1
|
Lei Z, Westerband AC, Wright IJ, He Y, Zhang W, Cai X, Zhou Z, Liu F, Zhang Y. Leaf trait covariation and controls on leaf mass per area (LMA) following cotton domestication. ANNALS OF BOTANY 2022; 130:231-243. [PMID: 35849070 PMCID: PMC9445596 DOI: 10.1093/aob/mcac086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/05/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS The process of domestication has driven dramatic shifts in plant functional traits, including leaf mass per area (LMA). It remains unclear whether domestication has produced concerted shifts in the lower-level anatomical traits that underpin LMA and how these traits in turn affect photosynthesis. METHODS In this study we investigated controls of LMA and leaf gas exchange by leaf anatomical properties at the cellular, tissue and whole-leaf levels, comparing 26 wild and 31 domesticated genotypes of cotton (Gossypium). KEY RESULTS As expected, domesticated plants expressed lower LMA, higher photosynthesis and higher stomatal conductance, suggesting a shift towards the 'faster' end of the leaf economics spectrum. At whole-leaf level, variation in LMA was predominantly determined by leaf density (LD) both in wild and domesticated genotypes. At tissue level, higher leaf volume per area (Vleaf) in domesticated genotypes was driven by a simultaneous increase in the volume of epidermal, mesophyll and vascular bundle tissue and airspace, while lower LD resulted from a lower volume of palisade tissue and vascular bundles (which are of high density), paired with a greater volume of epidermis and airspace, which are of low density. The volume of spongy mesophyll exerted direct control on photosynthesis in domesticated genotypes but only indirect control in wild genotypes. At cellular level, a shift to larger but less numerous cells with thinner cell walls underpinned a lower proportion of cell wall mass, and thus a reduction in LD. CONCLUSIONS Taken together, cotton domestication has triggered synergistic shifts in the underlying determinants of LMA but also photosynthesis, at cell, tissue and whole-leaf levels, resulting in a marked shift in plant ecological strategy.
Collapse
Affiliation(s)
- Zhangying Lei
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, P.R. China
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
| | - Andrea C Westerband
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
| | - Ian J Wright
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- ARC Centre for Plant Success in Nature & Agriculture, Western Sydney University, Penrith, NSW 2751, Australia
| | - Yang He
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, P.R. China
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, P.R. China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, P.R. China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, P.R. China
| | | | | |
Collapse
|
2
|
Locqueville J, Labeyrie V, McKey D, Sanabria OL, Caillon S. Semi-Domesticated Crops Have Unique Functional Roles in Agroecosystems: Perennial Beans (Phaseolus dumosus and P. coccineus) and Landscape Ethnoecology in the Colombian Andes. J ETHNOBIOL 2022. [DOI: 10.2993/0278-0771-42.2.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Doyle McKey
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Sophie Caillon
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
3
|
Lei Z, Liu F, Wright IJ, Carriquí M, Niinemets Ü, Han J, Jia M, Atwell BJ, Cai X, Zhang W, Zhou Z, Zhang Y. Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:873-885. [PMID: 34153103 DOI: 10.1093/jxb/erab293] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Mesophyll conductance (gm) is a crucial leaf trait contributing to the photosynthetic rate (AN). Plant domestication typically leads to an enhancement of AN that is often associated with profound anatomical modifications, but it is unclear which of these structural alterations influence gm. We analyzed the implication of domestication on leaf anatomy and its effect on gm in 26 wild and 31 domesticated cotton genotypes (Gossypium sp.) grown under field conditions. We found that domesticated genotypes had higher AN but similar gm to wild genotypes. Consistent with this, domestication did not translate into significant differences in the fraction of mesophyll occupied by intercellular air spaces (fias) or mesophyll and chloroplast surface area exposed to intercellular air space (Sm/S and Sc/S, respectively). However, leaves of domesticated genotypes were significantly thicker, with larger but fewer mesophyll cells with thinner cell walls. Moreover, domesticated genotypes had higher cell wall conductance (gcw) but smaller cytoplasmic conductance (gcyt) than wild genotypes. It appears that domestication in cotton has not generally led to significant improvement in gm, in part because their thinner mesophyll cell walls (increasing gcw) compensate for their lower gcyt, itself due to larger distance between plasmalemma and chloroplast envelopes.
Collapse
Affiliation(s)
- Zhangying Lei
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Marc Carriquí
- School of Natural Sciences, University of Tasmania, Bag 55, 7001 Hobart, Tasmania, Australia
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Jimei Han
- School of Integrative Plant Science, Soil and Crop Science Section, Cornell University, Ithaca, NY 14850, USA
| | - Mengmeng Jia
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Yali Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| |
Collapse
|
4
|
Alves-Pereira A, Zucchi MI, Clement CR, Viana JPG, Pinheiro JB, Veasey EA, de Souza AP. Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties. Sci Rep 2022; 12:1268. [PMID: 35075210 PMCID: PMC8786832 DOI: 10.1038/s41598-022-05160-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Knowledge about genetic diversity is essential to promote effective use and conservation of crops, because it enables farmers to adapt their crops to specific needs and is the raw material for breeding. Manioc (Manihot esculenta ssp. esculenta) is one of the world's major food crops and has the potential to help achieve food security in the context of on-going climate changes. We evaluated single nucleotide polymorphisms in traditional Brazilian manioc varieties conserved in the gene bank of the Luiz de Queiroz College of Agriculture, University of São Paulo. We assessed genome-wide diversity and identified selective signatures contrasting varieties from different biomes with samples of manioc's wild ancestor M. esculenta ssp. flabellifolia. We identified signatures of selection putatively associated with resistance genes, plant development and response to abiotic stresses that might have been important for the crop's domestication and diversification resulting from cultivation in different environments. Additionally, high neutral genetic diversity within groups of varieties from different biomes and low genetic divergence among biomes reflect the complexity of manioc's evolutionary dynamics under traditional cultivation. Our results exemplify how smallholder practices contribute to conserve manioc's genetic resources, maintaining variation of potential adaptive significance and high levels of neutral genetic diversity.
