1
|
Sommers L, Akam L, Hunter DJ, Bhatti JS, Mastana S. Role of the ACE I/D Polymorphism in Selected Public Health-Associated Sporting Modalities: An Updated Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1439. [PMID: 39595706 PMCID: PMC11593961 DOI: 10.3390/ijerph21111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND The ACE I/D polymorphism has been suggested to be associated with multiple chronic diseases and sports modalities, which has public health implications for global populations and sport performance. This updated review aims to strengthen the association and identify sporting disciplines that are most influenced by the ACE gene polymorphism using a meta-analysis approach. METHODS Published studies on the association between the ACE I/D polymorphism and elite endurance and power were collected until 15 June 2024. The studies on public health-associated sports like running, swimming, and cycling were systematically reviewed following pre-agreed criteria, and a meta-analysis was carried out using different genetic models. RESULTS A total of 137 studies were identified in the literature search and screened. There was a significant association between elite endurance and the ACE II genotype compared with healthy inactive controls (OR, 1.54; 95%CI, 1.24-1.91) and elite power athletes (OR = 1.56; 95%CI = 1.07-2.28). Specifically, runners and triathletes were associated with the II genotype compared with controls (OR = 1.76; 95%CI = 1.26-2.47; p-value = 0.001 and OR = 2.69; 95%CI = 1.15-6.32, p-value = 0.023, respectively). Additionally, endurance swimmers were associated with the II genotype compared with short-distance, power swimmers (OR = 2.27; 95%CI = 1.49-3.45; p-value < 0.001). CONCLUSION The meta-analysis results confirm and strengthen the association between elite endurance and the ACE I/D polymorphism in different sporting modalities, which may have implications for public health and sports participation.
Collapse
Affiliation(s)
- Lydia Sommers
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (L.S.); (L.A.); (D.J.H.)
| | - Liz Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (L.S.); (L.A.); (D.J.H.)
| | - David John Hunter
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (L.S.); (L.A.); (D.J.H.)
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151401, India;
| | - Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (L.S.); (L.A.); (D.J.H.)
| |
Collapse
|
2
|
Chae JH, Eom SH, Lee SK, Jung JH, Kim CH. Association between Complex ACTN3 and ACE Gene Polymorphisms and Elite Endurance Sports in Koreans: A Case-Control Study. Genes (Basel) 2024; 15:1110. [PMID: 39336701 PMCID: PMC11431688 DOI: 10.3390/genes15091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
ACTN3 R577X and ACE I/D polymorphisms are associated with endurance exercise ability. This case-control study explored the association of ACTN3 and ACE gene polymorphisms with elite pure endurance in Korean athletes, hypothesizing that individuals with both ACTN3 XX and ACE II genotypes would exhibit superior endurance. We recruited 934 elite athletes (713 males, 221 females) and selected 45 pure endurance athletes (36 males, 9 females) requiring "≥90% aerobic energy metabolism during sports events", in addition to 679 healthy non-athlete Koreans (361 males, 318 females) as controls. Genomic DNA was extracted and genotyped for ACTN3 R577X and ACE I/D polymorphisms. ACE ID (p = 0.090) and ACTN3 RX+XX (p = 0.029) genotype distributions were significantly different between the two groups. Complex ACTN3-ACE genotypes also exhibited significant differences (p = 0.014), with dominant complex genotypes positively affecting endurance (p = 0.039). The presence of RX+II or XX+II was associated with a 1.763-fold higher likelihood of possessing a superior endurance capacity than that seen in healthy controls (90% CI = 1.037-3.089). Our findings propose an association of combined ACTN3 RX+XX and ACE II genotypes with enhanced endurance performance in elite Korean athletes. While causality remains to be confirmed, our study highlights the potential of ACTN3-ACE polymorphisms in predicting elite endurance.
Collapse
Affiliation(s)
- Ji Heon Chae
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Seon-Ho Eom
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Sang-Ki Lee
- Department of Physical Education, Korea National Sports University, Seoul 05541, Republic of Korea;
| | - Joo-Ha Jung
- Center for Sport Science in Chungnam, Asan 31580, Republic of Korea
| | - Chul-Hyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| |
Collapse
|
3
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
4
|
Abad CCC, Crivói Carmo E, Prado DMLD, Reis V, Pereira L, Loturco I, Koehle M. Using Physiological Laboratory Tests and Neuromuscular Functions to Predict Extreme Ultratriathlon Performance. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1183-1191. [PMID: 36006760 DOI: 10.1080/02701367.2022.2094307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Purpose: This study aims to investigate the relationship between split disciplines and overall extreme ultra-triathlon (EUT) performance and verify the relationship among physiological and neuromuscular measurements with both fractional and total EUT performance while checking which variables could predict partial and overall EUT race time. Methods: Eleven volunteers (37 ± 6 years; 176.9 ± 6.1 cm; 77.9 ± 10.9 kg) performed two maximal graded tests (cycling and running) for physiological measurements and muscle strength/power tests to assess neuromuscular functions. Results: The correlation of swimming split times to predict overall EUT race times was lower than for cycling and running split times (r2 = 0.005; p > .05; r2 = 0.949; p < .001 and r2 = 0.925; p < .001, respectively). VO2peak obtained during running test (VO2peakrun) and VT power output assessed during cycling test (VTPO) were the highest predictors of cycling performance (r2 = 0.92; p = .017), whereas VO2peakrun and peakpower output in the cycling test (PPO) were the highest predictors of running performance (r2 = 0.94; p = .008). Conclusion: VO2peakrun and VTPO, associated to jump height assessed during countermovement jump (CMJ) test were the highest correlated variables to predict total EUT performance (r2 = 0.99; p = .007). In practical terms, coaches should include the assessment of VO2peakrun, VTPO, and CMJ to evaluate the athletes' status and monitor their performance throughout the season. Future studies should test how the improvement of these variables would affect EUT performance during official races.
