, although the lateralization change of the power spectral density between the central cortices was observed following MT, there was no such change for information transmission efficiency between any cortices. These results suggested that rTMS-MT could modulate inter-hemispheric lateralization. Changes in inter-hemispheric lateralization might be an important neural mechanism by which rTMS-MT improves motor function. These results could be helpful for understanding the brain mechanism of rTMS-MT.
Collapse
Affiliation(s)
- Jing-Na Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zhi-Peng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
36
|
Noh JS, Lim JH, Choi TW, Jang SG, Pyun SB. Effects and safety of combined rTMS and action observation for recovery of function in the upper extremities in stroke patients: A randomized controlled trial. Restor Neurol Neurosci 2019; 37:219-230. [PMID: 31177248 DOI: 10.3233/rnn-180883] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability and facilitates motor learning to improve motor recovery after stroke. Action observation (AO) therapy effectively facilitates physical training for motor memory formation. OBJECTIVE To compare the effectiveness of rTMS alone with that of combined rTMS and AO for the functional recovery of upper extremity function in subacute stroke patients and to verify the safety of the interventions. METHODS The present study was a prospective, randomized controlled trial involving subacute unilateral stroke patients. In total, 22 patients were randomly assigned to 2 groups: the trial group (rTMS with AO) and the control group (rTMS alone). Both groups received 1 Hz rTMS (intensity: 120% of resting motor threshold; rMT) over the contralesional primary motor cortex for 20 minutes on 10 consecutive days. Trial group received rTMS while watching a video of 5 different complex hand movements. The functional parameters were the Brunnstrom stage, Fugl-Meyer assessment (FMA) score of the upper extremity, Manual Function Test (MFT) score, and grip power. The following motor evoked potential (MEP) parameters were recorded from the abductor pollicis brevis muscle: rMT, latency, and amplitude. Both parameters were measured before and after the 2 week intervention. RESULTS After the 2 week trial, the total FMA and MFT scores were significantly improved in both groups, but the MFT subscores of hand motor function and grip power were significantly improved in the combination therapy group only. In contrast, the changes (Δ) of FMA, MFT, grip power test, and MEP outcomes were not significantly different between the 2 groups. No adverse events or complications were reported. CONCLUSIONS Distal upper extremity function, as measured by MFT and grip power, was improved after rTMS and AO in combination. The combination of rTMS with AO may be applied safely to improve upper extremity function after stroke.
Collapse
Affiliation(s)
- Jun Soo Noh
- Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Korea
| | - Ji Hoon Lim
- Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Korea
| | - Tae Woong Choi
- Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Korea
| | - Seung Gul Jang
- Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Korea.,Brain Convergence Research Center, Korea University, Seoul, Korea
| |
Collapse
|
37
|
van Lieshout ECC, van Hooijdonk RF, Dijkhuizen RM, Visser-Meily JMA, Nijboer TCW. The Effect of Noninvasive Brain Stimulation on Poststroke Cognitive Function: A Systematic Review. Neurorehabil Neural Repair 2019; 33:355-374. [DOI: 10.1177/1545968319834900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. Cognitive impairment after stroke has been associated with lower quality of life and independence in the long run, stressing the need for methods that target impairment for cognitive rehabilitation. The use of noninvasive brain stimulation (NIBS) on recovery of language functions is well documented, yet the effects of NIBS on other cognitive domains remain largely unknown. Therefore, we conducted a systematic review that evaluates the effects of different stimulation techniques on domain-specific (long-term) cognitive recovery after stroke. Methods. Three databases (PubMed, EMBASE, and PsycINFO) were searched for articles (in English) on the effects of NIBS on cognitive domains, published up to January 2018. Results. A total of 40 articles were included: randomized controlled trials (n = 21), studies with a crossover design (n = 9), case studies (n = 6), and studies with a mixed design (n = 4). Most studies tested effects on neglect (n = 25). The majority of the studies revealed treatment effects on at least 1 time point poststroke, in at least 1 cognitive domain. Studies varied highly on the factors time poststroke, number of treatment sessions, and stimulation protocols. Outcome measures were generally limited to a few cognitive tests. Conclusion. Our review suggests that NIBS is able to alleviate neglect after stroke. However, the results are still inconclusive and preliminary for the effect of NIBS on other cognitive domains. A standardized core set of outcome measures of cognition, also at the level of daily life activities and participation, and international agreement on treatment protocols, could lead to better evaluation of the efficacy of NIBS and comparisons between studies.
