1
|
Jiao J, Zhong S, Zhao L, Yang X, Tang G, Li P. Genome-wide characterization of effector proteins in Fusarium zanthoxyli and their effects on plant's innate immunity responses. BMC PLANT BIOLOGY 2025; 25:298. [PMID: 40050740 PMCID: PMC11887173 DOI: 10.1186/s12870-025-06327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Stem canker of Zanthoxylum bungeanum is a destructive forest disease, caused by Fusarium zanthoxyli, poses a serious threat to the cultivation of Z. bungeanum. The lack of research on effector proteins in F. zanthoxyli has severely limited our understanding of the molecular interactions between F. zanthoxyli and Z. bungeanum, resulting in insufficient effective control technologies for this disease. RESULTS In this study, a total of 137 effector proteins (FzEPs) were predicted and characterized based on whole genome of F. zanthoxyli, with an average length of 215 amino acids, 8 cysteine residues, and a molecular weight of 23.06 kD. Besides, the phylogenetic evolution, conserved motifs, domains and annotation information of all the 137 effectors were comprehensively demonstrated. Moreover, transcriptomic analysis indicated that 24 effector genes were significantly upregulated in the early infection stages of F. zanthoxyli, which was confirmed by RT-qPCR. Following, the 24 effector DEGs were cloned and transiently over-expressed in the leaves of tobacco to evaluate their effects on the plant's innate immunity. It was found that effector proteins FzEP94 and FzEP123 induced pronounced programmed cell death (PCD), callose deposition, and reactive oxygen species (ROS) burst in tobacco leaves, whereas FzEP83 and FzEP93 significantly suppressed PCD induced by INF1, accompanied by a less pronounced callose accumulation and ROS burst. CONCLUSIONS In this study, we systematically characterized and functionally analyzed the effector proteins of F. zanthoxyli, successfully identifying four effector proteins that can impact the innate immune response of plants. These findings enhance our understanding of effector protein functions in F. zanthoxyli and offer valuable insights for future research on molecular interactions between F. zanthoxyli and Z. bungeanum.
Collapse
Affiliation(s)
- Jiahui Jiao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Siyu Zhong
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Le Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanghui Tang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Peiqin Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
2
|
Keller V, Calchera A, Otte J, Schmitt I. Genomic features of lichen-associated black fungi. IUBMB Life 2025; 77:e2934. [PMID: 39710945 DOI: 10.1002/iub.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024]
Abstract
Lichens are mutualistic associations consisting of a primary fungal host, and one to few primary phototrophic symbiont(s), usually a green alga and/or a cyanobacterium. They form complex thallus structures, which provide unique and stable habitats for many other microorganisms. Frequently isolated from lichens are the so-called black fungi, or black yeasts, which are mainly characterized by melanized cell walls and extremophilic lifestyles. It is presently unclear in which ways these fungi interact with other members of the lichen symbiosis. Genomic resources of lichen-associated black fungi are needed to better understand the physiological potential of these fungi and shed light on the complexity of the lichen consortium. Here, we present high-quality genomes of 14 black fungal lineages, isolated from lichens of the rock-dwelling genus Umbilicaria. Nine of the lineages belong to the Eurotiomycetes (Chaetothyriales), four to the Dothideomycetes, and one to the Arthoniomycetes, representing the first genome of a black fungus in this class. The PacBio-based assemblies are highly contiguous (5-42 contigs per genome, mean coverage of 79-502, N50 of 1.0-7.3 mega-base-pair (Mb), Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness generally ≥95.4%). Most contigs are flanked by a telomere sequence, suggesting we achieved near chromosome-level assemblies. Genome sizes range between 26 and 44 Mb. Transcriptome-based annotations yielded ~11,000-18,000 genes per genome. We analyzed genome content with respect to repetitive elements, biosynthetic genes, and effector genes. Each genome contained a polyketide synthase gene related to the dihydroxynaphthalene-melanin pathway. This research provides insights into genome content and metabolic potential of these relatively unknown, but frequently encountered lichen associates.
Collapse
Affiliation(s)
- Victoria Keller
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
3
|
Gao Y, Zhang S, Sheng S, Li H. A Colletotrichum fructicola dual specificity phosphatase CfMsg5 is regulated by the CfAp1 transcription factor during oxidative stress and promotes virulence on Camellia oleifera. Virulence 2024; 15:2413851. [PMID: 39423133 PMCID: PMC11492636 DOI: 10.1080/21505594.2024.2413851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Anthracnose, caused by Colletotrichum species, induces significant economic damages to crop plants annually, especially for Camellia oleifera. During infection, the counter-defence mechanisms of plant pathogens against ROS-mediated resistance, however, remain poorly understood. By employing Weighted Gene Co-expression Network Analysis (WGCNA), we identified ACTIVATOR PROTEIN-1 (AP-1), a bZIP transcription factor, as significant to infection. And deletion of CfAP1 inhibited aerial hyphae formation and growth under oxidative stress. Furthermore, RNA-seq analysis post H2O2 treatment revealed 33 significantly down-regulated genes in the AP-1 deficient strain, including A12032, a dual specificity phosphatase (DSP) homologous to MSG5 from Saccharomyces cerevisiae. This ΔCfmsg5 strain showed enhanced oxidative tolerance, reduced ROS scavenging, and negative regulation of the CWI MAPK cascade under oxygen stress, suggesting its involvement in oxidative signal transduction. Importantly, we provide evidence that CfMsg5 regulates growth, endoplasmic reticulum stress, and several unfolded protein response genes upregulated in ΔCfmsg5. Collectively, this study identified core components during C. fructicola infection and highlights a potential regulatory module involving CfAp1 and CfMsg5 in response to host ROS bursts. It provides new insights into fungal infection mechanisms and potential targets like CfAP1 and CfMSG5 for managing anthracnose diseases.
Collapse
Affiliation(s)
- Yalan Gao
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Shengpei Zhang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
| | - Song Sheng
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Yuelushan Laboratory Non-wood Forests Variety Innovation Center, Changsha, China
| | - He Li
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, China
- Yuelushan Laboratory Non-wood Forests Variety Innovation Center, Changsha, China
| |
Collapse
|
4
|
Zhang S, Zhang B, Wang Z, Zhong S, Zheng Y, Zhang Q, Liu X. Type I arginine methyltransferases play crucial roles in development and pathogenesis of Phytophthora capsici. Int J Biol Macromol 2024; 278:134671. [PMID: 39151856 DOI: 10.1016/j.ijbiomac.2024.134671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Phytophthora capsici, a pathogenic oomycete, poses a serious threat to global vegetable production. This study investigated the role of protein arginine methylation, a notable post-translational modification, in the epigenetic regulation of P. capsici. We identified and characterized five protein arginine methyltransferases (PRMTs) in P. capsici, with a focus on four putative type I PRMTs exhibiting similar functional domain. Deletion of PcPRMT3, a homolog of PRMT3, significantly affected mycelial growth, asexual spore development, pathogenicity, and stress responses in P. capsici. Transcriptome analyses indicated that absence of PcPRMT3 disrupted multiple biological pathways. The PcPRMT3 deletion mutant displayed heightened susceptibility to oxidative stress, correlated with the downregulation of genes involved in peroxidase and peroxisome activities. Additionally, PcPRMT3 acted as a negative regulator, modulating the transcription levels of specific elicitins, which in turn affects the defense response of host plant against P. capsici. Furthermore, PcPRMT3 was found to affect global arginine methylation levels in P. capsici, implying potential alterations in the functions of its substrate proteins.
Collapse
Affiliation(s)
- Sicong Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Borui Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiwen Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Shan Zhong
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yang Zheng
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qinghua Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Zhao X, Liu Y, Huang Z, Li G, Zhang Z, He X, Du H, Wang M, Li Z. Early diagnosis of Cladosporium fulvum in greenhouse tomato plants based on visible/near-infrared (VIS/NIR) and near-infrared (NIR) data fusion. Sci Rep 2024; 14:20176. [PMID: 39215204 PMCID: PMC11364674 DOI: 10.1038/s41598-024-71220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Plant diseases can inflict varying degrees of damage on agricultural production. Therefore, identifying a rapid, non-destructive early diagnostic method is crucial for safeguarding plants. Cladosporium fulvum (C. fulvum) is one of the major diseases in tomato growth. This work presents a method of data fusion using two hyperspectral imaging systems of visible/near-infrared (VIS/NIR) and near-infrared (NIR) spectroscopy for the early diagnosis of C. fulvum in greenhouse tomatoes. First, hyperspectral images of samples at health and different times of infection were collected. The average spectral data of the image regions of interest were extracted and preprocessed for subsequent spectral datasets. Then different classification models were established for VIS/NIR and NIR data, optimized through various variable selection and data fusion methods. The principal component analysis-radial basis function neural network (PCA-RBF) model established using low-level data fusion achieved optimal results, achieving accuracies of 100% and 99.3% for calibration and prediction, respectively. Moreover, both the macro-averaged F1 (Macro-F1) values reached 1, and the geometric mean (G-mean) values reached 1 and 1, respectively. The results indicated that it was feasible to establish a PCA-RBF model by using the hyperspectral technique with low-level data fusion for the early detection of C. fulvum in greenhouse tomatoes.