Collapse
Affiliation(s)
| | | | | | - Valter Reis
- Nucleus of High Performance in Sport - NARSP
| | | | | | | |
Collapse
|
5
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
6
|
Abstract
Sports genomics is the scientific discipline that focuses on the organization and function of the genome in elite athletes, and aims to develop molecular methods for talent identification, personalized exercise training, nutritional need and prevention of exercise-related diseases. It postulates that both genetic and environmental factors play a key role in athletic performance and related phenotypes. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status and soft-tissue injuries covers advances in research reported in recent years, including one whole genome sequencing (WGS) and four genome-wide association (GWAS) studies, as well as findings from collaborative projects and meta-analyses. At end of 2020, the total number of DNA polymorphisms associated with athlete status was 220, of which 97 markers have been found significant in at least two studies (35 endurance-related, 24 power-related, and 38 strength-related). Furthermore, 29 genetic markers have been linked to soft-tissue injuries in at least two studies. The most promising genetic markers include HFE rs1799945, MYBPC3 rs1052373, NFIA-AS2 rs1572312, PPARA rs4253778, and PPARGC1A rs8192678 for endurance; ACTN3 rs1815739, AMPD1 rs17602729, CPNE5 rs3213537, CKM rs8111989, and NOS3 rs2070744 for power; LRPPRC rs10186876, MMS22L rs9320823, PHACTR1 rs6905419, and PPARG rs1801282 for strength; and COL1A1 rs1800012, COL5A1 rs12722, COL12A1 rs970547, MMP1 rs1799750, MMP3 rs679620, and TIMP2 rs4789932 for soft-tissue injuries. It should be appreciated, however, that hundreds and even thousands of DNA polymorphisms are needed for the prediction of athletic performance and injury risk.
Collapse
|
7
|
Effect of ACTN3 Genotype on Sports Performance, Exercise-Induced Muscle Damage, and Injury Epidemiology. Sports (Basel) 2020; 8:sports8070099. [PMID: 32668587 PMCID: PMC7404684 DOI: 10.3390/sports8070099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic factors play a significant role in athletic performance and its related phenotypes such as power, strength and aerobic capacity. In this regard, the lack of a muscle protein due to a genetic polymorphism has been found to affect sport performance in a wide variety of ways. α-actinin-3 is a protein located within the skeletal muscle with a key role in the production of sarcomeric force. A common stop-codon polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) produces individuals with the XX genotype that lack expression of a functional α-actinin-3. In contrast, individuals with the R-allele (i.e., RX vs. RR genotypes) in this polymorphism can express α-actinin-3. Interestingly, around ~18% of the world population have the XX genotype and much has been debated about why a polymorphism that produces a lack of a muscle protein has endured natural selection. Several investigations have found that α-actinin-3 deficiency due to XX homozygosity in the ACTN3 R577X polymorphism can negatively affect sports performance through several structural, metabolic, or signaling changes. In addition, new evidence suggests that α-actinin-3 deficiency may also impact sports performance through indirect factors such a higher risk for injury or lower resistance to muscle-damaging exercise. The purpose of this discussion is to provide a clear explanation of the effect of α-actinin-3 deficiency due to the ACTN3 XX genotype on sport. Key focus has been provided about the effect of α-actinin-3 deficiency on morphologic changes in skeletal muscle, on the low frequency of XX athletes in some athletic disciplines, and on injury epidemiology.
Collapse
|
8
|
Musiał AD, Ropka-Molik K, Piórkowska K, Jaworska J, Stefaniuk-Szmukier M. ACTN3 genotype distribution across horses representing different utility types and breeds. Mol Biol Rep 2019; 46:5795-5803. [PMID: 31392535 DOI: 10.1007/s11033-019-05013-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023]
Abstract
In horses, the identification of the genetic background of phenotypic variation, especially with regard to performance characteristics and predisposition to effort, has been extensively studied. As α-actinin-3 function is related to the regulation of muscle contraction and cell metabolism, the ACTN3 gene is considered one of the main genetic factors determining muscle strength. The aim of the present study was to assess the genotype distribution of two SNP variants within the equine ACTN3 gene (g.1104G > A and c.2334C > T) across different utility types and horse breeds. The analyses were performed on five breeds representing horses of different types, origins and utilities according to performance (in total 877 horses): primitive (Polish koniks; Hucul horses), draught (Polish heavy draught) and light (Thoroughbred and Arabian horses). Two polymorphisms within the ACTN3 gene locus were genotyped and genotype and allele frequency were compared across populations in order to verify if the identified differences contribute to the phenotypic variation observed in horse breeds. The present study allowed confirmation of the significant differences in genotype distribution of g.1104G > A localized in the promoter region between native breeds and racehorse breeds such as Thoroughbreds and Arabians. The allele/genotype variations between primitive and light breeds confirmed that the analysed variant was under selection pressure and can be correlated with racing ability. Moreover, the significant differences for the c.2334C > T genotype frequency between Arabian horses and other breeds indicate its relationship with endurance and athletic performance. The predominance of the T allele (85%) in Arabians suggests that the T variant was favoured during selection focused on improving stamina and could be one of the genetic factors determining endurance ability. Further research is needed to confirm the association of both polymorphisms with exact racing and/or riding results.