Collapse
Affiliation(s)
- Alessandro Alves-Pereira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil.,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil
| | - Maria Imaculada Zucchi
- Agência Paulista de Tecnologia Dos Agronegócios (APTA), Pólo Centro-Sul. Rodovia SP 127, km 30, Piracicaba, SP, 13400-970, Brazil
| | - Charles R Clement
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| | - João Paulo Gomes Viana
- Department of Crop Sciences, University of Illinois at Urbana-Champaign (UIUC), AW-101 Turner Hall, 1102 South Goodwin Avenue, Urbana, IL, 61801-4798, USA
| | - José Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo (ESALQ/USP), Av. Pádua Dias, 11, Piracicaba, SP, 13400-970, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo (ESALQ/USP), Av. Pádua Dias, 11, Piracicaba, SP, 13400-970, Brazil
| | - Anete Pereira de Souza
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil. .,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
5
|
Hu W, Ji C, Liang Z, Ye J, Ou W, Ding Z, Zhou G, Tie W, Yan Y, Yang J, Ma L, Yang X, Wei Y, Jin Z, Xie J, Peng M, Wang W, Guo A, Xu B, Guo J, Chen S, Wang M, Zhou Y, Li X, Li R, Xiao X, Wan Z, An F, Zhang J, Leng Q, Li Y, Shi H, Ming R, Li K. Resequencing of 388 cassava accessions identifies valuable loci and selection for variation in heterozygosity. Genome Biol 2021; 22:316. [PMID: 34784936 PMCID: PMC8594203 DOI: 10.1186/s13059-021-02524-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 10/24/2021] [Indexed: 01/30/2023] Open
Abstract
Background Heterozygous genomes are widespread in outcrossing and clonally propagated crops. However, the variation in heterozygosity underlying key agronomic traits and crop domestication remains largely unknown. Cassava is a staple crop in Africa and other tropical regions and has a highly heterozygous genome. Results We describe a genomic variation map from 388 resequenced genomes of cassava cultivars and wild accessions. We identify 52 loci for 23 agronomic traits through a genome-wide association study. Eighteen allelic variations in heterozygosity for nine candidate genes are significantly associated with seven key agronomic traits. We detect 81 selective sweeps with decreasing heterozygosity and nucleotide diversity, harboring 548 genes, which are enriched in multiple biological processes including growth, development, hormone metabolisms and responses, and immune-related processes. Artificial selection for decreased heterozygosity has contributed to the domestication of the large starchy storage root of cassava. Selection for homozygous GG allele in MeTIR1 during domestication contributes to increased starch content. Selection of homozygous AA allele in MeAHL17 is associated with increased storage root weight and cassava bacterial blight (CBB) susceptibility. We have verified the positive roles of MeTIR1 in increasing starch content and MeAHL17 in resistance to CBB by transient overexpression and silencing analysis. The allelic combinations in MeTIR1 and MeAHL17 may result in high starch content and resistance to CBB. Conclusions This study provides insights into allelic variation in heterozygosity associated with key agronomic traits and cassava domestication. It also offers valuable resources for the improvement of cassava and other highly heterozygous crops. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02524-7.
Collapse
Affiliation(s)
- Wei Hu
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China. .,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China. .,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Changmian Ji
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zhe Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianqiu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Wenjun Ou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zehong Ding
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Gang Zhou
- Biomarker Technologies Corporation, Beijing, China
| | - Weiwei Tie
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yan Yan
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jinghao Yang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Liming Ma
- Biomarker Technologies Corporation, Beijing, China
| | - Xiaoying Yang
- College of Food Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, China
| | - Zhiqiang Jin
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jianghui Xie
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Ming Peng
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Wenquan Wang
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Anping Guo
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China.,Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Biyu Xu
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jianchun Guo
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.,Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | | | - Yang Zhou
- Biomarker Technologies Corporation, Beijing, China
| | - Xiaolong Li
- Biomarker Technologies Corporation, Beijing, China
| | - Ruoxi Li
- Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Xinhui Xiao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zhongqing Wan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Feifei An
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jie Zhang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Qingyun Leng
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan, China.
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| |
Collapse
|
6
|
Zhang L, Zhang J, Wei Y, Hu W, Liu G, Zeng H, Shi H. Microbiome-wide association studies reveal correlations between the structure and metabolism of the rhizosphere microbiome and disease resistance in cassava. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:689-701. [PMID: 33095967 PMCID: PMC8051613 DOI: 10.1111/pbi.13495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/18/2020] [Indexed: 05/07/2023]
Abstract
Cassava is one of the most important staple food crops in tropical regions. To date, an understanding of the relationship between microbial communities and disease resistance in cassava has remained elusive. In order to explore the relationship among microbiome and phenotypes for further targeted design of microbial community, 16S rRNA and ITS of microbiome of ten cassava varieties were analysed, and a distinctive microbial community in the rhizosphere showed significant interdependence with disease resistance. Shotgun metagenome sequencing was performed to elucidate the structure of microbiomes of cassava rhizosphere. Comprehensive microbiome studies were performed to assess the correlation between the rhizosphere microbiome and disease resistance. Subsequently, the metagenome of rhizosphere microbiome was annotated to obtain taxonomic information at species level and identify metabolic pathways that were significantly associated with cassava disease resistance. Notably, cassava disease resistance was significantly associated with Lactococcus sp., which specifically produces nisin. To definitively explain the role of nisin and underlying mechanism, analysis of nisin biosynthesis-associated genes together with in vitro and in vivo experiments highlighted the effect of nisin on inhibiting the growth of Xanthomonas axonopodis pv. manihotis (Xam) and activating immune response in cassava. The new insights between cassava rhizosphere microbiome especially Lactococcus sp. and disease resistance provide valuable information into further control of cassava disease.
Collapse
Affiliation(s)
- Lin Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Jiachao Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| |
Collapse
|
7
|
de Almeilda JAS, Feitosa NA, Sousa LDCE, Silva RNO, de Morais RF, Monteiro JM, de Sousa Júnior JR. Use, perception, and local management of Copernicia prunifera (Miller) H. E. Moore in rural communities in the Brazilian Savanna. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2021; 17:16. [PMID: 33752732 PMCID: PMC7986259 DOI: 10.1186/s13002-021-00440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Copernicia prunifera belongs to the Arecaceae family, and its production chain includes a set of economic activities based on the use of the stipe, petiole, fiber, fruits, roots, and leaves from which carnaúba wax is extracted, an economically valuable resource in the region. This study aimed to evaluate the uses, management, and perception of the species by local extractors. METHODS Two communities were studied, Bem Quer, where 15 extractors of carnaúba leaves were interviewed, and Cana, where 21 extractors considered specialists were interviewed, totaling a sample of 36 interviewees. Interviewees were asked questions about uses, ways of handling, and perception of morphological variation in the carnaúba leaves. The number of leaves extracted and the income obtained from the sale of leaves were estimated from interviews and notes that each leader of extractors held during the year of the research and previous years, as well as direct observations made by researchers in the communities which recollection area of straw hold about 80 thousand individuals of C. prunifera. A regression analysis was used to explore the relationships between social variables (age, time in extractive activity, and income obtained from extraction) with the number of leaves exploited. RESULTS The leaf was indicated as the most used part, from which an important powder is extracted for the production of wax. In addition, the leaf was also indicated to be used for fertilization and construction. The relationship between the socioeconomic variables, income from extraction, and the number of leaves extracted (in thousands) was significant (R2 = 0.73 and p < 0.001). However, the other variables analyzed in this study, such as the time spent extracting leaves and the years of residence in the community (R2 = 0.03 and p > 0.05); the number of leaves extracted and interviewee age (R2= 0.05 and p > 0.05); and the number of leaves extracted and extraction time (R2 = 0.04 and p > 0.05) did not indicate a relationship. CONCLUSION Local extractors observed that new leaves have the highest sales value, as they have the highest production of powder. In addition, economic factor is the preponderant force that directs the management strategies of native species. For this species, however, morphological and genetic studies are needed for further clarification.