Collapse
Affiliation(s)
- Xuerong Zhao
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Yuanyuan Liu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zongbao Huang
- College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Gangao Li
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zilin Zhang
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Xiuhan He
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Huiling Du
- Department of Basic Sciences, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Meiqin Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Zhiwei Li
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong, 030801, China.
- College of Information Science and Engineering, Shanxi Agricultural University, Jinzhong, 030801, China.
| |
Collapse
|
6
|
Upadhaya A, Upadhaya SGC, Brueggeman R. Identification of Candidate Avirulence and Virulence Genes Corresponding to Stem Rust ( Puccinia graminis f. sp. tritici) Resistance Genes in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:635-649. [PMID: 38780476 DOI: 10.1094/mpmi-05-24-0056-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Stem rust, caused by the biotrophic fungal pathogen Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat. However, the majority of Pgt virulence/avirulence loci and underlying genes remain uncharacterized due to the constraints of developing bi-parental populations with this obligate biotroph. Genome-wide association studies (GWAS) using a sexual Pgt population mainly collected from the Pacific Northwestern United States were used to identify candidate virulence/avirulence effector genes corresponding to the six wheat Sr genes: Sr5, Sr21, Sr8a, Sr17, Sr9a, and Sr9d. The Pgt isolates were genotyped using whole-genome shotgun sequencing that identified approximately 1.2 million single nucleotide polymorphisms (SNPs) and were phenotyped at the seedling stage on six Sr gene differential lines. Association mapping analyses identified 17 Pgt loci associated with virulence or avirulence phenotypes on six Pgt resistance genes. Among these loci, 16 interacted with a specific Sr gene, indicating Sr-gene specific interactions. However, one avirulence locus interacted with two separate Sr genes (Sr9a and Sr17), suggesting two distinct Sr genes identifying a single avirulence effector. A total of 24 unique effector gene candidates were identified, and haplotype analysis suggests that within this population, AvrSr5, AvrSr21, AvrSr8a, AvrSr17, and AvrSr9a are dominant avirulence genes, while avrSr9d is a dominant virulence gene. The putative effector genes will be fundamental for future effector gene cloning efforts, allowing for further understanding of rust effector biology and the mechanisms underlying virulence evolution in Pgt with respect to race-specific R-genes. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Arjun Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, U.S.A
| | - Sudha G C Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, U.S.A
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, U.S.A
| |
Collapse
|
7
|
Gutiérrez-Sánchez A, Plasencia J, Monribot-Villanueva JL, Rodríguez-Haas B, Ruíz-May E, Guerrero-Analco JA, Sánchez-Rangel D. Virulence factors of the genus Fusarium with targets in plants. Microbiol Res 2023; 277:127506. [PMID: 37783182 DOI: 10.1016/j.micres.2023.127506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.
Collapse
Affiliation(s)
- Angélica Gutiérrez-Sánchez
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan L Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - Eliel Ruíz-May
- Laboratorio de Proteómica, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico.
| | - Diana Sánchez-Rangel
- Laboratorios de Fitopatología y Biología Molecular, Red de Estudios Moleculares Avanzados, Clúster BioMimic®, Instituto de Ecología, A. C. Xalapa, Veracruz 91073, Mexico; Investigador por México - CONAHCyT en la Red de Estudios Moleculares Avanzados del Instituto de Ecología, A. C. (INECOL), Carretera antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico.
| |
Collapse
|
8
|
Carreón-Anguiano KG, Gómez-Tah R, Pech-Balan E, Ek-Hernández GE, De los Santos-Briones C, Islas-Flores I, Canto-Canché B. Pseudocercospora fijiensis Conidial Germination Is Dominated by Pathogenicity Factors and Effectors. J Fungi (Basel) 2023; 9:970. [PMID: 37888226 PMCID: PMC10607838 DOI: 10.3390/jof9100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Conidia play a vital role in the survival and rapid spread of fungi. Many biological processes of conidia, such as adhesion, signal transduction, the regulation of oxidative stress, and autophagy, have been well studied. In contrast, the contribution of pathogenicity factors during the development of conidia in fungal phytopathogens has been poorly investigated. To date, few reports have centered on the pathogenicity functions of fungal phytopathogen conidia. Pseudocercospora fijiensis is a hemibiotrophic fungus and the causal agent of the black Sigatoka disease in bananas and plantains. Here, a conidial transcriptome of P. fijiensis was characterized computationally. Carbohydrates, amino acids, and lipid metabolisms presented the highest number of annotations in Gene Ontology. Common conidial functions were found, but interestingly, pathogenicity factors and effectors were also identified. Upon analysis of the resulting proteins against the Pathogen-Host Interaction (PHI) database, 754 hits were identified. WideEffHunter and EffHunter effector predictors identified 618 effectors, 265 of them were shared with the PHI database. A total of 1107 conidial functions devoted to pathogenesis were found after our analysis. Regarding the conidial effectorome, it was found to comprise 40 canonical and 578 non-canonical effectors. Effectorome characterization revealed that RXLR, LysM, and Y/F/WxC are the largest effector families in the P. fijiensis conidial effectorome. Gene Ontology classification suggests that they are involved in many biological processes and metabolisms, expanding our current knowledge of fungal effectors.
Collapse
Affiliation(s)
- Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Efren Pech-Balan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Gemaly Elisama Ek-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - César De los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico;
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| |
Collapse
|
9
|
Wang J, Chen T, Tang Y, Zhang S, Xu M, Liu M, Zhang J, Loake GJ, Jiang J. The Biological Roles of Puccinia striiformis f. sp. tritici Effectors during Infection of Wheat. Biomolecules 2023; 13:889. [PMID: 37371469 PMCID: PMC10296696 DOI: 10.3390/biom13060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Puccinia striiformis f. sp. tritici (Pst) is the causative agent of wheat stripe rust, which can lead to a significant loss in annual wheat yields. Therefore, there is an urgent need for a deeper comprehension of the basic mechanisms underlying Pst infection. Effectors are known as the agents that plant pathogens deliver into host tissues to promote infection, typically by interfering with plant physiology and biochemistry. Insights into effector activity can significantly aid the development of future strategies to generate disease-resistant crops. However, the functional analysis of Pst effectors is still in its infancy, which hinders our understanding of the molecular mechanisms of the interaction between Pst and wheat. In this review, we summarize the potential roles of validated and proposed Pst effectors during wheat infection, including proteinaceous effectors, non-coding RNAs (sRNA effectors), and secondary metabolites (SMs effectors). Further, we suggest specific countermeasures against Pst pathogenesis and future research directions, which may promote our understanding of Pst effector functions during wheat immunity attempts.
Collapse
Affiliation(s)
- Junjuan Wang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Tongtong Chen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yawen Tang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Sihan Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengyao Xu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Meiyan Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jian Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Gary J. Loake
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Jihong Jiang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
10
|
Hassett K, Muria-Gonzalez MJ, Turner A, McLean MS, Wallwork H, Martin A, Ellwood SR. Widespread genetic heterogeneity and genotypic grouping associated with fungicide resistance among barley spot form net blotch isolates in Australia. G3 (BETHESDA, MD.) 2023; 13:jkad076. [PMID: 37002913 PMCID: PMC10151411 DOI: 10.1093/g3journal/jkad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 04/04/2023]
Abstract
Spot form net blotch, caused by Pyrenophora teres f. maculata, is a major foliar disease of barley worldwide. Knowledge of the pathogen's genetic diversity and population structure is critical for a better understanding of inherent evolutionary capacity and for the development of sustainable disease management strategies. Genome-wide, single nucleotide polymorphism data of 254 Australian isolates revealed genotypic diversity and an absence of population structure, either between states, or between fields and cultivars in different agro-ecological zones. This indicates there is little geographical isolation or cultivar directional selection and that the pathogen is highly mobile across the continent. However, two cryptic genotypic groups were found only in Western Australia, predominantly associated with genes involved in fungicide resistance. The findings in this study are discussed in the context of current cultivar resistance and the pathogen's adaptive potential.
