1
|
Tsyganova AV, Gorshkov AP, Vorobiev MG, Tikhonovich IA, Brewin NJ, Tsyganov VE. Dynamics of Hydrogen Peroxide Accumulation During Tip Growth of Infection Thread in Nodules and Cell Differentiation in Pea ( Pisum sativum L.) Symbiotic Nodules. PLANTS (BASEL, SWITZERLAND) 2024; 13:2923. [PMID: 39458872 PMCID: PMC11510766 DOI: 10.3390/plants13202923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Hydrogen peroxide (H2O2) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the Rhizobium-legume symbiosis, hydrogen peroxide plays an important signaling role throughout the development of this interaction. In the functioning nodule, H2O2 has been shown to be involved in bacterial differentiation into the symbiotic form and in nodule senescence. In this study, the pattern of H2O2 accumulation in pea (Pisum sativum L.) wild-type and mutant nodules blocked at different stages of the infection process was analyzed using a cytochemical reaction with cerium chloride. The observed dynamics of H2O2 deposition in the infection thread walls indicated that the distribution of H2O2 was apparently related to the stiffness of the infection thread wall. The dynamics of H2O2 accumulation was traced, and its patterns in different nodule zones were determined in order to investigate the relationship of H2O2 localization and distribution with the stages of symbiotic nodule development in P. sativum. The patterns of H2O2 localization in different zones of the indeterminate nodule have been partially confirmed by comparative analysis on mutant genotypes.
Collapse
Affiliation(s)
- Anna V. Tsyganova
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| | - Artemii P. Gorshkov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| | - Maxim G. Vorobiev
- Research Park, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Igor A. Tikhonovich
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
- Research Park, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | | | - Viktor E. Tsyganov
- Laboratory of Molecular and Cell Biology, All-Russia Research Institute for Agricultural Microbiology, 196608 Saint Petersburg, Russia; (A.P.G.); (I.A.T.); (V.E.T.)
| |
Collapse
|
2
|
Pasternak T, Palme K, Pérez-Pérez JM. Role of reactive oxygen species in the modulation of auxin flux and root development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:83-95. [PMID: 36700340 DOI: 10.1111/tpj.16118] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) play a dual role in plant biology, acting as important signal transduction molecules and as toxic byproducts of aerobic metabolism that accumulate in cells upon exposure to different stressors and lead to cell death. In plants, root architecture is regulated by the distribution and intercellular flow of the phytohormone auxin. In this study, we identified ROS as an important modulator of auxin distribution and response in the root. ROS production is necessary for root growth, proper tissue patterning, cell growth, and lateral root (LR) induction. Alterations in ROS balance led to altered auxin distribution and response in SOD and RHD2 loss-of-function mutants. Treatment of Arabidopsis seedlings with additional sources of ROS (hydrogen peroxide) or an ROS production inhibitor (diphenylene iodonium) induced phenocopies of the mutants studied. Simultaneous application of auxin and ROS increased LR primordia induction, and PIN-FORMED protein immunolocalization further demonstrated the existing link between auxin and ROS in orchestrating cell division and auxin flux during root development. In Arabidopsis roots, genetic alterations in ROS balance led to defective auxin distribution and growth-related responses in roots. Exogenous hydrogen peroxide alters the establishment of the endogenous auxin gradient in the root meristem through regulation of PIN-FORMED polarity, while the simultaneous application of hydrogen peroxide and auxin enhanced LR induction in a dose- and position-dependent manner through activation of cell division.
Collapse
Affiliation(s)
- Taras Pasternak
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104, Freiburg, Germany
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Spain
| | - Klaus Palme
- Faculty of Biology, Institute of Biology II/Molecular Plant Physiology, University of Freiburg, 79104, Freiburg, Germany
- Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- ScreenSYS GmbH, Engesserstr. 4, Freiburg, 79108, Germany
| | | |
Collapse
|
3
|
Khan M, Ali S, Al Azzawi TNI, Saqib S, Ullah F, Ayaz A, Zaman W. The Key Roles of ROS and RNS as a Signaling Molecule in Plant-Microbe Interactions. Antioxidants (Basel) 2023; 12:268. [PMID: 36829828 PMCID: PMC9952064 DOI: 10.3390/antiox12020268] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a pivotal role in the dynamic cell signaling systems in plants, even under biotic and abiotic stress conditions. Over the past two decades, various studies have endorsed the notion that these molecules can act as intracellular and intercellular signaling molecules at a very low concentration to control plant growth and development, symbiotic association, and defense mechanisms in response to biotic and abiotic stress conditions. However, the upsurge of ROS and RNS under stressful conditions can lead to cell damage, retarded growth, and delayed development of plants. As signaling molecules, ROS and RNS have gained great attention from plant scientists and have been studied under different developmental stages of plants. However, the role of RNS and RNS signaling in plant-microbe interactions is still unknown. Different organelles of plant cells contain the enzymes necessary for the formation of ROS and RNS as well as their scavengers, and the spatial and temporal positions of these enzymes determine the signaling pathways. In the present review, we aimed to report the production of ROS and RNS, their role as signaling molecules during plant-microbe interactions, and the antioxidant system as a balancing system in the synthesis and elimination of these species.
Collapse
Affiliation(s)
- Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Saddam Saqib
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fazal Ullah
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Gasser M, Alloisio N, Fournier P, Balmand S, Kharrat O, Tulumello J, Carro L, Heddi A, Da Silva P, Normand P, Pujic P, Boubakri H. A Nonspecific Lipid Transfer Protein with Potential Functions in Infection and Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1096-1108. [PMID: 36102948 DOI: 10.1094/mpmi-06-22-0131-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The response of Alnus glutinosa to Frankia alni ACN14a is driven by several sequential physiological events from calcium spiking and root-hair deformation to the development of the nodule. Early stages of actinorhizal symbiosis were monitored at the transcriptional level to observe plant host responses to Frankia alni. Forty-two genes were significantly upregulated in inoculated compared with noninoculated roots. Most of these genes encode proteins involved in biological processes induced during microbial infection, such as oxidative stress or response to stimuli, but a large number of them are not differentially modulated or downregulated later in the process of nodulation. In contrast, several of them remained upregulated in mature nodules, and this included the gene most upregulated, which encodes a nonspecific lipid transfer protein (nsLTP). Classified as an antimicrobial peptide, this nsLTP was immunolocalized on the deformed root-hair surfaces that are points of contact for Frankia spp. during infection. Later in nodules, it binds to the surface of F. alni ACN14a vesicles, which are the specialized cells for nitrogen fixation. This nsLTP, named AgLTP24, was biologically produced in a heterologous host and purified for assay on F. alni ACN14a to identify physiological effects. Thus, the activation of the plant immunity response occurs upon first contact, while the recognition of F. alni ACN14a genes switches off part of the defense system during nodulation. AgLTP24 constitutes a part of the defense system that is maintained all along the symbiosis, with potential functions such as the formation of infection threads or nodule primordia to the control of F. alni proliferation. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mélanie Gasser
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Nicole Alloisio
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Pascale Fournier
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Severine Balmand
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Ons Kharrat
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Joris Tulumello
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Lorena Carro
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Abdelaziz Heddi
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Pedro Da Silva
- INSA-Lyon, INRAE, UMR203 BF2i, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Philippe Normand
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Petar Pujic
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Hasna Boubakri
- Université de Lyon, F-69361, Lyon, France; Université Claude Bernard Lyon 1, CNRS, UMR 5557, INRAE UMR1418, Ecologie Microbienne, F-69622, Villeurbanne, France
| |
Collapse
|
5
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
6
|
