1
|
Liu YL, Wang LJ, Li Y, Guo YH, Cao Y, Zhao ST. A Small Guanosine Triphosphate Binding Protein PagRabE1b Promotes Xylem Development in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:686024. [PMID: 34149786 PMCID: PMC8213388 DOI: 10.3389/fpls.2021.686024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Rab GTPases are the subfamily of the small guanosine triphosphate (GTP)-binding proteins which participated in the regulation of various biological processes. Recent studies have found that plant Rabs play some specific functions. However, the functions of Rabs in xylem development in trees remain unclear. In this study, functional identification of PagRabE1b in Populus was performed. Quantitative reverse transcription PCR (qRT-PCR) results showed that PagRabE1b was highly accumulated in stems, especially in phloem and xylem tissues. Overexpression of PagRabE1b in poplar enhanced programmed cell death (PCD) and increased the growth rate and the secondary cell wall (SCW) thickness. Quantitative analysis of monosaccharide content showed that various monosaccharides were significantly increased in secondary xylem tissues of the overexpressed lines. Flow cytometry analysis revealed that the number of apoptotic cells in PagRabE1b-OE lines is more than a wild type (WT), which indicated that PagRabE1b may play an important role in PCD. Further studies showed that overexpression of PagRabE1b increased the expression level of genes involved in SCW biosynthesis, PCD, and autophagy. Collectively, the results suggest that PagRabE1b plays a positive role in promoting the xylem development of poplar.
Collapse
Affiliation(s)
- Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Li-Juan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ying-Hua Guo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Cheng X, Mwaura BW, Chang Stauffer SR, Bezanilla M. A Fully Functional ROP Fluorescent Fusion Protein Reveals Roles for This GTPase in Subcellular and Tissue-Level Patterning. THE PLANT CELL 2020; 32:3436-3451. [PMID: 32917738 PMCID: PMC7610296 DOI: 10.1105/tpc.20.00440] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 05/18/2023]
Abstract
Rho of Plants (ROPs) are GTPases that regulate polarity and patterned wall deposition in plants. As these small, globular proteins have many interactors, it has been difficult to ensure that methods to visualize ROP in live cells do not affect ROP function. Here, motivated by work in fission yeast (Schizosaccharomyces pombe), we generated a fluorescent moss (Physcomitrium [Physcomitrella] patens) ROP4 fusion protein by inserting mNeonGreen after Gly-134. Plants harboring tagged ROP4 and no other ROP genes were phenotypically normal. Plants lacking all four ROP genes comprised an unpatterned clump of spherical cells that were unable to form gametophores, demonstrating that ROP is essentially for spatial patterning at the cellular and tissue levels. The functional ROP fusion protein formed a steep gradient at the apical plasma membranes of growing tip cells. ROP also predicted the site of branch formation in the apical cell at the onset of mitosis, which occurs one to two cell cycles before a branch cell emerges. While fluorescence recovery after photobleaching studies demonstrated that ROP dynamics do not depend on the cytoskeleton, acute depolymerization of the cytoskeleton removed ROP from the membrane only in recently divided cells, pointing to a feedback mechanism between the cell cycle, cytoskeleton, and ROP.
Collapse
Affiliation(s)
- Xiaohang Cheng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Bethany W Mwaura
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | | | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
3
|
Ployet R, Veneziano Labate MT, Regiani Cataldi T, Christina M, Morel M, San Clemente H, Denis M, Favreau B, Tomazello Filho M, Laclau JP, Labate CA, Chaix G, Grima-Pettenati J, Mounet F. A systems biology view of wood formation in Eucalyptus grandis trees submitted to different potassium and water regimes. THE NEW PHYTOLOGIST 2019; 223:766-782. [PMID: 30887522 DOI: 10.1111/nph.15802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/28/2019] [Indexed: 05/02/2023]
Abstract
Wood production in fast-growing Eucalyptus grandis trees is highly dependent on both potassium (K) fertilization and water availability but the molecular processes underlying wood formation in response to the combined effects of these two limiting factors remain unknown. E. grandis trees were submitted to four combinations of K-fertilization and water supply. Weighted gene co-expression network analysis and MixOmics-based co-regulation networks were used to integrate xylem transcriptome, metabolome and complex wood traits. Functional characterization of a candidate gene was performed in transgenic E. grandis hairy roots. This integrated network-based approach enabled us to identify meaningful biological processes and regulators impacted by K-fertilization and/or water limitation. It revealed that modules of co-regulated genes and metabolites strongly correlated to wood complex traits are in the heart of a complex trade-off between biomass production and stress responses. Nested in these modules, potential new cell-wall regulators were identified, as further confirmed by the functional characterization of EgMYB137. These findings provide new insights into the regulatory mechanisms of wood formation under stressful conditions, pointing out both known and new regulators co-opted by K-fertilization and/or water limitation that may potentially promote adaptive wood traits.
