1
|
Sokal A, Royer G, Esposito-Farese M, Clermont O, Condamine B, Laouénan C, Lefort A, Denamur E, de Lastours V. Clinical and Bacteriological Specificities of Escherichia coli Bloodstream Infections From Biliary Portal of Entries. J Infect Dis 2024; 229:1679-1687. [PMID: 38214565 DOI: 10.1093/infdis/jiad586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Escherichia coli is frequently responsible for bloodstream infections (BSIs). Among digestive BSIs, biliary infections appear to be less severe. Respective roles of host factors, bacterial determinants (phylogroups, virulence, and antibiotic resistance), and portal of entry on outcome are unknown. METHODS Clinical characteristics and prognosis of 770 episodes of E coli BSI were analyzed and isolates sequenced (Illumina technology) comparing phylogroups, multilocus sequence type, virulence, and resistance gene content. BSI isolates were compared with 362 commensal E coli from healthy subjects. RESULTS Among 770 episodes, 135 were biliary, 156 nonbiliary digestive, and 479 urinary. Compared to urinary infections, BSIs of digestive origin occurred significantly more in men, comorbid, and immunocompromised patients. Digestive portal of entry was significantly associated with septic shock and death. Among digestive infections, patients with biliary infections were less likely to die (P = .032), despite comparable initial severity. Biliary E coli resembled commensals (phylogroup distribution, sequence type, and few virulence-associated genes) whereas nonbiliary digestive and urinary strains carried many virulence-associated genes. CONCLUSIONS Escherichia coli strains responsible for biliary infections exhibit commensal characteristics and are associated with lower mortality rates, despite similar initial severity, than other digestive BSIs. Biliary drainage in addition to antibiotics in the management of biliary infections may explain improved outcome.
Collapse
Affiliation(s)
- Aurélien Sokal
- Service de Médecine Interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP) Clichy
| | - Guilhem Royer
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil
- Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Institut Pasteur, Unité mixte de recherche Centre National de la recherche Scientifique 6047, Université Paris Cité, Paris
| | | | - Olivier Clermont
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| | - Bénédicte Condamine
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| | - Cedric Laouénan
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
- Département d'épidémiologie, biostatistiques et recherche clinique
| | - Agnès Lefort
- Service de Médecine Interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP) Clichy
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| | - Erick Denamur
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | - Victoire de Lastours
- Service de Médecine Interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP) Clichy
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| |
Collapse
|
2
|
Denamur E, Condamine B, Esposito-Farèse M, Royer G, Clermont O, Laouenan C, Lefort A, de Lastours V, Galardini M, the COLIBAFI, SEPTICOLI groups. Genome wide association study of Escherichia coli bloodstream infection isolates identifies genetic determinants for the portal of entry but not fatal outcome. PLoS Genet 2022; 18:e1010112. [PMID: 35324915 PMCID: PMC8946752 DOI: 10.1371/journal.pgen.1010112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli is an important cause of bloodstream infections (BSI), which is of concern given its high mortality and increasing worldwide prevalence. Finding bacterial genetic variants that might contribute to patient death is of interest to better understand infection progression and implement diagnostic methods that specifically look for those factors. E. coli samples isolated from patients with BSI are an ideal dataset to systematically search for those variants, as long as the influence of host factors such as comorbidities are taken into account. Here we performed a genome-wide association study (GWAS) using data from 912 patients with E. coli BSI from hospitals in Paris, France. We looked for associations between bacterial genetic variants and three patient outcomes (death at 28 days, septic shock and admission to intensive care unit), as well as two portals of entry (urinary and digestive tract), using various clinical variables from each patient to account for host factors. We did not find any association between genetic variants and patient outcomes, potentially confirming the strong influence of host factors in influencing the course of BSI; we however found a strong association between the papGII operon and entrance of E. coli through the urinary tract, which demonstrates the power of bacterial GWAS when applied to actual clinical data. Despite the lack of associations between E. coli genetic variants and patient outcomes, we estimate that increasing the sample size by one order of magnitude could lead to the discovery of some putative causal variants. Given the wide adoption of bacterial genome sequencing of clinical isolates, such sample sizes may be soon available.