Collapse
Affiliation(s)
- Kealan Hassett
- Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | | | - Aleesha Turner
- Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Mark S McLean
- Field Crops Pathology, Agriculture Victoria, Horsham, Victoria 3401, Australia
| | - Hugh Wallwork
- Cereal Pathology Laboratory, South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
| | - Simon R Ellwood
- Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
11
|
Sterol-Sensing Domain (SSD)-Containing Proteins in Sterol Auxotrophic Phytophthora capsici Mediate Sterol Signaling and Play a Role in Asexual Reproduction and Pathogenicity. Microbiol Spectr 2023; 11:e0379722. [PMID: 36629430 PMCID: PMC9927452 DOI: 10.1128/spectrum.03797-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phytophthora species are devastating filamentous plant pathogens that belong to oomycetes, a group of microorganisms similar to fungi in morphology but phylogenetically distinct. They are sterol auxotrophic, but nevertheless exploit exogenous sterols for growth and development. However, as for now the mechanisms underlying sterol utilization in Phytophthora are unknown. In this study, we identified four genes in Phytophthora capsici that encode proteins containing a sterol-sensing domain (SSD), a protein domain of around 180 amino acids comprising five transmembrane segments and known to feature in sterol signaling in animals. Using a modified CRISPR/Cas9 system, we successfully knocked out the four genes named PcSCP1 to PcSCP4 (for P. capsici SSD-containing protein 1 to 4), either individually or sequentially, thereby creating single, double, triple, and quadruple knockout transformants. Results showed that knocking out just one of the four PcSCPs was not sufficient to block sterol signaling. However, the quadruple "all-four" PcSCPs knockout transformants no longer responded to sterol treatment in asexual reproduction, in contrast to wild-type P. capsici that produced zoospores under sterol treatment. Apparently, the four PcSCPs play a key role in sterol signaling in P. capsici with functional redundancy. Transcriptome analysis indicated that the expression of a subset of genes is regulated by exogenous sterols via PcSCPs. Further investigations showed that sterols could stimulate zoospore differentiation via PcSCPs by controlling actin-mediated membrane trafficking. Moreover, the pathogenicity of the "all-four" PcSCPs knockout transformants was significantly decreased and many pathogenicity related genes were downregulated, implying that PcSCPs also contribute to plant-pathogen interaction. IMPORTANCE Phytophthora is an important genus of oomycetes that comprises many destructive plant pathogens. Due to the incompleteness of the sterol synthesis pathway, Phytophthora spp. do not possess the ability to produce sterols. Therefore, these sterol auxotrophic oomycetes need to recruit sterols from the environment such as host plants to support growth and development, which seems crucial during pathogen-plant interactions. However, the mechanisms underlying sterol utilization by Phytophthora spp. remain largely unknown. Here, we show that a family of sterol-sensing domain-containing proteins (SCPs) consisting of four members in P. capsici plays a key role in sterol signaling with functional redundancy. Moreover, these SCPs play a role in different biological processes, including asexual reproduction and pathogenicity. Our study overall revealed the multiple functions of PcSCPs and addressed the question of how exogenous sterols regulate the development of heterothallic Phytophthora spp. via SSD-containing proteins.
Collapse
|
12
|
Lin L, Tijjani I, Guo H, An Q, Cao J, Chen X, Liu W, Wang Z, Norvienyeku J. Cytoplasmic dynein1 intermediate-chain2 regulates cellular trafficking and physiopathological development in Magnaporthe oryzae. iScience 2023; 26:106050. [PMID: 36866040 PMCID: PMC9971887 DOI: 10.1016/j.isci.2023.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
The cytoplasmic dynein 1, a minus end-directed motor protein, is an essential microtubule-based molecular motor that mediates the movement of molecules to intracellular destinations in eukaryotes. However, the role of dynein in the pathogenesis of Magnaporthe oryzae is unknown. Here, we identified cytoplasmic dynein 1 intermediate-chain 2 genes in M. oryzae and functionally characterized it using genetic manipulations, and biochemical approaches. We observed that targeted the deletion of MoDYNC1I2 caused significant vegetative growth defects, abolished conidiation, and rendered the ΔModync1I2 strains non-pathogenic. Microscopic examinations revealed significant defects in microtubule network organization, nuclear positioning, and endocytosis ΔModync1I2 strains. MoDync1I2 is localized exclusively to microtubules during fungal developmental stages but co-localizes with the histone OsHis1 in plant nuclei upon infection. The exogenous expression of a histone gene, MoHis1, restored the homeostatic phenotypes of ΔModync1I2 strains but not pathogenicity. These findings could facilitate the development of dynein-directed remedies for managing the rice blast disease.
Collapse
Affiliation(s)
- Lily Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ibrahim Tijjani
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hengyuan Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Qiuli An
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaying Cao
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zonghua Wang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,Institute of Oceanography, Minjiang University, Fuzhou 350108, China,Corresponding author
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China,Corresponding author
| |
Collapse
|
13
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Microbial Effectors: Key Determinants in Plant Health and Disease. Microorganisms 2022; 10:1980. [PMID: 36296254 PMCID: PMC9610748 DOI: 10.3390/microorganisms10101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Effectors are small, secreted molecules that alter host cell structure and function, thereby facilitating infection or triggering a defense response. Effectoromics studies have focused on effectors in plant-pathogen interactions, where their contributions to virulence are determined in the plant host, i.e., whether the effector induces resistance or susceptibility to plant disease. Effector molecules from plant pathogenic microorganisms such as fungi, oomycetes and bacteria are major disease determinants. Interestingly, the effectors of non-pathogenic plant organisms such as endophytes display similar functions but have different outcomes for plant health. Endophyte effectors commonly aid in the establishment of mutualistic interactions with the plant and contribute to plant health through the induction of systemic resistance against pathogens, while pathogenic effectors mainly debilitate the plant's immune response, resulting in the establishment of disease. Effectors of plant pathogens as well as plant endophytes are tools to be considered in effectoromics for the development of novel strategies for disease management. This review aims to present effectors in their roles as promotors of health or disease for the plant host.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
14
|
Zhan Z, Liu H, Yang Y, Liu S, Li X, Piao Z. Identification and characterization of putative effectors from Plasmodiophora brassicae that suppress or induce cell death in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:881992. [PMID: 36204052 PMCID: PMC9530463 DOI: 10.3389/fpls.2022.881992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a major disease of crucifers. Effector proteins are important virulence factors in host recognition of pathogens and the interactions between pathogens and hosts. Secretory proteins, as effector candidates, have been studied in the interaction between Plasmodiophora brassicae and its hosts. In this study, 518 secretary proteins were screened from the Plasmodiophora brassicae genome. A total of 63 candidate effectors that induce or suppress cell death were identified using agroinfiltration-mediated transient expression in Nicothiana benthamiana. The candidate effectors, Pb4_102097 and Pb4_108104 showed high expressing level in the stage of rest spore maturity, could induce cell death and were associated with H2O2 accumulation in N. benthamiana leaves. In addition, 55 candidate effectors that could suppress BAX (Bcl-2-associated X protein) induced cell death, and 21 out of which could suppress the immunity caused by bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 in Arabidopsis. Based on the expression pattern in different stages, 28 candidate effectors showed high expression levels during the primary and secondary infection stage. Five candidate effectors containing the RXLR motif functioned in the cytoplasm and cell membrane.
Collapse
|
15
|
Ustilaginoidea virens Nuclear Effector SCRE4 Suppresses Rice Immunity via Inhibiting Expression of a Positive Immune Regulator OsARF17. Int J Mol Sci 2022; 23:ijms231810527. [PMID: 36142440 PMCID: PMC9501289 DOI: 10.3390/ijms231810527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Rice false smut caused by the biotrophic fungal pathogen Ustilaginoidea virens has become one of the most important diseases in rice. The large effector repertory in U. virens plays a crucial role in virulence. However, current knowledge of molecular mechanisms how U. virens effectors target rice immune signaling to promote infection is very limited. In this study, we identified and characterized an essential virulence effector, SCRE4 (Secreted Cysteine-Rich Effector 4), in U. virens. SCRE4 was confirmed as a secreted nuclear effector through yeast secretion, translocation assays and protein subcellular localization, as well as up-regulation during infection. The SCRE4 gene deletion attenuated the virulence of U. virens to rice. Consistently, ectopic expression of SCRE4 in rice inhibited chitin-triggered immunity and enhanced susceptibility to false smut, substantiating that SCRE4 is an essential virulence factor. Furthermore, SCRE4 transcriptionally suppressed the expression of OsARF17, an auxin response factor in rice, which positively regulates rice immune responses and resistance against U. virens. Additionally, the immunosuppressive capacity of SCRE4 depended on its nuclear localization. Therefore, we uncovered a virulence strategy in U. virens that transcriptionally suppresses the expression of the immune positive modulator OsARF17 through nucleus-localized effector SCRE4 to facilitate infection.
