1
|
Schreiber J, Rotard L, Tourneur Y, Lafoux A, Berthier C, Allard B, Huchet C, Jacquemond V. Reduced voltage-activated Ca2+ release flux in muscle fibers from a rat model of Duchenne dystrophy. J Gen Physiol 2025; 157:e202413588. [PMID: 39718509 DOI: 10.1085/jgp.202413588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/14/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
The potential pathogenic role of disturbed Ca2+ homeostasis in Duchenne muscular dystrophy (DMD) remains a complex, unsettled issue. We used muscle fibers isolated from 3-mo-old DMDmdx rats to further investigate the case. Most DMDmdx fibers exhibited no sign of trophic or morphology distinction as compared with WT fibers and mitochondria and t-tubule membrane networks also showed no stringent discrepancy. Under voltage clamp, values for holding current were similar in the two groups, whereas values for capacitance were larger in DMDmdx fibers, suggestive of enhanced amount of t-tubule membrane. The Ca2+ current density across the channel carried by the EC coupling voltage sensor (CaV1.1) was unchanged. The maximum rate of voltage-activated sarcoplasmic reticulum (SR) Ca2+ release was reduced by 25% in the DMDmdx fibers, with no change in voltage dependency. Imaging resting Ca2+ revealed rare spontaneous local SR Ca2+ release events with no sign of elevated activity in DMDmdx fibers. Under current clamp, DMDmdx fibers generated similar trains of action potentials as WT fibers. Results suggest that reduced peak amplitude of SR Ca2+ release is an inherent feature of this DMD model, likely contributing to muscle weakness. This occurs despite a preserved amount of releasable Ca2+ and with no change in excitability, CaV1.1 channel activity, and SR Ca2+ release at rest. Although we cannot exclude that fibers from the 3-mo-old animals do not yet display a fully developed disease phenotype, results provide limited support for pathomechanistic concepts frequently associated with DMD such as membrane fragility, excessive Ca2+ entry, or enhanced SR Ca2+ leak.
Collapse
Affiliation(s)
- Jonathan Schreiber
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| | - Ludivine Rotard
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| | - Yves Tourneur
- UFPE Department Nutrição, Cidade Universitária, Recife, Brazil
| | - Aude Lafoux
- Therassay Platform, CAPACITES, Nantes Université , Nantes, France
| | - Christine Berthier
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| | - Bruno Allard
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| | - Corinne Huchet
- Therassay Platform, CAPACITES, Nantes Université , Nantes, France
- Nantes Gene Therapy Laboratory, Nantes Université, INSERM UMR TARGET 1089, Nantes, France
| | - Vincent Jacquemond
- University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France
| |
Collapse
|
2
|
Valduga AH, Mizobuti DS, Moraes FDSR, Mâncio RD, Moraes LHR, Hermes TDA, Macedo AB, Minatel E. Protection of dystrophic muscle cells using Idebenone correlates with the interplay between calcium, oxidative stress and inflammation. Int J Exp Pathol 2023; 104:4-12. [PMID: 36565155 PMCID: PMC9845605 DOI: 10.1111/iep.12463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/25/2022] Open
Abstract
There is strong cross-talk between abnormal intracellular calcium concentration, high levels of reactive oxygen species (ROS) and an exacerbated inflammatory process in the dystrophic muscles of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD). In this study, we investigated effects of Idebenone, a potent anti-oxidant, on oxidative stress markers, the anti-oxidant defence system, intracellular calcium concentrations and the inflammatory process in primary dystrophic muscle cells from mdx mice. Dystrophic muscle cells were treated with Idebenone (0.05 μM) for 24 h. The untreated mdx muscle cells were used as controls. The MTT assay showed that Idebenone did not have a cytotoxic effect on the dystrophic muscle cells. The Idebenone treatment was able to reduce the levels of oxidative stress markers, such as H2 O2 and 4-HNE, as well as decreasing intracellular calcium influx in the dystrophic muscle cells. Regarding Idebenone effects on the anti-oxidant defence system, an up-regulation of catalase levels, glutathione reductase (GR), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity was observed in the dystrophic muscle cells. In addition, the Idebenone treatment was also associated with reduction in inflammatory molecules, such as nuclear factor kappa-B (NF-κB) and tumour necrosis factor (TNF) in mdx muscle cells. These outcomes supported the use of Idebenone as a protective agent against oxidative stress and related signalling mechanisms involved in dystrophinopathies, such as DMD.
Collapse
Affiliation(s)
- Amanda Harduim Valduga
- Departamento de Biologia Estrutural e Funcional, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasSao PauloBrazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasSao PauloBrazil
| | - Fernanda dos Santos Rapucci Moraes
- Departamento de Biologia Estrutural e Funcional, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasSao PauloBrazil
| | - Rafael Dias Mâncio
- Departamento de Biologia Estrutural e Funcional, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasSao PauloBrazil
| | - Luis Henrique Rapucci Moraes
- Departamento de Biologia Estrutural e Funcional, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasSao PauloBrazil
| | - Túlio de Almeida Hermes
- Departamento de Biologia Estrutural e Funcional, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasSao PauloBrazil
| | - Aline Barbosa Macedo
- Departamento de Biologia Estrutural e Funcional, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasSao PauloBrazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasSao PauloBrazil
| |
Collapse
|
3
|
Ion Channels of the Sarcolemma and Intracellular Organelles in Duchenne Muscular Dystrophy: A Role in the Dysregulation of Ion Homeostasis and a Possible Target for Therapy. Int J Mol Sci 2023; 24:ijms24032229. [PMID: 36768550 PMCID: PMC9917149 DOI: 10.3390/ijms24032229] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the absence of the dystrophin protein and a properly functioning dystrophin-associated protein complex (DAPC) in muscle cells. DAPC components act as molecular scaffolds coordinating the assembly of various signaling molecules including ion channels. DMD shows a significant change in the functioning of the ion channels of the sarcolemma and intracellular organelles and, above all, the sarcoplasmic reticulum and mitochondria regulating ion homeostasis, which is necessary for the correct excitation and relaxation of muscles. This review is devoted to the analysis of current data on changes in the structure, functioning, and regulation of the activity of ion channels in striated muscles in DMD and their contribution to the disruption of muscle function and the development of pathology. We note the prospects of therapy based on targeting the channels of the sarcolemma and organelles for the correction and alleviation of pathology, and the problems that arise in the interpretation of data obtained on model dystrophin-deficient objects.
Collapse
|
4
|
Ashida Y, Himori K, Tokuda N, Naito A, Yamauchi N, Takenaka-Ninagawa N, Aoki Y, Sakurai H, Yamada T. Dissociation of SH3 and cysteine rich domain 3 and junctophilin 1 from dihydropyridine receptor in dystrophin-deficient muscles. Am J Physiol Cell Physiol 2022; 323:C885-C895. [PMID: 35912995 DOI: 10.1152/ajpcell.00163.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The disruption of excitation-contraction (EC) coupling and subsequent reduction in Ca2+ release from the sarcoplasmic reticulum (SR) have been shown to account for muscle weakness seen in patients with Duchenne muscular dystrophy (DMD). Here, we examined the mechanisms underlying EC uncoupling in skeletal muscles from mdx52 and DMD-null/NSG mice, animal models for DMD, focusing on the SH3 and cysteine rich domain 3 (STAC3) and junctophilin 1 (JP1), which link the dihydropyridine receptor (DHPR) in the transverse tubule and the ryanodine receptor 1 in the SR. The isometric plantarflexion torque normalized to muscle weight of whole plantar flexor muscles was depressed in mdx52 and DMD-null/NSG mice compared to their control mice. This was accompanied by increased autolysis of calpain-1, decreased levels of STAC3 and JP1 content, and dissociation of STAC3 and JP1 from DHPR-α1s in gastrocnemius muscles. Moreover, in vitro mechanistic experiments demonstrated that STAC3 and JP1 underwent Ca2+-dependent proteolysis which was less pronounced in dystrophin-deficient muscles where calpastatin, the endogenous calpain inhibitor, was upregulated. Eccentric contractions further enhanced autolysis of calpain-1 and proteolysis of STAC3 and JP1 that were associated with severe torque depression in gastrocnemius muscles from DMD-null/NSG mice. These data suggest that Ca2+-dependent proteolysis of STAC3 and JP1 may be an essential factor causing muscle weakness due to EC coupling failure in dystrophin-deficient muscles.
Collapse
Affiliation(s)
- Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nao Tokuda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Azuma Naito
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Nao Yamauchi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | | | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
5
|
Uchimura T, Sakurai H. Orai1-STIM1 Regulates Increased Ca 2+ Mobilization, Leading to Contractile Duchenne Muscular Dystrophy Phenotypes in Patient-Derived Induced Pluripotent Stem Cells. Biomedicines 2021; 9:biomedicines9111589. [PMID: 34829817 PMCID: PMC8615222 DOI: 10.3390/biomedicines9111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ overload is one of the factors leading to Duchenne muscular dystrophy (DMD) pathogenesis. However, the molecular targets of dystrophin deficiency-dependent Ca2+ overload and the correlation between Ca2+ overload and contractile DMD phenotypes in in vitro human models remain largely elusive. In this study, we utilized DMD patient-derived induced pluripotent stem cells (iPSCs) to differentiate myotubes using doxycycline-inducible MyoD overexpression, and searched for a target molecule that mediates dystrophin deficiency-dependent Ca2+ overload using commercially available chemicals and siRNAs. We found that several store-operated Ca2+ channel (SOC) inhibitors effectively prevented Ca2+ overload and identified that STIM1–Orai1 is a molecular target of SOCs. These findings were further confirmed by demonstrating that STIM1–Orai1 inhibitors, CM4620, AnCoA4, and GSK797A, prevented Ca2+ overload in dystrophic myotubes. Finally, we evaluated CM4620, AnCoA4, and GSK7975A activities using a previously reported model recapitulating a muscle fatigue-like decline in contractile performance in DMD. All three chemicals ameliorated the decline in contractile performance, indicating that modulating STIM1–Orai1-mediated Ca2+ overload is effective in rescuing contractile phenotypes. In conclusion, SOCs are major contributors to dystrophin deficiency-dependent Ca2+ overload through STIM1–Orai1 as molecular mediators. Modulating STIM1–Orai1 activity was effective in ameliorating the decline in contractile performance in DMD.