Huo H, Zong L, Liu Y, Chen W, Chen J, Wei G. Rhizobial HmuS pSym as a heme-binding factor is required for optimal symbiosis between Mesorhizobium amorphae CCNWGS0123 and Robinia pseudoacacia. PLANT, CELL & ENVIRONMENT 2022; 45:2191-2210. [PMID: 35419804 DOI: 10.1111/pce.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/15/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-fixing root nodules are formed by symbiotic association of legume hosts with rhizobia in nitrogen-deprived soils. Successful symbiosis is regulated by signals from both legume hosts and their rhizobial partners. HmuS is a heme degrading factor widely distributed in bacteria, but little is known about the role of rhizobial hmuS in symbiosis with legumes. Here, we found that inactivation of hmuSpSym in the symbiotic plasmid of Mesorhizobium amorphae CCNWGS0123 disrupted rhizobial infection, primordium formation, and nitrogen fixation in symbiosis with Robinia pseudoacacia. Although there was no difference in bacteroids differentiation, infected plant cells were shrunken and bacteroids were disintegrated in nodules of plants infected by the ΔhmuSpSym mutant strain. The balance of defence reaction was also impaired in ΔhmuSpSym strain-infected root nodules. hmuSpSym was strongly expressed in the nitrogen-fixation zone of mature nodules. Furthermore, the HmuSpSym protein could bind to heme but not degrade it. Inactivation of hmuSpSym led to significantly decreased expression levels of oxygen-sensing related genes in nodules. In summary, hmuSpSym of M. amorphae CCNWGS0123 plays an essential role in nodule development and maintenance of bacteroid survival within R. pseudoacacia cells, possibly through heme-binding in symbiosis.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing, China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Yang Y, Zhao Y, Zhang Y, Niu L, Li W, Lu W, Li J, Schäfer P, Meng Y, Shan W. A mitochondrial RNA processing protein mediates plant immunity to a broad spectrum of pathogens by modulating the mitochondrial oxidative burst. THE PLANT CELL 2022; 34:2343-2363. [PMID: 35262740 PMCID: PMC9134091 DOI: 10.1093/plcell/koac082] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Mitochondrial function depends on the RNA processing of mitochondrial gene transcripts by nucleus-encoded proteins. This posttranscriptional processing involves the large group of nuclear-encoded pentatricopeptide repeat (PPR) proteins. Mitochondrial processes represent a crucial part in animal immunity, but whether mitochondria play similar roles in plants remains unclear. Here, we report the identification of RESISTANCE TO PHYTOPHTHORA PARASITICA 7 (AtRTP7), a P-type PPR protein, in Arabidopsis thaliana and its conserved function in immunity to diverse pathogens across distantly related plant species. RTP7 affects the levels of mitochondrial reactive oxygen species (mROS) by participating in RNA splicing of nad7, which encodes a critical subunit of the mitochondrial respiratory chain Complex I, the largest of the four major components of the mitochondrial oxidative phosphorylation system. The enhanced resistance of rtp7 plants to Phytophthora parasitica is dependent on an elevated mROS burst, but might be independent from the ROS burst associated with plasma membrane-localized NADPH oxidases. Our study reveals the immune function of RTP7 and the defective processing of Complex I subunits in rtp7 plants resulted in enhanced resistance to both biotrophic and necrotrophic pathogens without affecting overall plant development.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Lihua Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wanyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jinfang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Patrick Schäfer
- Institute of Molecular Botany, Ulm University, Ulm 89069, Germany
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | | |
Collapse
|
8
|
Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils. BIOLOGY 2022; 11:biology11050676. [PMID: 35625404 PMCID: PMC9138774 DOI: 10.3390/biology11050676] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The legume–rhizobium symbiosis is one of the most beneficial interactions with high importance in agriculture, as it delivers nitrogen to plants and soil, thereby enhancing plant growth. Currently, this symbiosis is increasingly being exploited in phytoremediation of metal contaminated soil to improve soil fertility and simultaneously metal extraction or stabilization. Rhizobia increase phytoremediation directly by nitrogen fixation, protection of plants from pathogens, and production of plant growth-promoting factors and phytohormones. Abstract With the increasing industrial activity of the growing human population, the accumulation of various contaminants in soil, including heavy metals, has increased rapidly. Heavy metals as non-biodegradable elements persist in the soil environment and may pollute crop plants, further accumulating in the human body causing serious conditions. Hence, phytoremediation of land contamination as an environmental restoration technology is desirable for both human health and broad-sense ecology. Legumes (Fabaceae), which play a special role in nitrogen cycling, are dominant plants in contaminated areas. Therefore, the use of legumes and associated nitrogen-fixing rhizobia to reduce the concentrations or toxic effects of contaminants in the soil is environmentally friendly and becomes a promising strategy for phytoremediation and phytostabilization. Rhizobia, which have such plant growth-promoting (PGP) features as phosphorus solubilization, phytohormone synthesis, siderophore release, production of beneficial compounds for plants, and most of all nitrogen fixation, may promote legume growth while diminishing metal toxicity. The aim of the present review is to provide a comprehensive description of the main effects of metal contaminants in nitrogen-fixing leguminous plants and the benefits of using the legume–rhizobium symbiosis with both wild-type and genetically modified plants and bacteria to enhance an efficient recovery of contaminated lands.
Collapse
|
9
|
Niazi R, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran, Peeri M, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran, Azarbayjani MA, Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran. The interactive effect of berberine chloride and exercise rehabilitation on the lung tissue apoptosis and oxidative stress biomarkers in rats exposed to diazinon. PHYSIOLOGY AND PHARMACOLOGY 2022; 26:60-69. [DOI: 10.52547/phypha.26.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
10
|
Su L, Xu C, Zeng S, Su L, Joshi T, Stacey G, Xu D. Large-Scale Integrative Analysis of Soybean Transcriptome Using an Unsupervised Autoencoder Model. FRONTIERS IN PLANT SCIENCE 2022; 13:831204. [PMID: 35310659 PMCID: PMC8927983 DOI: 10.3389/fpls.2022.831204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in a uniform analysis pipeline. To address the gene expression heterogeneity in different tissues, we utilized an adversarial deconfounding autoencoder (AD-AE) model to map gene expressions into a latent space and adapted a standard unsupervised autoencoder (AE) model to help effectively extract meaningful biological signals from the noisy data. As a result, four groups of 1,743, 914, 2,107, and 1,451 genes were found highly expressed specifically in leaf, root, seed and nodule tissues, respectively. To obtain key transcription factors (TFs), hub genes and their functional modules in each tissue, we constructed tissue-specific gene regulatory networks (GRNs), and differential correlation networks by using corrected and compressed gene expression data. We validated our results from the literature and gene enrichment analysis, which confirmed many identified tissue-specific genes. Our study represents the largest gene expression analysis in soybean tissues to date. It provides valuable targets for tissue-specific research and helps uncover broader biological patterns. Code is publicly available with open source at https://github.com/LingtaoSu/SoyMeta.
Collapse
Affiliation(s)
- Lingtao Su
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Chunhui Xu
- Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Li Su
- Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Health Management and Informatics and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Gary Stacey
- Division of Plant Sciences and Technology and Biochemistry Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Dong Xu
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Hawkins JP, Oresnik IJ. The Rhizobium-Legume Symbiosis: Co-opting Successful Stress Management. FRONTIERS IN PLANT SCIENCE 2022; 12:796045. [PMID: 35046982 PMCID: PMC8761673 DOI: 10.3389/fpls.2021.796045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 05/20/2023]
Abstract
The interaction of bacteria with plants can result in either a positive, negative, or neutral association. The rhizobium-legume interaction is a well-studied model system of a process that is considered a positive interaction. This process has evolved to require a complex signal exchange between the host and the symbiont. During this process, rhizobia are subject to several stresses, including low pH, oxidative stress, osmotic stress, as well as growth inhibiting plant peptides. A great deal of work has been carried out to characterize the bacterial response to these stresses. Many of the responses to stress are also observed to have key roles in symbiotic signaling. We propose that stress tolerance responses have been co-opted by the plant and bacterial partners to play a role in the complex signal exchange that occurs between rhizobia and legumes to establish functional symbiosis. This review will cover how rhizobia tolerate stresses, and how aspects of these tolerance mechanisms play a role in signal exchange between rhizobia and legumes.
Collapse
Affiliation(s)
| | - Ivan J. Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Mamenko TP. Regulation of Legume-Rhizobial Symbiosis: Molecular Genetic Aspects and Participation of Reactive Oxygen Species. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721050078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Fonseca-García C, Nava N, Lara M, Quinto C. An NADPH oxidase regulates carbon metabolism and the cell cycle during root nodule symbiosis in common bean (Phaseolus vulgaris). BMC PLANT BIOLOGY 2021; 21:274. [PMID: 34130630 PMCID: PMC8207584 DOI: 10.1186/s12870-021-03060-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/20/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Rhizobium-legume symbiosis is a specific, coordinated interaction that results in the formation of a root nodule, where biological nitrogen fixation occurs. NADPH oxidases, or Respiratory Burst Oxidase Homologs (RBOHs) in plants, are enzymes that generate superoxide (O2 •-). Superoxide produces other reactive oxygen species (ROS); these ROS regulate different stages of mutualistic interactions. For example, changes in ROS levels are thought to induce ROS scavenging, cell wall remodeling, and changes in phytohormone homeostasis during symbiotic interactions. In common bean (Phaseolus vulgaris), PvRbohB plays a key role in the early stages of nodulation. RESULTS In this study, to explore the role of PvRbohB in root nodule symbiosis, we analyzed transcriptomic data from the roots of common bean under control conditions (transgenic roots without construction) and roots with downregulated expression of PvRbohB (by RNA interference) non-inoculated and inoculated with R. tropici. Our results suggest that ROS produced by PvRBOHB play a central role in infection thread formation and nodule organogenesis through crosstalk with flavonoids, carbon metabolism, cell cycle regulation, and the plant hormones auxin and cytokinin during the early stages of this process. CONCLUSIONS Our findings provide important insight into the multiple roles of ROS in regulating rhizobia-legume symbiosis.