Collapse
|
16
|
Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms 2022; 10:microorganisms10081498. [PMID: 35893556 PMCID: PMC9394342 DOI: 10.3390/microorganisms10081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrophobins are small amphipathic proteins conserved in filamentous fungi. In this review, the properties and functions of Aspergillus hydrophobins are comprehensively discussed on the basis of recent findings. Multiple Aspergillus hydrophobins have been identified and categorized in conventional class I and two non-conventional classes. Some Aspergillus hydrophobins can be purified in a water phase without organic solvents. Class I hydrophobins of Aspergilli self-assemble to form amphipathic membranes. At the air–liquid interface, RolA of Aspergillus oryzae self-assembles via four stages, and its self-assembled films consist of two layers, a rodlet membrane facing air and rod-like structures facing liquid. The self-assembly depends mainly on hydrophobin conformation and solution pH. Cys4–Cys5 and Cys7–Cys8 loops, disulfide bonds, and conserved Cys residues of RodA-like hydrophobins are necessary for self-assembly at the interface and for adsorption to solid surfaces. AfRodA helps Aspergillus fumigatus to evade recognition by the host immune system. RodA-like hydrophobins recruit cutinases to promote the hydrolysis of aliphatic polyesters. This mechanism appears to be conserved in Aspergillus and other filamentous fungi, and may be beneficial for their growth. Aspergilli produce various small secreted proteins (SSPs) including hydrophobins, hydrophobic surface–binding proteins, and effector proteins. Aspergilli may use a wide variety of SSPs to decompose solid polymers.
Collapse
|
17
|
Sedaghatjoo S, Mishra B, Forster MK, Becker Y, Keilwagen J, Killermann B, Thines M, Karlovsky P, Maier W. Comparative genomics reveals low levels of inter- and intraspecies diversity in the causal agents of dwarf and common bunt of wheat and hint at conspecificity of Tilletia caries and T. laevis. IMA Fungus 2022; 13:11. [PMID: 35672841 PMCID: PMC9172201 DOI: 10.1186/s43008-022-00098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractTilletia caries and T. laevis, which are the causal agents of common bunt, as well as T. controversa, which causes dwarf bunt of wheat, threaten especially organic wheat farming. The three closely related fungal species differ in their teliospore morphology and partially in their physiology and infection biology. The gene content as well as intraspecies variation in these species and the genetic basis of their separation is unknown. We sequenced the genome of four T. caries, five T. controversa, and two T. laevis and extended this dataset with five publicly available ones. The genomes of the three species displayed microsynteny with up to 94.3% pairwise aligned regions excluding repetitive regions. The majority of functionally characterized genes involved in pathogenicity, life cycle, and infection of corn smut, Ustilago maydis, were found to be absent or poorly conserved in the draft genomes and the biosynthetic pathway for trimethylamine in Tilletia spp. could be different from bacteria. Overall, 75% of the identified protein-coding genes comprising 84% of the total predicted carbohydrate utilizing enzymes, 72.5% putatively secreted proteins, and 47.4% of effector-like proteins were conserved and shared across all 16 isolates. We predicted nine highly identical secondary metabolite biosynthesis gene clusters comprising in total 62 genes in all species and none were species-specific. Less than 0.1% of the protein-coding genes were species-specific and their function remained mostly unknown. Tilletia controversa had the highest intraspecies genetic variation, followed by T. caries and the lowest in T. laevis. Although the genomes of the three species are very similar, employing 241 single copy genes T. controversa was phylogenetically distinct from T. caries and T. laevis, however these two could not be resolved as individual monophyletic groups. This was in line with the genome-wide number of single nucleotide polymorphisms and small insertions and deletions. Despite the conspicuously different teliospore ornamentation of T. caries and T. laevis, a high degree of genomic identity and scarcity of species-specific genes indicate that the two species could be conspecific.
Collapse
|
18
|
Hamelin RC, Bilodeau GJ, Heinzelmann R, Hrywkiw K, Capron A, Dort E, Dale AL, Giroux E, Kus S, Carleson NC, Grünwald NJ, Feau N. Genomic biosurveillance detects a sexual hybrid in the sudden oak death pathogen. Commun Biol 2022; 5:477. [PMID: 35589982 PMCID: PMC9120034 DOI: 10.1038/s42003-022-03394-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Invasive exotic pathogens pose a threat to trees and forest ecosystems worldwide, hampering the provision of essential ecosystem services such as carbon sequestration and water purification. Hybridization is a major evolutionary force that can drive the emergence of pathogens. Phytophthora ramorum, an emergent pathogen that causes the sudden oak and larch death, spreads as reproductively isolated divergent clonal lineages. We use a genomic biosurveillance approach by sequencing genomes of P. ramorum from survey and inspection samples and report the discovery of variants of P. ramorum that are the result of hybridization via sexual recombination between North American and European lineages. We show that these hybrids are viable, can infect a host and produce spores for long-term survival and propagation. Genome sequencing revealed genotypic combinations at 54,515 single nucleotide polymorphism loci not present in parental lineages. More than 6,000 of those genotypes are predicted to have a functional impact in genes associated with host infection, including effectors, carbohydrate-active enzymes and proteases. We also observed post-meiotic mitotic recombination that could generate additional genotypic and phenotypic variation and contribute to homoploid hybrid speciation. Our study highlights the importance of plant pathogen biosurveillance to detect variants, including hybrids, and inform management and control.
Collapse
Affiliation(s)
- Richard C Hamelin
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| | | | - Renate Heinzelmann
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kelly Hrywkiw
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud Capron
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Erika Dort
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Angela L Dale
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Emilie Giroux
- Ottawa Plant Laboratory, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Stacey Kus
- New Construction Materials, FPInnovations, Vancouver, BC, Canada
| | - Nick C Carleson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Niklaus J Grünwald
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Horticultural Crops Research Unit, USDA ARS, Corvallis, OR, USA
| | - Nicolas Feau
- The Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021; 10:pathogens10101311. [PMID: 34684260 PMCID: PMC8541133 DOI: 10.3390/pathogens10101311] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Biological control is considered as a promising alternative to pesticide and plant resistance to manage plant diseases, but a better understanding of the interaction of its natural and societal functions is necessary for its endorsement. The introduction of biological control agents (BCAs) alters the interaction among plants, pathogens, and environments, leading to biological and physical cascades that influence pathogen fitness, plant health, and ecological function. These interrelationships generate a landscape of tradeoffs among natural and social functions of biological control, and a comprehensive evaluation of its benefits and costs across social and farmer perspectives is required to ensure the sustainable development and deployment of the approach. Consequently, there should be a shift of disease control philosophy from a single concept that only concerns crop productivity to a multifaceted concept concerning crop productivity, ecological function, social acceptability, and economical accessibility. To achieve these goals, attempts should make to develop “green” BCAs used dynamically and synthetically with other disease control approaches in an integrated disease management scheme, and evolutionary biologists should play an increasing role in formulating the strategies. Governments and the public should also play a role in the development and implementation of biological control strategies supporting positive externality.
Collapse
|
20
|
Kumar A, Sharma VP, Kumar S, Nath M. De novo genome sequencing of mycoparasite Mycogone perniciosa strain MgR1 sheds new light on its biological complexity. Braz J Microbiol 2021; 52:1545-1556. [PMID: 34138459 DOI: 10.1007/s42770-021-00535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 05/18/2021] [Indexed: 10/21/2022] Open
Abstract
Mycogone perniciosa is a mycoparasite causing Wet Bubble Diseases (WBD) of Agaricus bisporus. In the present study, the whole genome of M. perniciosa strain MgR1 was sequenced using Illumina NextSeq500 platform. This sequencing generated 8.03 Gb of high-quality data and a draft genome of 39 Mb was obtained through a de novo assembly of the high-quality reads. The draft genome resulted into prediction of 9276 genes from the 1597 scaffolds. NCBI-based homology analysis revealed the identification of 8660 genes. Notably, non-redundant protein database analysis of the M. perniciosa strain MgR1 revealed its close relation with the Trichoderma arundinaceum. Moreover, ITS-based phylogenetic analysis showed the highest similarity of M. perniciosa strain MgR1 with Hypomyces perniciosus strain CBS 322.22 and Mycogone perniciosa strain PPRI 5784. Annotation of the 3917 genes of M. perniciosa strain MgR1 grouped in three major categories viz. biological process (2583 genes), cellular component (2013 genes), and molecular function (2919 genes). UniGene analysis identified 2967 unique genes in M. perniciosa strain MgR1. In addition, prediction of the secretory and pathogenicity-related genes based on the fungal database indicates that 1512 genes (16% of predicted genes) encode for secretory proteins. Moreover, out of 9276 genes, 1296 genes were identified as pathogenesis-related proteins matching with 51 fungal and bacterial genera. Overall, the key pathogenic genes such as lysine M protein domain genes, G protein, hydrophobins, and cytochrome P450 were also observed. The draft genome of MgR1 provides an understanding of pathogenesis of WBD in A. bisporus and could be utilized to develop novel management strategies.