Collapse
Affiliation(s)
- Tomoya Uchimura
- Center for iPSC Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program, Fujisawa 251-8555, Japan
- Correspondence: (T.U.); (H.S.)
| | - Hidetoshi Sakurai
- Center for iPSC Cell Research and Application (CiRA), Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program, Fujisawa 251-8555, Japan
- Correspondence: (T.U.); (H.S.)
| |
Collapse
|
6
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
| | | | | | | | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
7
|
Mosqueira M, Konietzny R, Andresen C, Wang C, H A Fink R. Cardiomyocyte depolarization triggers NOS-dependent NO transient after calcium release, reducing the subsequent calcium transient. Basic Res Cardiol 2021; 116:18. [PMID: 33728868 PMCID: PMC7966140 DOI: 10.1007/s00395-021-00860-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Cardiac excitation-contraction coupling and metabolic and signaling activities are centrally modulated by nitric oxide (NO), which is produced by one of three NO synthases (NOSs). Despite the significant role of NO in cardiac Ca2+ homeostasis regulation under different pathophysiological conditions, such as Duchenne muscular dystrophy (DMD), no precise method describes the production, source or effect of NO through two NO signaling pathways: soluble guanylate cyclase-protein kinase G (NO-sGC-PKG) and S-nitrosylation (SNO). Using a novel strategy involving isolated murine cardiomyocytes loaded with a copper-based dye highly specific for NO, we observed a single transient NO production signal after each electrical stimulation event. The NO transient signal started 67.5 ms after the beginning of Rhod-2 Ca2+ transient signal and lasted for approximately 430 ms. Specific NOS isoform blockers or NO scavengers significantly inhibited the NO transient, suggesting that wild-type (WT) cardiomyocytes produce nNOS-dependent NO transients. Conversely, NO transient in mdx cardiomyocyte, a mouse model of DMD, was dependent on inducible NOS (iNOS) and endothelial (eNOS). In a consecutive stimulation protocol, the nNOS-dependent NO transient in WT cardiomyocytes significantly reduced the next Ca2+ transient via NO-sGC-PKG. In mdx cardiomyocytes, this inhibitory effect was iNOS- and eNOS-dependent and occurred through the SNO pathway. Basal NO production was nNOS- and iNOS-dependent in WT cardiomyocytes and eNOS- and iNOS-dependent in mdx cardiomyocytes. These results showed cardiomyocyte produces NO isoform-dependent transients upon membrane depolarization at the millisecond time scale activating a specific signaling pathway to negatively modulate the subsequent Ca2+ transient.
Collapse
Affiliation(s)
- Matias Mosqueira
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany.
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| | - Roland Konietzny
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Carolin Andresen
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chao Wang
- Cardio-Ventilatory Muscle Physiology Laboratory, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, Im Neuenheimer Feld 326, R. 305, 69120, Heidelberg, Germany
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Cardiovascular Department, Wuhan No. 1 Hospital, Hubei, China
| | - Rainer H A Fink
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Mijares A, Allen PD, Lopez JR. Senescence Is Associated With Elevated Intracellular Resting [Ca 2 +] in Mice Skeletal Muscle Fibers. An in vivo Study. Front Physiol 2021; 11:601189. [PMID: 33510646 PMCID: PMC7837333 DOI: 10.3389/fphys.2020.601189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Aging causes skeletal muscles to become atrophied, weak, and easily fatigued. Here, we have tested the hypothesis that normal aging in skeletal muscle cells is associated with Ca2+ intracellular dyshomeostasis and oxidative stress. Intracellular Ca2+ concentration ([Ca2+]i), resting intracellular Na+ concentration ([Na+]i) and reactive oxygen species (ROS) production were measured in vivo (superficial gastrocnemius fibers) using double-barreled ion-selective microelectrodes, and in vitro [isolated single flexor digitorum brevis fibers] using fluorescent ROS sensor CM-H2DCFDA in young (3 months of age), middle-aged (12 months of age), and aged (24 months of age) mice. We found an age-related increase in [Ca2+]i from 121 ± 4 nM in young muscle cells which rose to 255 ± 36 nM in middle-aged and to 409 ± 25 nM in aged cells. [Na+]i also showed an age-dependent elevation, increasing from 8 ± 0.5 mM in young muscle fibers, to 12 ± 1 mM in middle-aged and to 17 ± 1 mM in old muscle fibers. Using the fluorescent ROS sensor CM-H2DCFDA we found that these increases in intracellular cation concentrations were associated with significantly increased basal ROS production as demonstrated by age related increases in the rate of dichlorodihydrofluorescein fluorescence. To determine is this could be modified by reducing ROS and/or blocking sarcolemmal Ca2+ influx we administered flufenamic acid (FFA), a non-steroidal anti-inflammatory drug which is also a non-selective blocker of the transient receptor potential canonical channels (TRPCs), for 4 weeks to determine if this would have a beneficial effect. FFA treatment reduced both basal ROS production and muscle [Ca2+]i and [Na+]i in middle-aged and aged muscle fibers compared to fibers and muscles of untreated 12 and 24-months old mice. [Ca2+]i was reduced to 134 ± 8 nM in middle-aged muscle and to 246 ± 40 nM in muscle from aged mice. Likewise [Na+]i was reduced to 9 ± 0.7 mM in middle-aged muscles and to 13 ± 1 mM in muscle from aged mice. FFA treatment also reduced age associated increases in plasma interleukin 6 and tumor necrosis factor-alpha (TNF-α) concentrations which were elevated in 12 and 24-months old mice compared to young mice and decreased age-related muscle damage as indicated by a reduction in serum creatine kinase (CK) activity. Our data provides a direct demonstration that normal aging is associated with a significant elevation [Ca2+]i, [Na+]i, and intracellular ROS production in skeletal muscle fibers. Furthermore, the fact that FFA reduced the intracellular [Ca2+], [Na+], and ROS production as well as the elevated IL6, TNF-α, and CK levels, led us to suggest that its pharmacological effect may be related to its action both as a TRPC channel blocker and as an anti-inflammatory.
Collapse
Affiliation(s)
- Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Paul D Allen
- Malignant Hyperthermia Investigation Unit, St James' University Hospital, University of Leeds, Leeds, United Kingdom
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami, FL, United states
| |
Collapse
|
9
|
Anti-Fibrotic Effect of Human Wharton's Jelly-Derived Mesenchymal Stem Cells on Skeletal Muscle Cells, Mediated by Secretion of MMP-1. Int J Mol Sci 2020; 21:ijms21176269. [PMID: 32872523 PMCID: PMC7504611 DOI: 10.3390/ijms21176269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
Extracellular matrix (ECM) components play an important role in maintaining skeletal muscle function, but excessive accumulation of ECM components interferes with skeletal muscle regeneration after injury, eventually inducing fibrosis. Increased oxidative stress level caused by dystrophin deficiency is a key factor in fibrosis in Duchenne muscular dystrophy (DMD) patients. Mesenchymal stem cells (MSCs) are considered a promising therapeutic agent for various diseases involving fibrosis. In particular, the paracrine factors secreted by MSCs play an important role in the therapeutic effects of MSCs. In this study, we investigated the effects of MSCs on skeletal muscle fibrosis. In 2–5-month-old mdx mice intravenously injected with 1 × 105 Wharton’s jelly (WJ)-derived MSCs (WJ-MSCs), fibrosis intensity and accumulation of calcium/necrotic fibers were significantly decreased. To elucidate the mechanism of this effect, we verified the effect of WJ-MSCs in a hydrogen peroxide-induced fibrosis myotubes model. In addition, we demonstrated that matrix metalloproteinase-1 (MMP-1), a paracrine factor, is critical for this anti-fibrotic effect of WJ-MSCs. These findings demonstrate that WJ-MSCs exert anti-fibrotic effects against skeletal muscle fibrosis, primarily via MMP-1, indicating a novel target for the treatment of muscle diseases, such as DMD.
Collapse
|
10
|
Fine Tuning of Calcium Constitutive Entry by Optogenetically-Controlled Membrane Polarization: Impact on Cell Migration. Cells 2020; 9:cells9071684. [PMID: 32668787 PMCID: PMC7408270 DOI: 10.3390/cells9071684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022] Open
Abstract
Anomalies in constitutive calcium entry (CCE) have been commonly attributed to cell dysfunction in pathological conditions such as cancer. Calcium influxes of this type rely on channels, such as transient receptor potential (TRP) channels, to be constitutively opened and strongly depend on membrane potential and a calcium driving force. We developed an optogenetic approach based on the expression of the halorhodopsin chloride pump to study CCE in non-excitable cells. Using C2C12 cells, we found that halorhodopsin can be used to achieve a finely tuned control of membrane polarization. Escalating the membrane polarization by incremental changes in light led to a concomitant increase in CCE through transient receptor potential vanilloid 2 (TRPV2) channels. Moreover, light-induced calcium entry through TRPV2 channels promoted cell migration. Our study shows for the first time that by modulating CCE and related physiological responses, such as cell motility, halorhodopsin serves as a potentially powerful tool that could open new avenues for the study of CCE and associated cellular behaviors.