Collapse
Affiliation(s)
- Eline C. C. van Lieshout
- Utrecht University, Utrecht, The Netherlands
- University Medical Center Utrecht
- De Hoogstraat Rehabilitation Utrecht, The Netherlands
| | - Roel F. van Hooijdonk
- University Medical Center Utrecht
- De Hoogstraat Rehabilitation Utrecht, The Netherlands
| | | | | | - Tanja C. W. Nijboer
- Utrecht University, Utrecht, The Netherlands
- University Medical Center Utrecht
- De Hoogstraat Rehabilitation Utrecht, The Netherlands
| |
Collapse
|
38
|
Hernandez-Pavon JC, Harvey RL. Noninvasive Transcranial Magnetic Brain Stimulation in Stroke. Phys Med Rehabil Clin N Am 2019; 30:319-335. [PMID: 30954150 DOI: 10.1016/j.pmr.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is likely that transcranial magnetic brain stimulation will be used for the clinical treatment of stroke and stroke-related impairments in the future. The anatomic target and stimulation parameters will likely vary for any clinical focus, be it weakness, pain, or cognitive or communicative dysfunction. Biomarkers may also be useful for identifying patients who will respond best, with a goal to enhance clinical decision making. Combination with drugs or specific types of therapeutic exercise may be necessary to achieve maximal response.
Collapse
Affiliation(s)
- Julio C Hernandez-Pavon
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Center for Brain Stimulation, Shirley Ryan AbilityLab, 355 East Erie Street, Chicago, IL 60611, USA
| | - Richard L Harvey
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Brain Innovation Center, Shirley Ryan AbilityLab, 355 East Erie Street, Chicago, IL 60611, USA.
| |
Collapse
|
39
|
Xiang H, Sun J, Tang X, Zeng K, Wu X. The effect and optimal parameters of repetitive transcranial magnetic stimulation on motor recovery in stroke patients: a systematic review and meta-analysis of randomized controlled trials. Clin Rehabil 2019; 33:847-864. [PMID: 30773896 DOI: 10.1177/0269215519829897] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The primary aim of this meta-analysis was to evaluate the effects of repetitive transcranial magnetic stimulation (rTMS) on limb movement recovery post-stroke and cortex excitability, to explore the optimal parameters of rTMS and suitable stroke population. Second, adverse events were also included. DATA SOURCES The databases of PubMed, EBSCO, MEDLINE, the Cochrane Central Register of Controlled Trials, EBM Reviews-Cochrane Database, the Chinese National Knowledge Infrastructure, and the Chinese Science and Technology Journals Database were searched for randomized controlled trials exploring the effects of rTMS on limb motor function recovery post-stroke before December 2018. REVIEW METHODS The effect sizes of rTMS on limb motor recovery, the effect size of rTMS stimulation parameters, and different stroke population were summarized by calculating the standardized mean difference (SMD) and the 95% confidence interval using fixed/random effect models as appropriate. RESULTS For the motor function assessment, 42 eligible studies involving 1168 stroke patients were identified. The summary effect size indicated that rTMS had positive effects on limb motor recovery (SMD = 0.50, P < 0.00001) and activities of daily living (SMD = 0.82, P < 0.00001), and motor-evoked potentials of the stimulated hemisphere differed according to the stimulation frequency, that is, the high-frequency group (SMD = 0.57, P = 0.0006), except the low-frequency group (SMD = -0.27, P = 0.05). No significant differences were observed among the stimulation parameter subgroups except for the sessions subgroup ( P = 0.02). Only 10 included articles reported transient mild discomfort after rTMS. CONCLUSIONS rTMS promoted the recovery of limb motor function and changed the cortex excitability. rTMS may be better for early and pure subcortical stroke patients. Regarding different stimulation parameters, the number of stimulation sessions has an impact on the effect of rTMS.