Collapse
Affiliation(s)
- Adrianna D Musiał
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland. .,Laboratory of Genomics, Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Joanna Jaworska
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn - UWM, Olsztyn, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Horse Breeding, Institute of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
9
|
Potocka N, Penar-Zadarko B, Skrzypa M, Braun M, Zadarko-Domaradzka M, Ozimek M, Nizioł-Babiarz E, Barabasz Z, Zawlik I, Zadarko E. Association of ACTN3 Polymorphism with Body Somatotype and Cardiorespiratory Fitness in Young Healthy Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091489. [PMID: 31035544 PMCID: PMC6540183 DOI: 10.3390/ijerph16091489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022]
Abstract
ACTN3 encodes the protein α-actinin-3, which affects the muscle phenotype. In the present study, we examined the association of ACTN3 R577X polymorphism with body somatotype and cardiorespiratory fitness in young, healthy adults. The study group included 304 young adults, in whom cardiorespiratory fitness was evaluated and the maximum oxygen uptake was determined directly. The somatotype components were calculated according to the Heath-Carter method. Genotyping for the ACTN3 gene was performed using a polymerase chain reaction followed by high-resolution melting analysis. In the female group, a lower maximal heart rate (HRmax) was more strongly associated with the RR genotype (p = 0.0216) than with the RX and XX genotypes. In the male group, the ACTN3 RX genotype, as compared with other genotypes, tended to be associated with a lower percentage of adipose tissue (p = 0.0683), as also reflected by the body mass index (p = 0.0816). ACTN3 gene polymorphism may affect cardiorespiratory fitness. Our analysis of ACTN3 gene polymorphism does not clearly illustrate the relationships among genotype, body composition, and somatotype in young, healthy adults.
Collapse
Affiliation(s)
- Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Beata Penar-Zadarko
- Institute of Nursing and Health Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
- Innovative Research Laboratory in Nursing, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Marzena Skrzypa
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 90-419 Lodz, Poland.
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Maria Zadarko-Domaradzka
- Department of Human Sciences, Faculty of Physical Education, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Mariusz Ozimek
- Institute of Sport-National Research Institute, 02-091 Warsaw, Poland.
| | - Edyta Nizioł-Babiarz
- Department of Health Sciences, Faculty of Physical Education, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Zbigniew Barabasz
- Department of Health Sciences, Faculty of Physical Education, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
- Department of Genetics, Institution of Experimental and Clinical Medicine, Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland.
| | - Emilian Zadarko
- Department of Health Sciences, Faculty of Physical Education, University of Rzeszow, 35-959 Rzeszow, Poland.
| |
Collapse
|
10
|
Kreutzer A, Martinez CA, Kreutzer M, Stone JD, Mitchell JB, Oliver JM. Effect of ACTN3 Polymorphism on Self-reported Running Times. J Strength Cond Res 2018; 33:80-88. [PMID: 30431530 DOI: 10.1519/jsc.0000000000002949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Kreutzer, A, Martinez, CA, Kreutzer, M, Stone, JD, Mitchell, JB, and Oliver, JM. Effect of ACTN3 polymorphism on self-reported running times. J Strength Cond Res 33(1): 80-88, 2019-This investigation examined the effect of ACTN3 genotype on self-reported distance running personal records (PRs). Of 94 (n = 94) recreationally active men and women, 82 (f = 42, m = 40; age: 22.6 ± 4.5 years; body mass index [BMI]: 23.5 ± 3.4 kg·m) reported 1-mile running PRs, whereas 57 (f = 33, m = 24; age: 23.4 ± 5.3 years; BMI: 22.9 ± 9.3 kg·m) reported 5K running PRs. Subjects were grouped by the presence (ACTN3) or absence (ACTN3) of α-actinin-3, as well as by individual genotype (RR, RX, and XX). Among female participants, ACTN3 reported 64.5 seconds faster (p = 0.048) 1-mile PRs compared with their ACTN3 counterparts. No differences were observed when comparing 5K PRs between genotypes. Two one-sided test equivalence testing revealed that none of the effects observed when comparing ACTN3 and ACTN3 were equivalent to zero. Our study confirms a reportedly greater prevalence of XX benefits for endurance performance in females when compared with males but fails to strongly link ACTN3 genotype to endurance performance. Practitioners should continue to be cautious when using genetic information for talent identification and sport selection.
Collapse
Affiliation(s)
- Andreas Kreutzer
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| | - Christopher A Martinez
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| | - McKensie Kreutzer
- Beutler Lab, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jason D Stone
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| | - Joel B Mitchell
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| | - Jonathan M Oliver
- Department of Kinesiology, Exercise & Sport Performance Laboratory, Texas Christian University, Fort Worth, Texas
| |
Collapse
|
11
|
Houweling PJ, Papadimitriou ID, Seto JT, Pérez LM, Coso JD, North KN, Lucia A, Eynon N. Is evolutionary loss our gain? The role of
ACTN3
p.Arg577Ter (R577X) genotype in athletic performance, ageing, and disease. Hum Mutat 2018; 39:1774-1787. [DOI: 10.1002/humu.23663] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Peter J. Houweling
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | | | - Jane T. Seto
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Laura M. Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Instituto de Investigación Hospital 12 de Octubre Madrid Spain
| | - Juan Del Coso
- Exercise Physiology Laboratory Camilo José Cela University Madrid Spain
| | - Kathryn N. North
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Alejandro Lucia
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable Madrid Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS) Victoria University Victoria Australia
| |
Collapse
|
12
|
Del Coso J, Hiam D, Houweling P, Pérez LM, Eynon N, Lucía A. More than a 'speed gene': ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur J Appl Physiol 2018; 119:49-60. [PMID: 30327870 DOI: 10.1007/s00421-018-4010-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
A common null polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) has been related to different aspects of exercise performance. Individuals who are homozygous for the X allele are unable to express the α-actinin-3 protein in the muscle as opposed to those with the RX or RR genotype. α-actinin-3 deficiency in the muscle does not result in any disease. However, the different ACTN3 genotypes can modify the functioning of skeletal muscle during exercise through structural, metabolic or signaling changes, as shown in both humans and in the mouse model. Specifically, the ACTN3 RR genotype might favor the ability to generate powerful and forceful muscle contractions. Leading to an overall advantage of the RR genotype for enhanced performance in some speed and power-oriented sports. In addition, RR genotype might also favor the ability to withstand exercise-induced muscle damage, while the beneficial influence of the XX genotype on aerobic exercise performance needs to be validated in human studies. More information is required to unveil the association of ACTN3 genotype with trainability and injury risk during acute or chronic exercise.