Collapse
|
11
|
Choi JH, Jeong SY, Oh MR, Allen PD, Lee EH. TRPCs: Influential Mediators in Skeletal Muscle. Cells 2020; 9:cells9040850. [PMID: 32244622 PMCID: PMC7226745 DOI: 10.3390/cells9040850] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ itself or Ca2+-dependent signaling pathways play fundamental roles in various cellular processes from cell growth to death. The most representative example can be found in skeletal muscle cells where a well-timed and adequate supply of Ca2+ is required for coordinated Ca2+-dependent skeletal muscle functions, such as the interactions of contractile proteins during contraction. Intracellular Ca2+ movements between the cytosol and sarcoplasmic reticulum (SR) are strictly regulated to maintain the appropriate Ca2+ supply in skeletal muscle cells. Added to intracellular Ca2+ movements, the contribution of extracellular Ca2+ entry to skeletal muscle functions and its significance have been continuously studied since the early 1990s. Here, studies on the roles of channel proteins that mediate extracellular Ca2+ entry into skeletal muscle cells using skeletal myoblasts, myotubes, fibers, tissue, or skeletal muscle-originated cell lines are reviewed with special attention to the proposed functions of transient receptor potential canonical proteins (TRPCs) as store-operated Ca2+ entry (SOCE) channels under normal conditions and the potential abnormal properties of TRPCs in muscle diseases such as Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Mi Ri Oh
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
| | - Paul D. Allen
- Leeds Institute of Biomedical & Clinical Sciences, St. James’s University Hospital, University of Leeds, Leeds LS97TF, UK
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-7279
| |
Collapse
|
12
|
Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, Belicchi M, Erratico S, D'Ursi P, Bianco F, Legato M, Ruocco C, Sitzia C, Sangiorgi S, Villa C, D'Antona G, Milanesi L, Nisoli E, Mauri P, Torrente Y. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med 2020; 12:e11019. [PMID: 31793167 PMCID: PMC6949491 DOI: 10.15252/emmm.201911019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating fatal X-linked muscle disorder. Recent findings indicate that IGFs play a central role in skeletal muscle regeneration and development. Among IGFs, insulinlike growth factor 2 (IGF2) is a key regulator of cell growth, survival, migration and differentiation. The type 2 IGF receptor (IGF2R) modulates circulating and tissue levels of IGF2 by targeting it to lysosomes for degradation. We found that IGF2R and the store-operated Ca2+ channel CD20 share a common hydrophobic binding motif that stabilizes their association. Silencing CD20 decreased myoblast differentiation, whereas blockade of IGF2R increased proliferation and differentiation in myoblasts via the calmodulin/calcineurin/NFAT pathway. Remarkably, anti-IGF2R induced CD20 phosphorylation, leading to the activation of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) and removal of intracellular Ca2+ . Interestingly, we found that IGF2R expression was increased in dystrophic skeletal muscle of human DMD patients and mdx mice. Blockade of IGF2R by neutralizing antibodies stimulated muscle regeneration, induced force recovery and normalized capillary architecture in dystrophic mdx mice representing an encouraging starting point for the development of new biological therapies for DMD.
Collapse
Affiliation(s)
- Pamela Bella
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Andrea Farini
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Stefania Banfi
- Hematology Department Fondazione IRCCSDepartment of Oncology and Hemato‐oncologyIstituto Nazionale dei TumoriUniversitá degli Studi di MilanoMilanItaly
| | | | | | - Mirella Meregalli
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Marzia Belicchi
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | | | - Pasqualina D'Ursi
- Institute of Technologies in BiomedicineNational Research Council (ITB‐CNR)MilanItaly
| | | | - Mariella Legato
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Chiara Ruocco
- Department of Medical Biotechnology and Translational MedicineCenter for Study and Research on ObesityMilan UniversityMilanItaly
| | - Clementina Sitzia
- UOC SMEL‐1Scuola di Specializzazione di Patologia Clinica e Biochimica ClinicaUniversità degli Studi di MilanoMilanItaly
| | - Simone Sangiorgi
- Neurosurgery UnitDepartment of SurgeryASST Lariana‐S. Anna HospitalComoItaly
| | - Chiara Villa
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| | - Giuseppe D'Antona
- Department of Public Health, Experimental and Forensic MedicinePavia UniversityPaviaItaly
| | - Luciano Milanesi
- Institute of Technologies in BiomedicineNational Research Council (ITB‐CNR)MilanItaly
| | - Enzo Nisoli
- Department of Medical Biotechnology and Translational MedicineCenter for Study and Research on ObesityMilan UniversityMilanItaly
| | - PierLuigi Mauri
- Institute of Technologies in BiomedicineNational Research Council (ITB‐CNR)MilanItaly
| | - Yvan Torrente
- Stem Cell LaboratoryDepartment of Pathophysiology and TransplantationUnit of NeurologyFondazione IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoCentro Dino FerrariUniversitá degli Studi di MilanoMilanItaly
| |
Collapse
|
13
|
Nagy S, Hafner P, Schmidt S, Rubino-Nacht D, Schädelin S, Bieri O, Fischer D. Tamoxifen in Duchenne muscular dystrophy (TAMDMD): study protocol for a multicenter, randomized, placebo-controlled, double-blind phase 3 trial. Trials 2019; 20:637. [PMID: 31752977 PMCID: PMC6869203 DOI: 10.1186/s13063-019-3740-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/25/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is an inherited neuromuscular disorder of childhood with a devastating disease course. Several targeted gene therapies and molecular approaches have been or are currently being tested in clinical trials; however, a causative therapy is still not available and best supportive care is limited to oral glucocorticoids with numerous long-term side effects. Tamoxifen is a selective estrogen receptor regulator, and shows antioxidant actions and regulatory roles in the calcium homeostasis besides its antitumor activity. In a mouse model of DMD, oral tamoxifen significantly improved muscle strength and reduced muscle fatigue. This multicenter, randomized, double-blind, placebo-controlled phase III trial aims to demonstrate safety and efficacy of tamoxifen over placebo in pediatric patients with DMD. After completion of the double-blind phase, an open-label extension of the study will be offered to all participants. Methods/design At least 71 ambulant and up to 20 nonambulant patients with DMD are planned to be enrolled at multiple European sites. Patients will be randomly assigned to receive either tamoxifen 20 mg or placebo daily over 48 weeks. In the open-label extension phase, all patients will be offered tamoxifen for a further 48 weeks. The primary endpoint of the double-blind phase is defined as the change of the D1 domain of the motor function measure in ambulant patients or a change of the D2 domain in nonambulant patients under tamoxifen compared to placebo. Secondary outcome measures include change in timed function tests, quantitative muscle testing, and quantitative magnetic resonance imaging of thigh muscles. Laboratory analyses including biomarkers of tamoxifen metabolism and muscle dystrophy will also be assessed. Discussion The aim of the study is to investigate whether tamoxifen can reduce disease progression in ambulant and nonambulant patients with DMD over 48 weeks. Motor function measures comprise the primary endpoint, whereas further clinical and radiological assessments and laboratory biomarkers are performed to provide more data on safety and efficacy. An adjacent open-label extension phase is planned to test if earlier initiation of the treatment with tamoxifen (verum arm of double-blind phase) compared to a delayed start can reduce disease progression more efficiently. Trial registration ClinicalTrials.gov, NCT03354039. Registered on 27 November 2017.
Collapse
Affiliation(s)
- Sara Nagy
- Division of Developmental- and Neuropaediatrics, University Children's Hospital Basel (UKBB), University of Basel, Spitalstrasse 33, Postfach, 4031, Basel, Switzerland. .,Department of Neurology, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Patricia Hafner
- Division of Developmental- and Neuropaediatrics, University Children's Hospital Basel (UKBB), University of Basel, Spitalstrasse 33, Postfach, 4031, Basel, Switzerland
| | - Simone Schmidt
- Division of Developmental- and Neuropaediatrics, University Children's Hospital Basel (UKBB), University of Basel, Spitalstrasse 33, Postfach, 4031, Basel, Switzerland
| | - Daniela Rubino-Nacht
- Division of Developmental- and Neuropaediatrics, University Children's Hospital Basel (UKBB), University of Basel, Spitalstrasse 33, Postfach, 4031, Basel, Switzerland
| | - Sabine Schädelin
- Clinical Trial Unit, University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, University of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Dirk Fischer
- Division of Developmental- and Neuropaediatrics, University Children's Hospital Basel (UKBB), University of Basel, Spitalstrasse 33, Postfach, 4031, Basel, Switzerland
| |
Collapse
|
14
|
Mizobuti DS, Fogaça AR, Moraes FDSR, Moraes LHR, Mâncio RD, Hermes TDA, Macedo AB, Valduga AH, de Lourenço CC, Pereira ECL, Minatel E. Coenzyme Q10 supplementation acts as antioxidant on dystrophic muscle cells. Cell Stress Chaperones 2019; 24:1175-1185. [PMID: 31620981 PMCID: PMC6882990 DOI: 10.1007/s12192-019-01039-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
Increased oxidative stress is a frequent feature in Duchenne muscular dystrophy (DMD). High reactive oxygen species (ROS) levels, associated with altered enzyme antioxidant activity, have been reported in dystrophic patients and mdx mice, an experimental model of DMD. In this study, we investigated the effects of coenzyme Q10 (CoQ10) on oxidative stress marker levels and calcium concentration in primary cultures of dystrophic muscle cells from mdx mice. Primary cultures of skeletal muscle cells from C57BL/10 and mdx mice were treated with coenzyme Q10 (5 μM) for 24 h. The untreated mdx and C57BL/10 muscle cells were used as controls. The MTT and live/dead cell assays showed that CoQ10 presented no cytotoxic effect on normal and dystrophic muscle cells. Intracellular calcium concentration, H2O2 production, 4-HNE, and SOD-2 levels were higher in mdx muscle cells. No significant difference in the catalase, GPx, and Gr levels was found between experimental groups. This study demonstrated that CoQ10 treatment was able to reduce levels of oxidative stress markers, such as H2O2, acting as an antioxidant, as well as decreasing abnormal intracellular calcium influx in dystrophic muscles cells. This study demonstrated that CoQ10 treatment was able to reduce levels of oxidative stress markers, such as H2O2, acting as an antioxidant, as well as decreasing abnormal intracellular calcium influx in dystrophic muscles cells. Our findings also suggest that the decrease of oxidative stress reduces the need for upregulation of antioxidant pathways, such as SOD and GSH.