Collapse
Affiliation(s)
- Huifang Xiang
- 1 Department of Rehabilitation Medicine, Chonggang General Hospital, Chongqing, China
| | - Jing Sun
- 2 Department of Gastrointestinal Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Tang
- 3 Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kebin Zeng
- 3 Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiushu Wu
- 3 Department of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Gavaret M, Marchi A, Lefaucheur JP. Clinical neurophysiology of stroke. HANDBOOK OF CLINICAL NEUROLOGY 2019; 161:109-119. [PMID: 31307595 DOI: 10.1016/b978-0-444-64142-7.00044-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stroke constitutes the third most common cause of death and the leading cause of acquired neurologic handicap. During ischemic stroke, very early after the onset of the focal perfusion deficit, excitotoxicity triggers a number of events that can further contribute to tissue death. Such events include peri-infarct depolarizations and spreading depolarizations (SDs) within the ischemic penumbra. SDs spread slowly through continuous gray matter at a typical velocity of 2-5mm/min. SDs exacerbate neuronal injury through prolonged ionic breakdown and SD-related hypoperfusion (spreading ischemia). Scalp EEG alone is not yet sufficient to reliably diagnose SDs. Hyperexcitability occurs in parallel, both in the acute and chronic phases of stroke. Stroke is a common cause of new-onset epileptic seizures after middle age and is the leading cause of symptomatic epilepsy in adults. The last part of this chapter is dedicated to noninvasive neurophysiologic techniques that can be used to promote stroke rehabilitation. These techniques mainly include repetitive transcranial magnetic stimulation and tDCS. These approaches are based on the concept of interhemispheric rivalry and aim at modulating the imbalance of cortical activities between both hemispheres resulting from stroke.
Collapse
Affiliation(s)
- Martine Gavaret
- INSERM UMR894, Paris Descartes University, Paris, France; Service de Neurophysiologie Clinique, Centre Hospitalier Sainte Anne, Paris, France.
| | - Angela Marchi
- Service de Neurophysiologie Clinique, Centre Hospitalier Sainte Anne, Paris, France
| | - Jean-Pascal Lefaucheur
- Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France; EA 4391, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
41
|
Mensen A, Pigorini A, Facchin L, Schöne C, D'Ambrosio S, Jendoubi J, Jaramillo V, Chiffi K, Eberhard-Moscicka AK, Sarasso S, Adamantidis A, Müri RM, Huber R, Massimini M, Bassetti C. Sleep as a model to understand neuroplasticity and recovery after stroke: Observational, perturbational and interventional approaches. J Neurosci Methods 2018; 313:37-43. [PMID: 30571989 DOI: 10.1016/j.jneumeth.2018.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/19/2018] [Accepted: 12/16/2018] [Indexed: 01/28/2023]
Abstract
Our own experiences with disturbances to sleep demonstrate its crucial role in the recovery of cognitive functions. This importance is likely enhanced in the recovery from stroke; both in terms of its physiology and cognitive abilities. Decades of experimental research have highlighted which aspects and mechanisms of sleep are likely to underlie these forms of recovery. Conversely, damage to certain areas of the brain, as well as the indirect effects of stroke, may disrupt sleep. However, only limited research has been conducted which seeks to directly explore this bidirectional link between both the macro and micro-architecture of sleep and stroke. Here we describe a series of semi-independent approaches that aim to establish this link through observational, perturbational, and interventional experiments. Our primary aim is to describe the methodology for future clinical and translational research needed to delineate competing accounts of the current data. At the observational level we suggest the use of high-density EEG recording, combined analysis of macro and micro-architecture of sleep, detailed analysis of the stroke lesion, and sensitive measures of functional recovery. The perturbational approach attempts to find the causal links between sleep and stroke. We promote the use of transcranial magnetic stimulation combined with EEG to examine the cortical dynamics of the peri-infarct stroke area. Translational research should take this a step further using optogenetic techniques targeting more specific cell populations. The interventional approach focuses on how the same clinical and translational perturbational techniques can be adapted to influence long-term recovery of function.