Collapse
Affiliation(s)
- Anil Kumar
- Directorate of Mushroom Research, ICAR, Himachal Pradesh, Chambaghat, Solan, 173213, India.
| | - V P Sharma
- Directorate of Mushroom Research, ICAR, Himachal Pradesh, Chambaghat, Solan, 173213, India
| | - Satish Kumar
- Directorate of Mushroom Research, ICAR, Himachal Pradesh, Chambaghat, Solan, 173213, India
| | - Manoj Nath
- Directorate of Mushroom Research, ICAR, Himachal Pradesh, Chambaghat, Solan, 173213, India
| |
Collapse
|
21
|
Kimura S, Shibata Y, Oi T, Kawakita K, Takemoto D. Effect of flutianil on the morphology and gene expression of powdery mildew. JOURNAL OF PESTICIDE SCIENCE 2021; 46:206-213. [PMID: 34135682 PMCID: PMC8175223 DOI: 10.1584/jpestics.d21-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Flutianil, a fungicide effective only on powdery mildew, was previously reported to affect the host cell's haustorial formation and nutrient absorption. Studies were conducted to investigate flutianil's primary site of action on Blumeria graminis morphology using transmission electron microscope (TEM) observation and RNA sequencing (RAN-seq) techniques. TEM observation revealed that flutianil caused the extra-haustorial matrix and fungal cell wall to be obscured, without remarkable changes of other fungal organelles. RNA-seq analysis indicated that, unlike other powdery-mildew fungicides, flutianil did not significantly affect the constantly expressed genes for the survival of B. graminis. Genes whose expression is up- or downregulated by flutianil were found; these are the three sugar transporter genes and various effector genes, mainly expressed in haustoria. These findings indicate that the primary site of action of flutianil might be in the haustoria.
Collapse
Affiliation(s)
- Sachi Kimura
- Research and Development Division, OAT Agrio Co., Ltd., Tokushima, Japan
| | - Yusuke Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464–8601, Japan
| | - Takao Oi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464–8601, Japan
| | - Kazuhito Kawakita
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464–8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464–8601, Japan
| |
Collapse
|
22
|
Santoyo G, Gamalero E, Glick BR. Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.672881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population.
Collapse
|
23
|
de Almeida JR, Riaño Pachón DM, Franceschini LM, dos Santos IB, Ferrarezi JA, de Andrade PAM, Monteiro-Vitorello CB, Labate CA, Quecine MC. Revealing the high variability on nonconserved core and mobile elements of Austropuccinia psidii and other rust mitochondrial genomes. PLoS One 2021; 16:e0248054. [PMID: 33705433 PMCID: PMC7951889 DOI: 10.1371/journal.pone.0248054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/18/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial genomes are highly conserved in many fungal groups, and they can help characterize the phylogenetic relationships and evolutionary biology of plant pathogenic fungi. Rust fungi are among the most devastating diseases for economically important crops around the world. Here, we report the complete sequence and annotation of the mitochondrial genome of Austropuccinia psidii (syn. Puccinia psidii), the causal agent of myrtle rust. We performed a phylogenomic analysis including the complete mitochondrial sequences from other rust fungi. The genome composed of 93.299 bp has 73 predicted genes, 33 of which encoded nonconserved proteins (ncORFs), representing almost 45% of all predicted genes. A. psidii mtDNA is one of the largest rust mtDNA sequenced to date, most likely due to the abundance of ncORFs. Among them, 33% were within intronic regions of diverse intron groups. Mobile genetic elements invading intron sequences may have played significant roles in size but not shaping of the rust mitochondrial genome structure. The mtDNAs from rust fungi are highly syntenic. Phylogenetic inferences with 14 concatenated mitochondrial proteins encoded by the core genes placed A. psidii according to phylogenetic analysis based on 18S rDNA. Interestingly, cox1, the gene with the greatest number of introns, provided phylogenies not congruent with the core set. For the first time, we identified the proteins encoded by three A. psidii ncORFs using proteomics analyses. Also, the orf208 encoded a transmembrane protein repressed during in vitro morphogenesis. To the best of our knowledge, we presented the first report of a complete mtDNA sequence of a member of the family Sphaerophragmiacea.
Collapse
Affiliation(s)
- Jaqueline Raquel de Almeida
- Department of Genetics, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Livia Maria Franceschini
- Department of Genetics, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Isaneli Batista dos Santos
- Department of Genetics, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Jessica Aparecida Ferrarezi
- Department of Genetics, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Pedro Avelino Maia de Andrade
- Department of Genetics, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Carlos Alberto Labate
- Department of Genetics, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
24
|
Mustafaev I, Islomiddinov Z, Iminova M, Ortiqov I. Distribution of species of the genus Gymnosporangium (Pucciniales) in Uzbekistan. UKRAINIAN BOTANICAL JOURNAL 2021. [DOI: 10.15407/ukrbotj78.01.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we analyzed distribution of species of the genus Gymnosporangium in the mountain regions of Uzbekistan, including the Western Tien Shan and Pamir-Alay. Four species of Gymnosporangium (G. confusum, G. sabinae, G. fusisporum, and G. turkestanicum) are reported for Uzbekistan. The telial hosts of these rust fungi are species of the genus Juniperus, while aecial hosts in Uzbekistan are representatives of the genera Cotoneaster, Crataegus, Sorbus, and Pyrus (all Rosaceae). It has been found that the distribution patterns of species of Gymnosporangium within mountain areas of Uzbekistan depend largely on distribution of juniper woodlands because representatives of the genus Juniperus as telial hosts play a major role in the life cycle of these fungi. In that regard, Gymnosporangium species have not yet been recorded in the Nuratau Nature Reserve despite other favorable conditions for these rust fungi in this territory.
Collapse
|
25
|
Sakeh NM, Abdullah SNA, Bahari MNA, Azzeme AM, Shaharuddin NA, Idris AS. EgJUB1 and EgERF113 transcription factors as potential master regulators of defense response in Elaeis guineensis against the hemibiotrophic Ganoderma boninense. BMC PLANT BIOLOGY 2021; 21:59. [PMID: 33482731 PMCID: PMC7825162 DOI: 10.1186/s12870-020-02812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection. RESULTS The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells. CONCLUSION Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.