Collapse
Affiliation(s)
- Juan Del Coso
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | | | - Laura M Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Alejandro Lucía
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain
| |
Collapse
|
13
|
Calsbeek R, Goedert D. Performance Tradeoffs, Ontogenetic Conflict, and Multisport Athletes: How is an Ironman Triathlete Like a Frog? Integr Comp Biol 2018; 57:207-216. [PMID: 28859415 DOI: 10.1093/icb/icx014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SYNOPSIS Life-history theory is a cornerstone of modern evolutionary biology that addresses myriad phenomena ranging from demography and population structure to the evolution of aging and senescence. Trade-offs may arise in a number of contexts, from allocation-based (e.g., egg size vs. egg number) to genomic conflicts (e.g., intralocus sexual conflict in which genes that perform well in males perform poorly in females). Here we test for performance tradeoffs in human athletes. We show that in Ironman triathletes, swimming performance trades off with cycling and running performance. The tradeoff appears to be plastic, in that only highly trained athletes experience the tradeoff. We then investigate whether wood frogs (Rana sylvatica) experience similar locomotor performance tradeoffs, to ask whether the divergent environments experienced by tadpoles and frogs leads to ontogenetic conflict (tradeoffs over development). We show that although swimming and jumping performance are positively correlated, antagonistic natural selection may still favor alternative adaptive optima in the two life history stages. However, "adaptive decoupling" of the life stages during metamorphosis may resolve ontogenetic conflict and facilitate independent adaptation to both environments. Thus, whereas performance tradeoffs are general in both systems, the unique selective environment of amphibians has favored the evolution of mechanisms to alleviate the costs of those tradeoffs.
Collapse
Affiliation(s)
- Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Debora Goedert
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.,CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, Brazil
| |
Collapse
|
14
|
Pickering C, Kiely J. ACTN3: More than Just a Gene for Speed. Front Physiol 2017; 8:1080. [PMID: 29326606 PMCID: PMC5741991 DOI: 10.3389/fphys.2017.01080] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3, which has commonly been referred to as “a gene for speed”. Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes.
Collapse
Affiliation(s)
- Craig Pickering
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom.,Exercise and Nutritional Genomics Research Centre, DNAFit Ltd., London, United Kingdom
| | - John Kiely
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
15
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Massidda M, Bachis V, Corrias L, Piras F, Scorcu M, Culigioni C, Masala D, Calò CM. ACTN3 R577X polymorphism is not associated with team sport athletic status in Italians. SPORTS MEDICINE-OPEN 2015; 1:6. [PMID: 27747845 PMCID: PMC4532716 DOI: 10.1186/s40798-015-0008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022]
Abstract
Background The ACTN3 gene may influence performance in team sports, in which sprint action and high-speed movements, regulated by the anaerobic energy system, are crucial to the ultimate success of a match. The aim of this study was to determine the association between the ACTN3 R577X (rs1815739) polymorphism and elite team sport athletic status in Italian male athletes. Methods We compared the genotype and allele frequency of the ACTN3 R577X polymorphism between team sport athletes (n = 75), endurance athletes (n = 40), sprint/power athletes (n = 64), and non-athletic healthy controls (n = 192) from Italy. Genomic DNA was collected using a buccal swab. Extraction was performed according to the manufacturer’s directions provided with a commercially available kit (Qiagen S.r.l., Milan, Italy). Results Team sport athletes showed a lower frequency of the 577RR genotype compared to the 577XX genotype than sprint/power athletes (p = 0.044). However, the ACTN3 R577X polymorphism was not associated with team sport athletic status compared to endurance athletes and non-athletic controls. Conclusions Our results agree with a recent large-scale study involving athletes from Spain, Poland, and Russia. The ACTN3 R577X polymorphism was not associated with team sport athletic status compared to endurance athletes and non-athletic controls.
Collapse
Affiliation(s)
- Myosotis Massidda
- Department of Life and Environmental Sciences, University of Cagliari, SS 554, km 4.500, Monserrato, 09042, Italy.
| | - Valeria Bachis
- Department of Life and Environmental Sciences, University of Cagliari, SS 554, km 4.500, Monserrato, 09042, Italy
| | - Laura Corrias
- Department of Life and Environmental Sciences, University of Cagliari, SS 554, km 4.500, Monserrato, 09042, Italy
| | - Francesco Piras
- FMSI CR Sardegna and Cagliari Calcio SpA, Viale Tiziano, Cagliari, 70-00196, Italy
| | - Marco Scorcu
- FMSI CR Sardegna and Cagliari Calcio SpA, Viale Tiziano, Cagliari, 70-00196, Italy
| | - Claudia Culigioni
- Department of Life and Environmental Sciences, University of Cagliari, SS 554, km 4.500, Monserrato, 09042, Italy
| | - Daniele Masala
- University of Cassino, Viale dell'Università, Cassino, 03043, Italy
| | - Carla M Calò
- Department of Life and Environmental Sciences, University of Cagliari, SS 554, km 4.500, Monserrato, 09042, Italy
| |
Collapse
|
17
|
Kim K, Ahn N, Cheun W, Byun J, Joo Y. Association of Angiotensin Converting Enzyme I/D and α-actinin-3 R577X Genotypes with Growth Factors and Physical Fitness in Korean Children. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:131-9. [PMID: 25729275 PMCID: PMC4342733 DOI: 10.4196/kjpp.2015.19.2.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 01/01/2023]
Abstract
This study analyzed the differences in aerobic and anaerobic exercise ability and growth-related indicators, depending on the polymorphism of the ACE and the ACTN3 genes, to understand the genetic influence of exercise ability in the growth process of children. The subjects of the study consisted of elementary school students (n=856, age 10.32±0.07 yr). The anthropometric parameters, physical fitness and growth factors were compared among groups of the ACE I/D or the ACTN3 R577X polymorphisms. There were no significant differences between the anthropometric parameters, physical fitness and growth factors for the ACE gene ID or the ACTN3 gene R577X polymorphism. However, the DD type of ACE gene was highest in the side step test (p<0.05), and the DD type was significantly higher than the II+ID type (p<0.05) in the early bone age. The combined group of the ACE gene II+ID and the ACTN3 gene XX type significantly showed lower early bone age (p< 0.05). This study did not find any individual or compounding effects of the polymorphism in the ACE I/D or the ACTN3 R577X polymorphisms on the anthropometric parameters, physical fitness and growth factors of Korean children. However, the exercise experience and the DD type of the ACE gene may affect the early maturity of the bones.