Collapse
|
42
|
León Ruiz M, Rodríguez Sarasa M, Sanjuán Rodríguez L, Benito-León J, García-Albea Ristol E, Arce Arce S. Evidencias actuales sobre la estimulación magnética transcraneal y su utilidad potencial en la neurorrehabilitación postictus: Ampliando horizontes en el tratamiento de la enfermedad cerebrovascular. Neurologia 2018; 33:459-472. [DOI: 10.1016/j.nrl.2016.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/17/2022] Open
|
43
|
León Ruiz M, Rodríguez Sarasa M, Sanjuán Rodríguez L, Benito-León J, García-Albea Ristol E, Arce Arce S. Current evidence on transcranial magnetic stimulation and its potential usefulness in post-stroke neurorehabilitation: Opening new doors to the treatment of cerebrovascular disease. NEUROLOGÍA (ENGLISH EDITION) 2018. [DOI: 10.1016/j.nrleng.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
44
|
Harvey RL, Edwards D, Dunning K, Fregni F, Stein J, Laine J, Rogers LM, Vox F, Durand-Sanchez A, Bockbrader M, Goldstein LB, Francisco GE, Kinney CL, Liu CY, Ryan S, Morales-Quezada L, Worthen-Chaudhari L, Labar D, Schambra H, Kappy CR, Kissela B, Pratt W. Randomized Sham-Controlled Trial of Navigated Repetitive Transcranial Magnetic Stimulation for Motor Recovery in Stroke. Stroke 2018; 49:2138-2146. [PMID: 30354990 DOI: 10.1161/strokeaha.117.020607] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- We aimed to determine whether low-frequency electric field navigated repetitive transcranial magnetic stimulation to noninjured motor cortex versus sham repetitive transcranial magnetic stimulation avoiding motor cortex could improve arm motor function in hemiplegic stroke patients when combined with motor training. Methods- Twelve outpatient US rehabilitation centers enrolled participants between May 2014 and December 2015. We delivered 1 Hz active or sham repetitive transcranial magnetic stimulation to noninjured motor cortex before each of eighteen 60-minute therapy sessions over a 6-week period, with outcomes measured at 1 week and 1, 3, and 6 months after end of treatment. The primary end point was the percentage of participants improving ≥5 points on upper extremity Fugl-Meyer score 6 months after end of treatment. Secondary analyses assessed changes on the upper extremity Fugl-Meyer and Action Research Arm Test and Wolf Motor Function Test and safety. Results- Of 199 participants, 167 completed treatment and follow-up because of early discontinuation of data collection. Upper extremity Fugl-Meyer gains were significant for experimental ( P<0.001) and sham groups ( P<0.001). Sixty-seven percent of the experimental group (95% CI, 58%-75%) and 65% of sham group (95% CI, 52%-76%) improved ≥5 points on 6-month upper extremity Fugl-Meyer ( P=0.76). There was also no difference between experimental and sham groups in the Action Research Arm Test ( P=0.80) or the Wolf Motor Function Test ( P=0.55). A total of 26 serious adverse events occurred in 18 participants, with none related to the study or device, and with no difference between groups. Conclusions- Among patients 3 to 12 months poststroke, goal-oriented motor rehabilitation improved motor function 6 months after end of treatment. There was no difference between the active and sham repetitive transcranial magnetic stimulation trial arms. Clinical Trial Registration- URL: https://www.clinicaltrials.gov . Unique identifier: NCT02089464.
Collapse
Affiliation(s)
- Richard L. Harvey
- The Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chiago, IL (R.L.H., L.M.R.)
| | - Dylan Edwards
- Burke Neurological Institute, Weill Cornell Neurology, White Plains, NY (D.E.)
| | - Kari Dunning
- Department of Rehabilitation, Exercise and Nutrition Sciences, University of Cincinnati, OH (K.D.)
| | - Felipe Fregni
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA (F.F.)
| | - Joel Stein
- Department of Rehabilitation and Regenerative Medicine, Columbia University Medical Center, New York, NY (J.S.)
| | - Jarmo Laine
- Nexstim Corporation, Helsinki, Finland (J.L.)
| | - Lynn M. Rogers
- The Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chiago, IL (R.L.H., L.M.R.)
| | - Ford Vox
- Shepherd Center, Clinical Research, Atlanta, GA (F.V.)
| | - Ana Durand-Sanchez
- Baylor College of Medicine, Physical Medicine and Rehabilitation, TIRR Memorial Herrmann, Houston, TX (A.D.-S.)
| | - Marcia Bockbrader
- Physical Medicine and Rehabilitation, Ohio State University, Columbus (M.B.)
| | - Larry B. Goldstein
- Kentucky Neuroscience Institute, University of Kentucky, Lexington (L.B.G.)
| | - Gerard E. Francisco
- Physical Medicine and Rehabilitation, University of Texas Health Science Center, TIRR Memorial Herrmann, Houston (G.E.F.)