Collapse
Affiliation(s)
- José Afonso Santana de Almeilda
- Ethnobiology and Conservation Laboratory (LECON), Federal University of Piauí/Campus Amílcar Ferreira Sobral (UFPI/CAFS), BR 343, km 3.5 s/n Meladão, Floriano, Piauí, 64808-605, Brazil
| | - Nágila Alves Feitosa
- Ethnobiology and Conservation Laboratory (LECON), Federal University of Piauí/Campus Amílcar Ferreira Sobral (UFPI/CAFS), BR 343, km 3.5 s/n Meladão, Floriano, Piauí, 64808-605, Brazil
| | - Leilane de Carvalho E Sousa
- Ethnobiology and Conservation Laboratory (LECON), Federal University of Piauí/Campus Amílcar Ferreira Sobral (UFPI/CAFS), BR 343, km 3.5 s/n Meladão, Floriano, Piauí, 64808-605, Brazil
| | - Raimundo Nonato Oliveira Silva
- Ethnobiology and Conservation Laboratory (LECON), Federal University of Piauí/Campus Amílcar Ferreira Sobral (UFPI/CAFS), BR 343, km 3.5 s/n Meladão, Floriano, Piauí, 64808-605, Brazil
| | - Rodrigo Ferreira de Morais
- Botany Laboratory, State University of Piauí (UESPI)/Coordination of Biological Sciences, Campus of Corrente, Av. Dom Pedro II, 629, Corrente, Piauí, 64980-000, Brazil
| | - Júlio Marcelino Monteiro
- Ethnobiology and Conservation Laboratory (LECON), Federal University of Piauí/Campus Amílcar Ferreira Sobral (UFPI/CAFS), BR 343, km 3.5 s/n Meladão, Floriano, Piauí, 64808-605, Brazil
| | - José Ribamar de Sousa Júnior
- Ethnobiology and Conservation Laboratory (LECON), Federal University of Piauí/Campus Amílcar Ferreira Sobral (UFPI/CAFS), BR 343, km 3.5 s/n Meladão, Floriano, Piauí, 64808-605, Brazil.
| |
Collapse
|
8
|
Mouginot P, Luviano Aparicio N, Gourcilleau D, Latutrie M, Marin S, Hemptinne JL, Grunau C, Pujol B. Phenotypic Response to Light Versus Shade Associated with DNA Methylation Changes in Snapdragon Plants ( Antirrhinum majus). Genes (Basel) 2021; 12:227. [PMID: 33557416 PMCID: PMC7914928 DOI: 10.3390/genes12020227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
The phenotypic plasticity of plants in response to change in their light environment, and in particularly, to shade is a schoolbook example of ecologically relevant phenotypic plasticity with evolutionary adaptive implications. Epigenetic variation is known to potentially underlie plant phenotypic plasticity. Yet, little is known about its role in ecologically and evolutionary relevant mechanisms shaping the diversity of plant populations in nature. Here we used a reference-free reduced representation bisulfite sequencing method for non-model organisms (epiGBS) to investigate changes in DNA methylation patterns across the genome in snapdragon plants (Antirrhinum majus L.). We exposed plants to sunlight versus artificially induced shade in four highly inbred lines to exclude genetic confounding effects. Our results showed that phenotypic plasticity in response to light versus shade shaped vegetative traits. They also showed that DNA methylation patterns were modified under light versus shade, with a trend towards global effects over the genome but with large effects found on a restricted portion. We also detected the existence of a correlation between phenotypic and epigenetic variation that neither supported nor rejected its potential role in plasticity. While our findings imply epigenetic changes in response to light versus shade environments in snapdragon plants, whether these changes are directly involved in the phenotypic plastic response of plants remains to be investigated. Our approach contributed to this new finding but illustrates the limits in terms of sample size and statistical power of population epigenetic approaches in non-model organisms. Pushing this boundary will be necessary before the relationship between environmentally induced epigenetic changes and phenotypic plasticity is clarified for ecologically relevant mechanisms with evolutionary implications.
Collapse
Affiliation(s)
- Pierick Mouginot
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France; (P.M.); (M.L.); (S.M.)
| | - Nelia Luviano Aparicio
- Université Montpellier, CNRS, IFREMER, UPVD, Interactions Hôtes Pathogènes Environnements (IHPE), 66860 Perpignan, France; (N.L.A.); (C.G.)
| | - Delphine Gourcilleau
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France; (D.G.); (J.-L.H.)
| | - Mathieu Latutrie
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France; (P.M.); (M.L.); (S.M.)
| | - Sara Marin
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France; (P.M.); (M.L.); (S.M.)
| | - Jean-Louis Hemptinne
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France; (D.G.); (J.-L.H.)
| | - Christoph Grunau
- Université Montpellier, CNRS, IFREMER, UPVD, Interactions Hôtes Pathogènes Environnements (IHPE), 66860 Perpignan, France; (N.L.A.); (C.G.)
| | - Benoit Pujol
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France; (P.M.); (M.L.); (S.M.)
| |
Collapse
|
9
|
Alves‐Pereira A, Clement CR, Picanço‐Rodrigues D, Veasey EA, Dequigiovanni G, Ramos SLF, Pinheiro JB, de Souza AP, Zucchi MI. A population genomics appraisal suggests independent dispersals for bitter and sweet manioc in Brazilian Amazonia. Evol Appl 2020; 13:342-361. [PMID: 31993081 PMCID: PMC6976959 DOI: 10.1111/eva.12873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022] Open
Abstract
Amazonia is a major world centre of plant domestication, but the genetics of domestication remains unclear for most Amazonian crops. Manioc (Manihot esculenta) is the most important staple food crop that originated in this region. Although manioc is relatively well-studied, little is known about the diversification of bitter and sweet landraces and how they were dispersed across Amazonia. We evaluated single nucleotide polymorphisms (SNPs) in wild and cultivated manioc to identify outlier SNPs putatively under selection and to assess the neutral genetic structure of landraces to make inferences about the evolution of the crop in Amazonia. Some outlier SNPs were in putative manioc genes possibly related to plant architecture, transcriptional regulation and responses to stress. The neutral SNPs revealed contrasting genetic structuring for bitter and sweet landraces. The outlier SNPs may be signatures of the genomic changes resulting from domestication, while the neutral genetic structure suggests independent dispersals for sweet and bitter manioc, possibly related to the earlier domestication and diversification of the former. Our results highlight the role of ancient peoples and current smallholders in the management and conservation of manioc genetic diversity, including putative genes and specific genetic resources with adaptive potential in the context of climate change.
Collapse
Affiliation(s)
- Alessandro Alves‐Pereira
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
| | | | | | - Elizabeth Ann Veasey
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Gabriel Dequigiovanni
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Santiago Linorio Ferreyra Ramos
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - José Baldin Pinheiro
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Anete Pereira de Souza
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
| | | |
Collapse
|
10
|
Fontes-Puebla AA, Bernal JS. Resistance and Tolerance to Root Herbivory in Maize Were Mediated by Domestication, Spread, and Breeding. FRONTIERS IN PLANT SCIENCE 2020; 11:223. [PMID: 32174953 PMCID: PMC7056747 DOI: 10.3389/fpls.2020.00223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/12/2020] [Indexed: 05/17/2023]
Abstract
Plants may defend against herbivory and disease through various means. Plant defensive strategies against herbivores include resistance and tolerance, which may have metabolic costs that affect plant growth and reproduction. Thus, expression of these strategies may be mediated by a variety of factors, such as resource availability, herbivory pressure, and plant genetic variation, among others. Additionally, artificial selection by farmers and systematic breeding by scientists may mediate the expression of resistance and tolerance in crop plants. In this study, we tested whether maize defense against Western corn rootworm (WCR) was mediated by the crop's domestication, spread, and modern breeding. We expected to find a trend of decreasing resistance to WCR with maize domestication, spread, and breeding, and a trend of increasing tolerance with decreasing resistance. To test our expectations, we compared resistance and tolerance among four Zea plants spanning those processes: Balsas teosinte, Mexican landrace maize, US landrace maize, and US inbred maize. We measured the performance of WCR larvae as a proxy for plant resistance, and plant growth as affected by WCR feeding as a proxy for plant tolerance. Our results showed that domestication and spread decreased maize resistance to WCR, as expected, whereas breeding increased maize resistance to WCR, contrary to expected. Our results also showed that maize resistance and tolerance to WCR are negatively correlated, as expected. We discussed our findings in relation to ecological-evolutionary hypotheses seeking to explain defense strategy evolution in the contexts of plant resistance-productivity trade-offs, plant tolerance-resistance trade-offs, and varying resource availability vis-à-vis plant physiological stress and herbivory pressure. Finally, we suggested that defense strategy evolution in maize, from domestication to the present, is predicted by those ecological-evolutionary hypotheses.