Collapse
Affiliation(s)
- Citlali Fonseca-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| | - Miguel Lara
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Cuernavaca, Morelos, Colonia Chamilpa Mexico
| |
Collapse
|
14
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
15
|
Mase K, Tsukagoshi H. Reactive Oxygen Species Link Gene Regulatory Networks During Arabidopsis Root Development. FRONTIERS IN PLANT SCIENCE 2021; 12:660274. [PMID: 33986765 PMCID: PMC8110921 DOI: 10.3389/fpls.2021.660274] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
Plant development under altered nutritional status and environmental conditions and during attack from invaders is highly regulated by plant hormones at the molecular level by various signaling pathways. Previously, reactive oxygen species (ROS) were believed to be harmful as they cause oxidative damage to cells; however, in the last decade, the essential role of ROS as signaling molecules regulating plant growth has been revealed. Plant roots accumulate relatively high levels of ROS, and thus, maintaining ROS homeostasis, which has been shown to regulate the balance between cell proliferation and differentiation at the root tip, is important for proper root growth. However, when the balance is disturbed, plants are unable to respond to the changes in the surrounding conditions and cannot grow and survive. Moreover, ROS control cell expansion and cell differentiation processes such as root hair formation and lateral root development. In these processes, the transcription factor-mediated gene expression network is important downstream of ROS. Although ROS can independently regulate root growth to some extent, a complex crosstalk occurs between ROS and other signaling molecules. Hormone signals are known to regulate root growth, and ROS are thought to merge with these signals. In fact, the crosstalk between ROS and these hormones has been elucidated, and the central transcription factors that act as a hub between these signals have been identified. In addition, ROS are known to act as important signaling factors in plant immune responses; however, how they also regulate plant growth is not clear. Recent studies have strongly indicated that ROS link these two events. In this review, we describe and discuss the role of ROS signaling in root development, with a particular focus on transcriptional regulation. We also summarize the crosstalk with other signals and discuss the importance of ROS as signaling molecules for plant root development.
Collapse
|
16
|
Genome-Wide Identification of the CrRLK1L Subfamily and Comparative Analysis of Its Role in the Legume-Rhizobia Symbiosis. Genes (Basel) 2020; 11:genes11070793. [PMID: 32674446 PMCID: PMC7397338 DOI: 10.3390/genes11070793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The plant receptor-like-kinase subfamily CrRLK1L has been widely studied, and CrRLK1Ls have been described as crucial regulators in many processes in Arabidopsis thaliana (L.), Heynh. Little is known, however, about the functions of these proteins in other plant species, including potential roles in symbiotic nodulation. We performed a phylogenetic analysis of CrRLK1L subfamily receptors of 57 different plant species and identified 1050 CrRLK1L proteins, clustered into 11 clades. This analysis revealed that the CrRLK1L subfamily probably arose in plants during the transition from chlorophytes to embryophytes and has undergone several duplication events during its evolution. Among the CrRLK1Ls of legumes and A. thaliana, protein structure, gene structure, and expression patterns were highly conserved. Some legume CrRLK1L genes were active in nodules. A detailed analysis of eight nodule-expressed genes in Phaseolus vulgaris L. showed that these genes were differentially expressed in roots at different stages of the symbiotic process. These data suggest that CrRLK1Ls are both conserved and underwent diversification in a wide group of plants, and shed light on the roles of these genes in legume–rhizobia symbiosis.
Collapse
|
17
|
Legumes display common and host-specific responses to the rhizobial cellulase CelC2 during primary symbiotic infection. Sci Rep 2019; 9:13907. [PMID: 31554862 PMCID: PMC6761101 DOI: 10.1038/s41598-019-50337-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/02/2019] [Indexed: 01/08/2023] Open
Abstract
Primary infection of legumes by rhizobia involves the controlled localized enzymatic breakdown of cell walls at root hair tips. Previous studies determined the role of rhizobial CelC2 cellulase in different steps of the symbiotic interaction Rhizobium leguminosarum-Trifolium repens. Recent findings also showed that CelC2 influences early signalling events in the Ensifer meliloti-Medicago truncatula interaction. Here, we have monitored the root hair phenotypes of two legume plants, T. repens and M. sativa, upon inoculation with strains of their cognate and non-cognate rhizobial species, R. leguminosarum bv trifolii and E. meliloti, (over)expressing the CelC2 coding gene, celC. Regardless of the host, CelC2 specifically elicited ‘hole-on-the-tip’ events (Hot phenotype) in the root hair apex, consistent with the role of this endoglucanase in eroding the noncrystalline cellulose found in polarly growing cell walls. Overproduction of CelC2 also increased root hair tip redirections (RaT phenotype) events in both cognate and non-cognate hosts. Interestingly, heterologous celC expression also induced non-canonical alterations in ROS (Reactive Oxygen Species) homeostasis at root hair tips of Trifolium and Medicago. These results suggest the concurrence of shared unspecific and host-related plant responses to CelC2 during early steps of symbiotic rhizobial infection. Our data thus identify CelC2 cellulase as an important determinant of events underlying early infection of the legume host by rhizobia.
Collapse
|
18
|
Luo Y, Wang F, Huang Y, Zhou M, Gao J, Yan T, Sheng H, An L. Sphingomonas sp. Cra20 Increases Plant Growth Rate and Alters Rhizosphere Microbial Community Structure of Arabidopsis thaliana Under Drought Stress. Front Microbiol 2019; 10:1221. [PMID: 31231328 PMCID: PMC6560172 DOI: 10.3389/fmicb.2019.01221] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
The rhizosphere is colonized by a mass of microbes, including bacteria capable of promoting plant growth that carry out complex interactions. Here, by using a sterile experimental system, we demonstrate that Sphingomonas sp. Cra20 promotes the growth of Arabidopsis thaliana by driving developmental plasticity in the roots, thus stimulating the growth of lateral roots and root hairs. By investigating the growth dynamics of A. thaliana in soil with different water-content, we demonstrate that Cra20 increases the growth rate of plants, but does not change the time of reproductive transition under well-water condition. The results further show that the application of Cra20 changes the rhizosphere indigenous bacterial community, which may be due to the change in root structure. Our findings provide new insights into the complex mechanisms of plant and bacterial interactions. The ability to promote the growth of plants under water-deficit can contribute to the development of sustainable agriculture.
Collapse
Affiliation(s)
- Yang Luo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fang Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yaolong Huang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Meng Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiangli Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Taozhe Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hongmei Sheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- The College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
19
|
Hernández-López A, Díaz M, Rodríguez-López J, Guillén G, Sánchez F, Díaz-Camino C. Uncovering Bax inhibitor-1 dual role in the legume-rhizobia symbiosis in common bean roots. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1049-1061. [PMID: 30462254 PMCID: PMC6363093 DOI: 10.1093/jxb/ery417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/13/2018] [Indexed: 05/23/2023]
Abstract
Bax-inhibitor 1 (BI-1) is a cell death suppressor conserved in all eukaryotes that modulates cell death in response to abiotic stress and pathogen attack in plants. However, little is known about its role in the establishment of symbiotic interactions. Here, we demonstrate the functional relevance of an Arabidopsis thaliana BI-1 homolog (PvBI-1a) to symbiosis between the common bean (Phaseolus vulgaris) and Rhizobium tropici. We show that the changes in expression of PvBI-1a observed during early symbiosis resemble those of some defence response-related proteins. By using gain- and loss-of-function approaches, we demonstrate that the overexpression of PvBI-1a in the roots of common bean increases the number of rhizobial infection events (and therefore the final number of nodules per root), but induces the premature death of nodule cells, affecting their nitrogen fixation efficiency. Nodule morphological alterations are known to be associated with changes in the expression of genes tied to defence, autophagy, and vesicular trafficking. Results obtained in the present work suggest that BI-1 has a dual role in the regulation of programmed cell death during symbiosis, extending our understanding of its critical function in the modulation of host immunity while responding to beneficial microbes.