| | - Carolyn L. Kinney
- Mayo Clinic Arizona, Mayo Clinic Hospital, Physical Medicine and Rehabilitation, Phoenix (C.L.K.)
| | - Charles Y. Liu
- USC Neurorestoration Center, Rancho Los Amigos National Rehabilitation Center, Los Angeles, CA (C.Y.L.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shin SS, Krishnan V, Stokes W, Robertson C, Celnik P, Chen Y, Song X, Lu H, Liu P, Pelled G. Transcranial magnetic stimulation and environmental enrichment enhances cortical excitability and functional outcomes after traumatic brain injury. Brain Stimul 2018; 11:1306-1313. [PMID: 30082198 DOI: 10.1016/j.brs.2018.07.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Therapeutic strategies for traumatic brain injury (TBI) in the last three decades have failed to show significant benefit in large scale studies. Given the multitude of pathological mechanisms involved in TBI, strategies focusing on multimodality regimen have gained interest as promising future interventions. HYPOTHESIS We hypothesized that combining noninvasive transcranial magnetic stimulation (TMS) with rehabilitative training in an environmental enrichment (EE) can facilitate post-TBI recovery in rats via cortical excitability and reorganization. METHODS We subjected rats to controlled cortical impact, and then assigned them to one of four groups: 1. No treatments (TBI), 2. EE after injury (TBI + EE), 3. TMS for one week (TBI + TMS), and 4. TMS for one week combined with EE (TBI + TMS/EE). For TMS, a 10 Hz repetitive TMS protocol was used. RESULTS At 7 days, TBI + TMS and TBI + TMS/EE groups had significantly increased primary somatosensory cortex local field potential (LFP) compared to TBI and TBI + EE groups (P < 0.05). Also, TBI + TMS/EE group had significantly improved performance on beam walk test compared to TBI group (P < 0.005). At 6 weeks, there was significantly higher response in TBI + TMS/EE group compared to TBI + TMS for somatosensory cortex LFP (P < 0.05), bicep motor evoked potentials (MEP) (P < 0.05), challenge ladder test performance (P < 0.01), and fMRI responses to tactile forepaw stimulation. CONCLUSIONS We demonstrate here for the first time the mechanism by which combined therapy using TMS and EE after TBI leads to functional improvement, possibly via cortical excitability and reorganization.
Collapse
Affiliation(s)
- Samuel S Shin
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vijai Krishnan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - William Stokes
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney Robertson
- Department of Anesthesiology/Critical Care Medicine and Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pablo Celnik
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yanrong Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolei Song
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peiying Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
46
|
Baek A, Kim JH, Pyo S, Jung JH, Park EJ, Kim SH, Cho SR. The Differential Effects of Repetitive Magnetic Stimulation in an In Vitro Neuronal Model of Ischemia/Reperfusion Injury. Front Neurol 2018; 9:50. [PMID: 29487560 PMCID: PMC5816832 DOI: 10.3389/fneur.2018.00050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive therapy that has been implicated in treatment of serious neurological disorders. However, the neurobiological mechanisms underlying the effects of rTMS remain unclear. Therefore, this study examined the differential effects of repetitive magnetic stimulation (rMS) in an in vitro neuronal model of ischemia/reperfusion (I/R) injury, depending on low and high frequency. Neuro-2a cells were differentiated with retinoic acid and established for in vitro neuronal model of I/R injury under a subsequent 3 h of oxygen and glucose deprivation/reoxygenation (OGD/R) condition. After the I/R injury, the differentiated neuronal cells were stimulated with rMS on day 1 and randomly divided into three groups: OGD/R+sham, OGD/R+low-frequency, and OGD/R+high-frequency groups. High-frequency rMS increases cell proliferation through activation of extracellular signal-regulated kinases and AKT-signaling pathway and inhibits apoptosis in OGD/R-injured cells. Furthermore, high-frequency rMS increases Ca2+–calmodulin-dependent protein kinase II (CaMKII)-cAMP-response element binding protein (CREB) signaling pathway, further leading to alternation of brain-derived neurotrophic factor expression and synaptic plasticity in OGD/R injured cells. These results verified the neurobiological mechanisms of frequency-dependent rMS in I/R injury-treated neuronal cells. These mechanisms will help develop more powerful and credible rTMS stimulation treatment protocols.