Collapse
Affiliation(s)
- Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Mônica T Veneziano Labate
- Max Feffer Laboratory for Plant Genetics, Department of Genetics, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Av. Pádua Dias 11, PO Box 09, Piracicaba-SP, 13418-900, Brazil
| | - Thais Regiani Cataldi
- Max Feffer Laboratory for Plant Genetics, Department of Genetics, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Av. Pádua Dias 11, PO Box 09, Piracicaba-SP, 13418-900, Brazil
| | - Mathias Christina
- CIRAD, UMR ECO&SOLS, F-34398, Montpellier, France
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Marie Morel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Marie Denis
- CIRAD, UMR AGAP, 34395, Montpellier, Cedex 9, France
- UMR AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Bénédicte Favreau
- CIRAD, UMR AGAP, 34395, Montpellier, Cedex 9, France
- UMR AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Mario Tomazello Filho
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Jean-Paul Laclau
- CIRAD, UMR ECO&SOLS, F-34398, Montpellier, France
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Carlos Alberto Labate
- Max Feffer Laboratory for Plant Genetics, Department of Genetics, College of Agriculture 'Luiz de Queiroz', University of São Paulo, Av. Pádua Dias 11, PO Box 09, Piracicaba-SP, 13418-900, Brazil
| | - Gilles Chaix
- Department of Forest Resource, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias N° 11, Piracicaba, São Paulo, 13418-900, Brazil
- CIRAD, UMR AGAP, 34395, Montpellier, Cedex 9, France
- UMR AGAP, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, 31326, Castanet-Tolosan, France
| |
Collapse
|
4
|
Cheng H, Gao J, Cai H, Zhu J, Huang H. Gain-of-function in Arabidopsis (GAINA) for identifying functional genes in Hevea brasiliensis. SPRINGERPLUS 2016; 5:1853. [PMID: 27818891 PMCID: PMC5075328 DOI: 10.1186/s40064-016-3523-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Forward genetics approaches are not popularly applied in non-model plants due to their complex genomes, long life cycles, backward genetic studies etc. Researchers have to adopt reverse genetic methods to characterize gene functions in non-model plants individually, the efficiency of which is usually low. RESULTS In this study, we report a gain-of-function in Arabidopsis (GAINA) strategy which can be used for batch identification of functional genes in a plant species. This strategy aims to obtain the gain-of-function of rubber tree genes through overexpressing transformation ready full-length cDNA libraries in Arabidopsis. An initial transformation test produced about two thousand independent transgenic Arabidopsis lines, in which multiple obvious aberrant phenotypes were observed, suggesting the gain-of-function of rubber tree genes. The transferred genes were further isolated and identified. One gene identified to be metallothionein-like protein type 3 gene was further transferred into Arabidopsis and reproduced a similar aberrant phenotype. CONCLUSION The GAINA system proves to be an efficient tool for batch identification of functional genes in Hevea brasiliensis, and also applicable in other non-model plants.
Collapse
Affiliation(s)
- Han Cheng
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, 571737 Hainan People’s Republic of China
| | - Jing Gao
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
| | - Haibin Cai
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
| | - Jianshun Zhu
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
| | - Huasun Huang
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, 571737 Hainan People’s Republic of China
| |
Collapse
|
5
|
Plasencia A, Soler M, Dupas A, Ladouce N, Silva-Martins G, Martinez Y, Lapierre C, Franche C, Truchet I, Grima-Pettenati J. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1381-93. [PMID: 26579999 PMCID: PMC11388834 DOI: 10.1111/pbi.12502] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/02/2015] [Accepted: 10/17/2015] [Indexed: 05/26/2023]
Abstract
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.