Collapse
Affiliation(s)
- Alejandrina Hernández-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Mauricio Díaz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Jonathan Rodríguez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Gabriel Guillén
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
20
|
Rey T, André O, Nars A, Dumas B, Gough C, Bottin A, Jacquet C. Lipo-chitooligosaccharide signalling blocks a rapid pathogen-induced ROS burst without impeding immunity. THE NEW PHYTOLOGIST 2019; 221:743-749. [PMID: 30378690 DOI: 10.1111/nph.15574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Molecular signals released by microbes at the surface of plant roots and leaves largely determine host responses, notably by triggering either immunity or symbiosis. How these signalling pathways cross-talk upon coincident perception of pathogens and symbionts is poorly described in plants forming symbiosis. Nitrogen fixing symbiotic Rhizobia spp. and arbuscular mycorrhizal fungi produce lipo-chitooligosaccharides (LCOs) to initiate host symbiotic programmes. In Medicago truncatula roots, the perception of LCOs leads to reduced efflux of reactive oxygen species (ROS). By contrast, pathogen perception generally triggers a strong ROS burst and activates defence gene expression. Here we show that incubation of M. truncatula seedlings with culture filtrate (CF) of the legume pathogen Aphanomyces euteiches alone or simultaneously with Sinorhizobium meliloti LCOs, resulted in a strong ROS release. However, this response was completely inhibited if CF was added after pre-incubation of seedlings with LCOs. By contrast, expression of immunity-associated genes in response to CF and disease resistance to A. euteiches remained unaffected by LCO treatment of M. truncatula roots. Our findings suggest that symbiotic plants evolved ROS inhibition response to LCOs to facilitate early steps of symbiosis whilst maintaining a parallel defence mechanisms toward pathogens.
Collapse
Affiliation(s)
- Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Olivier André
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Amaury Nars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Clare Gough
- Laboratory of Plant-Microbe Interactions (LIPM), Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Arnaud Bottin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| |
Collapse
|
21
|
Ghasemi S, Kumleh HH, Kordrostami M. Changes in the expression of some genes involved in the biosynthesis of secondary metabolites in Cuminum cyminum L. under UV stress. PROTOPLASMA 2019; 256:279-290. [PMID: 30083789 DOI: 10.1007/s00709-018-1297-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/29/2018] [Indexed: 05/08/2023]
Abstract
Biotic and abiotic stresses cause special defense reactions in plant organs, which after a series of reactions, these stresses produce secondary metabolites. The effect of ultraviolet radiation on the expression of key genes involved in the biosynthesis of secondary metabolites (Phenylalanine ammonia lyase (PAL), Hydroxymethylglutaryl-CoA reductase (HMG-CoA reductase), GPP synthases, Deoxyribonino heptulosinate 7-phosphate synthase (DAHP), and Deoxy Xylose Phosphate Synthase (DXS)), and the association of these genes with different amounts of secondary metabolites (phenol, terpene, flavonoids, anthocyanins, alkaloids, lycopene, and beta-carotene) was investigated in this study. The results of this study showed that the application of UV-B stress significantly increased the expression of GPPs, HMG-CoA reductase, DXS, DAHPs, and PAL genes compared to the control plants. The expression of two key genes involved in the biosynthesis of phenylpropanoids, including DAHPs and PAL, increased with UV-B stress, and the highest expression was related to the PAL gene. The results revealed that UV-B stress caused a significant increase in total levels of terpenoids, phenols, flavonoids, anthocyanins, alkaloids, beta-carotene, and lycopene. The highest relative expression of all genes was obtained in treatment A (UV-B radiation for 1 h), while in treatment B (UV-B radiation for 2 h), no significant changes were observed in the expression of the genes.
Collapse
Affiliation(s)
- Sepideh Ghasemi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
| | - Hassan Hassani Kumleh
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran.
| | - Mojtaba Kordrostami
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
- Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| |
Collapse
|
22
|
Stambulska UY, Bayliak MM. Legume-Rhizobium Symbiosis: Secondary Metabolites, Free Radical Processes, and Effects of Heavy Metals. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_43-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Reactive oxygen species (ROS) and antioxidative enzyme status in Solanum lycopersicum on priming with fluorescent Pseudomonas spp. against Fusarium oxysporum. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0125-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Powell AF, Doyle JJ. Non-Additive Transcriptomic Responses to Inoculation with Rhizobia in a Young Allopolyploid Compared with Its Diploid Progenitors. Genes (Basel) 2017; 8:E357. [PMID: 29189710 PMCID: PMC5748675 DOI: 10.3390/genes8120357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Root nodule symbioses (nodulation) and whole genome duplication (WGD, polyploidy) are both important phenomena in the legume family (Leguminosae). Recently, it has been proposed that polyploidy may have played a critical role in the origin or refinement of nodulation. However, while nodulation and polyploidy have been studied independently, there have been no direct studies of mechanisms affecting the interactions between these phenomena in symbiotic, nodule-forming species. Here, we examined the transcriptome-level responses to inoculation in the young allopolyploid Glycine dolichocarpa (T2) and its diploid progenitor species to identify underlying processes leading to the enhanced nodulation responses previously identified in T2. We assessed the differential expression of genes and, using weighted gene co-expression network analysis (WGCNA), identified modules associated with nodulation and compared their expression between species. These transcriptomic analyses revealed patterns of non-additive expression in T2, with evidence of transcriptional responses to inoculation that were distinct from one or both progenitors. These differential responses elucidate mechanisms underlying the nodulation-related differences observed between T2 and the diploid progenitors. Our results indicate that T2 has reduced stress-related transcription, coupled with enhanced transcription of modules and genes implicated in hormonal signaling, both of which are important for nodulation.
Collapse
Affiliation(s)
- Adrian F Powell
- Section of Plant Biology, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853, USA.
- Boyce Thompson Institute, Ithaca, NY 14853, USA.
| | - Jeff J Doyle
- Section of Plant Breeding and Genetics, School of Integrated Plant Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Fuller AW, Young P, Pierce BD, Kitson-Finuff J, Jain P, Schneider K, Lazar S, Taran O, Palmer AG, Lynn DG. Redox-mediated quorum sensing in plants. PLoS One 2017; 12:e0182655. [PMID: 28902851 PMCID: PMC5597120 DOI: 10.1371/journal.pone.0182655] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere's chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs). The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS) production regulates similar redox circuits related to root recognition, broadening xenognosins' role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ) between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction-diffusion network laying the foundation for the precise temporal and spatial control underlying rhizosphere architecture.
Collapse
Affiliation(s)
- Alexandra W. Fuller
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
| | - Phoebe Young
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
| | - B. Daniel Pierce
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
- Gottwald Science Center, University of Richmond, Richmond, VA, United States of America
| | - Jamie Kitson-Finuff
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Purvi Jain
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Karl Schneider
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Stephen Lazar
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Olga Taran
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
| | - Andrew G. Palmer
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - David G. Lynn
- Departments of Biology and Chemistry, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
26
|
Chen T, Duan L, Zhou B, Yu H, Zhu H, Cao Y, Zhang Z. Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula. Front Microbiol 2017; 8:973. [PMID: 28611764 PMCID: PMC5447765 DOI: 10.3389/fmicb.2017.00973] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Suppression of host innate immunity appears to be required for the establishment of symbiosis between rhizobia and host plants. In this study, we established a system that included a host plant, a bacterial pathogen and a symbiotic rhizobium to study the role of innate immunity during symbiotic interactions. A pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000), was shown to cause chlorosis in Medicago truncatula A17. Sinorhizobium meliloti strain Sm2011 (Sm2011) and Pst DC3000 strain alone induced similar defense responses in M. truncatula. However, when co-inoculated, Sm2011 specifically suppressed the defense responses induced by Pst DC3000, such as MAPK activation and ROS production. Inoculation with Sm2011 suppressed the transcription of defense-related genes triggered by Pst DC3000 infection, including the receptor of bacterial flagellin (FLS2), pathogenesis-related protein 10 (PR10), and the transcription factor WRKY33. Interestingly, inoculation with Pst DC3000 specifically inhibited the expression of the symbiosis marker genes nodule inception and nodulation pectate lyase and reduced the numbers of infection threads and nodules on M. truncatula A17 roots, indicating that Pst DC3000 inhibits the establishment of symbiosis in M. truncatula. In addition, defense-related genes, such as MAPK3/6, RbohC, and WRKY33, exhibited a transient increase in their expression in the early stage of symbiosis with Sm2011, but the expression dropped down to normal levels at later symbiotic stages. Our results suggest that plant innate immunity plays an antagonistic role in symbiosis by directly reducing the numbers of infection threads and nodules.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China.,The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Liujian Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Bo Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Haixiang Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
27
|
Glyan’ko AK, Ischenko AA. Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F.: Review. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Liu M, Liu XX, He XL, Liu LJ, Wu H, Tang CX, Zhang YS, Jin CW. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis. THE NEW PHYTOLOGIST 2017; 213:1242-1256. [PMID: 27775153 DOI: 10.1111/nph.14259] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/07/2016] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis.