Collapse
Affiliation(s)
- Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | | | - Marina Esposito-Farèse
- Département d’épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, Paris, France
| | - Guilhem Royer
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
| | | | - Cédric Laouenan
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Département d’épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, Paris, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Victoire de Lastours
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | | | | |
Collapse
|
3
|
Royer G, Darty MM, Clermont O, Condamine B, Laouenan C, Decousser JW, Vallenet D, Lefort A, de Lastours V, Denamur E. Phylogroup stability contrasts with high within sequence type complex dynamics of Escherichia coli bloodstream infection isolates over a 12-year period. Genome Med 2021; 13:77. [PMID: 33952335 PMCID: PMC8097792 DOI: 10.1186/s13073-021-00892-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
Background Escherichia coli is the leading cause of bloodstream infections, associated with a significant mortality. Recent genomic analyses revealed that few clonal lineages are involved in bloodstream infections and captured the emergence of some of them. However, data on within sequence type (ST) population genetic structure evolution are rare. Methods We compared whole genome sequences of 912 E. coli isolates responsible for bloodstream infections from two multicenter clinical trials that were conducted in the Paris area, France, 12 years apart, in teaching hospitals belonging to the same institution (“Assistance Publique-Hôpitaux de Paris”). We analyzed the strains at different levels of granularity, i.e., the phylogroup, the ST complex (STc), and the within STc clone taking into consideration the evolutionary history, the resistance, and virulence gene content as well as the antigenic diversity of the strains. Results We found a mix of stability and changes overtime, depending on the level of comparison. Overall, we observed an increase in antibiotic resistance associated to a restricted number of genetic determinants and in strain plasmidic content, whereas phylogroup distribution and virulence gene content remained constant. Focusing on STcs highlighted the pauci-clonality of the populations, with only 11 STcs responsible for more than 73% of the cases, dominated by five STcs (STc73, STc131, STc95, STc69, STc10). However, some STcs underwent dramatic variations, such as the global pandemic STc131, which replaced the previously predominant STc95. Moreover, within STc131, 95 and 69 genomic diversity analysis revealed a highly dynamic pattern, with reshuffling of the population linked to clonal replacement sometimes coupled with independent acquisitions of virulence factors such as the pap gene cluster bearing a papGII allele located on various pathogenicity islands. Additionally, STc10 exhibited huge antigenic diversity evidenced by numerous O:H serotype/fimH allele combinations, whichever the year of isolation. Conclusions Altogether, these data suggest that the bloodstream niche is occupied by a wide but specific phylogenetic diversity and that highly specialized extra-intestinal clones undergo frequent turnover at the within ST level. Additional worldwide epidemiological studies overtime are needed in different geographical and ecological contexts to assess how generalizable these data are. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00892-0.
Collapse
Affiliation(s)
- Guilhem Royer
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France.,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France.,Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, F-94000, Créteil, France
| | - Mélanie Mercier Darty
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, F-94000, Créteil, France
| | - Olivier Clermont
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France
| | | | - Cédric Laouenan
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France.,Département d'épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, F-75018, Paris, France
| | - Jean-Winoc Decousser
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, F-94000, Créteil, France
| | - David Vallenet
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, F-92100, Clichy, France
| | - Victoire de Lastours
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France.,Service de Médecine Interne, Hôpital Beaujon, AP-HP, F-92100, Clichy, France
| | - Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, F-75018, Paris, France. .,Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, F-75018, Paris, France.
| | | |
Collapse
|
4
|
Virulence Potential of a Multidrug-Resistant Escherichia coli Strain Belonging to the Emerging Clonal Group ST101-B1 Isolated from Bloodstream Infection. Microorganisms 2020; 8:microorganisms8060827. [PMID: 32486334 PMCID: PMC7355805 DOI: 10.3390/microorganisms8060827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Escherichia coli EC121 is a multidrug-resistant (MDR) strain isolated from a bloodstream infection of an inpatient with persistent gastroenteritis and T-zone lymphoma that died due to septic shock. Despite causing an extraintestinal infection, previous studies showed that it did not have the usual characteristics of an extraintestinal pathogenic E. coli. Instead, it belonged to phylogenetic group B1 and harbored few known virulence genes. To evaluate the pathogenic potential of strain EC121, an extensive genome sequencing and in vitro characterization of various pathogenicity-associated properties were performed. The genomic analysis showed that strain EC121 harbors more than 50 complete virulence genetic clusters. It also displays the capacity to adhere to a variety of epithelial cell lineages and invade T24 bladder cells, as well as the ability to form biofilms on abiotic surfaces, and survive the bactericidal serum complement activity. Additionally, EC121 was shown to be virulent in the Galleria mellonella model. Furthermore, EC121 is an MDR strain harboring 14 antimicrobial resistance genes, including blaCTX-M-2. Completing the scenario, it belongs to serotype O154:H25 and to sequence type 101-B1, which has been epidemiologically linked to extraintestinal infections as well as to antimicrobial resistance spread. This study with E. coli strain EC121 shows that clinical isolates considered opportunistic might be true pathogens that go underestimated.