Collapse
|
11
|
Gourcilleau D, Mousset M, Latutrie M, Marin S, Delaunay A, Maury S, Pujol B. Assessing Global DNA Methylation Changes Associated with Plasticity in Seven Highly Inbred Lines of Snapdragon Plants ( Antirrhinum majus). Genes (Basel) 2019; 10:E256. [PMID: 30925802 PMCID: PMC6523709 DOI: 10.3390/genes10040256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 11/16/2022] Open
Abstract
Genetic and epigenetic variations are commonly known to underlie phenotypic plastic responses to environmental cues. However, the role of epigenetic variation in plastic responses harboring ecological significance in nature remains to be assessed. The shade avoidance response (SAR) of plants is one of the most prevalent examples of phenotypic plasticity. It is a phenotypic syndrome including stem elongation and multiple other traits. Its ecological significance is widely acknowledged, and it can be adaptive in the presence of competition for light. Underlying genes and pathways were identified, but evidence for its epigenetic basis remains scarce. We used a proven and accessible approach at the population level and compared global DNA methylation between plants exposed to regular light and three different magnitudes of shade in seven highly inbred lines of snapdragon plants (Antirrhinum majus) grown in a greenhouse. Our results brought evidence of a strong SAR syndrome for which magnitude did not vary between lines. They also brought evidence that its magnitude was not associated with the global DNA methylation percentage for five of the six traits under study. The magnitude of stem elongation was significantly associated with global DNA demethylation. We discuss the limits of this approach and why caution must be taken with such results. In-depth approaches at the DNA sequence level will be necessary to better understand the molecular basis of the SAR syndrome.
Collapse
Affiliation(s)
- Delphine Gourcilleau
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
| | - Mathilde Mousset
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
| | - Mathieu Latutrie
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France.
| | - Sara Marin
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France.
| | - Alain Delaunay
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC, EA 1207 USC 1328 INRA), Université Orléans, 45067 Orléans, France.
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC, EA 1207 USC 1328 INRA), Université Orléans, 45067 Orléans, France.
| | - Benoît Pujol
- Laboratoire Évolution & Diversité Biologique (EDB, UMR 5174), Université Fédérale de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1, CEDEX 9, 31062 Toulouse, France.
- PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France.
| |
Collapse
|
12
|
Pan Y, Chu J, Yang H. Conservation choice on the rare endangered plants Glehnia littoralis. CONSERVATION PHYSIOLOGY 2018; 6:coy002. [PMID: 29399363 PMCID: PMC5788067 DOI: 10.1093/conphys/coy002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/26/2017] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
The coastal herbs Glehnia littoralis have been domesticated as traditional medicines for many centuries. The domestication may have caused changes or declines of cultivated G. littoralis (CGL) relative to wild G. littoralis (WGL). By comparing fruit properties of CGL and WGL, we tested the hypothesis that domesticated G. littoralis have suffered major declines, and human cultivation cannot be sufficient to conserve this species. We collected fruits of CGL and WGL in the Shandong peninsula, China, and compared their buoyancy in seawater, germination potential after seawater immersion, and thousand-grain weights. Float rates of the WGL and CGL fruits were 95.6 (mean) ± 2.6% (standard deviation) and 30.0 ± 7.1%, respectively. The germination potential of CGL was significantly reduced, although the thousand-grain weights of CGL (21.85 ± 0.17 g) were higher than those of the WGL fruits (14.73 ± 0.21 g). These results suggest that the CGL have experienced significant declines relative to the WGL, presumably due to the loss of seawater inundation, selection and dispersal. These declines disfavour the persistence of CGL, and human domestication and cultivation are believed to be insufficient for conserving G. littoralis. Sand coasts where WGL still persists should be designated timely as nature reserves to conserve this species.
Collapse
Affiliation(s)
- Yanxia Pan
- Qingdao Agricultural University, Changcheng Road, Chengyang, Qingdao, Shandong Province 266109, China
| | - Jianmin Chu
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Hongxiao Yang
- Qingdao Agricultural University, Changcheng Road, Chengyang, Qingdao, Shandong Province 266109, China
- Qingdao Engineering Research Center for Rural Environment, Chengyang, Qingdao, Shandong Province 266109, China
| |
Collapse
|
13
|
Kluyver TA, Jones G, Pujol B, Bennett C, Mockford EJ, Charles M, Rees M, Osborne CP. Unconscious selection drove seed enlargement in vegetable crops. Evol Lett 2017; 1:64-72. [PMID: 30283639 PMCID: PMC6121828 DOI: 10.1002/evl3.6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/24/2017] [Indexed: 12/21/2022] Open
Abstract
Domesticated grain crops evolved from wild plants under human cultivation, losing natural dispersal mechanisms to become dependent upon humans, and showing changes in a suite of other traits, including increasing seed size. There is tendency for seed enlargement during domestication to be viewed as the result of deliberate selection for large seeds by early farmers. However, like some other domestication traits, large seeds may have evolved through natural selection from the activities of people as they gathered plants from the wild, or brought them into cultivation in anthropogenic settings. Alternatively, larger seeds could have arisen via pleiotropic effects or genetic linkage, without foresight from early farmers, and driven by selection that acted on other organs or favored larger plants. We have separated these unconscious selection effects on seed enlargement from those of deliberate selection, by comparing the wild and domesticated forms of vegetable crops. Vegetables are propagated by planting seeds, cuttings, or tubers, but harvested for their edible leaves, stems, or roots, so that seed size is not a direct determinant of yield. We find that landrace varieties of seven vegetable crops have seeds that are 20% to 2.5‐times larger than those of their closest wild relatives. These domestication effect sizes fall completely within the equivalent range of 14% to 15.2‐times for grain crops, although domestication had a significantly larger overall effect in grain than vegetable crops. Seed enlargement in vegetable crops that are propagated vegetatively must arise from natural selection for larger seeds on the occasions when plants recruit from seed and are integrated into the crop gene pool, or via a genetic link to selection for larger plants or organs. If similar mechanisms operate across all species, then unconscious selection during domestication could have exerted stronger effects on the seed size of our staple crops than previously realized.