Collapse
Affiliation(s)
- Anna Plasencia
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Marçal Soler
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Annabelle Dupas
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Nathalie Ladouce
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Guilherme Silva-Martins
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Yves Martinez
- FRAIB, CNRS, Cell Imaging Plateform, Castanet Tolosan, France
| | - Catherine Lapierre
- INRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute (IJPB), Versailles, France
| | | | - Isabelle Truchet
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| | - Jacqueline Grima-Pettenati
- UMR5546, Toulouse III Paul Sabatier University-CNRS, Plant Research Laboratory (LRSV), Castanet Tolosan, France
| |
Collapse
|
6
|
Ribeiro T, Barrela RM, Bergès H, Marques C, Loureiro J, Morais-Cecílio L, Paiva JAP. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes. FRONTIERS IN PLANT SCIENCE 2016; 7:510. [PMID: 27148332 PMCID: PMC4840385 DOI: 10.3389/fpls.2016.00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/31/2016] [Indexed: 05/30/2023]
Abstract
The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus.
Collapse
Affiliation(s)
- Teresa Ribeiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of LisbonLisboa, Portugal
| | - Ricardo M. Barrela
- Plant Cell Biotechnology Laboratory, Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
| | - Hélène Bergès
- Institut National de la Recherche Agronomique, Centre National de Ressources Génomiques VégétalesCastanet-Tolosan, France
| | - Cristina Marques
- RAIZ, Instituto de Investigação da Floresta e PapelAveiro, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of LisbonLisboa, Portugal
| | - Jorge A. P. Paiva
- Plant Cell Biotechnology Laboratory, Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
- Department of Integrative Plant Biology, Instytut Genetyki Roślin, Polskiej Akademii NaukPoznań, Poland
| |
Collapse
|
7
|
Qiu A, Liu Z, Li J, Chen Y, Guan D, He S. The Ectopic Expression of CaRop1 Modulates the Response of Tobacco Plants to Ralstonia solanacearum and Aphids. FRONTIERS IN PLANT SCIENCE 2016; 7:1177. [PMID: 27551287 PMCID: PMC4976107 DOI: 10.3389/fpls.2016.01177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/21/2016] [Indexed: 05/07/2023]
Abstract
In plants, Rho-related GTPases (Rops) are versatile molecular switches that regulate various biological processes, although their exact roles are not fully understood. Herein, we provide evidence that the ectopic expression of a Rop derived from Capsicum annuum, designated CaRop1, in tobacco plants modulates the response of these plants to Ralstonia solanacearum or aphid attack. The deduced amino acid sequence of CaRop1 harbors a conserved Rho domain and is highly homologous to Rops of other plant species. Transient expression of a CaRop1-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed localization of the GFP signal to the plasma membrane, cytoplasm, and nucleus. Overexpression (OE) of the wild-type CaRop1 or its dominant-negative mutant (DN-CaRop1) conferred substantial resistance to R. solanacearum infection and aphid attack, and this effect was accompanied by enhanced transcriptional expression of the hypersensitive-reaction marker gene HSR201; the jasmonic acid (JA)-responsive PR1b and LOX1; the insect resistance-associated NtPI-I, NtPI-II, and NtTPI; the ethylene (ET) production-associated NtACS1; and NPK1, a mitogen-activated protein kinase kinase kinase (MAPKKK) that interferes with N-, Bs2-, and Rx-mediated disease resistance. In contrast, OE of the constitutively active mutant of CaRop1(CA-CaRop1) enhanced susceptibility of the transgenic tobacco plants to R. solanacearum infection and aphid attack and downregulated or sustained the expression of HSR201, PR1b, NPK1, NtACS1, NtPI-I, NtPI-II, and NtTPI. These results collectively suggest that CaRop1 acts as a signaling switch in the crosstalk between Solanaceaes's response to R. solanacearum infection and aphid attack possibly via JA/ET-mediated signaling machinery.