Collapse
|
5
|
Barros J, Melo LDR, Poeta P, Igrejas G, Ferraz MP, Azeredo J, Monteiro FJ. Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. Int J Antimicrob Agents 2019; 54:329-337. [PMID: 31229670 DOI: 10.1016/j.ijantimicag.2019.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022]
Abstract
Orthopaedic implant-associated infections are a devastating complication of orthopaedic surgery with a significant impact on patients and healthcare systems. The aims of this work were to describe the patterns of antimicrobial resistance, pathogenicity and virulence of clinical bacterial isolates from orthopaedic implant-associated infections and to further isolate and characterise bacteriophages that are efficient in controlling these bacteria. Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolated from orthopaedic infections showed multiresistance patterns to the most frequently used antibiotics in clinical settings. The presence of mobile genetic elements (mecA, Tn916/Tn1545 and intl1) and virulence determinants (icaB, cna, hlb, cylLs, cylM, agg, gelE, fsr and fimA) highlighted the pathogenicity of these isolates. Moreover, the isolates belonged to clonal complexes associated with the acquisition of pathogenicity islands and antimicrobial resistance genes by recombination and horizontal gene transfer. Bacteriophages vB_SauM_LM12, vB_EfaS_LM99 and vB_EcoM_JB75 were characterised and their ability to infect clinical isolates of S. aureus, E. faecalis and E. coli, respectively, was assessed. Morphological and genomic analyses revealed that vB_EfaS_LM99 and vB_EcoM_JB75 belong to the Siphoviridae and Myoviridae families, respectively, and no genes associated with lysogeny were found. The bacteriophages showed low latent periods, high burst sizes, broad host ranges and tolerance to several environmental conditions. Moreover, they showed high efficiency and specificity to infect and reduce clinical bacteria, including methicillin-resistant S. aureus and vancomycin-resistant enterococci. Therefore, the results obtained suggest that the bacteriophages used in this work are a promising approach to control these pathogens involved in orthopaedic implant-associated infections.
Collapse
Affiliation(s)
- Joana Barros
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB-Instituto Nacional de Engenharia Biomédica, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
| | - Luís D R Melo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Patrícia Poeta
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; LAQV‑REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal
| | - Gilberto Igrejas
- LAQV‑REQUIMTE, Faculty of Science and Technology, Nova University of Lisbon, Lisbon, Portugal; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Maria P Ferraz
- FP-ENAS/CEBIMED-University Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center, Porto, Portugal
| | - Joana Azeredo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Fernando J Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB-Instituto Nacional de Engenharia Biomédica, Porto, Portugal; FEUP-Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Hung WT, Cheng MF, Tseng FC, Chen YS, Shin-Jung Lee S, Chang TH, Lin HH, Hung CH, Wang JL. Bloodstream infection with extended-spectrum beta-lactamase-producing Escherichia coli: The role of virulence genes. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:947-955. [PMID: 31076319 DOI: 10.1016/j.jmii.2019.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Extraintestinal pathogenic Escherichia coli (ExPEC) strains hold the responsibility for the majority of E. coli infections. Numerous extraintestinal virulence factors (VFs) were possessed by ExPEC which are involved in the pathogenesis of infection. However, the effect of comorbidities or infection syndrome in the association of VFs and mortality remains inconclusive. METHOD This study addressed whether specific sequence type (ST) and VFs of extended-spectrum beta-lactamase-producing E. coli (ESBL-EC) are associated with different outcomes in patients with bloodstream infection. 121 adults from southern Taiwan with ESBL-EC bloodstream infections were enrolled during a 6-year period. Demographic data, including infection syndromes, underlying disease and outcomes, were collected. The virulence factors in isolates were analyzed by PCR and multilocus sequence typing analyses were also performed. RESULT Positivity for the virulence genes iha, hlyD, sat, iutA, fyuA, malX, ompT, and traT was associated with ST131 positivity (P < 0.05). Some ESBL-EC virulence genes associated with urinary tract infection (UTI) were revealed. Positivity for ST405 and the virulence genes iroN and iss were significantly associated with increased 30-day mortality (death within 30 days) on univariate analysis (P < 0.05). Independent risk factors of 30-day mortality in bacteremic patients with UTI included underlying chronic liver disease and malignancy. ST131 was borderline associated with 30-day mortality. Independent risk factors associated with 30-day mortality among bacteremic patients without UTI included comorbidities and iroN positivity. CONCLUSION In bacteremic patients with UTI, and the ST131 clone was borderline associated with mortality. Positivity for the virulence gene iroN may be linked to mortality in bacteremic patients without UTI.