Collapse
Affiliation(s)
- Miao Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xing Xing Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Lin He
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Juan Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cai Xian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic., 3086, Australia
| | - Yong Song Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Muñoz V, Ibáñez F, Figueredo MS, Fabra A. An oxidative burst and its attenuation by bacterial peroxidase activity is required for optimal establishment of the Arachis hypogaea-Bradyrhizobium sp. symbiosis. J Appl Microbiol 2016; 121:244-53. [PMID: 27037857 DOI: 10.1111/jam.13149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
AIMS The main purpose of this study was to determine whether the Arachis hypogaea L. root oxidative burst, produced at early stages of its symbiotic interaction with Bradyrhizobium sp. SEMIA 6144, and the bacterial antioxidant system are required for the successful development of this interaction. METHODS AND RESULTS Pharmacological approaches were used to reduce both plant oxidative burst and bacterial peroxidase enzyme activity. In plants whose H2 O2 levels were decreased, a low nodule number, a reduction in the proportion of red nodules (%) and an increase in the bacteroid density were found. The symbiotic phenotype of plants inoculated with a Bradyrhizobium sp. SEMIA 6144 culture showing decreased peroxidase activity was also affected, since the biomass production, nodule number and percentage of red nodules in these plants were lower than in plants inoculated with Bradyrhizobium sp. control cultures. CONCLUSIONS We demonstrated for the first time that the oxidative burst triggered at the early events of the symbiotic interaction in peanut, is a prerequisite for the efficient development of root nodules, and that the antioxidant system of bradyrhizobial peanut symbionts, particularly the activity of peroxidases, is counteracting this oxidative burst for the successful establishment of the symbiosis. SIGNIFICANCE AND IMPACT OF THE STUDY Our results provide new insights into the mechanisms involved in the development of the symbiotic interaction established in A. hypogaea L. a legume infected in an intercellular way.
Collapse
Affiliation(s)
- V Muñoz
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - F Ibáñez
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - M S Figueredo
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
30
|
Montiel J, Arthikala MK, Cárdenas L, Quinto C. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation. Int J Mol Sci 2016; 17:E680. [PMID: 27213330 PMCID: PMC4881506 DOI: 10.3390/ijms17050680] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022] Open
Abstract
Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant's response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Jesús Montiel
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, 6726 Szeged, Hungary.
| | - Manoj-Kumar Arthikala
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), León, Blvd. UNAM 2011, León 37684, Guanajuato, Mexico.
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca 62271, Morelos, Mexico.
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca 62271, Morelos, Mexico.
| |
Collapse
|
31
|
Belmondo S, Calcagno C, Genre A, Puppo A, Pauly N, Lanfranco L. The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. PLANTA 2016; 243:251-262. [PMID: 26403286 DOI: 10.1007/s00425-015-2407-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Our study demonstrated that the NAPDH oxidase gene MtRbohE is expressed in arbusculated cells and plays a role in arbuscule development. Plant NADPH oxidases, known as respiratory burst oxidase homologs (RBOH), belong to a multigenic family that plays an important role in the regulation of plant development and responses to biotic and abiotic stresses. In this study, we monitored the expression profiles of five Rboh genes (MtRbohA, MtRbohB, MtRbohE, MtRbohG, MtRbohF) in the roots of the model species Medicago truncatula upon colonization by arbuscular mycorrhizal fungi. A complementary cellular and molecular approach was used to monitor changes in mRNA abundance and localize transcripts in different cell types from mycorrhizal roots. Rboh transcript levels did not drastically change in total RNA extractions from whole mycorrhizal and non-mycorrhizal roots. Nevertheless, the analysis of laser microdissected cells and Agrobacterium rhizogenes-transformed roots expressing a GUS transcriptional fusion construct highlighted the MtRbohE expression in arbuscule-containing cells. Furthermore, the down regulation of MtRbohE by an RNAi approach generated an altered colonization pattern in the root cortex, when compared to control roots, with fewer arbuscules and multiple penetration attempts. Altogether our data indicate a transient up-regulation of MtRbohE expression in cortical cells colonized by arbuscules and suggest a role for MtRbohE in arbuscule accommodation within cortical cells.
Collapse
Affiliation(s)
- Simone Belmondo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Cristina Calcagno
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Andrea Genre
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Alain Puppo
- Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- CNSR, UMR 7254, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Nicolas Pauly
- Université Nice Sophia Antipolis, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- INRA, UMR 1355, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
- CNSR, UMR 7254, Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Luisa Lanfranco
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Via Accademia Albertina 13, 10123, Turin, Italy.
| |
Collapse
|
32
|
Damiani I, Drain A, Guichard M, Balzergue S, Boscari A, Boyer JC, Brunaud V, Cottaz S, Rancurel C, Da Rocha M, Fizames C, Fort S, Gaillard I, Maillol V, Danchin EGJ, Rouached H, Samain E, Su YH, Thouin J, Touraine B, Puppo A, Frachisse JM, Pauly N, Sentenac H. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks. FRONTIERS IN PLANT SCIENCE 2016; 7:794. [PMID: 27375649 PMCID: PMC4894911 DOI: 10.3389/fpls.2016.00794] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/22/2016] [Indexed: 05/18/2023]
Abstract
Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This transcriptome provides a valuable resource to investigate root hair biology in legumes and the roles that these cells play in rhizobial symbiosis establishment. These results could also contribute to the long-term objective of transferring this symbiotic capacity to non-legume plants.
Collapse
Affiliation(s)
- Isabelle Damiani
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR 1355-7254 Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
| | - Alice Drain
- Biochimie and Physiologie Moléculaire des Plantes, UMR 5004 Centre National de la Recherche Scientifique/386 Institut National de la Recherche Agronomique/SupAgro Montpellier/Université de Montpellier, Campus SupAgro-Institut National de la Recherche AgronomiqueMontpellier, France
| | - Marjorie Guichard
- Institute for Integrative Biology of the Cell, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-SaclayGif sur Yvette, France
| | - Sandrine Balzergue
- POPS Transcriptomic Platform, Centre National de la Recherche Scientifique, Institute of Plant Sciences Paris-Saclay, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-SaclayOrsay, France
- POPS Transcriptomic Platform, Institute of Plant Sciences Paris-Saclay, Paris DiderotOrsay, France
| | - Alexandre Boscari
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR 1355-7254 Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
| | - Jean-Christophe Boyer
- Biochimie and Physiologie Moléculaire des Plantes, UMR 5004 Centre National de la Recherche Scientifique/386 Institut National de la Recherche Agronomique/SupAgro Montpellier/Université de Montpellier, Campus SupAgro-Institut National de la Recherche AgronomiqueMontpellier, France
| | - Véronique Brunaud
- POPS Transcriptomic Platform, Centre National de la Recherche Scientifique, Institute of Plant Sciences Paris-Saclay, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-SaclayOrsay, France
- POPS Transcriptomic Platform, Institute of Plant Sciences Paris-Saclay, Paris DiderotOrsay, France
| | - Sylvain Cottaz
- Université Grenoble Alpes, CERMAVGrenoble, France
- Centre National de la Recherche Scientifique, CERMAVGrenoble, France
| | - Corinne Rancurel
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR 1355-7254 Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
| | - Martine Da Rocha
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR 1355-7254 Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
| | - Cécile Fizames
- Biochimie and Physiologie Moléculaire des Plantes, UMR 5004 Centre National de la Recherche Scientifique/386 Institut National de la Recherche Agronomique/SupAgro Montpellier/Université de Montpellier, Campus SupAgro-Institut National de la Recherche AgronomiqueMontpellier, France
| | - Sébastien Fort
- Université Grenoble Alpes, CERMAVGrenoble, France
- Centre National de la Recherche Scientifique, CERMAVGrenoble, France
| | - Isabelle Gaillard
- Biochimie and Physiologie Moléculaire des Plantes, UMR 5004 Centre National de la Recherche Scientifique/386 Institut National de la Recherche Agronomique/SupAgro Montpellier/Université de Montpellier, Campus SupAgro-Institut National de la Recherche AgronomiqueMontpellier, France
| | - Vincent Maillol
- Université Grenoble Alpes, CERMAVGrenoble, France
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier and Institut de Biologie Computationnelle, Centre National de la Recherche Scientifique and Université MontpellierMontpellier, France
| | - Etienne G. J. Danchin
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR 1355-7254 Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
| | - Hatem Rouached
- Biochimie and Physiologie Moléculaire des Plantes, UMR 5004 Centre National de la Recherche Scientifique/386 Institut National de la Recherche Agronomique/SupAgro Montpellier/Université de Montpellier, Campus SupAgro-Institut National de la Recherche AgronomiqueMontpellier, France
| | - Eric Samain
- Université Grenoble Alpes, CERMAVGrenoble, France
- Centre National de la Recherche Scientifique, CERMAVGrenoble, France
| | - Yan-Hua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
| | - Julien Thouin
- Biochimie and Physiologie Moléculaire des Plantes, UMR 5004 Centre National de la Recherche Scientifique/386 Institut National de la Recherche Agronomique/SupAgro Montpellier/Université de Montpellier, Campus SupAgro-Institut National de la Recherche AgronomiqueMontpellier, France
| | - Bruno Touraine
- Biochimie and Physiologie Moléculaire des Plantes, UMR 5004 Centre National de la Recherche Scientifique/386 Institut National de la Recherche Agronomique/SupAgro Montpellier/Université de Montpellier, Campus SupAgro-Institut National de la Recherche AgronomiqueMontpellier, France
| | - Alain Puppo
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR 1355-7254 Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
| | - Jean-Marie Frachisse
- Institute for Integrative Biology of the Cell, CEA, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-SaclayGif sur Yvette, France
| | - Nicolas Pauly
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR 1355-7254 Institut Sophia Agrobiotech, Université Nice Sophia AntipolisSophia Antipolis, France
- *Correspondence: Nicolas Pauly
| | - Hervé Sentenac
- Biochimie and Physiologie Moléculaire des Plantes, UMR 5004 Centre National de la Recherche Scientifique/386 Institut National de la Recherche Agronomique/SupAgro Montpellier/Université de Montpellier, Campus SupAgro-Institut National de la Recherche AgronomiqueMontpellier, France
- Hervé Sentenac
| |
Collapse
|
33
|
Damiani I, Pauly N, Puppo A, Brouquisse R, Boscari A. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume - Rhizobium Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:454. [PMID: 27092165 PMCID: PMC4824774 DOI: 10.3389/fpls.2016.00454] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/23/2016] [Indexed: 05/07/2023]
Abstract
The symbiotic interaction between legumes and nitrogen-fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process.