Collapse
Affiliation(s)
- Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
| | - Zhiqin Liu
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
- College of Crop Science, Fujian Agriculture and Forestry University, FuzhouChina
| | - Jiazhi Li
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
| | - Yanshen Chen
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
| | - Deyi Guan
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
- College of Crop Science, Fujian Agriculture and Forestry University, FuzhouChina
| | - Shuilin He
- College of Life Science, Fujian Agriculture and Forestry University, FuzhouChina
- Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education/Fujian Agriculture and Forestry University, FuzhouChina
- College of Crop Science, Fujian Agriculture and Forestry University, FuzhouChina
- *Correspondence: Shuilin He,
| |
Collapse
|
8
|
Burkart GM, Baskin TI, Bezanilla M. A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion. J Cell Sci 2015; 128:2553-64. [PMID: 26045445 DOI: 10.1242/jcs.172445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/31/2015] [Indexed: 01/22/2023] Open
Abstract
In plants, the ROP family of small GTPases has been implicated in the polarized growth of tip-growing cells, such as root hairs and pollen tubes; however, most of the data derive from overexpressing ROP genes or constitutively active and dominant-negative isoforms, whereas confirmation by using loss-of-function studies has generally been lacking. Here, in the model moss Physcomitrella patens, we study ROP signaling during tip growth by using a loss-of-function approach based on RNA interference (RNAi) to silence the entire moss ROP family. We find that plants with reduced expression of ROP genes, in addition to failing to initiate tip growth, have perturbed cell wall staining, reduced cell adhesion and have increased actin-filament dynamics. Although plants subjected to RNAi against the ROP family also have reduced microtubule dynamics, this reduction is not specific to loss of ROP genes, as it occurs when actin function is compromised chemically or genetically. Our data suggest that ROP proteins polarize the actin cytoskeleton by suppressing actin-filament dynamics, leading to an increase in actin filaments at the site of polarized secretion.
Collapse
Affiliation(s)
- Graham M Burkart
- Department of Biology, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA Plant Biology Graduate Program, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA
| | - Magdalena Bezanilla
- Department of Biology, University of Massachusetts-Amherst, 611 N. Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Soler M, Camargo ELO, Carocha V, Cassan-Wang H, San Clemente H, Savelli B, Hefer CA, Paiva JAP, Myburg AA, Grima-Pettenati J. The Eucalyptus grandis R2R3-MYB transcription factor family: evidence for woody growth-related evolution and function. THE NEW PHYTOLOGIST 2015; 206:1364-77. [PMID: 25250741 DOI: 10.1111/nph.13039] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/05/2014] [Indexed: 05/19/2023]
Abstract
The R2R3-MYB family, one of the largest transcription factor families in higher plants, controls a wide variety of plant-specific processes including, notably, phenylpropanoid metabolism and secondary cell wall formation. We performed a genome-wide analysis of this superfamily in Eucalyptus, one of the most planted hardwood trees world-wide. A total of 141 predicted R2R3-MYB sequences identified in the Eucalyptus grandis genome sequence were subjected to comparative phylogenetic analyses with Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. We analysed features such as gene structure, conserved motifs and genome location. Transcript abundance patterns were assessed by RNAseq and validated by high-throughput quantitative PCR. We found some R2R3-MYB subgroups with expanded membership in E. grandis, V. vinifera and P. trichocarpa, and others preferentially found in woody species, suggesting diversification of specific functions in woody plants. By contrast, subgroups containing key genes regulating lignin biosynthesis and secondary cell wall formation are more conserved across all of the species analysed. In Eucalyptus, R2R3-MYB tandem gene duplications seem to disproportionately affect woody-preferential and woody-expanded subgroups. Interestingly, some of the genes belonging to woody-preferential subgroups show higher expression in the cambial region, suggesting a putative role in the regulation of secondary growth.