Collapse
Affiliation(s)
- Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Nayoung Ahn
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Wookwang Cheun
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Jayoung Byun
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| | - Youngsik Joo
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu 704-701, Korea
| |
Collapse
|
18
|
Bishop-Bailey D. Mechanisms governing the health and performance benefits of exercise. Br J Pharmacol 2014; 170:1153-66. [PMID: 24033098 DOI: 10.1111/bph.12399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/18/2022] Open
Abstract
Humans are considered among the greatest if not the greatest endurance land animals. Over the last 50 years, as the population has become more sedentary, rates of cardiovascular disease and its associated risk factors such as obesity, type 2 diabetes and hypertension have all increased. Aerobic fitness is considered protective for all-cause mortality, cardiovascular disease, a variety of cancers, joint disease and depression. Here, I will review the emerging mechanisms that underlie the response to exercise, focusing on the major target organ the skeletal muscle system. Understanding the mechanisms of action of exercise will allow us to develop new therapies that mimic the protective actions of exercise.
Collapse
Affiliation(s)
- D Bishop-Bailey
- Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
19
|
Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol 2013; 1:1603-48. [PMID: 23733655 DOI: 10.1002/cphy.c100059] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This article is devoted to the role of genetic variation and gene-exercise interactions in the biology of adaptation to exercise. There is evidence from genetic epidemiology research that DNA sequence differences contribute to human variation in physical activity level, cardiorespiratory fitness in the untrained state, cardiovascular and metabolic response to acute exercise, and responsiveness to regular exercise. Methodological and technological advances have made it possible to undertake the molecular dissection of the genetic component of complex, multifactorial traits, such as those of interest to exercise biology, in terms of tissue expression profile, genes, and allelic variants. The evidence from animal models and human studies is considered. Data on candidate genes, genome-wide linkage results, genome-wide association findings, expression arrays, and combinations of these approaches are reviewed. Combining transcriptomic and genomic technologies has been shown to be more powerful as evidenced by the development of a recent molecular predictor of the ability to increase VO2max with exercise training. For exercise as a behavior and physiological fitness as a state to be major players in public health policies will require that the role of human individuality and the influence of DNA sequence differences be understood. Likewise, progress in the use of exercise in therapeutic medicine will depend to a large extent on our ability to identify the favorable responders for given physiological properties to a given exercise regimen.
Collapse
Affiliation(s)
- Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
| | | | | |
Collapse
|
20
|
Pimenta EM, Coelho DB, Veneroso CE, Barros Coelho EJ, Cruz IR, Morandi RF, De A. Pussieldi G, Carvalho MR, Garcia ES, De Paz Fernández JA. Effect of ACTN3 Gene on Strength and Endurance in Soccer Players. J Strength Cond Res 2013; 27:3286-92. [DOI: 10.1519/jsc.0b013e3182915e66] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Abstract
A common polymorphism in the α
-actinin-3
(
ACTN3
R577X) gene represents one of the most widely examined variations in terms of performance and genetic predisposition to certain sports. The aim of the present study was to examine the
ACTN3
R577X polymorphism in elite Turkish wind surfers. The genotyping procedure was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Five male and three female wind surfers, eight elite wind surfers in total, were enrolled in the study. Five of the surfers had RX, two had XX and one had RR genotypes. Previous findings indicated that the X allele was the endurance allele. Our findings were in agreement with the previous reports. Seven of our subjects had at least one copy of the X allele that was considered to have a tendency to prolong endurance. Our preliminary results must be supported with further studies in greater numbers of subjects to clarify the effect of gene polymorphism.
Collapse
|
22
|
Abstract
The heritability of specific phenotypical traits relevant for physical performance has been extensively investigated and discussed by experts from various research fields. By deciphering the complete human DNA sequence, the human genome project has provided impressive insights into the genomic landscape. The hope that this information would reveal the origin of phenotypical traits relevant for physical performance or disease risks has proven overly optimistic, and it is still premature to refer to a 'post-genomic' era of biological science. Linking genomic regions with functions, phenotypical traits and variation in disease risk is now a major experimental bottleneck. The recent deluge of genome-wide association studies (GWAS) generates extensive lists of sequence variants and genes potentially linked to phenotypical traits, but functional insight is at best sparse. The focus of this review is on the complex mechanisms that modulate gene expression. A large fraction of these mechanisms is integrated into the field of epigenetics, mainly DNA methylation and histone modifications, which lead to persistent effects on the availability of DNA for transcription. With the exceptions of genomic imprinting and very rare cases of epigenetic inheritance, epigenetic modifications are not inherited transgenerationally. Along with their susceptibility to external influences, epigenetic patterns are highly specific to the individual and may represent pivotal control centers predisposing towards higher or lower physical performance capacities. In that context, we specifically review how epigenetics combined with classical genetics could broaden our knowledge of genotype-phenotype interactions. We discuss some of the shortcomings of GWAS and explain how epigenetic influences can mask the outcome of quantitative genetic studies. We consider epigenetic influences, such as genomic imprinting and epigenetic inheritance, as well as the life-long variability of epigenetic modification patterns and their potential impact on phenotype with special emphasis on traits related to physical performance. We suggest that epigenetic effects may also play a considerable role in the determination of athletic potential and these effects will need to be studied using more sophisticated quantitative genetic models. In the future, epigenetic status and its potential influence on athletic performance will have to be considered, explored and validated using well controlled model systems before we can begin to extrapolate new findings to complex and heterogeneous human populations. A combination of the fields of genomics, epigenomics and transcriptomics along with improved bioinformatics tools and precise phenotyping, as well as a precise classification of the test populations is required for future research to better understand the inter-relations of exercise physiology, performance traits and also susceptibility towards diseases. Only this combined input can provide the overall outlook necessary to decode the molecular foundation of physical performance.