Collapse
Affiliation(s)
- Wan-Ting Hung
- Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.
| | - Ming-Fang Cheng
- Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taiwan; School of Nursing, Fooyin University, Kaohsiung, Taiwan.
| | - Fan-Chen Tseng
- Department of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
| | - Yao-Shen Chen
- Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taiwan.
| | - Susan Shin-Jung Lee
- Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taiwan.
| | | | - Hsi-Hsun Lin
- E-Da Hospital, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Chih-Hsin Hung
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital and College of Medicine, National Cheng Kung University Tainan, Taiwan.
| |
Collapse
|
7
|
Stork C, Kovács B, Rózsai B, Putze J, Kiel M, Dorn Á, Kovács J, Melegh S, Leimbach A, Kovács T, Schneider G, Kerényi M, Emödy L, Dobrindt U. Characterization of Asymptomatic Bacteriuria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against Uropathogens. Front Microbiol 2018; 9:214. [PMID: 29491858 PMCID: PMC5817090 DOI: 10.3389/fmicb.2018.00214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Asymptomatic bacterial colonization of the urinary bladder (asymptomatic bacteriuria, ABU) can prevent bladder colonization by uropathogens and thus symptomatic urinary tract infection (UTI). Deliberate bladder colonization with Escherichia coli ABU isolate 83972 has been shown to outcompete uropathogens and prevent symptomatic UTI by bacterial interference. Many ABU isolates evolved from uropathogenic ancestors and, although attenuated, may still be able to express virulence-associated factors. Our aim was to screen for efficient and safe candidate strains that could be used as alternatives to E. coli 83972 for preventive and therapeutic bladder colonization. To identify ABU E. coli strains with minimal virulence potential but maximal interference efficiency, we compared nine ABU isolates from diabetic patients regarding their virulence- and fitness-associated phenotypes in vitro, their virulence in a murine model of sepsis and their genome content. We identified strains in competitive growth experiments, which successfully interfere with colonization of ABU isolate 83972 or uropathogenic E. coli strain 536. Six isolates were able to outcompete E. coli 83972 and two of them also outcompeted UPEC 536 during growth in urine. Superior competitiveness was not simply a result of better growth abilities in urine, but seems also to involve expression of antagonistic factors. Competitiveness in urine did not correlate with the prevalence of determinants coding for adhesins, iron uptake, toxins, and antagonistic factors. Three ABU strains (isolates 61, 106, and 123) with superior competitiveness relative to ABU model strain 83972 display low in vivo virulence in a murine sepsis model, and susceptibility to antibiotics. They belong to different phylogroups and differ in the presence of ExPEC virulence- and fitness-associated genes. Importantly, they all lack marked cytotoxic activity and exhibit a high LD50 value in the sepsis model. These strains represent promising candidates for a more detailed assessment of relevant fitness traits in urine and their suitability for therapeutic bladder colonization.