Collapse
Affiliation(s)
- Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Aline Reis Fogaça
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Fernanda Dos Santos Rapucci Moraes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Luis Henrique Rapucci Moraes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Rafael Dias Mâncio
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Túlio de Almeida Hermes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Aline Barbosa Macedo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Amanda Harduim Valduga
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Caroline Caramano de Lourenço
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
| | - Elaine Cristina Leite Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
- Faculdade de Ceilandia, Universidade de Brasília (UnB), Brasília, Distrito Federal, 72220-275, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil.
| |
Collapse
|
15
|
Lindsay A, Southern WM, McCourt PM, Larson AA, Hodges JS, Lowe DA, Ervasti JM. Variable cytoplasmic actin expression impacts the sensitivity of different dystrophin-deficient mdx skeletal muscles to eccentric contraction. FEBS J 2019; 286:2562-2576. [PMID: 30942954 PMCID: PMC6613979 DOI: 10.1111/febs.14831] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Abstract
Eccentric contractions (ECCs) induce force loss in several skeletal muscles of dystrophin-deficient mice (mdx), with the exception of the soleus (Sol). The eccentric force : isometric force (ECC : ISO), expression level of utrophin, fiber type distribution, and sarcoendoplasmic reticulum calcium ATPase expression are factors that differ between muscles and may contribute to the sensitivity of mdx skeletal muscle to ECC. Here, we confirm that the Sol of mdx mice loses only 13% force compared to 87% in the extensor digitorum longus (EDL) following 10 ECC of isolated muscles. The Sol has a greater proportion of fibers expressing Type I myosin heavy chain (MHC) and expresses 2.3-fold more utrophin compared to the EDL. To examine the effect of ECC : ISO, we show that the mdx Sol is insensitive to ECC at ECC : ISO up to 230 ± 15%. We show that the peroneus longus (PL) muscle presents with similar ECC : ISO compared to the EDL, intermediate force loss (68%) following 10 ECC, and intermediate fiber type distribution and utrophin expression relative to EDL and Sol. The combined absence of utrophin and dystrophin in mdx/utrophin-/- mice rendered the Sol only partially susceptible to ECC and exacerbated force loss in the EDL and PL. Most interestingly, the expression levels of cytoplasmic β- and γ-actins correlate inversely with a given muscle's sensitivity to ECC; EDL < PL < Sol. Our data indicate that fiber type, utrophin, and cytoplasmic actin expression all contribute to the differential sensitivities of mdxEDL, PL, and Sol muscles to ECC.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - William M. Southern
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Preston M. McCourt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Alexie A. Larson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA
| | - James S. Hodges
- Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | - Dawn A. Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| |
Collapse
|
16
|
Role of STIM1/ORAI1-mediated store-operated Ca 2+ entry in skeletal muscle physiology and disease. Cell Calcium 2018; 76:101-115. [PMID: 30414508 DOI: 10.1016/j.ceca.2018.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a Ca2+ entry mechanism activated by depletion of intracellular Ca2+ stores. In skeletal muscle, SOCE is mediated by an interaction between stromal-interacting molecule-1 (STIM1), the Ca2+ sensor of the sarcoplasmic reticulum, and ORAI1, the Ca2+-release-activated-Ca2+ (CRAC) channel located in the transverse tubule membrane. This review focuses on the molecular mechanisms and physiological role of SOCE in skeletal muscle, as well as how alterations in STIM1/ORAI1-mediated SOCE contribute to muscle disease. Recent evidence indicates that SOCE plays an important role in both muscle development/growth and fatigue. The importance of SOCE in muscle is further underscored by the discovery that loss- and gain-of-function mutations in STIM1 and ORAI1 result in an eclectic array of disorders with clinical myopathy as central defining component. Despite differences in clinical phenotype, all STIM1/ORAI1 gain-of-function mutations-linked myopathies are characterized by the abnormal accumulation of intracellular membranes, known as tubular aggregates. Finally, dysfunctional STIM1/ORAI1-mediated SOCE also contributes to the pathogenesis of muscular dystrophy, malignant hyperthermia, and sarcopenia. The picture to emerge is that tight regulation of STIM1/ORAI1-dependent Ca2+ signaling is critical for optimal skeletal muscle development/function such that either aberrant increases or decreases in SOCE activity result in muscle dysfunction.
Collapse
|
17
|
Role of altered proteostasis network in chronic hypobaric hypoxia induced skeletal muscle atrophy. PLoS One 2018; 13:e0204283. [PMID: 30240405 PMCID: PMC6150520 DOI: 10.1371/journal.pone.0204283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/04/2018] [Indexed: 01/07/2023] Open
Abstract
Background High altitude associated hypobaric hypoxia is one of the cellular and environmental perturbation that alters proteostasis network and push the healthy cell towards loss of muscle mass. The present study has elucidated the robust proteostasis network and signaling mechanism for skeletal muscle atrophy under chronic hypobaric hypoxia (CHH). Methods Male Sprague Dawley rats were exposed to simulated hypoxia equivalent to a pressure of 282 torr for different durations (1, 3, 7 and 14 days). After CHH exposure, skeletal muscle tissue was excised from the hind limb of rats for biochemical analysis. Results Chronic hypobaric hypoxia caused a substantial increase in protein oxidation and exhibited a greater activation of ER chaperones, glucose-regulated protein-78 (GRP-78) and protein disulphide isomerase (PDI) till 14d of CHH. Presence of oxidized proteins triggered the proteolytic systems, 20S proteasome and calpain pathway which were accompanied by a marked increase in [Ca2+]. Upregulated Akt pathway was observed upto 07d of CHH which was also linked with enhanced glycogen synthase kinase-3β (GSk-3β) expression, a negative regulator of Akt. Muscle-derived cytokines, tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-©) and interleukin-1β (IL-1β) levels significantly increased from 07d onwards. CHH exposure also upregulated the expression of nuclear factor kappa-B (NF-κB) and E3 ligase, muscle atrophy F-box-1 (Mafbx-1/Atrogin-1) and MuRF-1 (muscle ring finger-1) on 07d and 14d. Further, severe hypoxia also lead to increase expression of ER-associated degradation (ERAD) CHOP/ GADD153, Ub-proteasome and apoptosis pathway. Conclusions The disrupted proteostasis network was tightly coupled to degradative pathways, altered anabolic signaling, inflammation, and apoptosis under chronic hypoxia. Severe and prolonged hypoxia exposure affected the protein homeostasis which overwhelms the muscular system and tends towards skeletal muscle atrophy.
Collapse
|
18
|
Li EW, McKee-Muir OC, Gilbert PM. Cellular Biomechanics in Skeletal Muscle Regeneration. Curr Top Dev Biol 2018; 126:125-176. [DOI: 10.1016/bs.ctdb.2017.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Loehr JA, Stinnett GR, Hernández-Rivera M, Roten WT, Wilson LJ, Pautler RG, Rodney GG. Eliminating Nox2 reactive oxygen species production protects dystrophic skeletal muscle from pathological calcium influx assessed in vivo by manganese-enhanced magnetic resonance imaging. J Physiol 2016; 594:6395-6405. [PMID: 27555555 PMCID: PMC5088246 DOI: 10.1113/jp272907] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/12/2016] [Indexed: 01/18/2023] Open
Abstract
KEY POINTS Inhibiting Nox2 reactive oxygen species (ROS) production reduced in vivo calcium influx in dystrophic muscle. The lack of Nox2 ROS production protected against decreased in vivo muscle function in dystrophic mice. Manganese-enhanced magnetic resonance imaging (MEMRI) was able to detect alterations in basal calcium levels in skeletal muscle and differentiate disease status. Administration of Mn2+ did not affect muscle function or the health of the animal, and Mn2+ was cleared from skeletal muscle rapidly. We conclude that MEMRI may be a viable, non-invasive technique to monitor molecular alterations in disease progression and evaluate the effectiveness of potential therapies for Duchenne muscular dystrophy. ABSTRACT Duchenne muscular dystrophy (DMD) is an X-linked progressive degenerative disease resulting from a mutation in the gene that encodes dystrophin, leading to decreased muscle mechanical stability and force production. Increased Nox2 reactive oxygen species (ROS) production and sarcolemmal Ca2+ influx are early indicators of disease pathology, and eliminating Nox2 ROS production reduces aberrant Ca2+ influx in young mdx mice, a model of DMD. Various imaging modalities have been used to study dystrophic muscle in vivo; however, they are based upon alterations in muscle morphology or inflammation. Manganese has been used for indirect monitoring of calcium influx across the sarcolemma and may allow detection of molecular alterations in disease progression in vivo using manganese-enhanced magnetic resonance imaging (MEMRI). Therefore, we hypothesized that eliminating Nox2 ROS production would decrease calcium influx in adult mdx mice and that MEMRI would be able to monitor and differentiate disease status in dystrophic muscle. Both in vitro and in vivo data demonstrate that eliminating Nox2 ROS protected against aberrant Ca2+ influx and improved muscle function in dystrophic muscle. MEMRI was able to differentiate between different pathological states in vivo, with no long-term effects on animal health or muscle function. We conclude that MEMRI is a viable, non-invasive technique to differentiate disease status and might provide a means to monitor and evaluate the effectiveness of potential therapies in dystrophic muscle.
Collapse
Affiliation(s)
- James A Loehr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Gary R Stinnett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | - Wesley T Roten
- SMART Program, Baylor College of Medicine, Houston, TX, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Lon J Wilson
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
20
|
Spinazzola JM, Kunkel LM. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy. Expert Opin Orphan Drugs 2016; 4:1179-1194. [PMID: 28670506 DOI: 10.1080/21678707.2016.1240613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Since the identification of the dystrophin gene in 1986, a cure for Duchenne muscular dystrophy (DMD) has yet to be discovered. Presently, there are a number of genetic-based therapies in development aimed at restoration and/or repair of the primary defect. However, growing understanding of the pathophysiological consequences of dystrophin absence has revealed several promising downstream targets for the development of therapeutics. AREAS COVERED In this review, we discuss various strategies for DMD therapy targeting downstream consequences of dystrophin absence including loss of muscle mass, inflammation, fibrosis, calcium overload, oxidative stress, and ischemia. The rationale of each approach and the efficacy of drugs in preclinical and clinical studies are discussed. EXPERT OPINION For the last 30 years, effective DMD drug therapy has been limited to corticosteroids, which are associated with a number of negative side effects. Our knowledge of the consequences of dystrophin absence that contribute to DMD pathology has revealed several potential therapeutic targets. Some of these approaches may have potential to improve or slow disease progression independently or in combination with genetic-based approaches. The applicability of these pharmacological therapies to DMD patients irrespective of their genetic mutation, as well as the potential benefits even for advanced stage patients warrants their continued investigation.