Collapse
Affiliation(s)
- Marçal Soler
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Eduardo Leal Oliveira Camargo
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Victor Carocha
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
- Instituto de Tecnologia Química e Biológica (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
| | - Hua Cassan-Wang
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Hélène San Clemente
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Bruno Savelli
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| | - Charles A Hefer
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jorge A Pinto Paiva
- Instituto de Biologia Experimental e Tecnológica (iBET) Av. da República, Quinta do Marquês, 2781-901, Oeiras, Portugal
- Instituto de Investigaçao Científica e Tropical (IICT/MNE) Palacio Burnay - Rua da Junqueira, 30, 1349-007, Lisboa, Portugal
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Jacqueline Grima-Pettenati
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III/CNRS, BP 42617 Auzeville, 31326, Castanet Tolosan, France
| |
Collapse
|
10
|
Lepikson-Neto J, Nascimento LC, Salazar MM, Camargo ELO, Cairo JPF, Teixeira PJ, Marques WL, Squina FM, Mieczkowski P, Deckmann AC, Pereira GAG. Flavonoid supplementation affects the expression of genes involved in cell wall formation and lignification metabolism and increases sugar content and saccharification in the fast-growing eucalyptus hybrid E. urophylla x E. grandis. BMC PLANT BIOLOGY 2014; 14:301. [PMID: 25407319 PMCID: PMC4248463 DOI: 10.1186/s12870-014-0301-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/22/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND Eucalyptus species are the most widely planted hardwood species in the world and are renowned for their rapid growth and adaptability. In Brazil, one of the most widely grown Eucalyptus cultivars is the fast-growing Eucalyptus urophylla x Eucalyptus grandis hybrid. In a previous study, we described a chemical characterization of these hybrids when subjected to flavonoid supplementation on 2 distinct timetables, and our results revealed marked differences between the wood composition of the treated and untreated trees. RESULTS In this work, we report the transcriptional responses occurring in these trees that may be related to the observed chemical differences. Gene expression was analysed through mRNA-sequencing, and notably, compared to control trees, the treated trees display differential down-regulation of cell wall formation pathways such as phenylpropanoid metabolism as well as differential expression of genes involved in sucrose, starch and minor CHO metabolism and genes that play a role in several stress and environmental responses. We also performed enzymatic hydrolysis of wood samples from the different treatments, and the results indicated higher sugar contents and glucose yields in the flavonoid-treated plants. CONCLUSIONS Our results further illustrate the potential use of flavonoids as a nutritional complement for modifying Eucalyptus wood, since, supplementation with flavonoids alters its chemical composition, gene expression and increases saccharification probably as part of a stress response.
Collapse
Affiliation(s)
- Jorge Lepikson-Neto
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Leandro C Nascimento
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Marcela M Salazar
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Eduardo LO Camargo
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - João PF Cairo
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, Campinas, São Paulo Brazil
| | - Paulo J Teixeira
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Wesley L Marques
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Fabio M Squina
- />Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, Campinas, São Paulo Brazil
| | - Piotr Mieczkowski
- />Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC USA
| | - Ana C Deckmann
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| | - Gonçalo AG Pereira
- />Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo Brazil
| |
Collapse
|
11
|
Oda Y, Fukuda H. Emerging roles of small GTPases in secondary cell wall development. FRONTIERS IN PLANT SCIENCE 2014; 5:428. [PMID: 25206358 PMCID: PMC4143617 DOI: 10.3389/fpls.2014.00428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/12/2014] [Indexed: 05/08/2023]
Abstract
Regulation of plant cell wall deposition and patterning is essential for the normal growth and development of plants. Small GTPases play pivotal roles in the modulation of primary cell wall formation by controlling cytoskeletal organization and membrane trafficking. However, the functions of small GTPases in secondary cell wall development are poorly understood. Recent studies on xylem cells revealed that the Rho of plants (ROP) group of small GTPases critically participates in the spatial patterning of secondary cell walls. In differentiating xylem cells, a specific GTPase-activating protein (GAP)/guanine nucleotide exchange factor (GEF) pair facilitates local activation of ROP11 to establish de novo plasma membrane domains. The activated ROP11 then recruits a microtubule-associated protein, MIDD1, to mediate the mutual inhibition between cortical microtubules and active ROP. Furthermore, recent works suggest that certain small GTPases, including ROP and Rab GTPases, regulate membrane trafficking to establish secondary cell wall deposition and patterning. Accordingly, this mini-review assesses and summarizes the current literature regarding the emerging functions of small GTPases in the development of secondary cell walls.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- The Graduate University For Advanced StudiesMishima, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