Collapse
|
34
|
de Souza EM, Granada CE, Sperotto RA. Plant Pathogens Affecting the Establishment of Plant-Symbiont Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:15. [PMID: 26834779 PMCID: PMC4721146 DOI: 10.3389/fpls.2016.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/07/2016] [Indexed: 05/19/2023]
Affiliation(s)
- Eduardo M. de Souza
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
| | - Camille E. Granada
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
- Centro de Gestão Organizacional, Centro Universitário UNIVATESLajeado, Brazil
| | - Raul A. Sperotto
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário UNIVATESLajeado, Brazil
- Setor de Genética e Biologia Molecular do Museu de Ciências Naturais, Centro de Ciências Biológicas e da Saúde, Centro Universitário UNIVATESLajeado, Brazil
- *Correspondence: Raul A. Sperotto
| |
Collapse
|
35
|
Glyan’ko AK. Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815050063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:111-58. [PMID: 25805123 DOI: 10.1016/bs.ircmb.2015.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.
Collapse
Affiliation(s)
- Takuya Suzaki
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Emiko Yoro
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| | - Masayoshi Kawaguchi
- National Institute for Basic Biology, Okazaki, Japan; School of Life Science, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
37
|
Ribeiro CW, Alloing G, Mandon K, Frendo P. Redox regulation of differentiation in symbiotic nitrogen fixation. Biochim Biophys Acta Gen Subj 2014; 1850:1469-78. [PMID: 25433163 DOI: 10.1016/j.bbagen.2014.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/30/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nitrogen-fixing symbiosis between Rhizobium bacteria and legumes leads to the formation of a new organ, the root nodule. The development of the nodule requires the differentiation of plant root cells to welcome the endosymbiotic bacterial partner. This development includes the formation of an efficient vascular tissue which allows metabolic exchanges between the root and the nodule, the formation of a barrier to oxygen diffusion necessary for the bacterial nitrogenase activity and the enlargement of cells in the infection zone to support the large bacterial population. Inside the plant cell, the bacteria differentiate into bacteroids which are able to reduce atmospheric nitrogen to ammonia needed for plant growth in exchange for carbon sources. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. SCOPE OF THE REVIEW Nodule functioning requires a tight regulation of the development of plant cells and bacteria. The importance of redox control in nodule development and N-fixation is discussed in this review. The involvement of reactive oxygen and nitrogen species and the importance of the antioxidant defense are analyzed. MAJOR CONCLUSIONS Plant differentiation and bacterial differentiation are controlled by reactive oxygen and nitrogen species, enzymes involved in the antioxidant defense and antioxidant compounds. GENERAL SIGNIFICANCE The establishment and functioning of nitrogen-fixing symbiosis involve a redox control important for both the plant-bacteria crosstalk and the consideration of environmental parameters. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Carolina Werner Ribeiro
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Geneviève Alloing
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Karine Mandon
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France
| | - Pierre Frendo
- Institut Sophia Agrobiotech, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, INRA UMR 1355, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France; Institut Sophia Agrobiotech, CNRS UMR 7254, 400 Route des Chappes, BP167, F-06903 Sophia Antipolis Cedex, France.
| |
Collapse
|
38
|
Muñoz V, Ibáñez F, Tordable M, Megías M, Fabra A. Role of reactive oxygen species generation and Nod factors during the early symbiotic interaction between bradyrhizobia and peanut, a legume infected by crack entry. J Appl Microbiol 2014; 118:182-92. [PMID: 25413288 DOI: 10.1111/jam.12669] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 11/30/2022]
Abstract
AIMS We evaluated whether reactive oxygen species (ROS) production and the plant antioxidant system are involved in the symbiotic interaction between bradyrhizobia and legumes infected by crack entry, without intracellular infection threads (IT) formation, such as Arachis hypogaea L. (peanut). The role of bradyrhizobial Nod factors (NF) in modulating the plants' oxidative burst was also analysed. METHODS AND RESULTS Histochemical and quantitative procedures were used to detect ROS levels in inoculated and in NF-treated peanut roots. Increase in root H2O2 production was determined at 10 min postinoculation with Bradyrhizobium sp. SEMIA 6144 or after NF addition. ROS production was modulated by NF. From 15 to 30 min postinoculation, the compatibility of Bradyrhizobium sp.-peanut interaction depends mostly on the H2O2 detoxification via catalase. CONCLUSIONS We demonstrated for the first time that the early events of the symbiotic interaction in legumes invaded by crack entry trigger an increase in ROS production (represented exclusively by a higher H2O2 content) in which NADPH-oxidase seems not to be involved. NF modulate this response by enhancing the plant antioxidant machinery, contributing to the creation of adequate conditions for symbiosis development. SIGNIFICANCE AND IMPACT OF THE STUDY Our data provide new insights into the mechanism involves in the symbiotic interaction that establish legumes infected by crack entry and suggest that ROS response shows differences compared with legumes invaded by IT formation.
Collapse
Affiliation(s)
- V Muñoz
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
39
|
MtROP8 is involved in root hair development and the establishment of symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0363-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Kiirika LM, Schmitz U, Colditz F. The alternative Medicago truncatula defense proteome of ROS-defective transgenic roots during early microbial infection. FRONTIERS IN PLANT SCIENCE 2014; 5:341. [PMID: 25101099 PMCID: PMC4101433 DOI: 10.3389/fpls.2014.00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 05/29/2023]
Abstract
ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homolog in plants). Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i) infected with pathogenic (Aphanomyces euteiches) and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti). While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector), we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi), 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique) were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique) after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique) after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein degradation.
Collapse
Affiliation(s)
| | | | - Frank Colditz
- Department of Plant Molecular Biology, Institute of Plant Genetics, Leibniz University HannoverHannover, Germany
| |
Collapse
|
41
|
Moné Y, Monnin D, Kremer N. The oxidative environment: a mediator of interspecies communication that drives symbiosis evolution. Proc Biol Sci 2014; 281:20133112. [PMID: 24807248 DOI: 10.1098/rspb.2013.3112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Symbiotic interactions are ubiquitous in nature and play a major role in driving the evolution of life. Interactions between partners are often mediated by shared signalling pathways, which strongly influence both partners' biology and the evolution of the association in various environments. As an example of 'common language', the regulation of the oxidative environment plays an important role in driving the evolution of symbiotic associations. Such processes have been occurring for billions of years, including the increase in Earth's atmospheric oxygen and the subsequent evolution of mitochondria. The effect of reactive oxygen species and reactive nitrogen species (RONS) has been characterized functionally, but the molecular dialogue between partners has not been integrated within a broader evolutionary context yet. Given the pleiotropic role of RONS in cell-cell communication, development and immunity, but also their associated physiological costs, we discuss here how their regulation can influence the establishment, the maintenance and the breakdown of various symbiotic associations. By synthesizing recent developments in redox biology, we aim to provide an interdisciplinary understanding of the influence of such mediators of interspecies communication on the evolution and stability of symbioses, which in turn can shape ecosystems and play a role in health and disease.