Collapse
Affiliation(s)
- Janelle M Spinazzola
- Boston Children's Hospital, Division of Genetics and Genomics, Boston, MA 02115.,Harvard Medical School, Departments of Pediatrics and Genetics, Boston, MA 02115
| | - Louis M Kunkel
- Boston Children's Hospital, Division of Genetics and Genomics, Boston, MA 02115.,Harvard Medical School, Departments of Pediatrics and Genetics, Boston, MA 02115.,The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115.,The Manton Center for Orphan Diseases, Boston, MA 02115.,Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
21
|
Hao Y, Chow AW, Yip WC, Li CH, Wan TF, Tong BC, Cheung KH, Chan WY, Chen Y, Cheng CH, Ko WH. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia. Pflugers Arch 2016; 468:1489-503. [PMID: 27271044 PMCID: PMC4951515 DOI: 10.1007/s00424-016-1840-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/11/2016] [Accepted: 05/22/2016] [Indexed: 12/18/2022]
Abstract
P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca2+ signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca2+]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5′-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca2+ were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca2+ mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro‐inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.
Collapse
Affiliation(s)
- Yuan Hao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alison W Chow
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wallace C Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi H Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tai F Wan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Benjamin C Tong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - King H Cheung
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wood Y Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yangchao Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Christopher H Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Wing H Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
22
|
Abstract
Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.
Collapse
Affiliation(s)
- Joshua T Selsby
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Jason W Ross
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Dan Nonneman
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| | - Katrin Hollinger
- Joshua T. Selsby, PhD, and Jason W. Ross, PhD are associate professors of Animal Science at Iowa State University, Ames, IA 50011. Dan Nonneman, PhD, is a research molecular biologist at the USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933. Katrin Hollinger, PhD, was a graduate student in Genetics at Iowa State University, Ames, IA 50011
| |
Collapse
|
23
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Hernández-Ochoa EO, Pratt SJP, Lovering RM, Schneider MF. Critical Role of Intracellular RyR1 Calcium Release Channels in Skeletal Muscle Function and Disease. Front Physiol 2016; 6:420. [PMID: 26793121 PMCID: PMC4709859 DOI: 10.3389/fphys.2015.00420] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023] Open
Abstract
The skeletal muscle Ca2+ release channel, also known as ryanodine receptor type 1 (RyR1), is the largest ion channel protein known and is crucial for effective skeletal muscle contractile activation. RyR1 function is controlled by Cav1.1, a voltage gated Ca2+ channel that works mainly as a voltage sensor for RyR1 activity during skeletal muscle contraction and is also fine-tuned by Ca2+, several intracellular compounds (e.g., ATP), and modulatory proteins (e.g., calmodulin). Dominant and recessive mutations in RyR1, as well as acquired channel alterations, are the underlying cause of various skeletal muscle diseases. The aim of this mini review is to summarize several current aspects of RyR1 function, structure, regulation, and to describe the most common diseases caused by hereditary or acquired RyR1 malfunction.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
25
|
Aguettaz E, Lopez JJ, Krzesiak A, Lipskaia L, Adnot S, Hajjar RJ, Cognard C, Constantin B, Sebille S. Axial stretch-dependent cation entry in dystrophic cardiomyopathy: Involvement of several TRPs channels. Cell Calcium 2016; 59:145-155. [PMID: 26803937 DOI: 10.1016/j.ceca.2016.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/14/2015] [Accepted: 01/02/2016] [Indexed: 02/07/2023]
Abstract
In Duchenne muscular dystrophy (DMD), deficiency of the cytoskeletal protein dystrophin leads to well-described defects in skeletal muscle but also to dilated cardiomyopathy (DCM). In cardiac cells, the subsarcolemmal localization of dystrophin is thought to protect the membrane from mechanical stress. The dystrophin deficiency leads to membrane instability and a high stress-induced Ca(2+) influx due to dysregulation of sarcolemmal channels such as stretch-activated channels (SACs). In this work divalent cation entry has been explored in isolated ventricular Wild Type (WT) and mdx cardiomyocytes in two different conditions: at rest and during the application of an axial stretch. At rest, our results suggest that activation of TRPV2 channels participates to a constitutive basal cation entry in mdx cardiomyocytes.Using microcarbon fibres technique, an axial stretchwas applied to mimic effects of physiological conditions of ventricular filling and study on cation influx bythe Mn(2+)-quenching techniquedemonstrated a high stretch-dependentcationic influx in dystrophic cells, partially due to SACs. Involvement of TRPs channels in this excessive Ca(2+) influx has been investigated using specific modulators and demonstratedboth sarcolemmal localization and an abnormal activity of TRPV2 channels. In conclusion, TRPV2 channels are demonstrated here to play a key role in cation influx and dysregulation in dystrophin deficient cardiomyocytes, enhanced in stretching conditions.
Collapse
Affiliation(s)
- E Aguettaz
- Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM CNRS ERL 7368), Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - J J Lopez
- Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM CNRS ERL 7368), Equipe Calcium et Microenvironnement des Cellules Souches (CMCS), Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - A Krzesiak
- Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM CNRS ERL 7368), Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - L Lipskaia
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, Université Paris-Est Créteil (UPEC), 94010 Créteil, France.,Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Adnot
- INSERM U955 and Département de Physiologie, Hôpital Henri Mondor, AP-HP, Université Paris-Est Créteil (UPEC), 94010 Créteil, France
| | - R J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - C Cognard
- Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM CNRS ERL 7368), Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - B Constantin
- Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM CNRS ERL 7368), Equipe Calcium et Microenvironnement des Cellules Souches (CMCS), Université de Poitiers, 86073 Poitiers Cedex 9, France
| | - S Sebille
- Laboratoire de Signalisation et Transports Ioniques Membranaires (STIM CNRS ERL 7368), Equipe Transferts Ioniques et Rythmicité Cardiaque (TIRC), Université de Poitiers, 86073 Poitiers Cedex 9, France
| |
Collapse
|
26
|
Burr AR, Molkentin JD. Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy. Cell Death Differ 2015; 22:1402-12. [PMID: 26088163 PMCID: PMC4532779 DOI: 10.1038/cdd.2015.65] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/03/2015] [Accepted: 04/17/2015] [Indexed: 01/19/2023] Open
Abstract
Muscular dystrophy (MD) refers to a clinically and genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. Although the primary defect underlying most forms of MD typically results from a loss of sarcolemmal integrity, the secondary molecular mechanisms leading to muscle degeneration and myofiber necrosis is debated. One hypothesis suggests that elevated or dysregulated cytosolic calcium is the common transducing event, resulting in myofiber necrosis in MD. Previous measurements of resting calcium levels in myofibers from dystrophic animal models or humans produced equivocal results. However, recent studies in genetically altered mouse models have largely solidified the calcium hypothesis of MD, such that models with artificially elevated calcium in skeletal muscle manifest fulminant dystrophic-like disease, whereas models with enhanced calcium clearance or inhibited calcium influx are resistant to myofiber death and MD. Here, we will review the field and the recent cadre of data from genetically altered mouse models, which we propose have collectively mostly proven the hypothesis that calcium is the primary effector of myofiber necrosis in MD. This new consensus on calcium should guide future selection of drugs to be evaluated in clinical trials as well as gene therapy-based approaches.
Collapse
Affiliation(s)
- A R Burr
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA
| | - J D Molkentin
- 1] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA [2] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Molecular Cardiovascular Biology, 240 Albert Sabin Way, Cincinnati, OH, USA
| |
Collapse
|
27
|
Zeng C, Tian F, Xiao B. TRPC Channels: Prominent Candidates of Underlying Mechanism in Neuropsychiatric Diseases. Mol Neurobiol 2014; 53:631-647. [DOI: 10.1007/s12035-014-9004-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|
28
|
Langone F, Cannata S, Fuoco C, Lettieri Barbato D, Testa S, Nardozza AP, Ciriolo MR, Castagnoli L, Gargioli C, Cesareni G. Metformin protects skeletal muscle from cardiotoxin induced degeneration. PLoS One 2014; 9:e114018. [PMID: 25461598 PMCID: PMC4252070 DOI: 10.1371/journal.pone.0114018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/04/2014] [Indexed: 11/18/2022] Open
Abstract
The skeletal muscle tissue has a remarkable capacity to regenerate upon injury. Recent studies have suggested that this regenerative process is improved when AMPK is activated. In the muscle of young and old mice a low calorie diet, which activates AMPK, markedly enhances muscle regeneration. Remarkably, intraperitoneal injection of AICAR, an AMPK agonist, improves the structural integrity of muscles of dystrophin-deficient mdx mice. Building on these observations we asked whether metformin, a powerful anti-hyperglycemic drug, which indirectly activates AMPK, affects the response of skeletal muscle to damage. In our conditions, metformin treatment did not significantly influence muscle regeneration. On the other hand we observed that the muscles of metformin treated mice are more resilient to cardiotoxin injury displaying lesser muscle damage. Accordingly myotubes, originated in vitro from differentiated C2C12 myoblast cell line, become more resistant to cardiotoxin damage after pre-incubation with metformin. Our results indicate that metformin limits cardiotoxin damage by protecting myotubes from necrosis. Although the details of the molecular mechanisms underlying the protective effect remain to be elucidated, we report a correlation between the ability of metformin to promote resistance to damage and its capacity to counteract the increment of intracellular calcium levels induced by cardiotoxin treatment. Since increased cytoplasmic calcium concentrations characterize additional muscle pathological conditions, including dystrophies, metformin treatment could prove a valuable strategy to ameliorate the conditions of patients affected by dystrophies.
Collapse
Affiliation(s)
| | - Stefano Cannata
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Stefano Testa
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- * E-mail: (CG); (GC)
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- * E-mail: (CG); (GC)
| |
Collapse
|
29
|
Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl 2014; 8:875-95. [DOI: 10.1002/prca.201400015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Co. Kildare Ireland
| |
Collapse
|
30
|
Carberry S, Brinkmeier H, Zhang Y, Winkler CK, Ohlendieck K. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy. Int J Mol Med 2013; 32:544-56. [PMID: 23828267 PMCID: PMC3782555 DOI: 10.3892/ijmm.2013.1429] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/05/2013] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20–25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein expression patterns in the muscle subtypes from mdx mice may be due to dissimilar downstream events, including differences in muscle structure or compensatory mechanisms that counteract pathophysiological processes. The interosseus muscle from mdx mice possibly represents a naturally protected phenotype.