Collapse
Affiliation(s)
- Nurshafika Mohd Sakeh
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | | | - Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Abu Seman Idris
- Ganoderma and Diseases Research for Oil Palm Unit, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
26
|
Wu H, Nakazawa T, Xu H, Yang R, Bao D, Kawauchi M, Sakamoto M, Honda Y. Comparative transcriptional analyses of Pleurotus ostreatus mutants on beech wood and rice straw shed light on substrate-biased gene regulation. Appl Microbiol Biotechnol 2021; 105:1175-1190. [PMID: 33415371 DOI: 10.1007/s00253-020-11087-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022]
Abstract
Distinct wood degraders occupying their preferred habitats have biased enzyme repertoires that are well fitted to their colonized substrates. Pleurotus ostreatus, commonly found on wood, has evolved its own enzyme-producing traits. In our previous study, transcriptional shifts in several P. ostreatus delignification-defective mutants, including Δhir1 and Δgat1 strains, were analyzed, which revealed the downregulation of ligninolytic genes and the upregulation of cellulolytic and xylanolytic genes when compared to their parental strain 20b on beech wood sawdust medium (BWS). In this study, rice straw (RS) was used as an alternative substrate to examine the transcriptional responses of P. ostreatus to distinct substrates. The vp1 gene and a cupredoxin-encoding gene were significantly upregulated in the 20b strain on RS compared with that on BWS, reflecting their distinct regulation patterns. The overall expression level of genes encoding glucuronidases was also higher on RS than on BWS, showing a good correlation with the substrate composition. Transcriptional alterations in the mutants (Δhir1 or Δgat1 versus 20b strain) on RS were similar to those on BWS, and the extracellular lignocellulose-degrading enzyme activities and lignin-degrading ability of the mutants on RS were consistent with the transcriptional alterations of the corresponding enzyme-encoding genes. However, transcripts of specific genes encoding enzymes belonging to the same CAZyme family exhibited distinct alteration patterns in the mutant strains grown on RS compared to those grown on BWS. These findings provide new insights into the molecular mechanisms underlying the transcriptional regulation of lignocellulolytic genes in P. ostreatus.Key Points• P. ostreatus expressed variable enzymatic repertoire-related genes in response to distinct substrates.• A demand to upregulate the cellulolytic genes seems to be present in ligninolysis-deficient mutants.• The regulation of some specific genes probably driven by the demand is dependent on the substrate.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Haibo Xu
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ruiheng Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
27
|
Poretti M, Sotiropoulos AG, Graf J, Jung E, Bourras S, Krattinger SG, Wicker T. Comparative Transcriptome Analysis of Wheat Lines in the Field Reveals Multiple Essential Biochemical Pathways Suppressed by Obligate Pathogens. FRONTIERS IN PLANT SCIENCE 2021; 12:720462. [PMID: 34659291 PMCID: PMC8513673 DOI: 10.3389/fpls.2021.720462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 05/03/2023]
Abstract
Mildew and rust are the most devastating cereal pathogens, and in wheat they can cause up to 50% yield loss every year. Wheat lines containing resistance genes are used to effectively control fungal diseases, but the molecular mechanisms underlying the interaction between wheat and its fungal pathogens are poorly understood. Here, we used RNA sequencing (RNA-Seq) to compare the transcriptomic landscape of susceptible and resistant wheat lines to identify genes and pathways that are targeted by obligate biotrophic fungal pathogens. The five lines differed in the expression of thousands of genes under infection as well as control conditions. Generally, mixed infection with powdery mildew and leaf rust resulted in downregulation of numerous genes in susceptible lines. Interestingly, transcriptomic comparison between the nearly isogenic lines Thatcher and Thatcher-Lr34 identified 753 genes that are uniquely downregulated in the susceptible line upon infection. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, revealed the suppression of six major biochemical pathways, namely nuclear transport, alternative splicing, DNA damage response, ubiquitin-mediated proteolysis, phosphoinositol signaling, and photosynthesis. We conclude that powdery mildew and leaf rust evade the wheat defense system by suppression of programmed cell death (PCD) and responses to cellular damage. Considering the broad range of the induced changes, we propose that the pathogen targets "master regulators" at critical steps in the respective pathways. Identification of these wheat genes targeted by the pathogen could inspire new directions for future wheat breeding.
Collapse
Affiliation(s)
- Manuel Poretti
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Johannes Graf
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Salim Bourras
- Department of Forest Mycology and Plant Pathology, Division of Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Simon G. Krattinger
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
- *Correspondence: Thomas Wicker,
| |
Collapse
|
28
|
Chandrakanth R, Sunil L, Sadashivaiah L, Devaki NS. In silico modelling and characterization of eight blast resistance proteins in resistant and susceptible rice cultivars. J Genet Eng Biotechnol 2020; 18:75. [PMID: 33237489 PMCID: PMC7688789 DOI: 10.1186/s43141-020-00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nucleotide-binding site-leucine-rich repeat (NBS-LRR) resistance genes are the largest class of plant resistance genes which play an important role in the plant defense response. These genes are better conserved than others and function as a recognition-based immune system in plants through their encoded proteins. RESULTS Here, we report the effect of Magnaporthe oryzae, the rice blast pathogen inoculation in resistant BR2655 and susceptible HR12 rice cultivars. Transcriptomic profiling was carried out to analyze differential gene expression in these two cultivars. A total of eight NBS-LRR uncharacterized resistance proteins (RP1, RP2, RP3, RP4, RP5, RP6, RP7, and RP8) were selected in these two cultivars for in silico modeling. Modeller 9.22 and SWISS-MODEL servers were used for the homology modeling of eight RPs. ProFunc server was utilized for the prediction of secondary structure and function. The CDvist Web server and Interpro scan server detected the motif and domains in eight RPs. Ramachandran plot of eight RPs confirmed that the modeled structures occupied favorable positions. CONCLUSIONS From the present study, computational analysis of these eight RPs may afford insights into their role, function, and valuable resource for studying the intricate details of the plant defense mechanism. Furthermore, the identification of resistance proteins is useful for the development of molecular markers linked to resistance genes.
Collapse
Affiliation(s)
- R Chandrakanth
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - L Sunil
- Department of Plant Cell Biotechnology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India
| | - L Sadashivaiah
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
| | - N S Devaki
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India.
| |
Collapse
|
29
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|
30
|
Nostadt R, Hilbert M, Nizam S, Rovenich H, Wawra S, Martin J, Küpper H, Mijovilovich A, Ursinus A, Langen G, Hartmann MD, Lupas AN, Zuccaro A. A secreted fungal histidine- and alanine-rich protein regulates metal ion homeostasis and oxidative stress. THE NEW PHYTOLOGIST 2020; 227:1174-1188. [PMID: 32285459 DOI: 10.1111/nph.16606] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/01/2020] [Indexed: 05/22/2023]
Abstract
Like pathogens, beneficial endophytic fungi secrete effector proteins to promote plant colonization, for example, through perturbation of host immunity. The genome of the root endophyte Serendipita indica encodes a novel family of highly similar, small alanine- and histidine-rich proteins, whose functions remain unknown. Members of this protein family carry an N-terminal signal peptide and a conserved C-terminal DELD motif. Here we report on the functional characterization of the plant-responsive DELD family protein Dld1 using a combination of structural, biochemical, biophysical and cytological analyses. The crystal structure of Dld1 shows an unusual, monomeric histidine zipper consisting of two antiparallel coiled-coil helices. Similar to other histidine-rich proteins, Dld1 displays varying affinity to different transition metal ions and undergoes metal ion- and pH-dependent unfolding. Transient expression of mCherry-tagged Dld1 in barley leaf and root tissue suggests that Dld1 localizes to the plant cell wall and accumulates at cell wall appositions during fungal penetration. Moreover, recombinant Dld1 enhances barley root colonization by S. indica, and inhibits H2 O2 -mediated radical polymerization of 3,3'-diaminobenzidine. Our data suggest that Dld1 has the potential to enhance micronutrient accessibility for the fungus and to interfere with oxidative stress and reactive oxygen species homeostasis to facilitate host colonization.
Collapse
Affiliation(s)
- Robin Nostadt
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Magdalena Hilbert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Shadab Nizam
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Hanna Rovenich
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Jörg Martin
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Hendrik Küpper
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Ana Mijovilovich
- Department of Plant Biophysics & Biochemistry, Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, Branišovská 31/1160, 37005, České Budějovice, Czech Republic
| | - Astrid Ursinus
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Gregor Langen
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Andrei N Lupas
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076, Tübingen, Germany
| | - Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, Botanical Institute, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
31
|
Mukhi N, Gorenkin D, Banfield MJ. Exploring folds, evolution and host interactions: understanding effector structure/function in disease and immunity. THE NEW PHYTOLOGIST 2020; 227:326-333. [PMID: 32239533 DOI: 10.1111/nph.16563] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Over the past decade, tremendous progress has been made in plant pathology, broadening our understanding of how pathogens colonize their hosts. To manipulate host cell physiology and subvert plant immune responses, pathogens secrete an array of effector proteins. A co-evolutionary arms-race drives the pathogen to constantly reinvent its effector repertoire to undermine plant immunity. In turn, hosts develop novel immune receptors to maintain effector recognition and mount defences. Understanding how effectors promote disease and how they are perceived by the plant's defence network persist as major subjects in the study of plant-pathogen interactions. Here, we focus on recent advances (over roughly the last two years) in understanding structure/function relationships in effectors from bacteria and filamentous plant pathogens. Structure/function studies of bacterial effectors frequently uncover diverse catalytic activities, while structure-informed similarity searches have enabled cataloguing of filamentous pathogen effectors. We also suggest how such advances have informed the study of plant-pathogen interactions.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
32
|
Simmi FZ, Dallagnol LJ, Ferreira AS, Pereira DR, Souza GM. Electrome alterations in a plant-pathogen system: Toward early diagnosis. Bioelectrochemistry 2020; 133:107493. [PMID: 32145516 DOI: 10.1016/j.bioelechem.2020.107493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/06/2023]
Abstract
This work aimed to verify the existence of patterns on the electrophysiological systemic responses of tomato plants inoculated with a pathogenic fungus in an environment with controlled light and temperature. Electrical signalling was measured before and after inoculation in the same plants, and data were analysed with time series techniques and approximate multi-scale entropy (ApEn). Machine learning algorithms were utilised in order to classify data before and after infection throughout the five days of experiments. The obtained results have shown that it is possible to distinguish differences in the plant's electrome activity before and after the fungus inoculation. In some cases, we have found scale invariance quantified by the power law decay in the distribution histogram. We also found a higher degree of internal organisation quantified by ApEn. The results of the classification algorithms achieved higher accuracy of infection detection at the initial stage of pathogen recognition by the plant. Besides, this study showed evidence that long-distance electrical signalling is likely involved in the plant-pathogen interaction, since signals were obtained in the stem and the inoculum applied on the plant leaves. This might be useful for the early detection of plant infections.