Collapse
Affiliation(s)
- Thomas A Kluyver
- Department of Animal and Plant Sciences University of Sheffield Sheffield S10 2TN United Kingdom
| | - Glynis Jones
- Department of Archaeology, Northgate House University of Sheffield Sheffield S1 4ET United Kingdom
| | - Benoît Pujol
- Laboratoire Évolution and Diversité Biologique (EDB UMR5174) Université de Toulouse CNRS, ENSFEA, IRD, UPS France
| | - Christopher Bennett
- Department of Animal and Plant Sciences University of Sheffield Sheffield S10 2TN United Kingdom
| | - Emily J Mockford
- Department of Animal and Plant Sciences University of Sheffield Sheffield S10 2TN United Kingdom
| | - Michael Charles
- Department of Archaeology, Northgate House University of Sheffield Sheffield S1 4ET United Kingdom.,Current Address: School of Archaeology University of Oxford 36 Beaumont Street Oxford OX1 2PG United Kingdom
| | - Mark Rees
- Department of Animal and Plant Sciences University of Sheffield Sheffield S10 2TN United Kingdom
| | - Colin P Osborne
- Department of Animal and Plant Sciences University of Sheffield Sheffield S10 2TN United Kingdom
| |
Collapse
|
14
|
Comparative shotgun proteomic analysis of wild and domesticated Opuntia spp. species shows a metabolic adaptation through domestication. J Proteomics 2016; 143:353-364. [PMID: 27072113 DOI: 10.1016/j.jprot.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED The Opuntia genus is widely distributed in America, but the highest richness of wild species are found in Mexico, as well as the most domesticated Opuntia ficus-indica, which is the most domesticated species and an important crop in agricultural economies of arid and semiarid areas worldwide. During domestication process, the Opuntia morphological characteristics were favored, such as less and smaller spines in cladodes and less seeds in fruits, but changes at molecular level are almost unknown. To obtain more insights about the Opuntia molecular changes through domestication, a shotgun proteomic analysis and database-dependent searches by homology was carried out. >1000 protein species were identified and by using a label-free quantitation method, the Opuntia proteomes were compared in order to identify differentially accumulated proteins among wild and domesticated species. Most of the changes were observed in glucose, secondary, and 1C metabolism, which correlate with the observed protein, fiber and phenolic compounds accumulation in Opuntia cladodes. Regulatory proteins, ribosomal proteins, and proteins related with response to stress were also observed in differential accumulation. These results provide new valuable data that will help to the understanding of the molecular changes of Opuntia species through domestication. BIOLOGICAL SIGNIFICANCE Opuntia species are well adapted to dry and warm conditions in arid and semiarid regions worldwide, and they are highly productive plants showing considerable promises as an alternative food source. However, there is a gap regarding Opuntia molecular mechanisms that enable them to grow in extreme environmental conditions and how the domestication processes has changed them. In the present study, a shotgun analysis was carried out to characterize the proteomes of five Opuntia species selected by its domestication degree. Our results will help to a better understanding of proteomic features underlying the selection and specialization under evolution and domestication of Opuntia and will provide a platform for basic biology research and gene discovery.
Collapse
|
15
|
Renard D, Schatz B, McKey DB. Ant nest architecture and seed burial depth: Implications for seed fate and germination success in a myrmecochorous savanna shrub. ECOSCIENCE 2015. [DOI: 10.2980/17-2-3335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Guillén S, Terrazas T, Casas A. Effects of natural and artificial selection on survival of columnar cacti seedlings: the role of adaptation to xeric and mesic environments. Ecol Evol 2015; 5:1759-73. [PMID: 26140193 PMCID: PMC4485958 DOI: 10.1002/ece3.1478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 11/13/2022] Open
Abstract
Escontria chiotilla, Polaskia chichipe, and Stenocereus pruinosus are species of Mexican columnar cacti that are economically important because of their edible fruits. These species are managed by gathering fruits from the wild, silvicultural management in agroforestry systems, and cultivation in home gardens. Previous studies reported that artificial selection favored individuals that produced larger fruits, which indirectly led to the production of larger seeds and seedlings, with possible effects on survival. We hypothesized that seedlings from managed populations would be larger but more susceptible to xeric conditions than those from wild populations. We evaluated the effects of artificial and natural selection on seedling survival of the three species in wild and managed populations, which were managed with low and high intensity, respectively. We tested seedling performance in gradients of shade (0, 40, and 80%) and humidity (low and high). A GLM of seedling survival showed significant differences among species, shade, and humidity treatments, with each species having environmental requirements associated with their particular adaptations. High humidity decreased seedling survival of all species, and high solar radiation decreased survival of S. pruinosus and P. chichipe. The effect of management type was significant only in S. pruinosus. Significant differences in the initial growth of seedlings among species were detected with ANOVA. In optimal conditions, the hypocotyl and the cotyledons decreased in size and the epicotyl grew, whereas under stress, these structures remained unchanged. The optimum conditions of shade and humidity varied among species and management types. The seedlings of S. pruinosus were the largest and the most susceptible, but in all species, seedlings from managed populations were more susceptible to environmental conditions. Thus, artificial selection influenced the susceptibility of these cacti to xeric environments.
Collapse
Affiliation(s)
- Susana Guillén
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad UniversitariaDel. Coyoacán, México, D.F., 04510, México
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad UniversitariaDel. Coyoacán, México, D.F., 04510, México
| | - Alejandro Casas
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de Méxicocampus Morelia. Antigua Carretera a Pátzcuaro 8711, Morelia, Michoacán, 58190, México
| |
Collapse
|
17
|
Milla R, Morente-López J. Limited evolutionary divergence of seedlings after the domestication of plant species. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:169-176. [PMID: 24943713 DOI: 10.1111/plb.12220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
The most vulnerable stage in the life of plants is the seedling. The transition from wild to agricultural land that plants experienced during and after domestication implied a noticeable change in the seedlings' environment. Building on current knowledge of seedling ecology, and on previous studies of cassava, we hypothesise that cultivation should have promoted epigeal germination of seedlings, and more exposed and photosynthetic cotyledons. To test this hypothesis, we phenotyped seedling morpho-functional traits in a set of domesticated and wild progenitor accessions of 20 Eudicot herbaceous crop species. Qualitative traits like epi- versus hypogeal germination, leafy versus storage type of cotyledons, or crypto- versus phanerocotyledonar germination, remained conserved during the domestication of all 20 species. Lengths of hypocotyls and epicotyls, of cotyledon petioles, and indices of cotyledon exposure to the aboveground environment changed during evolution under cultivation. However, those changes occurred in diverse directions, depending on the crop species. No common seedling phenotypic convergence in response to domestication was thus detected among the group of species studied here. Also, none of the 20 crops evolved in accordance with our initial hypothesis. Our results reject the idea that strong selective filters exerted unconsciously by artificial selection should have resulted in generalised channelling of seedling morphology towards more productive and more herbivore risky phenotypes. This result opens up unexplored opportunities for directional breeding of seedling traits.