Collapse
Affiliation(s)
- Tobias Ehlert
- Johannes Gutenberg-Universität Mainz, Department of Sports Medicine, Disease Prevention and Rehabilitation, Mainz, Germany
| | | | | |
Collapse
|
23
|
Grealy R, Smith CL, Chen T, Hiller D, Haseler LJ, Griffiths LR. The genetics of endurance: Frequency of the ACTN3 R577X variant in Ironman World Championship athletes. J Sci Med Sport 2013; 16:365-71. [DOI: 10.1016/j.jsams.2012.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/29/2012] [Accepted: 08/31/2012] [Indexed: 10/27/2022]
|
24
|
Eynon N, Hanson ED, Lucia A, Houweling PJ, Garton F, North KN, Bishop DJ. Genes for Elite Power and Sprint Performance: ACTN3 Leads the Way. Sports Med 2013; 43:803-17. [DOI: 10.1007/s40279-013-0059-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Ruiz JR, Santiago C, Yvert T, Muniesa C, Díaz-Ureña G, Bekendam N, Fiuza-Luces C, Gómez-Gallego F, Femia P, Lucia A. ACTN3genotype in Spanish elite swimmers: No “heterozygous advantage”. Scand J Med Sci Sports 2013; 23:e162-7. [DOI: 10.1111/sms.12045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 12/22/2022]
Affiliation(s)
| | - C. Santiago
- School of Doctorate Studies and Research; Universidad Europea de Madrid; Madrid; Spain
| | - T. Yvert
- School of Doctorate Studies and Research; Universidad Europea de Madrid; Madrid; Spain
| | - C. Muniesa
- Faculty of Physical Activity; Universidad Europea de Madrid; Madrid; Spain
| | - G Díaz-Ureña
- Faculty of Physical Activity; Universidad Europea de Madrid; Madrid; Spain
| | - N. Bekendam
- Faculty of Physical Activity; Universidad Europea de Madrid; Madrid; Spain
| | - C. Fiuza-Luces
- School of Doctorate Studies and Research; Universidad Europea de Madrid; Madrid; Spain
| | - F Gómez-Gallego
- School of Doctorate Studies and Research; Universidad Europea de Madrid; Madrid; Spain
| | - P. Femia
- Department of Biostatistics; School of Medicine; University of Granada; Granada; Spain
| | - A. Lucia
- School of Doctorate Studies and Research; Universidad Europea de Madrid; Madrid; Spain
| |
Collapse
|
26
|
Ravaglia S, De Filippi P, Pichiecchio A, Ponzio M, Saeidi Garaghani K, Poloni GU, Bini P, Danesino C. Can genes influencing muscle function affect the therapeutic response to enzyme replacement therapy (ERT) in late-onset type II glycogenosis? Mol Genet Metab 2012; 107:104-10. [PMID: 22704482 DOI: 10.1016/j.ymgme.2012.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 11/26/2022]
Abstract
The purpose of this study is to analyze the role of genes known to influence muscle performances on the outcome after enzyme replacement treatment (ERT) in type II Glycogenosis (GSDII). We analyzed 16 patients receiving ERT for ≥two years. We assessed the changes in muscle strength by hand-held dynamometry, muscle mass by quantitative MRI, and resistance to exercise by the 6-minute walking test. Exercise gene assessment included angiotensin converting enzyme insertion/deletion polymorphism (ACE), alpha-actinin3 R577X polymorphism (ACTN3), and peroxisome proliferator activated receptor alpha G/C polymorphism (PPARα). Independent of disease severity, one third of patients had a poor response to ERT, which was found to be associated with ACE DD genotype. The ACTN3 null polymorphism appeared to exert a positive effect on treatment efficacy, while PPARα did not seem to exert any influence at all. We conclude that poor treatment outcome in ACE DD genotypes is in line with previous observation of a worse disease course in this subpopulation, and suggests the need for a more careful follow-up and individualized treatment approaches for these patients. Exercise genes may provide a new opportunity for studying the outcome after treatment and the muscle regeneration abilities in other models of genetic myopathies.
Collapse
Affiliation(s)
- Sabrina Ravaglia
- Department of Public Health and Neurosciences, University of Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
The ACTN3 R577X polymorphism across three groups of elite male European athletes. PLoS One 2012; 7:e43132. [PMID: 22916217 PMCID: PMC3420864 DOI: 10.1371/journal.pone.0043132] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 07/17/2012] [Indexed: 11/29/2022] Open
Abstract
The ACTN3 R577X polymorphism (rs1815739) is a strong candidate to influence elite athletic performance. Yet, controversy exists in the literature owing to between-studies differences in the ethnic background and sample size of the cohorts, the latter being usually low, which makes comparisons difficult. In this case:control genetic study we determined the association between elite athletic status and the ACTN3 R577X polymorphism within three cohorts of European Caucasian men, i.e. Spanish, Polish and Russian [633 cases (278 elite endurance and 355 power athletes), and 808 non-athletic controls]. The odds ratio (OR) of a power athlete harbouring the XX versus the RR genotype compared with sedentary controls was 0.54 [95% confidence interval (CI): 0.34–0.48; P = 0.006]. We also observed that the OR of an endurance athlete having the XX versus the RR genotype compared with power athletes was 1.88 (95%CI: 1.07–3.31; P = 0.028). In endurance athletes, the OR of a “world-class” competitor having the XX genotype versus the RR+RX genotype was 3.74 (95%CI: 1.08–12.94; P = 0.038) compared with those of a lower (“national”) competition level. No association (P>0.1) was noted between the ACTN3 R577X polymorphism and competition level (world-class versus national-level) in power athletes. Our data provide comprehensive support for the influence of the ACTN3 R577X polymorphism on elite athletic performance.