Collapse
Affiliation(s)
- Christoph Stork
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Beáta Kovács
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.,First Department of Internal Medicine, University of Pécs, Pécs, Hungary
| | - Barnabás Rózsai
- Department of Paediatrics, University of Pécs, Pécs, Hungary
| | - Johannes Putze
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Matthias Kiel
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Ágnes Dorn
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Judit Kovács
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | | | | | - György Schneider
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Monika Kerényi
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Levente Emödy
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Abstract
The emergence of genomics over the last 10 years has provided new insights into the evolution and virulence of extraintestinal Escherichia coli. By combining population genetics and phylogenetic approaches to analyze whole-genome sequences, it became possible to link genomic features to specific phenotypes, such as the ability to cause urinary tract infections. An E. coli chromosome can vary extensively in length, ranging from 4.3 to 6.2 Mb, encoding 4,084 to 6,453 proteins. This huge diversity is structured as a set of less than 2,000 genes (core genome) that are conserved between all the strains and a set of variable genes. Based on the core genome, the history of the species can be reliably reconstructed, revealing the recent emergence of phylogenetic groups A and B1 and the more ancient groups B2, F, and D. Urovirulence is most often observed in B2/F/D group strains and is a multigenic process involving numerous combinations of genes and specific alleles with epistatic interactions, all leading down multiple evolutionary paths. The genes involved mainly code for adhesins, toxins, iron capture systems, and protectins, as well as metabolic pathways and mutation-rate-control systems. However, the barrier between commensal and uropathogenic E. coli strains is difficult to draw as the factors that are responsible for virulence have probably also been selected to allow survival of E. coli as a commensal in the intestinal tract. Genomic studies have also demonstrated that infections are not the result of a unique and stable isolate, but rather often involve several isolates with variable levels of diversity that dynamically changes over time.
Collapse
|
9
|
Strengths and Limitations of Model Systems for the Study of Urinary Tract Infections and Related Pathologies. Microbiol Mol Biol Rev 2016; 80:351-67. [PMID: 26935136 DOI: 10.1128/mmbr.00067-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Urinary tract infections (UTIs) are some of the most common bacterial infections worldwide and are a source of substantial morbidity among otherwise healthy women. UTIs can be caused by a variety of microbes, but the predominant etiologic agent of these infections is uropathogenic Escherichia coli (UPEC). An especially troubling feature of UPEC-associated UTIs is their high rate of recurrence. This problem is compounded by the drastic increase in the global incidence of antibiotic-resistant UPEC strains over the past 15 years. The need for more-effective treatments for UTIs is driving research aimed at bettering our understanding of the virulence mechanisms and host-pathogen interactions that occur during the course of these infections. Surrogate models of human infection, including cell culture systems and the use of murine, porcine, avian, teleost (zebrafish), and nematode hosts, are being employed to define host and bacterial factors that modulate the pathogenesis of UTIs. These model systems are revealing how UPEC strains can avoid or overcome host defenses and acquire scarce nutrients while also providing insight into the virulence mechanisms used by UPEC within compromised individuals, such as catheterized patients. Here, we summarize our current understanding of UTI pathogenesis while also giving an overview of the model systems used to study the initiation, persistence, and recurrence of UTIs and life-threatening sequelae like urosepsis. Although we focus on UPEC, the experimental systems described here can also provide valuable insight into the disease processes associated with other bacterial pathogens both within the urinary tract and elsewhere within the host.