Collapse
Affiliation(s)
- R Milla
- Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
| | | |
Collapse
|
18
|
Differences in Manioc Diversity Among Five Ethnic Groups of the Colombian Amazon. DIVERSITY 2014. [DOI: 10.3390/d6040792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Lins Neto EMDF, Peroni N, Casas A, Parra F, Aguirre X, Guillén S, Albuquerque UP. Brazilian and Mexican experiences in the study of incipient domestication. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2014; 10:33. [PMID: 24694009 PMCID: PMC4012548 DOI: 10.1186/1746-4269-10-33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 03/05/2014] [Indexed: 05/14/2023]
Abstract
BACKGROUND Studies of domestication enables a better understanding of human cultures, landscape changes according to peoples' purposes, and evolutionary consequences of human actions on biodiversity. This review aimed at discussing concepts, hypotheses, and current trends in studies of domestication of plants, using examples of cases studied in regions of Mesoamerica and Brazil. We analyzed trends of ethnobiological studies contributing to document processes of domestication and to establish criteria for biodiversity conservation based on traditional ecological knowledge. METHODS Based on reviewing our own and other authors' studies we analyzed management patterns and evolutionary trends associated to domestication occurring at plant populations and landscape levels. Particularly, we systematized information documenting: ethnobotanical aspects about plant management and artificial selection mechanisms, morphological consequences of plant management, population genetics of wild and managed plant populations, trends of change in reproduction systems of plants associated to management, and other ecological and physiological aspects influenced by management and domestication. RESULTS Based on the analysis of study cases of 20 native species of herbs, shrubs and trees we identified similar criteria of artificial selection in different cultural contexts of Mexico and Brazil. Similar evolutionary trends were also identified in morphology (selection in favor of gigantism of useful and correlated parts); organoleptic characteristics such as taste, toxicity, color, texture; reproductive biology, mainly breeding system, phenological changes, and population genetics aspects, maintenance or increasing of genetic diversity in managed populations, high gene flow with wild relatives and low structure maintained by artificial selection. Our review is a first attempt to unify research methods for analyzing a high diversity of processes. Further research should emphasize deeper analyses of contrasting and diverse cultural and ecological contexts for a better understanding of evolution under incipient processes of domestication. CONCLUSION Higher research effort is particularly required in Brazil, where studies on this topic are scarcer than in Mexico but where diversity of human cultures managing their also high plant resources diversity offer high potential for documenting the diversity of mechanisms of artificial selection and evolutionary trends. Comparisons and evaluations of incipient domestication in the regions studied as well as the Andean area would significantly contribute to understanding origins and diffusion of the experience of managing and domesticating plants.
Collapse
Affiliation(s)
| | - Nivaldo Peroni
- Department of Ecology and Zoology at Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Alejandro Casas
- Centro de Investigaciones en Ecosistemas at Universidad Nacional Autónoma de México, Campus Morelia-Michoacán, Michoacán, Mexico
| | - Fabiola Parra
- Department of Biology, Laboratory of Applied and Theoretical Ethnobiology (LEA) at Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Xitlali Aguirre
- Centro de Investigaciones en Ecosistemas at Universidad Nacional Autónoma de México, Campus Morelia-Michoacán, Michoacán, Mexico
| | - Susana Guillén
- Centro de Investigaciones en Ecosistemas at Universidad Nacional Autónoma de México, Campus Morelia-Michoacán, Michoacán, Mexico
| | - Ulysses Paulino Albuquerque
- Department of Biology, Laboratory of Applied and Theoretical Ethnobiology (LEA) at Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
20
|
Guillén S, Casas A, Terrazas T, Vega E, Martínez-Palacios A. Differential survival and growth of wild and cultivated seedlings of columnar cacti: Consequences of domestication. AMERICAN JOURNAL OF BOTANY 2013; 100:2364-2379. [PMID: 24302692 DOI: 10.3732/ajb.1300241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY Studies of domestication of cacti in the Tehuacán Valley have identified morphophysiological divergences between wild and cultivated populations. To determine whether such divergences are associated with differential survivorship in xeric and mesic environments characterizing wild and cultivated habitats, respectively, we hypothesized that seedlings from cultivated populations are less tolerant of xeric environments and that differences between wild and cultivated populations are greater in species with higher management intensity. METHODS We compared size, survivorship, and absolute and relative growth rates (AGRs, RGRs) in shade and humidity gradients of seedlings from wild and cultivated populations of Stenocereus pruinosus, S. stellatus, Polaskia chichipe, and Escontria chiotilla. These species represent a range of management intensity, from highest to lowest, respectively. KEY RESULTS Seedlings of cultivated populations were larger than those of wild populations in all species studied. The AGRs were significantly different in P. chichipe and E. chiotilla associated with management, whereas the RGRs and seedling survival were significantly different in S. pruinosus and P. chichipe throughout the shade gradient tested. We also found significant differences in seedling survival among humidity treatments in E. chiotilla and among shade treatments in P. chichipe. CONCLUSIONS Artificial selection favoring larger fruits favors larger seeds and seedlings. Seedling survivorship and growth of managed plants are generally higher in mesic environments apparently because of natural selection associated with habitat conditions. Such differences may contribute to morphophysiological divergences between wild and cultivated populations. Interspecific differences might be associated with adaptations to the natural environments where each species occurs.
Collapse
Affiliation(s)
- Susana Guillén
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, campus Morelia. Antigua Carretera a Pátzcuaro 8711, Morelia, Michoacán 58190, México
| | | | | | | | | |
Collapse
|
21
|
Kluyver TA, Charles M, Jones G, Rees M, Osborne CP. Did greater burial depth increase the seed size of domesticated legumes? JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4101-8. [PMID: 24058143 DOI: 10.1093/jxb/ert304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The independent domestication of crop plants in several regions of the world formed the basis of human civilizations, and attracts considerable interest from archaeologists and biologists. Selection under cultivation led to a suite of domestication traits which distinguish crops from their wild progenitors, including larger seeds in most seed crops. This selection may be classified as 'conscious' or 'unconscious' selection according to whether humans were aware of the changes that they were driving. The hypothesis that human cultivation buried seeds deeper than natural dispersal, exerting unconscious selection favouring larger seeds with greater reserves, was tested. Using a comparative approach, accessions of eight grain legumes, originating from independent domestication centres across several continents, were sampled. Seeds were planted at different depths in a controlled environment, and seedling emergence scored for 5 weeks after sowing. Domestication in all species was associated with increased seed mass. In three species, greater mass was not correlated with increased ability to emerge from depth. In five species, emergence depth did correlate with mass, suggesting that selection during domestication may have acted on emergence depth. However, domestication only had a significant effect in two of these species (lentil and mung bean), and the increase in depth was no more than predicted by a cube-root allometric relationship with seed mass. The results do not support the hypothesis that burial under cultivation was a general selection mechanism for increased seed mass during the domestication of grain legumes, but it may have acted in particular species or regions.
Collapse
Affiliation(s)
- Thomas A Kluyver
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
22
|
Ménard L, McKey D, Mühlen GS, Clair B, Rowe NP. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness. PLoS One 2013; 8:e74727. [PMID: 24023960 PMCID: PMC3762774 DOI: 10.1371/journal.pone.0074727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022] Open
Abstract
Domestication can influence many functional traits in plants, from overall life-history and growth form to wood density and cell wall ultrastructure. Such changes can increase fitness of the domesticate in agricultural environments but may negatively affect survival in the wild. We studied effects of domestication on stem biomechanics in manioc by comparing domesticated and ancestral wild taxa from two different regions of greater Amazonia. We compared mechanical properties, tissue organisation and wood characteristics including microfibril angles in both wild and domesticated plants, each growing in two different habitats (forest or savannah) and varying in growth form (shrub or liana). Wild taxa grew as shrubs in open savannah but as lianas in overgrown and forested habitats. Growth form plasticity was retained in domesticated manioc. However, stems of the domesticate showed brittle failure. Wild plants differed in mechanical architecture between shrub and liana phenotypes, a difference that diminished between shrubs and lianas of the domesticate. Stems of wild plants were generally stiffer, failed at higher bending stresses and were less prone to brittle fracture compared with shrub and liana phenotypes of the domesticate. Biomechanical differences between stems of wild and domesticated plants were mainly due to changes in wood density and cellulose microfibril angle rather than changes in secondary growth or tissue geometry. Domestication did not significantly modify "large-scale" trait development or growth form plasticity, since both wild and domesticated manioc can develop as shrubs or lianas. However, "finer-scale" developmental traits crucial to mechanical stability and thus ecological success of the plant were significantly modified. This profoundly influenced the likelihood of brittle failure, particularly in long climbing stems, thereby also influencing the survival of the domesticate in natural situations vulnerable to mechanical perturbation. We discuss the different selective pressures that could explain evolutionary modifications of stem biomechanical properties under domestication in manioc.