Collapse
Affiliation(s)
- Steven Carberry
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | | | |
Collapse
|
31
|
Mosqueira M, Zeiger U, Förderer M, Brinkmeier H, Fink RHA. Cardiac and respiratory dysfunction in Duchenne muscular dystrophy and the role of second messengers. Med Res Rev 2013; 33:1174-213. [PMID: 23633235 DOI: 10.1002/med.21279] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) affects young boys and is characterized by the absence of dystrophin, a large cytoskeletal protein present in skeletal and cardiac muscle cells and neurons. The heart and diaphragm become necrotic in DMD patients and animal models of DMD, resulting in cardiorespiratory failure as the leading cause of death. The major consequences of the absence of dystrophin are high levels of intracellular Ca(2+) and the unbalanced production of NO that can finally trigger protein degradation and cell death. Cytoplasmic increase in Ca(2+) concentration directly and indirectly triggers different processes such as necrosis, fibrosis, and activation of macrophages. The absence of the neuronal isoform of nitric oxide synthase (nNOS) and the overproduction of NO by the inducible isoform (iNOS) further increase the intracellular Ca(2+) via a hypernitrosylation of the ryanodine receptor. NO overproduction, which further induces the expression of iNOS but decreases the expression of the endothelial isoform (eNOS), deregulates the muscle tissue blood flow creating an ischemic situation. The high levels of Ca(2+) in dystrophic muscles and the ischemic state of the muscle tissue would culminate in a positive feedback loop. While efforts continue toward optimizing cardiac and respiratory care of DMD patients, both Ca(2+) and NO in cardiac and respiratory muscle pathways have been shown to be important to the etiology of the disease. Understanding the mechanisms behind the fine regulation of Ca(2+) -NO may be important for a noninterventional and noninvasive supportive approach to treat DMD patients, improving the quality of life and natural history of DMD patients.
Collapse
Affiliation(s)
- Matias Mosqueira
- Medical Biophysics Unit, Institute of Physiology and Pathophysiology, INF326, Heidelberg University, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
32
|
Dystrophin/α1-syntrophin scaffold regulated PLC/PKC-dependent store-operated calcium entry in myotubes. Cell Calcium 2012; 52:445-56. [DOI: 10.1016/j.ceca.2012.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/16/2012] [Accepted: 08/06/2012] [Indexed: 11/17/2022]
|
33
|
Vasquez I, Tan N, Boonyasampant M, Koppitch KA, Lansman JB. Partial opening and subconductance gating of mechanosensitive ion channels in dystrophic skeletal muscle. J Physiol 2012; 590:6167-85. [PMID: 22966155 PMCID: PMC3530124 DOI: 10.1113/jphysiol.2012.240044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/03/2012] [Indexed: 12/31/2022] Open
Abstract
We recorded the activity of single mechanosensitive (MS) ion channels in skeletal muscle from the mdx mouse, a deletion mutant that lacks the cytoskeletal protein, dystrophin. Experiments were designed to examine the influence of dystrophin, a major component of skeletal muscle costameres, on the behaviour of single MS channels. In the majority of recordings from cell-attached patches, MS channels have a conductance of ∼23 pS. Recordings from some patches, however, showed a smaller conductance channel of ∼7-14 pS. Large and small conductance channels were detected in a single patch and showed serial, non-random gating, suggesting different opening levels of a single channel. Analysis of the distribution of current amplitudes within the open channel showed MS channels fluctuate between subconductance levels. MS channels in dystrophic muscle spend ∼60% of the time at smaller subconductance levels, often failing to reach the fully open level. Applying pressure to the membrane of mdx fibres increases in a graded manner occupancy of the fully open state, while reducing occupancy of subconductance levels. Recordings also show partial openings of MS channels in both wild-type and mdx muscle that fail to reach the fully open state. Partial openings occur at a higher frequency in mdx muscle and reflect occupancy of subconductance levels seen during complete activations. In muscle from mdx/utrn(-/-) double knockout mice, MS channels also spend more time at subconductance levels than the fully open state. Conductance variability of MS channels may represent gating of a heteromeric protein composed of different channel subunits. The results also show that partial opening and prolonged burst duration are distinct mechanisms that contribute to excess Ca(2+) entry in dystrophic muscle.
Collapse
Affiliation(s)
- Ivan Vasquez
- Department of Cellular & Molecular Pharmacology, School of Medicine, University of California, San Francisco, CA 94143-0450, USA
| | | | | | | | | |
Collapse
|
34
|
Khairallah RJ, Shi G, Sbrana F, Prosser BL, Borroto C, Mazaitis MJ, Hoffman EP, Mahurkar A, Sachs F, Sun Y, Chen YW, Raiteri R, Lederer WJ, Dorsey SG, Ward CW. Microtubules underlie dysfunction in duchenne muscular dystrophy. Sci Signal 2012; 5:ra56. [PMID: 22871609 DOI: 10.1126/scisignal.2002829] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked degenerative muscle disease caused by the absence of the microtubule-associated protein dystrophin, which results in a disorganized and denser microtubule cytoskeleton. In addition, mechanotransduction-dependent activation of calcium (Ca(2+)) and reactive oxygen species (ROS) signaling underpins muscle degeneration in DMD. We show that in muscle from adult mdx mice, a model of DMD, a brief physiologic stretch elicited microtubule-dependent activation of NADPH (reduced-form nicotinamide adenine dinucleotide phosphate) oxidase-dependent production of ROS, termed X-ROS. Further, X-ROS amplified Ca(2+) influx through stretch-activated channels in mdx muscle. Consistent with the importance of the microtubules to the dysfunction in mdx muscle, muscle cells with dense microtubule structure, such as those from adult mdx mice or from young wild-type mice treated with Taxol, showed increased X-ROS production and Ca(2+) influx, whereas cells with a less dense microtubule network, such as young mdx or adult mdx muscle treated with colchicine or nocodazole, showed little ROS production or Ca(2+) influx. In vivo treatments that disrupted the microtubule network or inhibited NADPH oxidase 2 reduced contraction-induced injury in adult mdx mice. Furthermore, transcriptome analysis identified increased expression of X-ROS-related genes in human DMD skeletal muscle. Together, these data show that microtubules are the proximate element responsible for the dysfunction in Ca(2+) and ROS signaling in DMD and could be effective therapeutic targets for intervention.
Collapse
Affiliation(s)
- Ramzi J Khairallah
- Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Robin G, Berthier C, Allard B. Sarcoplasmic reticulum Ca2+ permeation explored from the lumen side in mdx muscle fibers under voltage control. ACTA ACUST UNITED AC 2012; 139:209-18. [PMID: 22371362 PMCID: PMC3289961 DOI: 10.1085/jgp.201110738] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Under resting conditions, external Ca2+ is known to enter skeletal muscle cells, whereas Ca2+ stored in the sarcoplasmic reticulum (SR) leaks into the cytosol. The nature of the pathways involved in the sarcolemmal Ca2+ entry and in the SR Ca2+ leak is still a matter of debate, but several lines of evidence suggest that these Ca2+ fluxes are up-regulated in Duchenne muscular dystrophy. We investigated here SR calcium permeation at resting potential and in response to depolarization in voltage-controlled skeletal muscle fibers from control and mdx mice, the mouse model of Duchenne muscular dystrophy. Using the cytosolic Ca2+ dye Fura2, we first demonstrated that the rate of Ca2+ increase in response to cyclopiazonic acid (CPA)–induced inhibition of SR Ca2+-ATPases at resting potential was significantly higher in mdx fibers, which suggests an elevated SR Ca2+ leak. However, removal of external Ca2+ reduced the rate of CPA-induced Ca2+ increase in mdx and increased it in control fibers, which indicates an up-regulation of sarcolemmal Ca2+ influx in mdx fibers. Fibers were then loaded with the low-affinity Ca2+ dye Fluo5N-AM to measure intraluminal SR Ca2+ changes. Trains of action potentials, chloro-m-cresol, and depolarization pulses evoked transient Fluo5N fluorescence decreases, and recovery of voltage-induced Fluo5N fluorescence changes were inhibited by CPA, demonstrating that Fluo5N actually reports intraluminal SR Ca2+ changes. Voltage dependence and magnitude of depolarization-induced SR Ca2+ depletion were found to be unchanged in mdx fibers, but the rate of the recovery phase that followed depletion was found to be faster, indicating a higher SR Ca2+ reuptake activity in mdx fibers. Overall, CPA-induced SR Ca2+ leak at −80 mV was found to be significantly higher in mdx fibers and was potentiated by removal of external Ca2+ in control fibers. The elevated passive SR Ca2+ leak may contribute to alteration of Ca2+ homeostasis in mdx muscle.
Collapse
Affiliation(s)
- Gaëlle Robin
- Université Lyon 1, Centre National de la Recherche Scientifique UMR 5534, Centre de Génétique et de Physiologie Moléculaire et Cellulaire, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
36
|
Tuazon MA, Henderson GC. Fatty acid profile of skeletal muscle phospholipid is altered in mdx mice and is predictive of disease markers. Metabolism 2012; 61:801-11. [PMID: 22209669 DOI: 10.1016/j.metabol.2011.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/10/2011] [Accepted: 10/21/2011] [Indexed: 10/14/2022]
Abstract
The mdx mouse is a model for Duchenne muscular dystrophy. The fatty acid (FA) composition in dystrophic muscle could potentially impact the disease severity. We tested FA profiles in skeletal muscle phospholipid (PL) and triglyceride in mdx and control (con) mice to assess associations with disease state as well as correlations with grip strength (which is lower in mdx) and serum creatine kinase (CK, which is elevated in mdx). Compared with con, mdx PL contained less docosahexaenoic acid (P < .001) and more linoleic acid (P = .001). Docosahexaenoic acid contents did not correlate with strength or serum CK. Linoleic acid content in PL was positively correlated with CK in mdx (P < .05) but not con. α-Linolenic acid content in PL was positively correlated with strength in mdx (P < .05) but not con. The FA profile in triglyceride showed less difference between groups and far less predictive ability for disease markers. We conclude that profiling the FA composition of tissue lipids (particularly PL) can be a useful strategy for generating novel biomarkers and potential therapeutic targets in muscle diseases and likely other pathological conditions as well. Specifically, the present results have indicated potential benefits of raising content of particular n-3 FAs (especially α-linolenic acid) and reducing content of particular n-6 FAs (linoleic acid) in PL of dystrophic muscle.