Collapse
|
10
|
Barber AE, Fleming BA, Mulvey MA. Similarly Lethal Strains of Extraintestinal Pathogenic Escherichia coli Trigger Markedly Diverse Host Responses in a Zebrafish Model of Sepsis. mSphere 2016; 1:e00062-16. [PMID: 27303721 PMCID: PMC4894679 DOI: 10.1128/msphere.00062-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023] Open
Abstract
In individuals with sepsis, the infecting microbes are commonly viewed as generic inducers of inflammation while the host background is considered the primary variable affecting disease progression and outcome. To study the effects of bacterial strain differences on the maladaptive immune responses that are induced during sepsis, we employed a novel zebrafish embryo infection model using extraintestinal pathogenic Escherichia coli (ExPEC) isolates. These genetically diverse pathogens are a leading cause of sepsis and are becoming increasingly dangerous because of the rise of multidrug-resistant strains. Zebrafish infected with ExPEC isolates exhibit many of the pathophysiological features seen in septic human patients, including dysregulated inflammatory responses (cytokine storms), tachycardia, endothelial leakage, and progressive edema. However, only a limited subset of ExPEC isolates can trigger a sepsis-like state and death of the host when introduced into the bloodstream. Mirroring the situation in human patients, antibiotic therapy reduced ExPEC titers and improved host survival rates but was only effective within limited time frames that varied, depending on the infecting pathogen. Intriguingly, we find that phylogenetically distant but similarly lethal ExPEC isolates can stimulate markedly different host transcriptional responses, including disparate levels of inflammatory mediators. These differences correlate with the amounts of bacterial flagellin expression during infection, as well as differential activation of Toll-like receptor 5 by discrete flagellar serotypes. Altogether, this work establishes zebrafish as a relevant model of key aspects of human sepsis and highlights the ability of genetically distinct ExPEC isolates to induce divergent host responses independently of baseline host attributes. IMPORTANCE Sepsis is a life-threatening systemic inflammatory condition that is initiated by the presence of microorganisms in the bloodstream. In the United States, sepsis due to ExPEC and other pathogens kills well over a quarter of a million people each year and is associated with tremendous health care costs. A high degree of heterogeneity in the signs and symptomology of sepsis makes this disease notoriously difficult to effectively diagnose and manage. Here, using a zebrafish model of sepsis, we find that similarly lethal but genetically distinct ExPEC isolates can elicit notably disparate host responses. These variances are in part due to differences in the levels and types of flagellin that are expressed by the infecting ExPEC strains. A better understanding of the variable impact that bacterial factors like flagellin have on host responses during sepsis could lead to improved diagnostic and therapeutic approaches to these often deadly infections. Podcast: A podcast concerning this article is available.
Collapse
Affiliation(s)
- Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah, USA
| | - Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
11
|
Mora-Rillo M, Fernández-Romero N, Navarro-San Francisco C, Díez-Sebastián J, Romero-Gómez MP, Fernández FA, López JRA, Mingorance J. Impact of virulence genes on sepsis severity and survival in Escherichia coli bacteremia. Virulence 2016; 6:93-100. [PMID: 25654604 DOI: 10.4161/21505594.2014.991234] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are a frequent cause of bacteremia and sepsis, but the role of ExPEC genetic virulence factors (VFs) in sepsis development and outcome is ill-defined. Prospective study including 120 adult patients with E. coli bacteremia to investigate the impact of bacterial and host factors on sepsis severity and mortality. Patients' clinical and demographic data were registered. Phylogenetic background of E. coli isolates was analyzed by SNP pyrosequencing and VFs by PCR. The E. coli isolates presented an epidemic population structure with 6 dominant clones making up to half of the isolates. VF gene profiles were highly diverse. Multivariate analysis for sepsis severity showed that the presence of cnf and blaTEM genes increased the risk of severe illness by 6.75 (95% confidence interval [CI] 1.79-24.71) and 2.59 (95% CI 1.04-6.43) times respectively, while each point in the Pitt score increased the risk by 1.34 (95% CI 1.02-1.76) times. Multivariate analysis for mortality showed that active chemotherapy (OR 17.87, 95% CI 3.35-95.45), McCabe-Jackson Index (OR for rapidly fatal category 120.15, 95% CI 4.19-3446.23), Pitt index (OR 1.78, 95% CI 1.25-2.56) and presence of fyuA gene (OR 8.05, 95% CI 1.37-47.12) were associated to increased mortality while the presence of P fimbriae genes had a protective role (OR 0.094, 95%IC 0.018-0.494). Bacteremic E. coli had a high diversity of genetic backgrounds and VF gene profiles. Bacterial VFs and host determinants had an impact on disease evolution and mortality.