- *Correspondence: Yoshihisa Oda, Center for Frontier Research, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan e-mail:
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
| |
Collapse
|
12
|
Singh MK, Ren F, Giesemann T, Dal Bosco C, Pasternak TP, Blein T, Ruperti B, Schmidt G, Aktories K, Molendijk AJ, Palme K. Modification of plant Rac/Rop GTPase signalling using bacterial toxin transgenes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:314-24. [PMID: 23020817 DOI: 10.1111/tpj.12040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/20/2012] [Accepted: 09/27/2012] [Indexed: 05/23/2023]
Abstract
Bacterial protein toxins which modify Rho GTPase are useful for the analysis of Rho signalling in animal cells, but these toxins cannot be taken up by plant cells. We demonstrate in vitro deamidation of Arabidopsis Rop4 by Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) and glucosylation by Clostridium difficile toxin B. Expression of the catalytic domain of CNF1 caused modification and activation of co-expressed Arabidopsis Rop4 GTPase in tobacco leaves, resulting in hypersensitive-like cell death. By contrast, the catalytic domain of toxin B modified and inactivated co-expressed constitutively active Rop4, blocking the hypersensitive response caused by over-expression of active Rops. In transgenic Arabidopsis, both CNF1 and toxin B inhibited Rop-dependent polar morphogenesis of leaf epidermal cells. Toxin B expression also inhibited Rop-dependent morphogenesis of root hairs and trichome branching, and resulted in root meristem enlargement and dwarf growth. Our results show that CNF1 and toxin B transgenes are effective tools in Rop GTPase signalling studies.
Collapse
Affiliation(s)
- Manoj K Singh
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Fugang Ren
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Torsten Giesemann
- Institute for Clinical and Experimental Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Cristina Dal Bosco
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Taras P Pasternak
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Thomas Blein
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Benedetto Ruperti
- Department of Environmental Agronomy and Crop Science, University of Padova, Via Romea, 16, Agripolis, 35020, Legnaro, Padova, Italy
| | - Gudula Schmidt
- Institute for Clinical and Experimental Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Klaus Aktories
- Institute for Clinical and Experimental Pharmacology and Toxicology, Albert-Ludwigs-University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Arthur J Molendijk
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS), Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Klaus Palme
- Faculty of Biology, Institute for Biology II/Botany, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Freiburg Initiative for Systems Biology (FRISYS), Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
- Centre of Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
- Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
| |
Collapse
|
13
|
Chavigneau H, Goué N, Delaunay S, Courtial A, Jouanin L, Reymond M, Méchin V, Barrière Y. QTL for floral stem lignin content and degradability in three recombinant inbred line (RIL) progenies of <i>Arabidopsis thaliana</i> and search for candidate genes involved in cell wall biosynthesis and degradability. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojgen.2012.21002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Kwon SI, Cho HJ, Lee JS, Jin H, Shin SJ, Kwon M, Noh EW, Park OK. Overexpression of constitutively active Arabidopsis RabG3b promotes xylem development in transgenic poplars. PLANT, CELL & ENVIRONMENT 2011; 34:2212-24. [PMID: 21895694 DOI: 10.1111/j.1365-3040.2011.02416.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An Arabidopsis small GTPase, RabG3b, was previously characterized as a component of autophagy and as a positive regulator for xylem development in Arabidopsis. In this work, we assessed whether RabG3b modulates xylem-associated traits in poplar in a similar way as in Arabidopsis. We generated transgenic poplars (Populus alba × Populus tremula var. glandulosa) overexpressing a constitutively active form of RabG3b (RabG3bCA) and performed a range of morphological, histochemical and molecular analyses to examine xylogenesis. RabG3bCA transgenic poplars showed increased stem growth due to enhanced xylem development. Autophagic structures were observed in differentiating xyelm cells undergoing programmed cell death (PCD) in wild-type poplar, and were more abundant in RabG3bCA transgenic poplar plants and cultured cells. Xylogenic activation was also accompanied by the expression of secondary wall-, PCD- and autophagy-related genes. Collectively, our results suggest that Arabidopsis RabG3b functions to regulate xylem growth through the activation of autophagy during wood formation in Populus, as does the same in Arabidopsis.