Collapse
Affiliation(s)
- Yves Moné
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, , Villeurbanne, France, INSA-Lyon, INRA, UMR 203, Biologie Fonctionnelle Insectes et Interactions, Université de Lyon, , Villeurbanne, France, Medical Microbiology and Immunology, University of Wisconsin-Madison, , Madison, WI, USA
| | | | | |
Collapse
|
42
|
Arthikala MK, Sánchez-López R, Nava N, Santana O, Cárdenas L, Quinto C. RbohB, a Phaseolus vulgaris NADPH oxidase gene, enhances symbiosome number, bacteroid size, and nitrogen fixation in nodules and impairs mycorrhizal colonization. THE NEW PHYTOLOGIST 2014; 202:886-900. [PMID: 24571730 DOI: 10.1111/nph.12714] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/07/2014] [Indexed: 05/19/2023]
Abstract
The reactive oxygen species (ROS) generated by respiratory burst oxidative homologs (Rbohs) are involved in numerous plant cell signaling processes, and have critical roles in the symbiosis between legumes and nitrogen-fixing bacteria. Previously, down-regulation of RbohB in Phaseolus vulgaris was shown to suppress ROS production and abolish Rhizobium infection thread (IT) progression, but also to enhance arbuscular mycorrhizal fungal (AMF) colonization. Thus, Rbohs function both as positive and negative regulators. Here, we assessed the effect of enhancing ROS concentrations, by overexpressing PvRbohB, on the P. vulgaris--rhizobia and P. vulgaris--AMF symbioses. We estimated superoxide concentrations in hairy roots overexpressing PvRbohB, determined the status of early and late events of both Rhizobium and AMF interactions in symbiont-inoculated roots, and analyzed the nodule ultrastructure of transgenic plants overexpressing PvRbohB. Overexpression of PvRbohB significantly enhanced ROS production, the formation of ITs, nodule biomass, and nitrogen-fixing activity, and increased the density of symbiosomes in nodules, and the density and size of bacteroides in symbiosomes. Furthermore, PvCAT, early nodulin, PvSS1, and PvGOGAT transcript abundances were elevated in these nodules. By contrast, mycorrhizal colonization was reduced in roots that overexpressed RbohB. Overexpression of PvRbohB augmented nodule efficiency by enhancing nitrogen fixation and delaying nodule senescence, but impaired AMF colonization.
Collapse
MESH Headings
- Biomass
- Cloning, Molecular
- Colony Count, Microbial
- Down-Regulation/genetics
- Gene Expression Regulation, Plant
- Genes, Plant
- Models, Biological
- Mycorrhizae/growth & development
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Nitrogen Fixation/genetics
- Phaseolus/enzymology
- Phaseolus/genetics
- Phaseolus/microbiology
- Phaseolus/ultrastructure
- Plant Proteins/metabolism
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Rhizobium/physiology
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/microbiology
- Root Nodules, Plant/ultrastructure
- Symbiosis/genetics
Collapse
Affiliation(s)
- Manoj-Kumar Arthikala
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Noreide Nava
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Olivia Santana
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| |
Collapse
|
43
|
Schmitz AM, Harrison MJ. Signaling events during initiation of arbuscular mycorrhizal symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:250-61. [PMID: 24386977 DOI: 10.1111/jipb.12155] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/26/2013] [Indexed: 05/18/2023]
Abstract
Under nutrient-limiting conditions, plants will enter into symbiosis with arbuscular mycorrhizal (AM) fungi for the enhancement of mineral nutrient acquisition from the surrounding soil. AM fungi live in close, intracellular association with plant roots where they transfer phosphate and nitrogen to the plant in exchange for carbon. They are obligate fungi, relying on their host as their only carbon source. Much has been discovered in the last decade concerning the signaling events during initiation of the AM symbiosis, including the identification of signaling molecules generated by both partners. This signaling occurs through symbiosis-specific gene products in the host plant, which are indispensable for normal AM development. At the same time, plants have adapted complex mechanisms for avoiding infection by pathogenic fungi, including an innate immune response to general microbial molecules, such as chitin present in fungal cell walls. How it is that AM fungal colonization is maintained without eliciting a defensive response from the host is still uncertain. In this review, we present a summary of the molecular signals and their elicited responses during initiation of the AM symbiosis, including plant immune responses and their suppression.
Collapse
Affiliation(s)
- Alexa M Schmitz
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY, 14853, USA; Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
44
|
Luo L, Lu D. Immunosuppression during Rhizobium-legume symbiosis. PLANT SIGNALING & BEHAVIOR 2014; 9:e28197. [PMID: 24556951 PMCID: PMC4091602 DOI: 10.4161/psb.28197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 05/24/2023]
Abstract
Rhizobium infects host legumes to elicit new plant organs, nodules where dinitrogen is fixed as ammonia that can be directly utilized by plants. The nodulation factor (NF) produced by Rhizobium is one of the determinant signals for rhizobial infection and nodule development. Recently, it was found to suppress the innate immunity on host and nonhost plants as well as its analogs, chitins. Therefore, NF can be recognized as a microbe/pathogen-associated molecular pattern (M/PAMP) like chitin to induce the M/PAMP triggered susceptibility (M/PTS) of host plants to rhizobia. Whether the NF signaling pathway is directly associated with the innate immunity is not clear till now. In fact, other MAMPs such as lipopolysaccharide (LPS), exopolysaccharide (EPS) and cyclic-β-glucan, together with type III secretion system (T3SS) effectors are also required for rhizobial infection or survival in leguminous nodule cells. Interestingly, most of them play similarly negative roles in the innate immunity of host plants, though their signaling is not completely elucidated. Taken together, we believe that the local immunosuppression on host plants induced by Rhizobium is essential for the establishment of their symbiosis.
Collapse
Affiliation(s)
- Li Luo
- Shanghai Key Lab of Bioenergy Plant School of Life Science; Shanghai University; Baoshan, Shanghai, PR China
- State Key Lab of Plant Molecular Genetics; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, PRChina
| | - Dawei Lu
- State Key Lab of Plant Molecular Genetics; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai, PRChina
- School of Life Science; Anhui University; Heifei, Anhui, PR China
| |
Collapse
|
45
|
Exopolysaccharides from Sinorhizobium meliloti can protect against H2O2-dependent damage. J Bacteriol 2013; 195:5362-9. [PMID: 24078609 DOI: 10.1128/jb.00681-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sinorhizobium meliloti requires exopolysaccharides in order to form a successful nitrogen-fixing symbiosis with Medicago species. Additionally, during early stages of symbiosis, S. meliloti is presented with an oxidative burst that must be overcome. Levels of production of the exopolysaccharides succinoglycan (EPS-I) and galactoglucan (EPS-II) were found to correlate positively with survival in hydrogen peroxide (H2O2). H2O2 damage is dependent on the presence of iron and is mitigated when EPS-I and EPS-II mutants are cocultured with cells expressing either exopolysaccharide. Purified EPS-I is able to decrease in vitro levels of H2O2, and this activity is specific to the symbiotically active low-molecular-weight form of EPS-I. This suggests a potential protective function of exopolysaccharides against H2O2 during early symbiosis.
Collapse
|
46
|
Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. THE NEW PHYTOLOGIST 2013; 199:188-202. [PMID: 23506613 DOI: 10.1111/nph.12234] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/17/2013] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis is stimulated by phosphorus (P) limitation and contributes to P and nitrogen (N) acquisition. However, the effects of combined P and N limitation on AM formation are largely unknown. Medicago truncatula plants were cultivated in the presence or absence of Rhizophagus irregularis (formerly Glomus intraradices) in P-limited (LP), N-limited (LN) or combined P- and N-limited (LPN) conditions, and compared with plants grown in sufficient P and N. The highest AM formation was observed in LPN, linked to systemic signaling by the plant nutrient status. Plant free phosphate concentrations were higher in LPN than in LP, as a result of cross-talk between P and N. Transcriptome analyses suggest that LPN induces the activation of NADPH oxidases in roots, concomitant with an altered profile of plant defense genes and a coordinate increase in the expression of genes involved in the methylerythritol phosphate and isoprenoid-derived pathways, including strigolactone synthesis genes. Taken together, these results suggest that low P and N fertilization systemically induces a physiological state of plants favorable for AM symbiosis despite their higher P status. Our findings highlight the importance of the plant nutrient status in controlling plant-fungus interaction.