Collapse
Affiliation(s)
- Marta Mora-Rillo
- a Unidad de Enfermedades Infecciosas y Microbiología Clínica; Servicio de Medicina Interna ; Hospital Universitario La Paz-IDIPAZ ; Madrid , Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 PMCID: PMC4642849 DOI: 10.12688/f1000research.6709.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
13
|
Kell D, Potgieter M, Pretorius E. Individuality, phenotypic differentiation, dormancy and 'persistence' in culturable bacterial systems: commonalities shared by environmental, laboratory, and clinical microbiology. F1000Res 2015; 4:179. [PMID: 26629334 DOI: 10.12688/f1000research.6709.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/28/2023] Open
Abstract
For bacteria, replication mainly involves growth by binary fission. However, in a very great many natural environments there are examples of phenotypically dormant, non-growing cells that do not replicate immediately and that are phenotypically 'nonculturable' on media that normally admit their growth. They thereby evade detection by conventional culture-based methods. Such dormant cells may also be observed in laboratory cultures and in clinical microbiology. They are usually more tolerant to stresses such as antibiotics, and in clinical microbiology they are typically referred to as 'persisters'. Bacterial cultures necessarily share a great deal of relatedness, and inclusive fitness theory implies that there are conceptual evolutionary advantages in trading a variation in growth rate against its mean, equivalent to hedging one's bets. There is much evidence that bacteria exploit this strategy widely. We here bring together data that show the commonality of these phenomena across environmental, laboratory and clinical microbiology. Considerable evidence, using methods similar to those common in environmental microbiology, now suggests that many supposedly non-communicable, chronic and inflammatory diseases are exacerbated (if not indeed largely caused) by the presence of dormant or persistent bacteria (the ability of whose components to cause inflammation is well known). This dormancy (and resuscitation therefrom) often reflects the extent of the availability of free iron. Together, these phenomena can provide a ready explanation for the continuing inflammation common to such chronic diseases and its correlation with iron dysregulation. This implies that measures designed to assess and to inhibit or remove such organisms (or their access to iron) might be of much therapeutic benefit.
Collapse
Affiliation(s)
- Douglas Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester, Lancashire, M1 7DN, UK
| | - Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia, 0007, South Africa
| |
Collapse
|
14
|
Surgers L, Bleibtreu A, Burdet C, Clermont O, Laouénan C, Lefort A, Mentré F, Carbonne B, Bingen E, Meynard JL, Denamur E, on behalf of the COLIBAFI Group. Escherichia coli bacteraemia in pregnant women is life-threatening for foetuses. Clin Microbiol Infect 2014; 20:O1035-41. [DOI: 10.1111/1469-0691.12742] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/14/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022]
|
15
|
Santos ACM, Zidko ACM, Pignatari AC, Silva RM. Assessing the diversity of the virulence potential of Escherichia coli isolated from bacteremia in São Paulo, Brazil. Braz J Med Biol Res 2013; 46:968-973. [PMID: 24141553 PMCID: PMC3854340 DOI: 10.1590/1414-431x20133184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/29/2013] [Indexed: 12/16/2022] Open
Abstract
Most of the knowledge of the virulence determinants of extraintestinal pathogenic
Escherichia coli (ExPEC) comes from studies with human strains
causing urinary tract infections and neonatal meningitis and animal strains causing
avian colibacillosis. In this research, we analyzed the phylogenetic background, the
presence of 20 ExPEC virulence factors, and the intrinsic virulence potential of 74
E. coli strains isolated in São Paulo, Brazil, from 74
hospitalized patients (43 males and 31 females) with unknown-source bacteremia.
Unlike other places in the world, the bacteremic strains originated equally from
phylogroups B2 (35%) and D (30%). A great variability in the profiles of virulence
factors was noted in this survey. Nevertheless, 61% of the strains were classified as
ExPEC, meaning that they possessed intrinsic virulent potential. Accordingly, these
strains presented high virulence factor scores (average of 8.7), and were positively
associated with 12 of 17 virulence factors detected. On the contrary, the non-ExPEC
strains, isolated from 39% of the patients, presented a generally low virulence
capacity (medium virulence factor score of 3.1), and were positively associated with
only the colicin cvaC gene. These results show the importance of
discriminating E. coli isolates that possess characteristics of true
pathogens from those that may be merely opportunistic in order to better understand
the virulence mechanisms involved in extraintestinal E. coli
infections. Such knowledge is essential for epidemiological purposes as well as for
development of control measures aimed to minimize the incidence of these
life-threatening and costly infections.
Collapse
Affiliation(s)
- A C M Santos
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São PauloSP, Brasil
| | | | | | | |
Collapse
|
16
|
Denamur E, Picard B. Virulence et résistance : deux caractéristiques antagonistes chez Escherichia coli ? MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-012-0465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|