Collapse
Affiliation(s)
- Ahreum Baek
- Department and Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Hyun Kim
- Department and Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Soonil Pyo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Joon-Ho Jung
- Department of Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Jee Park
- Department of Rehabilitation Medicine, Graduate School Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung Hoon Kim
- Department and Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea.,Yonsei Stem Cell Center, Avison Biomedical Research Center, Seoul, South Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
47
|
Kwon TG, Park E, Kang C, Chang WH, Kim YH. The effects of combined repetitive transcranial magnetic stimulation and transcranial direct current stimulation on motor function in patients with stroke. Restor Neurol Neurosci 2018; 34:915-923. [PMID: 27689549 DOI: 10.3233/rnn-160654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Both transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), when provided to stroke patients in combination with motor training, enhance therapeutic efficacy and motor function. However, the majority of previous studies have only examined a single treatment modality. OBJECTIVE The authors investigated the modulating influence of combination dual-mode brain stimulation upon bihemispheric stimulation with motor training in stroke patients. METHODS Twenty stroke patients with hemiparesis underwent five randomly arranged sessions of diverse combinations of rTMS and tDCS. We applied cathodal or anodal tDCS over the contralesional primary motor cortex (cM1) and 10 Hz rTMS over the ipsilesional primary motor cortex (iM1) in a simultaneous or preconditioning method including sham stimulation. Immediately after dual-mode stimulation, sequential hand motor training was performed for 5 minutes. The total pulses of rTMS and the duration of tDCS and motor training were the same for all sessions. Cortical excitability and sequential motor performance were evaluated before and after each session. RESULTS Motor function and corticomotor excitability following simultaneous stimulation via cathodal tDCS over the cM1 combined with 10 Hz rTMS over the iM1 were significantly increased after the intervention, with significantly greater motor improvement than seen with other treatment conditions (P < 0.05). CONCLUSION For the combination of bihemispheric rTMS and tDCS, simultaneous stimulation of cathodal tDCS and 10 Hz rTMS results in better motor performance in stroke patients than other combination methods. This result seemed to be related to effective modulation of interhemispheric imbalance of cortical excitability by dual-mode stimulation.
Collapse
Affiliation(s)
- Tae Gun Kwon
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Eunhee Park
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Chung Kang
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Low-Frequency Repetitive Transcranial Magnetic Stimulation for Stroke-Induced Upper Limb Motor Deficit: A Meta-Analysis. Neural Plast 2017; 2017:2758097. [PMID: 29435371 PMCID: PMC5756908 DOI: 10.1155/2017/2758097] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/01/2017] [Indexed: 11/21/2022] Open
Abstract
Background and Purpose This meta-analysis aimed to evaluate the therapeutic potential of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) over the contralesional hemisphere on upper limb motor recovery and cortex plasticity after stroke. Methods Databases of PubMed, Medline, ScienceDirect, Cochrane, and Embase were searched for randomized controlled trials published before Jun 31, 2017. The effect size was evaluated by using the standardized mean difference (SMD) and a 95% confidence interval (CI). Resting motor threshold (rMT) and motor-evoked potential (MEP) were also examined. Results Twenty-two studies of 1 Hz LF-rTMS over the contralesional hemisphere were included. Significant efficacy was found on finger flexibility (SMD = 0.75), hand strength (SMD = 0.49), and activity dexterity (SMD = 0.32), but not on body function (SMD = 0.29). The positive changes of rMT (SMD = 0.38 for the affected hemisphere and SMD = −0.83 for the unaffected hemisphere) and MEP (SMD = −1.00 for the affected hemisphere and SMD = 0.57 for the unaffected hemisphere) were also significant. Conclusions LF-rTMS as an add-on therapy significantly improved upper limb functional recovery especially the hand after stroke, probably through rebalanced cortical excitability of both hemispheres. Future studies should determine if LF-rTMS alone or in conjunction with practice/training would be more effective. Clinical Trial Registration Information This trial is registered with unique identifier CRD42016042181.