Collapse
Affiliation(s)
- Léa Ménard
- Université Montpellier 2, UMR AMAP, Montpellier, France; CNRS, UMR AMAP, Montpellier, France
| | - Doyle McKey
- Université Montpellier 2, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175 CNRS, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Gilda S. Mühlen
- Department of Agronomy, Federal University of Rondônia, Rolim de Moura, Rondônia, Brazil
| | - Bruno Clair
- CNRS, Laboratoire de Mécanique et Génie Civil (LMGC), Université Montpellier 2, Montpellier, France
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, Kourou, French Guiana
| | - Nick P. Rowe
- Université Montpellier 2, UMR AMAP, Montpellier, France; CNRS, UMR AMAP, Montpellier, France
| |
Collapse
|
23
|
Thomas M, Demeulenaere E, Dawson JC, Khan AR, Galic N, Jouanne-Pin S, Remoue C, Bonneuil C, Goldringer I. On-farm dynamic management of genetic diversity: the impact of seed diffusions and seed saving practices on a population-variety of bread wheat. Evol Appl 2013; 5:779-95. [PMID: 23346224 PMCID: PMC3552397 DOI: 10.1111/j.1752-4571.2012.00257.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 02/20/2012] [Indexed: 12/03/2022] Open
Abstract
Since the domestication of crop species, humans have derived specific varieties for particular uses and shaped the genetic diversity of these varieties. Here, using an interdisciplinary approach combining ethnobotany and population genetics, we document the within-variety genetic structure of a population-variety of bread wheat (Triticum aestivum L.) in relation to farmers’ practices to decipher their contribution to crop species evolution. Using 19 microsatellites markers, we conducted two complementary graph theory-based methods to analyze population structure and gene flow among 19 sub-populations of a single population-variety [Rouge de Bordeaux (RDB)]. The ethnobotany approach allowed us to determine the RDB history including diffusion and reproduction events. We found that the complex genetic structure among the RDB sub-populations is highly consistent with the structure of the seed diffusion and reproduction network drawn based on the ethnobotanical study. This structure highlighted the key role of the farmer-led seed diffusion through founder effects, selection and genetic drift because of human practices. An important result is that the genetic diversity conserved on farm is complementary to that found in the genebank indicating that both systems are required for a more efficient crop diversity conservation.
Collapse
Affiliation(s)
- Mathieu Thomas
- INRA, UMR 0320 / UMR 8120 Génétique Végétale Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu XB, Gu QY, Yu XB. Repetitive domestication to enhance butanol tolerance and production in Clostridium acetobutylicum through artificial simulation of bio-evolution. BIORESOURCE TECHNOLOGY 2013; 130:638-43. [PMID: 23334021 DOI: 10.1016/j.biortech.2012.12.121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 05/24/2023]
Abstract
To improve butanol tolerance and production in Clostridium acetobutylicum, a novel approach was developed in this study, which was called artificial simulation of bio-evolution (ASBE) based on the evolutionary dynamics and natural selection. Through repetitive evolutionary domestications, a butanol-tolerant strain C. acetobutylicum T64 was obtained, which could withstand 4% (v/v) (compared to 2% of the wild-type) butanol and was accompanied by the increase of butanol production from 12.2g/L to 15.3g/L using corn meal as substrate. Fermentation was also carried out to investigate the relationship between butanol tolerance and ABE production, suggesting that enhancing butanol tolerance could increase butanol production but unlikely improve total ABE production. These results also indicated that the ASBE would be an available and feasible method used in biotechnology for enhancement of butanol tolerance and production.
Collapse
Affiliation(s)
- Xiao-Bo Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | | | | |
Collapse
|
25
|
VAZQUEZ GH, SOUZA WJODE, VANZELA LS, ISA KM, ASSIS AVDE. INTERFERÊNCIA DO TIPO DE GERMINAÇÃO - HIPÓGEO OU EPÍGEO - NO ESTABELECIMENTO INICIAL DE PLÂNTULAS EM DIFERENTES PROFUNDIDADES DE SEMEADURA. REVISTA BRASILEIRA DE ENGENHARIA DE BIOSSISTEMAS 2011. [DOI: 10.18011/bioeng2011v5n3p158-169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
O objetivo deste trabalho foi o de verificar como o tipo de germinação da semente - hipógeo (guandu) ou epígeo (soja) interfere na emergência e no estabelecimento inicial dessas espécies em diferentes profundidades de semeadura, ou seja, a 3, 6, 9 e 12 cm. Até a profundidade de 7 cm, sementes de germinação hipógea e epígea sofrem reduções crescentes e equivalentes na capacidade de resultar em plântulas capazes de emergir. Se a profundidade for superior a 7 cm, a germinação epígea será mais prejudicada, por aumentar a porcentagem de plântulas não emergidas e sofrer redução na altura e na velocidade de emergência das plântulas. Para o guandu, a densidade global de até 1,6 g cm-3 não interfere na porcentagem de germinação.
Collapse
Affiliation(s)
- G. H. VAZQUEZ
- Enga Agra, Dra, Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio Economia, UNESP, Ilha Solteira, SP, 15385-000 e Departamento de Produção Vegetal, UNICASTELO, Fernandópolis, SP, 15600-000
| | | | | | - K. M. ISA
- Engª Agrª, ex-alunas da UNICASTELO, Fernandópolis, SP
| | | |
Collapse
|
26
|
Javadi F, Tun YT, Kawase M, Guan K, Yamaguchi H. Molecular phylogeny of the subgenus Ceratotropis (genus Vigna, Leguminosae) reveals three eco-geographical groups and Late Pliocene-Pleistocene diversification: evidence from four plastid DNA region sequences. ANNALS OF BOTANY 2011; 108:367-80. [PMID: 21725064 PMCID: PMC3143051 DOI: 10.1093/aob/mcr141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 04/20/2011] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS The subgenus Ceratotropis in the genus Vigna is widely distributed from the Himalayan highlands to South, Southeast and East Asia. However, the interspecific and geographical relationships of its members are poorly understood. This study investigates the phylogeny and biogeography of the subgenus Ceratotropis using chloroplast DNA sequence data. METHODS Sequence data from four intergenic spacer regions (petA-psbJ, psbD-trnT, trnT-trnE and trnT-trnL) of chloroplast DNA, alone and in combination, were analysed using Bayesian and parsimony methods. Divergence times for major clades were estimated with penalized likelihood. Character evolution was examined by means of parsimony optimization and MacClade. KEY RESULTS Parsimony and Bayesian phylogenetic analyses on the combined data demonstrated well-resolved species relationships in which 18 Vigna species were divided into two major geographical clades: the East Asia-Southeast Asian clade and the Indian subcontinent clade. Within these two clades, three well-supported eco-geographical groups, temperate and subtropical (the East Asia-Southeast Asian clade) and tropical (the Indian subcontinent clade), are recognized. The temperate group consists of V. minima, V. nepalensis and V. angularis. The subtropical group comprises the V. nakashimae-V. riukiuensis-V. minima subgroup and the V. hirtella-V. exilis-V. umbellata subgroup. The tropical group contains two subgroups: the V. trinervia-V. reflexo-pilosa-V. trilobata subgroup and the V. mungo-V. grandiflora subgroup. An evolutionary rate analysis estimated the divergence time between the East Asia-Southeast Asia clade and the Indian subcontinent clade as 3·62 ± 0·3 million years, and that between the temperate and subtropical groups as 2·0 ± 0·2 million years. CONCLUSIONS The findings provide an improved understanding of the interspecific relationships, and ecological and geographical phylogenetic structure of the subgenus Ceratotropis. The quaternary diversification of the subgenus Ceratotropis implicates its geographical dispersal in the south-eastern part of Asia involving adaptation to climatic condition after the collision of the Indian subcontinent with the Asian plate. The phylogenetic results indicate that the epigeal germination is plesiomorphic, and the germination type evolved independently multiple times in this subgenus, implying its limited taxonomic utility.