Collapse
Affiliation(s)
- F Z Simmi
- Federal University of Pelotas, Post-Graduation Programme on Plant Physiology, Institute of Biology, Department of Botany, Pelotas, RS, Brazil.
| | - L J Dallagnol
- Federal University of Pelotas, Crop Protection Graduate Program, Faculty of Agronomy Eliseu Maciel, Department of Crop Protection, Pelotas, RS, Brazil
| | - A S Ferreira
- Federal University of Pelotas, Department of Physics, Pelotas, RS, Brazil
| | - D R Pereira
- University of Western São Paulo, Machine Intelligence Laboratory, Presidente Prudente, SP, Brazil
| | - G M Souza
- Federal University of Pelotas, Post-Graduation Programme on Plant Physiology, Institute of Biology, Department of Botany, Pelotas, RS, Brazil
| |
Collapse
|
33
|
The host generalist phytopathogenic fungus Sclerotinia sclerotiorum differentially expresses multiple metabolic enzymes on two different plant hosts. Sci Rep 2019; 9:19966. [PMID: 31882688 PMCID: PMC6934579 DOI: 10.1038/s41598-019-56396-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023] Open
Abstract
Sclerotinia sclerotiorum is a necrotrophic fungal pathogen that infects upwards of 400 plant species, including several economically important crops. The molecular processes that underpin broad host range necrotrophy are not fully understood. This study used RNA sequencing to assess whether S. sclerotiorum genes are differentially expressed in response to infection of the two different host crops canola (Brassica napus) and lupin (Lupinus angustifolius). A total of 10,864 of the 11,130 genes in the S. sclerotiorum genome were expressed. Of these, 628 were upregulated in planta relative to in vitro on at least one host, suggesting involvement in the broader infection process. Among these genes were predicted carbohydrate-active enzymes (CAZYmes) and secondary metabolites. A considerably smaller group of 53 genes were differentially expressed between the two plant hosts. Of these host-specific genes, only six were either CAZymes, secondary metabolites or putative effectors. The remaining genes represented a diverse range of functional categories, including several associated with the metabolism and efflux of xenobiotic compounds, such as cytochrome P450s, metal-beta-lactamases, tannases and major facilitator superfamily transporters. These results suggest that S. sclerotiorum may regulate the expression of detoxification-related genes in response to phytotoxins produced by the different host species. To date, this is the first comparative whole transcriptome analysis of S. sclerotiorum during infection of different hosts.
Collapse
|
34
|
Zhang Y, Fletcher K, Han R, Michelmore R, Yang R. Genome-Wide Analysis of Cyclophilin Proteins in 21 Oomycetes. Pathogens 2019; 9:E24. [PMID: 31888032 PMCID: PMC7168621 DOI: 10.3390/pathogens9010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Cyclophilins (CYPs), a highly-conserved family of proteins, belong to a subgroup of immunophilins. Ubiquitous in eukaryotes and prokaryotes, CYPs have peptidyl-prolyl cis-trans isomerase (PPIase) activity and have been implicated as virulence factors in plant pathogenesis by oomycetes. We identified 16 CYP orthogroups from 21 diverse oomycetes. Each species was found to encode 15 to 35 CYP genes. Three of these orthogroups contained proteins with signal peptides at the N-terminal end, suggesting a role in secretion. Multidomain analysis revealed five conserved motifs of the CYP domain of oomycetes shared with other eukaryotic PPIases. Expression analysis of CYP proteins in different asexual life stages of the hemibiotrophic Phytophthora infestans and the biotrophic Plasmopara halstedii demonstrated distinct expression profiles between life stages. In addition to providing detailed comparative information on the CYPs in multiple oomycetes, this study identified candidate CYP effectors that could be the foundation for future studies of virulence.
Collapse
Affiliation(s)
- Yan Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
- Genome Center, University of California, Davis, CA 95616, USA; (K.F.); (R.H.); (R.M.)
| | - Kyle Fletcher
- Genome Center, University of California, Davis, CA 95616, USA; (K.F.); (R.H.); (R.M.)
| | - Rongkui Han
- Genome Center, University of California, Davis, CA 95616, USA; (K.F.); (R.H.); (R.M.)
| | - Richard Michelmore
- Genome Center, University of California, Davis, CA 95616, USA; (K.F.); (R.H.); (R.M.)
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China;
| |
Collapse
|
35
|
Sharma Poudel R, Richards J, Shrestha S, Solanki S, Brueggeman R. Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance. BMC Genomics 2019; 20:985. [PMID: 31842749 PMCID: PMC6915985 DOI: 10.1186/s12864-019-6369-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stem rust is an economically important disease of wheat and barley. However, studies to gain insight into the molecular basis of these host-pathogen interactions have primarily focused on wheat because of its importance in human sustenance. This is the first extensive study utilizing a transcriptome-wide association mapping approach to identify candidate Puccinia graminis f. sp. tritici (Pgt) effectors/suppressors that elicit or suppress barley stem rust resistance genes. Here we focus on identifying Pgt elicitors that interact with the rpg4-mediated resistance locus (RMRL), the only effective source of Pgt race TTKSK resistance in barley. RESULTS Thirty-seven Pgt isolates showing differential responses on RMRL were genotyped using Restriction Site Associated DNA-Genotyping by Sequencing (RAD-GBS), identifying 24 diverse isolates that were used for transcript analysis during the infection process. In planta RNAseq was conducted with the 24 diverse isolates on the susceptible barley variety Harrington, 5 days post inoculation. The transcripts were mapped to the Pgt race SCCL reference genome identifying 114 K variants in predicted genes that would result in nonsynonymous amino acid substitutions. Transcriptome wide association analysis identified 33 variants across 28 genes that were associated with dominant RMRL virulence, thus, representing candidate suppressors of resistance. Comparative transcriptomics between the 9 RMRL virulent -vs- the 15 RMRL avirulent Pgt isolates identified 44 differentially expressed genes encoding candidate secreted effector proteins (CSEPs), among which 38 were expressed at lower levels in virulent isolates suggesting that they may represent RMRL avirulence genes. Barley transcript analysis after colonization with 9 RMRL virulent and 15 RMRL avirulent isolates inoculated on the susceptible line Harrington showed significantly lower expression of host biotic stress responses specific to RMRL virulent isolates suggesting virulent isolates harbor effectors that suppress resistance responses. CONCLUSIONS This transcriptomic study provided novel findings that help fill knowledge gaps in the understanding of stem rust virulence/avirulence and host resistance in barley. The pathogen transcriptome analysis suggested RMRL virulence might depend on the lack of avirulence genes, but evidence from pathogen association mapping analysis and host transcriptional analysis also suggested the alternate hypothesis that RMRL virulence may be due to the presence of suppressors of defense responses.
Collapse
Affiliation(s)
| | - Jonathan Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, USA
| | - Subidhya Shrestha
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
36
|
Kim KT, Ko J, Song H, Choi G, Kim H, Jeon J, Cheong K, Kang S, Lee YH. Evolution of the Genes Encoding Effector Candidates Within Multiple Pathotypes of Magnaporthe oryzae. Front Microbiol 2019; 10:2575. [PMID: 31781071 PMCID: PMC6851232 DOI: 10.3389/fmicb.2019.02575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023] Open
Abstract
Magnaporthe oryzae infects rice, wheat, and many grass species in the Poaceae family by secreting protein effectors. Here, we analyzed the distribution, sequence variation, and genomic context of effector candidate (EFC) genes in 31 isolates that represent five pathotypes of M. oryzae, three isolates of M. grisea, a sister species of M. oryzae, and one strain each for eight species in the family Magnaporthaceae to investigate how the host range expansion of M. oryzae has likely affected the evolution of effectors. We used the EFC genes of M. oryzae strain 70-15, whose genome has served as a reference for many comparative genomics analyses, to identify their homologs in these strains. We also analyzed the previously characterized avirulence (AVR) genes and single-copy orthologous (SCO) genes in these strains, which showed that the EFC and AVR genes evolved faster than the SCO genes. The EFC and AVR repertoires among M. oryzae pathotypes varied widely probably because adaptation to individual hosts exerted different types of selection pressure. Repetitive DNA elements appeared to have caused the variation of some EFC genes. Lastly, we analyzed expression patterns of the AVR and EFC genes to test the hypothesis that such genes are preferentially expressed during host infection. This comprehensive dataset serves as a foundation for future studies on the genetic basis of the evolution and host specialization in M. oryzae.