Collapse
|
49
|
Sebastianelli L, Versace V, Martignago S, Brigo F, Trinka E, Saltuari L, Nardone R. Low-frequency rTMS of the unaffected hemisphere in stroke patients: A systematic review. Acta Neurol Scand 2017; 136:585-605. [PMID: 28464421 DOI: 10.1111/ane.12773] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 01/02/2023]
Abstract
The aim of this review was to summarize the evidence for the effectiveness of low-frequency (LF) repetitive transcranial magnetic stimulation (rTMS) over the unaffected hemisphere in promoting functional recovery after stroke. We performed a systematic search of the studies using LF-rTMS over the contralesional hemisphere in stroke patients and reviewed the 67 identified articles. The studies have been gathered together according to the time interval that had elapsed between the stroke onset and the beginning of the rTMS treatment. Inhibitory rTMS of the contralesional hemisphere can induce beneficial effects on stroke patients with motor impairment, spasticity, aphasia, hemispatial neglect and dysphagia, but the therapeutic clinical significance is unclear. We observed considerable heterogeneity across studies in the stimulation protocols. The use of different patient populations, regardless of lesion site and stroke aetiology, different stimulation parameters and outcome measures means that the studies are not readily comparable, and estimating real effectiveness or reproducibility is very difficult. It seems that careful experimental design is needed and it should consider patient selection aspects, rTMS parameters and clinical assessment tools. Consecutive sessions of rTMS, as well as the combination with conventional rehabilitation therapy, may increase the magnitude and duration of the beneficial effects. In an increasing number of studies, the patients have been enrolled early after stroke. The prolonged follow-up in these patients suggests that the effects of contralesional LF-rTMS can be long-lasting. However, physiological evidence indicating increased synaptic plasticity, and thus, a more favourable outcome, in the early enrolled patients, is still lacking. Carefully designed clinical trials designed are required to address this question. LF rTMS over unaffected hemisphere may have therapeutic utility, but the evidence is still preliminary and the findings need to be confirmed in further randomized controlled trials.
Collapse
Affiliation(s)
- L. Sebastianelli
- Department of Neurorehabilitation; Hospital of Vipiteno; Vipiteno Italy
- Research Unit for Neurorehabilitation of South Tyrol; Bolzano Italy
| | - V. Versace
- Department of Neurorehabilitation; Hospital of Vipiteno; Vipiteno Italy
- Research Unit for Neurorehabilitation of South Tyrol; Bolzano Italy
| | - S. Martignago
- Department of Neurorehabilitation; Hospital of Vipiteno; Vipiteno Italy
- Research Unit for Neurorehabilitation of South Tyrol; Bolzano Italy
| | - F. Brigo
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
- Department of Neurosciences, Biomedicine and Movement Sciences; University of Verona; Verona Italy
| | - E. Trinka
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - L. Saltuari
- Research Unit for Neurorehabilitation of South Tyrol; Bolzano Italy
- Department of Neurology; Hochzirl Hospital; Zirl Austria
| | - R. Nardone
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| |
Collapse
|
50
|
Jin JN, Wang X, Li Y, Jin F, Liu ZP, Yin T. The Effects of rTMS Combined with Motor Training on Functional Connectivity in Alpha Frequency Band. Front Behav Neurosci 2017; 11:234. [PMID: 29238296 PMCID: PMC5712595 DOI: 10.3389/fnbeh.2017.00234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
It has recently been reported that repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) could improve motor function in post-stroke patients. However, the effects of rTMS-MT on cortical function using functional connectivity and graph theoretical analysis remain unclear. Ten healthy subjects were recruited to receive rTMS immediately before application of MT. Low frequency rTMS was delivered to the dominant hemisphere and non-dominant hand performed MT over 14 days. The reaction time of Nine-Hole Peg Test and electroencephalography (EEG) in resting condition with eyes closed were recorded before and after rTMS-MT. Functional connectivity was assessed by phase synchronization index (PSI), and subsequently thresholded to construct undirected graphs in alpha frequency band (8–13 Hz). We found a significant decrease in reaction time after rTMS-MT. The functional connectivity between the parietal and frontal cortex, and the graph theory statistics of node degree and efficiency in the parietal cortex increased. Besides the functional connectivity between premotor and frontal cortex, the degree and efficiency of premotor cortex showed opposite results. In addition, the number of connections significantly increased within inter-hemispheres and inter-regions. In conclusion, this study could be helpful in our understanding of how rTMS-MT modulates brain activity. The methods and results in this study could be taken as reference in future studies of the effects of rTMS-MT in stroke patients.
Collapse
Affiliation(s)
- Jing-Na Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fang Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhi-Peng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|