Collapse
|
28
|
Cieszczyk P, Sawczuk M, Maciejewska-Karlowska A, Ficek K. ACTN3 R577X polymorphism in top-level Polish rowers. J Exerc Sci Fit 2012. [DOI: 10.1016/j.jesf.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
29
|
Ichinoseki-Sekine N, Yoshihara T, Kakigi R, Ogura Y, Sugiura T, Naito H. Fiber-type specific expression of α-actinin isoforms in rat skeletal muscle. Biochem Biophys Res Commun 2012; 419:401-4. [PMID: 22349507 DOI: 10.1016/j.bbrc.2012.02.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 11/18/2022]
Abstract
α-Actinins are actin-binding proteins, and two isoforms (α-actinin-2 and -3) are major structural components of the sarcomeric Z line in mammalian skeletal muscle. Based on human and knockout mice studies, α-actinin-3 is thought to be associated with muscle force output and high contraction velocities. However, fiber-type specific expression of α-actinin isoforms is not well understood and may vary among species. In this study, we investigated the expression of α-actinin isoforms and the difference between fiber types in rat skeletal muscle and compared it with those of humans and mice from previous reports. Soleus and plantaris muscles were analyzed immunohistochemically to identify muscle fiber types and α-actinin protein expression. α-Actinin-2 was stained in all muscle fibers in both the soleus and plantaris muscles; i.e., all α-actinin-3 co-expressed with α-actinin-2 in rat skeletal muscles. The proportions of α-actinin-3 expression, regardless of fiber type, were significantly higher in the plantaris (75.8 ± 0.6%) than the soleus (8.0 ± 1.7%). No α-actinin-3 expression was observed in type I fibers, whereas all type IIx+b fibers expressed α-actinin-3. α-Actinin-3 was also expressed in type IIa fibers; however, approximately 75% of type IIa fibers were not stained by α-actinin-3, and the proportion varied between muscles. The proportion of α-actinin-3 expression in type IIa fibers was significantly higher in the soleus muscle than the plantaris muscle. Our results showed that fiber-type specific expression of α-actinin isoforms in rats is more similar to that in humans compared to that of the mouse, whereas the proportion of α-actinin-3 protein varied between muscles.
Collapse
Affiliation(s)
- Noriko Ichinoseki-Sekine
- Institute of Health and Sports Science & Medicine, Juntendo University, 1-1 Hiragagakuendai, Inzai, Chiba 270-1695, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Shang X, Zhang F, Zhang L, Huang C. ACTN3R577X polymorphism and performance phenotypes in young Chinese male soldiers. J Sports Sci 2012; 30:255-60. [DOI: 10.1080/02640414.2011.619203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Bell W, Colley J, Evans W, Darlington S, Cooper SM. ACTN3 genotypes of Rugby Union players: Distribution, power output and body composition. Ann Hum Biol 2011; 39:19-27. [DOI: 10.3109/03014460.2011.632648] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
|
33
|
Alfred T, Ben-Shlomo Y, Cooper R, Hardy R, Cooper C, Deary IJ, Gunnell D, Harris SE, Kumari M, Martin RM, Moran CN, Pitsiladis YP, Ring SM, Sayer AA, Smith GD, Starr JM, Kuh D, Day INM, HALCyon study team. ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat 2011; 32:1008-18. [PMID: 21542061 PMCID: PMC3174315 DOI: 10.1002/humu.21526] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/19/2011] [Indexed: 12/03/2022]
Abstract
The ACTN3 R577X (rs1815739) genotype has been associated with athletic status and muscle phenotypes, although not consistently. Our objective was to conduct a meta-analysis of the published literature on athletic status and investigate its associations with physical capability in several new population-based studies. Relevant data were extracted from studies in the literature, comparing genotype frequencies between controls and sprint/power and endurance athletes. For life course physical capability, data were used from two studies of adolescents and seven studies in the Healthy Ageing across the Life Course (HALCyon) collaborative research program, involving individuals aged between 53 and 90+ years. We found evidence from the published literature to support the hypothesis that in Europeans the RR genotype is more common among sprint/power athletes compared with their controls. There is currently no evidence that the X allele is advantageous to endurance athleticism. We found no association between R577X and grip strength (P = 0.09, n = 7,672 in males; P = 0.90, n = 7,839 in females), standing balance, timed get up and go, or chair rises in our studies of physical capability. The ACTN3 R577X genotype is associated with sprint/power athletic status in Europeans, but does not appear to be associated with objective measures of physical capability in the general population.
Collapse
Affiliation(s)
- Tamuno Alfred
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
Jane Elliott, Catharine Gale, James Goodwin, Alison Lennox, Marcus Richards, Thomas von Zglinicki, John Gallacher, Gita Mishra, Chris Power, Paul Shiels, Humphrey Southall, Andrew Steptoe, Panos Demakakos, Kate Tilling, Lawrence Whalley, Geraldine McNeill, Leone Craig, Carmen Martin-Ruiz, Paula Aucott, Emily Murray, Zeinab Mulla, Mike Gardner, Sam Parsons,
Collapse
|
34
|
Berman Y, North KN. A gene for speed: the emerging role of alpha-actinin-3 in muscle metabolism. Physiology (Bethesda) 2010; 25:250-9. [PMID: 20699471 DOI: 10.1152/physiol.00008.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A common polymorphism (R577X) in the ACTN3 gene results in complete deficiency of alpha-actinin-3 protein in approximately 16% of humans worldwide. The presence of alpha-actinin-3 protein is associated with improved sprint/power performance in athletes and the general population. Despite this, there is evidence that the null genotype XX has been acted on by recent positive selection, likely due to its emerging role in the regulation of muscle metabolism. alpha-Actinin-3 deficiency reduces the activity of glycogen phosphorylase and results in a fundamental shift toward more oxidative pathways of energy utilization.