Collapse
Affiliation(s)
- Marc A Tuazon
- Department of Exercise Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
37
|
Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 2012; 484:394-8. [PMID: 22495301 DOI: 10.1038/nature10980] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/21/2012] [Indexed: 11/08/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.
Collapse
|
38
|
Morgenroth VH, Hache LP, Clemens PR. Insights into bone health in Duchenne muscular dystrophy. BONEKEY REPORTS 2012; 1:9. [PMID: 23951421 DOI: 10.1038/bonekey.2012.5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 11/05/2011] [Indexed: 12/22/2022]
Abstract
Poor bone health is a significant problem for patients with Duchenne muscular dystrophy (DMD), a progressive, disabling disease. Although the primary focus of DMD disease pathogenesis is degeneration of striated muscle, impairment of bone health likely has a role in the disease that has only been superficially examined to date. Deficiency of bone mineral density and increased incidence of bone fractures are well-recognized clinical components of the DMD phenotype. Furthermore, therapy with corticosteroids, an approved treatment for DMD that prolongs ambulation, may have multiple effects on bone health in DMD patients. This review examines the evidence in preclinical models and in human DMD disease that provides insight into the role performed by bone in the disease pathogenesis and phenotype of DMD. The information reviewed here points toward the need for mechanistic and therapeutic studies to optimize bone health in DMD patients.
Collapse
|
39
|
Baylor SM, Hollingworth S. Calcium indicators and calcium signalling in skeletal muscle fibres during excitation-contraction coupling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:162-79. [PMID: 20599552 PMCID: PMC2974769 DOI: 10.1016/j.pbiomolbio.2010.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
Abstract
During excitation-contraction coupling in skeletal muscle, calcium ions are released into the myoplasm by the sarcoplasmic reticulum (SR) in response to depolarization of the fibre's exterior membranes. Ca(2+) then diffuses to the thin filaments, where Ca(2+) binds to the Ca(2+) regulatory sites on troponin to activate muscle contraction. Quantitative studies of these events in intact muscle preparations have relied heavily on Ca(2+)-indicator dyes to measure the change in the spatially-averaged myoplasmic free Ca(2+) concentration (Δ[Ca(2+)]) that results from the release of SR Ca(2+). In normal fibres stimulated by an action potential, Δ[Ca(2+)] is large and brief, requiring that an accurate measurement of Δ[Ca(2+)] be made with a low-affinity rapidly-responding indicator. Some low-affinity Ca(2+) indicators monitor Δ[Ca(2+)] much more accurately than others, however, as reviewed here in measurements in frog twitch fibres with sixteen low-affinity indicators. This article also examines measurements and simulations of Δ[Ca(2+)] in mouse fast-twitch fibres. The simulations use a multi-compartment model of the sarcomere that takes into account Ca(2+)'s release from the SR, its diffusion and binding within the myoplasm, and its re-sequestration by the SR Ca(2+) pump. The simulations are quantitatively consistent with the measurements and appear to provide a satisfactory picture of the underlying Ca(2+) movements.
Collapse
Affiliation(s)
- Stephen M Baylor
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA.
| | | |
Collapse
|
40
|
Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, Molkentin JD. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J Clin Invest 2011; 121:1044-52. [PMID: 21285509 DOI: 10.1172/jci43844] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/01/2010] [Indexed: 11/17/2022] Open
Abstract
Muscular dystrophies (MDs) comprise a group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. The primary defect common to most MDs involves disruption of the dystrophin-glycoprotein complex (DGC). This leads to sarcolemmal instability and Ca(2+) influx, inducing cellular necrosis. Here we have shown that the dystrophic phenotype observed in δ-sarcoglycan–null (Sgcd(–/–)) mice and dystrophin mutant mdx mice is dramatically improved by skeletal muscle–specific overexpression of sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA1). Rates of myofiber central nucleation, tissue fibrosis, and serum creatine kinase levels were dramatically reduced in Sgcd(–/–) and mdx mice with the SERCA1 transgene, which also rescued the loss of exercise capacity in Sgcd(–/–) mice. Adeno-associated virus–SERCA2a (AAV-SERCA2a) gene therapy in the gastrocnemius muscle of Sgcd(–/–) mice mitigated dystrophic disease. SERCA1 overexpression reversed a defect in sarcoplasmic reticulum Ca(2+) reuptake that characterizes dystrophic myofibers and reduced total cytosolic Ca(2+). Further, SERCA1 overexpression almost completely rescued the dystrophic phenotype in a mouse model of MD driven solely by Ca(2+) influx. Mitochondria isolated from the muscle of SERCA1-Sgcd(–/–) mice were no longer swollen and calpain activation was reduced, suggesting protection from Ca(2+)-driven necrosis. Our results suggest a novel therapeutic approach using SERCA1 to abrogate the altered intracellular Ca(2+) levels that underlie most forms of MD.
Collapse
Affiliation(s)
- Sanjeewa A Goonasekera
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Brinkmeier H. TRP channels in skeletal muscle: gene expression, function and implications for disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:749-58. [PMID: 21290325 DOI: 10.1007/978-94-007-0265-3_39] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Besides the well known voltage-gated Ca(2+) channels skeletal muscle fibres contain several non-voltage gated Ca(2+) conducting cation channels. They have been physiologically characterized as stretch activated, store operated and Ca(2+) leak channels. TRP channels are good candidates to account for these sarcolemmal channels and Ca(2+) influx pathways or at least contribute to the responsible macromolecular complexes. Several members of the TRPC, TRPV and TRPM subfamilies of TRP channels are expressed in skeletal muscle as shown by RT-PCR, Western blot and immunohistochemistry. The most prominent and consistently found are TRPC1, C3, C4 and C6, TRPV2 and V4 as well as TRPM4 and M7. However, the precise function of individual channels is largely unknown. Linking physiologically characterized channels of the muscle fibre membrane to TRP channel proteins has been a major challenge during the last years. It has been successful only in a few cases and is complicated by the fact that some channels have dual functions in cultured, immature muscle cells and adult fibres. The best characterized TRP channel in skeletal muscle is TRPC1, a small-conductance channel of the sarcolemma. It is needed for Ca(2+) homeostasis during sustained contractile muscle activity. In addition to certain physiological functions TRP channels seem to be involved in the pathomechanisms of muscle disorders. There is a broad body of evidence that dysregulation of Ca(2+) conducting channels plays a key role in the pathomechanism of Duchenne muscular dystrophy. Lack of the cytoskeletal protein dystrophin or δ-sarcoglycan, seems to disturb the function of one or several Ca(2+) channels of the muscle fibre membrane, leading to pathological dystrophic changes. Almost 10 different TRP channels have been detected in skeletal muscle. They seem to be involved in muscle development, Ca(2+) homeostasis, Ca(2+) signalling and in disease progression of certain muscle disorders. However, we are still at the beginning of understanding the impact of TRP channel functions in skeletal muscle.
Collapse
Affiliation(s)
- Heinrich Brinkmeier
- Institute of Pathophysiology, University of Greifswald, D-17495 Karlsburg, Germany.
| |
Collapse
|
42
|
Pritschow BW, Lange T, Kasch J, Kunert-Keil C, Liedtke W, Brinkmeier H. Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue. Pflugers Arch 2010; 461:115-22. [PMID: 20924600 DOI: 10.1007/s00424-010-0883-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Skeletal muscle contraction is basically controlled by Ca(2+) release and its reuptake into the sarcoplasmic reticulum. However, the long-term maintenance of muscle function requires an additional Ca(2+) influx from extracellular. Several mechanisms seem to contribute to the latter process, such as store-operated Ca(2+) entry, stretch-activated Ca(2+) influx and resting Ca(2+) influx. Candidate channels that may control Ca(2+) influx into muscle fibers are the STIM proteins, Orai, and the members of the transient receptor potential (TRP) family of cation channels. Here we show that TRPV4, an osmo-sensitive cation channel of the vanilloid subfamily of TRP channels is functionally expressed in mouse skeletal muscle. Western blot analysis showed the presence of TRPV4-specific bands at about 85 and 100 kDa in all tested muscles. The bands were absent when muscle proteins from TRPV4 deficient mice were analyzed. Using the manganese quench technique, we studied the resting influx of divalent cations into isolated wild-type muscle fibers. The specific TRPV4-channel activator 4α-phorbol-12,13-didecanoate (4α-PDD) stimulated resting influx by about 60% only in wild-type fibers. Electrical stimulation of soleus muscles did not reveal changes in isometric twitch contractions upon application of 4α-PDD, but tetanic contractions (at 120 Hz) were slightly increased by about 15%. When soleus muscles were stimulated with a fatigue protocol, muscle fatigue was significantly attenuated in the presence of 4α-PDD. The latter effect was not observed with muscles from TRPV4(-/-) mice. We conclude that TRPV4 is functionally expressed in mouse skeletal muscle and that TRPV4 activation modulates resting Ca(2+) influx and muscle fatigue.