Collapse
Affiliation(s)
- Soon Il Kwon
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Gion JM, Carouché A, Deweer S, Bedon F, Pichavant F, Charpentier JP, Baillères H, Rozenberg P, Carocha V, Ognouabi N, Verhaegen D, Grima-Pettenati J, Vigneron P, Plomion C. Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus. BMC Genomics 2011; 12:301. [PMID: 21651758 PMCID: PMC3130712 DOI: 10.1186/1471-2164-12-301] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 06/08/2011] [Indexed: 11/16/2022] Open
Abstract
Background Eucalyptus is an important genus in industrial plantations throughout the world and is grown for use as timber, pulp, paper and charcoal. Several breeding programmes have been launched worldwide to concomitantly improve growth performance and wood properties (WPs). In this study, an interspecific cross between Eucalyptus urophylla and E. grandis was used to identify major genomic regions (Quantitative Trait Loci, QTL) controlling the variability of WPs. Results Linkage maps were generated for both parent species. A total of 117 QTLs were detected for a series of wood and end-use related traits, including chemical, technological, physical, mechanical and anatomical properties. The QTLs were mainly clustered into five linkage groups. In terms of distribution of QTL effects, our result agrees with the typical L-shape reported in most QTL studies, i.e. most WP QTLs had limited effects and only a few (13) had major effects (phenotypic variance explained > 15%). The co-locations of QTLs for different WPs as well as QTLs and candidate genes are discussed in terms of phenotypic correlations between traits, and of the function of the candidate genes. The major wood property QTL harbours a gene encoding a Cinnamoyl CoA reductase (CCR), a structural enzyme of the monolignol-specific biosynthesis pathway. Conclusions Given the number of traits analysed, this study provides a comprehensive understanding of the genetic architecture of wood properties in this Eucalyptus full-sib pedigree. At the dawn of Eucalyptus genome sequence, it will provide a framework to identify the nature of genes underlying these important quantitative traits.
Collapse
Affiliation(s)
- Jean-Marc Gion
- CIRAD, Department of Biological System, Research Unit "Genetic improvement and adaptation of mediterranean and tropical plants" TA A-108/C, Campus International de Baillarguet, 34398 Montpellier Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhong R, Lee C, Ye ZH. Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. MOLECULAR PLANT 2010; 3:1087-103. [PMID: 20935069 DOI: 10.1093/mp/ssq062] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report the genome-wide analysis of direct target genes of SND1 and VND7, two Arabidopsis thaliana NAC domain transcription factors that are master regulators of secondary wall biosynthesis in fibers and vessels, respectively. Systematic mapping of the SND1 binding sequence using electrophoretic mobility shift assay and transactivation analysis demonstrated that SND1 together with other secondary wall NACs (SWNs), including VND6, VND7, NST1, and NST2, bind to an imperfect palindromic 19-bp consensus sequence designated as secondary wall NAC binding element (SNBE), (T/A)NN(C/T) (T/C/G)TNNNNNNNA(A/C)GN(A/C/T) (A/T), in the promoters of their direct targets. Genome-wide analysis of direct targets of SND1 and VND7 revealed that they directly activate the expression of not only downstream transcription factors, but also a number of non-transcription factor genes involved in secondary wall biosynthesis, cell wall modification, and programmed cell death, the promoters of which all contain multiple SNBE sites. SND1 and VND7 directly regulate the expression of a set of common targets but each of them also preferentially induces a distinct set of direct targets, which is likely attributed to their differential activation strength toward SNBE sites. Complementation study showed that the SWNs were able to rescue the secondary wall defect in the snd1 nst1 mutant, indicating that they are functionally interchangeable. Together, our results provide important insight into the complex transcriptional program and the evolutionary mechanism underlying secondary wall biosynthesis, cell wall modification, and programmed cell death in secondary wall-containing cell types.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|