Collapse
Affiliation(s)
- Yemima Berman
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Westmead, Australia
| | | |
Collapse
|
35
|
Döring FE, Onur S, Geisen U, Boulay MR, Pérusse L, Rankinen T, Rauramaa R, Wolfahrt B, Bouchard C. ACTN3R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci 2010; 28:1355-9. [DOI: 10.1080/02640414.2010.507675] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Abstract
INTRODUCTION The limit of each individual to perform a given type of exercise depends on the nature of the task, and is influenced by a variety of factors, including psychology, environment and genetic make up. Genetics provide useful insights, as sport performances can be ultimately defined as a polygenic trait. SOURCES OF DATA We searched PubMed using the terms 'sports' and 'genetics' over the period 1990 to present. AREAS OF AGREEMENT The physical performance phenotypes for which a genetic basis can be suspected include endurance capacity, muscle performance, physiological attitude to train and ability of tendons and ligaments to withstand injury. Genetic testing in sport would permit to identify individuals with optimal physiology and morphology, and also those with a greater capacity to respond/adapt to training and a lesser chance of suffering from injuries. AREAS OF CONTROVERSY Ethical and practical caveats should be clearly emphasized. The translation of an advantageous genotype into a champion's phenotype is still influenced by environmental, psychological and sociological factors. EMERGING AREAS FOR DEVELOPING RESEARCH The current scientific evidence on the relationship between genetics and sports look promising. There is a need for additional studies to determine whether genome-wide genotyping arrays would be really useful and cost-effective. Since exercise training regulates the expression of genes encoding various enzymes in muscle and other tissues, genetic research in sports will help clarify several aspects of human biology and physiology, such as RNA and protein level regulation under specific circumstances.
Collapse
|
37
|
Tsianos GI, Evangelou E, Boot A, Zillikens MC, van Meurs JBJ, Uitterlinden AG, Ioannidis JPA. Associations of polymorphisms of eight muscle- or metabolism-related genes with performance in Mount Olympus marathon runners. J Appl Physiol (1985) 2009; 108:567-74. [PMID: 20044476 DOI: 10.1152/japplphysiol.00780.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Athletic endurance performance is probably partly under genetic control, but genetic association studies have yielded inconclusive results. The objective of the present study was to evaluate the association of polymorphisms in eight muscle- or metabolism-related genes with endurance performance in participants of the Olympus Marathon running race. We recruited 438 athletes who participated in the 2007 and 2008 annual running events of the Olympus Marathon: a 43.8-km race with an ascent from sea level to 2,690-m altitude and then a descent to 300 m. Phenotypes of interest were the competitive event time at the specific Olympus Marathon where the athlete was enrolled, the fastest reported timing ever achieved in an Olympus Marathon, and how many kilometers per week the athlete ran during the previous year. Eleven polymorphisms in alpha(3)-actinin (ACTN3), AMP deaminase-1 (AMPD1), bradykinin B(2) receptor (BDKRB2), beta(2)-adrenergic receptor (ADRB2), peroxisome proliferator-activated receptor (PPAR)-gamma coactivator-1 alpha (PPARGC1A), PPAR-alpha (PPARA), PPAR-delta (PPARD), and apoliprotein E (APOE) were evaluated. Hardy-Weinberg equilibrium testing on the overall cohort of male athletes showed a significant deviation for BDKRB2 rs1799722 (P = 0.018; P = 0.006 when limited to 316 habitual male runners) with an excess of the TT genotype. Across all athletes, no associations showed nominal statistical significance for any of the three phenotypes, and the same was true when analyses were limited to men (n = 417). When limited to 316 male athletes who identified running as their preferred sport, ADRB2 rs1042713 had nominally significant associations with faster times for the minor (A) allele for the fastest time ever (P = 0.01). The direction of effect was identical as previously postulated only for BDKRB2 rs1799722 and ADRB2 rs1042713, indicating consistency. BDKRB2 rs1799722 and ADRB2 rs1042713 have some support for being implicated in endurance performance among habitual runners and require further investigation.
Collapse
Affiliation(s)
- Georgios I Tsianos
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45 110, Greece
| | | | | | | | | | | | | |
Collapse
|
38
|
Borresen J, Ian Lambert M. The Quantification of Training Load, the Training Response and the Effect on Performance. Sports Med 2009; 39:779-95. [DOI: 10.2165/11317780-000000000-00000] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Bray MS, Hagberg JM, Pérusse L, Rankinen T, Roth SM, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med Sci Sports Exerc 2009; 41:35-73. [PMID: 19123262 DOI: 10.1249/mss.0b013e3181844179] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This update of the human gene map for physical performance and health-related fitness phenotypes covers the research advances reported in 2006 and 2007. The genes and markers with evidence of association or linkage with a performance or a fitness phenotype in sedentary or active people, in responses to acute exercise, or for training-induced adaptations are positioned on the map of all autosomes and sex chromosomes. Negative studies are reviewed, but a gene or a locus must be supported by at least one positive study before being inserted on the map. A brief discussion on the nature of the evidence and on what to look for in assessing human genetic studies of relevance to fitness and performance is offered in the introduction, followed by a review of all studies published in 2006 and 2007. The findings from these new studies are added to the appropriate tables that are designed to serve as the cumulative summary of all publications with positive genetic associations available to date for a given phenotype and study design. The fitness and performance map now includes 214 autosomal gene entries and quantitative trait loci plus seven others on the X chromosome. Moreover, there are 18 mitochondrial genes that have been shown to influence fitness and performance phenotypes. Thus,the map is growing in complexity. Although the map is exhaustive for currently published accounts of genes and exercise associations and linkages, there are undoubtedly many more gene-exercise interaction effects that have not even been considered thus far. Finally, it should be appreciated that most studies reported to date are based on small sample sizes and cannot therefore provide definitive evidence that DNA sequence variants in a given gene are reliably associated with human variation in fitness and performance traits.
Collapse
Affiliation(s)
- Molly S Bray
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|