Collapse
Affiliation(s)
- Bernd W Pritschow
- Institute of Pathophysiology, University of Greifswald, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Head SI. Branched fibres in old dystrophicmdxmuscle are associated with mechanical weakening of the sarcolemma, abnormal Ca2+transients and a breakdown of Ca2+homeostasis during fatigue. Exp Physiol 2010; 95:641-56. [DOI: 10.1113/expphysiol.2009.052019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Allen DG, Gervasio OL, Yeung EW, Whitehead NP. Calcium and the damage pathways in muscular dystrophyThis article is one of a selection of papers published in this special issue on Calcium Signaling. Can J Physiol Pharmacol 2010; 88:83-91. [DOI: 10.1139/y09-058] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by the absence of the cytoskeletal protein dystrophin. Experiments on the mdx mouse, a model of DMD, have shown that mdx muscles are particularly susceptible to stretch-induced damage. In this review, we discuss evidence showing that a series of stretched contractions of mdx muscle fibres causes a prolonged increase in resting intracellular calcium concentration ([Ca2+]i). The rise in [Ca2+]i is caused by Ca2+ entry through a class of stretch-activated channels (SACNSC) for which one candidate gene is TRPC1. We review the evidence for activation of SACNSC in muscle by reactive oxygen species (ROS) and suggest that stretch-induced ROS production is part of the pathway that triggers increased channel activity. When the TRPC1 gene was transfected into C2 myoblasts, expression occurred throughout the cell. Only when the TRPC1 gene was coexpressed with caveolin-3 did the TRPC1 protein express in the membrane. When TRPC1 was expressed in the membrane, it could be activated by ROS to produce Ca2+ entry and this entry was inhibited by PP2, an inhibitor of src kinase. These results suggest that stretched contractions activate ROS production, which activates src kinase. Activity of this kinase causes opening of SACNSC and allows Ca2+ entry. This pathway appears to be a significant cause of muscle damage in DMD.
Collapse
Affiliation(s)
- David G. Allen
- School of Medical Sciences and Bosch Institute, University of Sydney F13, NSW 2006, Australia
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Othon L. Gervasio
- School of Medical Sciences and Bosch Institute, University of Sydney F13, NSW 2006, Australia
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ella W. Yeung
- School of Medical Sciences and Bosch Institute, University of Sydney F13, NSW 2006, Australia
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Nicholas P. Whitehead
- School of Medical Sciences and Bosch Institute, University of Sydney F13, NSW 2006, Australia
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
45
|
Phospholipase A2-derived lysophosphatidylcholine triggers Ca2+ entry in dystrophic skeletal muscle fibers. Biochem Biophys Res Commun 2010; 391:401-6. [DOI: 10.1016/j.bbrc.2009.11.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022]
|
46
|
Essential role of TRPV2 ion channel in the sensitivity of dystrophic muscle to eccentric contractions. FEBS Lett 2009; 583:3600-4. [PMID: 19840792 DOI: 10.1016/j.febslet.2009.10.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 01/28/2023]
Abstract
Duchenne myopathy is a lethal disease due to the absence of dystrophin, a cytoskeletal protein. Muscles from dystrophin-deficient mice (mdx) typically present an exaggerated susceptibility to eccentric work characterized by an important force drop and an increased membrane permeability consecutive to repeated lengthening contractions. The present study shows that mdx muscles are largely protected from eccentric work-induced damage by overexpressing a dominant negative mutant of TRPV2 ion channel. This observation points out the role of TRPV2 channel in the physiopathology of Duchenne muscular dystrophy.
Collapse
|
47
|
Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H, Ouadid-Ahidouch H. Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol 2009; 297:C493-502. [DOI: 10.1152/ajpcell.00624.2008] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because transient receptor potential (TRP) channels have been implicated in tumor progression, we have investigated the potential role of TRPM7 channel in breast cancer cell proliferation. Under whole cell patch clamp, a Mg2+-inhibited cationic (MIC) current was observed in MCF-7 cells. This current was characterized by an inward current and a strong outward rectifying current that were both inhibited in a concentration-dependent manner by the presence of intracellular Mg2+ or Mg2+-ATP. The inward current was reduced by La3+, and the outward current was sensitive to 2-aminoethoxydiphenyl borate (2-APB), spermine, La3+, and flufenamic acid. Importantly, a similar MIC current was also recorded in the primary culture of human breast cancerous epithelial cells (hBCE). Moreover, TRPM7 transcripts were found in both hBCE and MCF-7 cells. In MCF-7 cells, the MIC current was inhibited by TRPM7 small interfering RNA. Interestingly, we found that cell proliferation and intracellular Ca2+ concentration were also reduced by TRPM7 silencing in MCF-7 cells. TRPM7 channels were also found in both human breast cancer and healthy tissues. Importantly, TRPM7 channel was overexpressed in grade III breast cancer samples associated with important Ki67 or tumor size. Our findings strongly suggest that TRPM7 is involved in the proliferative potentiality of breast cancer cells, probably by regulating Ca2+ influx.
Collapse
Affiliation(s)
- Arnaud Guilbert
- Laboratoire de Physiologie Cellulaire et Moléculaire, JE 2530: Canaux Ioniques dans le Cancer du Sein, Faculté des Sciences, and
| | - Mathieu Gautier
- Laboratoire de Physiologie Cellulaire et Moléculaire, JE 2530: Canaux Ioniques dans le Cancer du Sein, Faculté des Sciences, and
| | - Isabelle Dhennin-Duthille
- Laboratoire de Physiologie Cellulaire et Moléculaire, JE 2530: Canaux Ioniques dans le Cancer du Sein, Faculté des Sciences, and
| | - Nathalie Haren
- Laboratoire de Physiologie Cellulaire et Moléculaire, JE 2530: Canaux Ioniques dans le Cancer du Sein, Faculté des Sciences, and
| | - Henri Sevestre
- Laboratoire de Physiologie Cellulaire et Moléculaire, JE 2530: Canaux Ioniques dans le Cancer du Sein, Faculté des Sciences, and
- Service d'Anatomie Pathologique, Centre Hospitalier Universitaire Nord, Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire, JE 2530: Canaux Ioniques dans le Cancer du Sein, Faculté des Sciences, and
| |
Collapse
|
48
|
Berbey C, Allard B. Electrically silent divalent cation entries in resting and active voltage-controlled muscle fibers. Biophys J 2009; 96:2648-57. [PMID: 19348748 DOI: 10.1016/j.bpj.2009.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 02/06/2023] Open
Abstract
Ca2+ is known to enter skeletal muscle at rest and during activity. Except for the well-characterized Ca2+ entry through L-type channels, pathways involved in these Ca2+ entries remain elusive in adult muscle. This study investigates Ca2+ influx at rest and during activity using the method of Mn2+ quenching of fura-2 fluorescence on voltage-controlled adult skeletal muscle cells. Resting rate of Mn2+ influx depended on external [Mn2+] and membrane potential. At -80 mV, replacement of Mg2+ by Mn2+ gave rise to an outward current associated with an increase in cell input resistance. Calibration of fura-2 response indicated that Mn2+ influx was too small to be resolved as a macroscopic current. Partial depletion of the sarcoplasmic reticulum induced by a train of action potentials in the presence of cyclopiazonic acid led to a slight increase in resting Mn2+ influx but no change in cell input resistance and membrane potential. Trains of action potentials considerably increased Mn2+ entry through an electrically silent pathway independent of L-type channels, which provided 24% of the global Mn2+ influx at +30 mV under voltage-clamp conditions. Within this context, the nature and the physiological role of the Ca2+ pathways involved during muscle excitation still remain open questions.
Collapse
Affiliation(s)
- Céline Berbey
- Physiologie Intégrative Cellulaire et Moléculaire, Université Lyon 1, Centre National de la Recherche Scientifique Unité Mixte de Recherche, 5123 Villeurbanne, France
| | | |
Collapse
|
49
|
Genetic correction of splice site mutation in purified and enriched myoblasts isolated from mdx5cv mice. BMC Mol Biol 2009; 10:15. [PMID: 19236710 PMCID: PMC2654480 DOI: 10.1186/1471-2199-10-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 02/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background Duchenne Muscular Dystrophy (DMD) is an X-linked genetic disorder that results in the production of a dysfunctional form of the protein, dystrophin. The mdx5cv mouse is a model of DMD in which a point mutation in exon 10 of the dystrophin gene creates an artificial splice site. As a result, a 53 base pair deletion of exon 10 occurs with a coincident creation of a frameshift and a premature stop codon. Using primary myoblasts from mdx5cv mice, single-stranded DNA oligonucleotides were designed to correct this DNA mutation. Results Single-stranded DNA oligonucleotides that were designed to repair this splice site mutation corrected the mutation in the gene and restored expression of wild-type dystrophin. This repair was validated at the DNA, RNA and protein level. We also report that the frequency of genetic repair of the mdx mutation can be enhanced if RNAi is used to suppress expression of the recombinase inhibitor protein Msh2 in cultures containing myoblasts but not in those heavily enriched in myoblasts. Conclusion Exogenous manipulations, such as RNAi, are certainly feasible and possibly required to increase the successful application of gene repair in some primary or progenitor muscle cells.
Collapse
|
50
|
Abramowitz J, Birnbaumer L. Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J 2009; 23:297-328. [PMID: 18940894 PMCID: PMC2630793 DOI: 10.1096/fj.08-119495] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/25/2008] [Indexed: 11/11/2022]
Abstract
The existence of a mammalian family of TRPC ion channels, direct homologues of TRP, the visual transduction channel of flies, was discovered during 1995-1996 as a consequence of research into the mechanism by which the stimulation of the receptor-Gq-phospholipase Cbeta signaling pathway leads to sustained increases in intracellular calcium. Mammalian TRPs, TRPCs, turned out to be nonselective, calcium-permeable cation channels, which cause both a collapse of the cell's membrane potential and entry of calcium. The family comprises 7 members and is widely expressed. Many cells and tissues express between 3 and 4 of the 7 TRPCs. Despite their recent discovery, a wealth of information has accumulated, showing that TRPCs have widespread roles in almost all cells studied, including cells from excitable and nonexcitable tissues, such as the nervous and cardiovascular systems, the kidney and the liver, and cells from endothelia, epithelia, and the bone marrow compartment. Disruption of TRPC function is at the root of some familial diseases. More often, TRPCs are contributing risk factors in complex diseases. The present article reviews what has been uncovered about physiological roles of mammalian TRPC channels since the time of their discovery. This analysis reveals TRPCs as major and unsuspected gates of Ca(2+) entry that contribute, depending on context, to activation of transcription factors, apoptosis, vascular contractility, platelet activation, and cardiac hypertrophy, as well as to normal and abnormal cell proliferation. TRPCs emerge as targets for a thus far nonexistent field of pharmacological intervention that may ameliorate complex diseases.
Collapse
Affiliation(s)
- Joel Abramowitz
- Transmembrane Signaling Group, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|