Collapse
Affiliation(s)
- Laurent Bonneau
- UMR 1347 Agroécologie INRA/Université de Bourgogne/Agrosup, Pôle Interactions Plantes-Microorganismes ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Stéphanie Huguet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 rue G. Crémieux, CP 5708, F-91057, Evry Cedex, France
| | - Daniel Wipf
- UMR 1347 Agroécologie INRA/Université de Bourgogne/Agrosup, Pôle Interactions Plantes-Microorganismes ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Nicolas Pauly
- Institut Sophia Agrobiotech, UMR INRA 1355 CNRS 7254, Université de Nice-Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Hoai-Nam Truong
- UMR 1347 Agroécologie INRA/Université de Bourgogne/Agrosup, Pôle Interactions Plantes-Microorganismes ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
47
|
Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R. Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 2013; 18:2202-19. [PMID: 23249379 DOI: 10.1089/ars.2012.5136] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE During the Legume-Rhizobium symbiosis, hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) appear to play an important signaling role in the establishment and the functioning of this interaction. Modifications of the levels of these reactive species in both partners impair either the development of the nodules (new root organs formed on the interaction) or their N(2)-fixing activity. RECENT ADVANCES NADPH oxidases (Noxs) have been recently described as major sources of H(2)O(2) production, via superoxide anion dismutation, during symbiosis. Nitrate reductases (NR) and electron transfer chains from both partners were found to significantly contribute to NO production in N(2)-fixing nodules. Both S-sulfenylated and S-nitrosylated proteins have been detected during early interaction and in functioning nodules, linking reactive oxygen species (ROS)/NO production to redox-based protein regulation. NO was also found to play a metabolic role in nodule energy metabolism. CRITICAL ISSUES H(2)O(2) may control the infection process and the subsequent bacterial differentiation into the symbiotic form. NO is required for an optimal establishment of symbiosis and appears to be a key player in nodule senescence. FUTURE DIRECTIONS A challenging question is to define more precisely when and where reactive species are generated and to develop adapted tools to detect their production in vivo. To investigate the role of Noxs and NRs in the production of H(2)O(2) and NO, respectively, the use of mutants under the control of organ-specific promoters will be of crucial interest. The balance between ROS and NO production appears to be a key point to understand the redox regulation of symbiosis.
Collapse
Affiliation(s)
- Alain Puppo
- Institut Sophia Agrobiotech, TGU INRA 1355-CNRS 7254, Université de Nice-Sophia Antipolis, Sophia-Antipolis, France.
| | | | | | | | | |
Collapse
|
48
|
Andrio E, Marino D, Marmeys A, de Segonzac MD, Damiani I, Genre A, Huguet S, Frendo P, Puppo A, Pauly N. Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis. THE NEW PHYTOLOGIST 2013; 198:179-189. [PMID: 23347006 DOI: 10.1111/nph.12120] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/28/2012] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS), particularly hydrogen peroxide (H(2)O(2)), play an important role in signalling in various cellular processes. The involvement of H(2)O(2) in the Medicago truncatula-Sinorhizobium meliloti symbiotic interaction raises questions about its effect on gene expression. A transcriptome analysis was performed on inoculated roots of M. truncatula in which ROS production was inhibited with diphenylene iodonium (DPI). In total, 301 genes potentially regulated by ROS content were identified 2 d after inoculation. These genes included MtSpk1, which encodes a putative protein kinase and is induced by exogenous H(2)O(2) treatment. MtSpk1 gene expression was also induced by nodulation factor treatment. MtSpk1 transcription was observed in infected root hair cells, nodule primordia and the infection zone of mature nodules. Analysis with a fluorescent protein probe specific for H(2)O(2) showed that MtSpk1 expression and H(2)O(2) were similarly distributed in the nodule infection zone. Finally, the establishment of symbiosis was impaired by MtSpk1 downregulation with an artificial micro-RNA. Several genes regulated by H(2)O(2) during the establishment of rhizobial symbiosis were identified. The involvement of MtSpk1 in the establishment of the symbiosis is proposed.
Collapse
Affiliation(s)
- Emilie Andrio
- Institut Sophia Agrobiotech, UMR INRA 1355 - CNRS 7254 - Université de Nice - Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Daniel Marino
- Institut Sophia Agrobiotech, UMR INRA 1355 - CNRS 7254 - Université de Nice - Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903, Sophia Antipolis Cedex, France
- Department of Plant Biology and Ecology, University of the Basque Country, Apdo 644, E-48080, Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, E-48011, Bilbao, Spain
| | - Anthony Marmeys
- Institut Sophia Agrobiotech, UMR INRA 1355 - CNRS 7254 - Université de Nice - Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Marion Dunoyer de Segonzac
- Institut Sophia Agrobiotech, UMR INRA 1355 - CNRS 7254 - Université de Nice - Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Isabelle Damiani
- Institut Sophia Agrobiotech, UMR INRA 1355 - CNRS 7254 - Université de Nice - Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Andrea Genre
- Department of Plant Biology, University of Turin and IPP-CNR, Viale P.A. Mattioli 25, Turin, 10125, Italy
| | - Stéphanie Huguet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 rue G. Crémieux, CP 5708, F-91057, Evry Cedex, France
| | - Pierre Frendo
- Institut Sophia Agrobiotech, UMR INRA 1355 - CNRS 7254 - Université de Nice - Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Alain Puppo
- Institut Sophia Agrobiotech, UMR INRA 1355 - CNRS 7254 - Université de Nice - Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903, Sophia Antipolis Cedex, France
| | - Nicolas Pauly
- Institut Sophia Agrobiotech, UMR INRA 1355 - CNRS 7254 - Université de Nice - Sophia Antipolis, 400 Route des Chappes, BP 167, F-06903, Sophia Antipolis Cedex, France
| |
Collapse
|
49
|
Moscatiello R, Baldan B, Squartini A, Mariani P, Navazio L. Oligogalacturonides: novel signaling molecules in Rhizobium-legume communications. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1387-1395. [PMID: 22835276 DOI: 10.1094/mpmi-03-12-0066-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oligogalacturonides are pectic fragments of the plant cell wall, whose signaling role has been described thus far during plant development and plant-pathogen interactions. In the present work, we evaluated the potential involvement of oligogalacturonides in the molecular communications between legumes and rhizobia during the establishment of nitrogen-fixing symbiosis. Oligogalacturonides with a degree of polymerization of 10 to 15 were found to trigger a rapid intracellular production of reactive oxygen species in Rhizobium leguminosarum bv. viciae 3841. Accumulation of H(2)O(2), detected by both 2',7'-dichlorodihydrofluorescein diacetate-based fluorescence and electron-dense deposits of cerium perhydroxides, was transient and did not affect bacterial cell viability, due to the prompt activation of the katG gene encoding a catalase. Calcium measurements carried out in R. leguminosarum transformed with the bioluminescent Ca(2+) reporter aequorin demonstrated the induction of a rapid and remarkable intracellular Ca(2+) increase in response to oligogalacturonides. When applied jointly with naringenin, oligogalacturonides effectively inhibited flavonoid-induced nod gene expression, indicating an antagonistic interplay between oligogalacturonides and inducing flavonoids in the early stages of plant root colonization. The above data suggest a novel role for oligogalacturonides as signaling molecules released in the rhizosphere in the initial rhizobium-legume interaction.
Collapse
|
50
|
Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala MK, Santana O, Sánchez F, Quinto C. A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia. PLANT & CELL PHYSIOLOGY 2012; 53:1751-67. [PMID: 22942250 DOI: 10.1093/pcp/pcs120] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant NADPH oxidases [respiratory burst oxidase homologs (RBOHs)] have emerged as key players in the regulation of plant-pathogen interactions. Nonetheless, their role in mutualistic associations, such as the rhizobia-legume symbiosis, is poorly understood. In this work, nine members of the Phaseolus vulgaris Rboh gene family were identified. The transcript of one of these, PvRbohB, accumulated abundantly in shoots, roots and nodules. PvRbohB promoter activity was detected in meristematic regions of P. vulgaris roots, as well as during infection thread (IT) progression and nodule development. RNA interference (RNAi)-mediated PvRbohB down-regulation in transgenic roots reduced reactive oxygen species (ROS) production and lateral root density, and greatly impaired nodulation. Microscopy analysis revealed that progression of the ITs was impeded at the base of root hairs in PvRbohB-RNAi roots. Furthermore, the few nodules that formed in PvRbohB-down-regulated roots displayed abnormally wide ITs and reduced nitrogen fixation. These findings indicate that this common bean NADPH oxidase is crucial for successful rhizobial colonization and probably maintains proper IT growth and shape.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62271, México
| | | | | | | | | | | | | | | |
Collapse
|