Collapse
Affiliation(s)
| | - Ye Tun Tun
- Department of Agricultural Research, Ministry of Agriculture and Irrigation, Yezin, Myanmar
| | - Makoto Kawase
- National Institute of Agrobiological Sciences, Ministry of Agriculture and Fishery, Tsukuba, Japan
| | - Kaiyun Guan
- Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences, Xinjiang, China
| | | |
Collapse
|
27
|
Christianson ML, Niklas KJ. Patterns of diversity in leaves from canopies of Ginkgo biloba are revealed using Specific Leaf Area as a morphological character. AMERICAN JOURNAL OF BOTANY 2011; 98:1068-76. [PMID: 21712418 DOI: 10.3732/ajb.1000452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PREMISE OF THE STUDY The difference reported in the literature for the Specific Leaf Area (SLA, cm(2)/g) of leaves on short- and long-shoots of Acer rubrum could mean that SLA can serve as a quantitative morphological trait. Our survey of SLA in canopies of Ginkgo biloba sampled a different clade of seed plants to investigate this morphological phenomenon. Such a survey in this dioecious taxon, and one in which a single canopy may have juvenile and reproductive portions, as well as one where canopies bear leaves of several shapes, examine these additional morphological factors as well as any long-shoot short-shoot differences. METHODS We measured SLA for a set of 642 dried leaves, a sampling across all morphological levels in canopies of large landscape specimens. The tabulated values were analyzed as distributions. KEY RESULTS Populations of leaves of G. biloba, sorted by morphological features of canopy structure, differ between long- and short-shoots (175%), on the two genders of tree (131%), in the juvenile and reproductive portions of a canopy (183%), and with the presence or absence of seed on short-shoots in the reproductive portion of megasporangiate canopies (114%). Basipetal leaves of long-shoots and leaves of short-shoots have similar values of SLA. CONCLUSIONS With the exception of the acropetal decrease in SLA along long-shoots, the differences among the several classes of leaf seem to reflect local sink strength, even though the sink itself develops after leaves mature. The large overall range in the values of SLA in Ginkgo underscores the relevance of the details of canopy structure to parsing ecological phenomena.
Collapse
|
28
|
McKey D, Elias M, Pujol B, Duputié A. The evolutionary ecology of clonally propagated domesticated plants. THE NEW PHYTOLOGIST 2010; 186:318-32. [PMID: 20202131 DOI: 10.1111/j.1469-8137.2010.03210.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
While seed-propagated crops have contributed many evolutionary insights, evolutionary biologists have often neglected clonally propagated crops. We argue that widespread notions about their evolution under domestication are oversimplified, and that they offer rich material for evolutionary studies. The diversity of their wild ancestors, the diverse ecologies of the crop populations themselves, and the intricate mix of selection pressures, acting not only on the parts harvested but also on the parts used by humans to make clonal propagules, result in complex and diverse evolutionary trajectories under domestication. We examine why farmers propagate some plants clonally, and discuss the evolutionary dynamics of sexual reproduction in clonal crops. We explore how their mixed clonal/sexual reproductive systems function, based on the sole example studied in detail, cassava (Manihot esculenta). Biotechnology is now expanding the number of clonal crops, continuing the 10 000-yr-old trend to increase crop yields by propagating elite genotypes. In an era of rapid global change, it is more important than ever to understand how the adaptive potential of clonal crops can be maintained. A key component of strategies for preserving this adaptive potential is the maintenance of mixed clonal/sexual systems, which can be achieved by encouraging and valuing farmer knowledge about the sexual reproductive biology of their clonal crops.
Collapse
Affiliation(s)
- Doyle McKey
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, 1919 route de Mende, 34293 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
29
|
Rival L, McKey D. Domestication and Diversity in Manioc (Manihot esculentaCrantz ssp.esculenta, Euphorbiaceae). CURRENT ANTHROPOLOGY 2008. [DOI: 10.1086/593119] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Domestication and defence: Foliar tannins and C/N ratios in cassava and a close wild relative. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2008. [DOI: 10.1016/j.actao.2008.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Guillemin ML, Faugeron S, Destombe C, Viard F, Correa JA, Valero M. GENETIC VARIATION IN WILD AND CULTIVATED POPULATIONS OF THE HAPLOID– DIPLOID RED ALGA GRACILARIA CHILENSIS: HOW FARMING PRACTICES FAVOR ASEXUAL REPRODUCTION AND HETEROZYGOSITY. Evolution 2008; 62:1500-19. [DOI: 10.1111/j.1558-5646.2008.00373.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Pujol B, Salager JL, Beltran M, Bousquet S, McKey D. Photosynthesis and Leaf Structure in Domesticated Cassava (Euphorbiaceae) and a Close Wild Relative: Have Leaf Photosynthetic Parameters Evolved Under Domestication? Biotropica 2008. [DOI: 10.1111/j.1744-7429.2007.00373.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
33
|
Duputié A, David P, Debain C, McKey D. Natural hybridization between a clonally propagated crop, cassava (Manihot esculenta Crantz) and a wild relative in French Guiana. Mol Ecol 2007; 16:3025-38. [PMID: 17614915 DOI: 10.1111/j.1365-294x.2007.03340.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because domestication rarely leads to speciation, domesticated populations often hybridize with wild relatives when they occur in close proximity. Little work has focused on this question in clonally propagated crops. If selection on the capacity for sexual reproduction has been relaxed, these crops would not be expected to hybridize with their wild relatives as frequently as seed-propagated crops. Cassava is one of the most important clonally propagated plants in tropical agriculture. Gene flow between cassava and wild relatives has often been postulated, but never demonstrated in nature. We studied a population of a wild Manihot sp. in French Guiana, which was recently in contact with domesticated cassava, and characterized phenotypes (10 morphological traits) and genotypes (six microsatellite loci) of individuals in a transect parallel to the direction of hypothesized gene flow. Wild and domesticated populations were strongly differentiated at microsatellite loci. We identified many hybrids forming a continuum between these two populations, and phenotypic variation was strongly correlated with the degree of hybridization as determined by molecular markers. Analysis of linkage disequilibrium and of the diversity of hybrid pedigrees showed that hybridization has gone on for at least three generations and that no strong barrier prevents admixture of the populations. Hybrids were more heterozygous than either wild or domesticated individuals, and phenotypic comparisons suggested heterosis in vegetative traits. Our results also suggest that this situation is not uncommon, at least in French Guiana, and demonstrate the need for integrated management of wild and domesticated populations even in clonally propagated crops.
Collapse
Affiliation(s)
- Anne Duputié
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS, 1919 Route de Mende, 34293 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|