Collapse
Affiliation(s)
- Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, PA, United States
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
37
|
Rahman A, Góngora-Castillo E, Bowman MJ, Childs KL, Gent DH, Martin FN, Quesada-Ocampo LM. Genome Sequencing and Transcriptome Analysis of the Hop Downy Mildew Pathogen Pseudoperonospora humuli Reveal Species-Specific Genes for Molecular Detection. PHYTOPATHOLOGY 2019; 109:1354-1366. [PMID: 30939079 DOI: 10.1094/phyto-11-18-0431-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudoperonospora humuli is an obligate oomycete pathogen of hop (Humulus lupulus) that causes downy mildew, an important disease in most production regions in the Northern Hemisphere. The pathogen can cause a systemic infection in hop, overwinter in the root system, and infect propagation material. Substantial yield loss may occur owing to P. humuli infection of strobiles (seed cones), shoots, and cone-bearing branches. Fungicide application and cultural practices are the primary methods to manage hop downy mildew. However, effective, sustainable, and cost-effective management of downy mildew can be improved by developing early detection systems to inform on disease risk and timely fungicide application. However, no species-specific diagnostic assays or genomic resources are available for P. humuli. The genome of the P. humuli OR502AA isolate was partially sequenced using Illumina technology and assembled with ABySS. The assembly had a minimum scaffold length of 500 bp and an N50 (median scaffold length of the assembled genome) of 19.2 kbp. A total number of 18,656 genes were identified using MAKER standard gene predictions. Additionally, transcriptome assemblies were generated using RNA-seq and Trinity for seven additional P. humuli isolates. Bioinformatics analyses of next generation sequencing reads of P. humuli and P. cubensis (a closely related sister species) identified 242 candidate species-specific P. humuli genes that could be used as diagnostic molecular markers. These candidate genes were validated using polymerase chain reaction against a diverse collection of isolates from P. humuli, P. cubensis, and other oomycetes. Overall, four diagnostic markers were found to be uniquely present in P. humuli. These candidate markers identified through comparative genomics can be used for pathogen diagnostics in propagation material, such as rhizomes and vegetative cuttings, or adapted for biosurveillance of airborne sporangia, an important source of inoculum in hop downy mildew epidemics.
Collapse
Affiliation(s)
- A Rahman
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - E Góngora-Castillo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- 2Department of Biotechnology, Yucatan Center for Scientific Research, 97205 Mérida, Yucatán, México
| | - M J Bowman
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - K L Childs
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - D H Gent
- 4Forage Seed and Cereal Research Unit, U.S. Department of Agriculture-Agricultural Research Service and Oregon State University, Corvallis 97331, OR, U.S.A
| | - F N Martin
- 5Crop Improvement and Protection Research Station, U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - L M Quesada-Ocampo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| |
Collapse
|
38
|
Genome Analysis of Hypomyces perniciosus, the Causal Agent of Wet Bubble Disease of Button Mushroom ( Agaricus bisporus). Genes (Basel) 2019; 10:genes10060417. [PMID: 31146507 PMCID: PMC6627653 DOI: 10.3390/genes10060417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
The mycoparasitic fungus Hypomyces perniciosus causes wet bubble disease of mushrooms, particularly Agaricus bisporus. The genome of a highly virulent strain of H. perniciosus HP10 was sequenced and compared to three other fungi from the order Hypocreales that cause disease on A. bisporus. H. perniciosus genome is ~44 Mb, encodes 10,077 genes and enriched with transposable elements up to 25.3%. Phylogenetic analysis revealed that H. perniciosus is closely related to Cladobotryum protrusum and diverged from their common ancestor ~156.7 million years ago. H. perniciosus has few secreted proteins compared to C. protrusum and Trichoderma virens, but significantly expanded protein families of transporters, protein kinases, CAZymes (GH 18), peptidases, cytochrome P450, and SMs that are essential for mycoparasitism and adaptation to harsh environments. This study provides insights into H. perniciosus evolution and pathogenesis and will contribute to the development of effective disease management strategies to control wet bubble disease.
Collapse
|
39
|
Czobor Á, Hajdinák P, Németh B, Piros B, Németh Á, Szarka A. Comparison of the response of alternative oxidase and uncoupling proteins to bacterial elicitor induced oxidative burst. PLoS One 2019; 14:e0210592. [PMID: 30629714 PMCID: PMC6328269 DOI: 10.1371/journal.pone.0210592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/25/2018] [Indexed: 12/03/2022] Open
Abstract
Plant UCPs are proved to take part in the fine-tuning of mitochondrial ROS generation. It has emerged that mitochondrion can be an important early source of intracellular ROS during plant-pathogen interaction thus plant UCPs must also play key role in this redox fine-tuning during the early phase of plant-pathogen interaction. On the contrary of this well-established assumption, the expression of plant UCPs and their activity has not been investigated in elicitor induced oxidative burst. Thus, the level of plant UCPs both at RNA and protein level and their activity was investigated and compared to AOX as a reference in Arabidopsis thaliana cells due to bacterial harpin treatments. Similar to the expression and activity of AOX, the transcript level of UCP4, UCP5 and the UCP activity increased due to harpin treatment and the consequential oxidative burst. The expression of UCP4 and UCP5 elevated 15-18-fold after 1 h of treatment, then the activity of UCP reached its maximal value at 4h of treatment. The quite rapid activation of UCP due to harpin treatment gives another possibility to fine tune the redox balance of plant cell, furthermore explains the earlier observed rapid decrease of mitochondrial membrane potential and consequent decrease of ATP synthesis after harpin treatment.
Collapse
Affiliation(s)
- Ádám Czobor
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Hajdinák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Bence Németh
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Borbála Piros
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Áron Németh
- Department of Applied Biotechnology and Food Science, Fermentation Pilot Plant Laboratory, Budapest University of Technology and Economics, Budapest, Hungary
| | - András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
40
|
Czedik‐Eysenberg A, Seitner S, Güldener U, Koemeda S, Jez J, Colombini M, Djamei A. The 'PhenoBox', a flexible, automated, open-source plant phenotyping solution. THE NEW PHYTOLOGIST 2018; 219:808-823. [PMID: 29621393 PMCID: PMC6485332 DOI: 10.1111/nph.15129] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/22/2018] [Indexed: 05/11/2023]
Abstract
There is a need for flexible and affordable plant phenotyping solutions for basic research and plant breeding. We demonstrate our open source plant imaging and processing solution ('PhenoBox'/'PhenoPipe') and provide construction plans, source code and documentation to rebuild the system. Use of the PhenoBox is exemplified by studying infection of the model grass Brachypodium distachyon by the head smut fungus Ustilago bromivora, comparing phenotypic responses of maize to infection with a solopathogenic Ustilago maydis (corn smut) strain and effector deletion strains, and studying salt stress response in Nicotiana benthamiana. In U. bromivora-infected grass, phenotypic differences between infected and uninfected plants were detectable weeks before qualitative head smut symptoms. Based on this, we could predict the infection outcome for individual plants with high accuracy. Using a PhenoPipe module for calculation of multi-dimensional distances from phenotyping data, we observe a time after infection-dependent impact of U. maydis effector deletion strains on phenotypic response in maize. The PhenoBox/PhenoPipe system is able to detect established salt stress responses in N. benthamiana. We have developed an affordable, automated, open source imaging and data processing solution that can be adapted to various phenotyping applications in plant biology and beyond.
Collapse
Affiliation(s)
- Angelika Czedik‐Eysenberg
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna BioCenter (VBC)Dr. Bohr‐Gasse 31030ViennaAustria
| | - Sebastian Seitner
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna BioCenter (VBC)Dr. Bohr‐Gasse 31030ViennaAustria
| | - Ulrich Güldener
- Department of Genome‐oriented BioinformaticsTechnische Universität MünchenWissenschaftszentrum WeihenstephanFreisingGermany
| | - Stefanie Koemeda
- Vienna Biocenter Core Facilities (VBCF)Dr. Bohr‐Gasse 31030ViennaAustria
| | - Jakub Jez
- Vienna Biocenter Core Facilities (VBCF)Dr. Bohr‐Gasse 31030ViennaAustria
| | - Martin Colombini
- Workshop, Research Institute of Molecular Pathology (IMP)Vienna BioCenter (VBC)Campus‐Vienna‐Biocenter 11030ViennaAustria
| | - Armin Djamei
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna BioCenter (VBC)Dr. Bohr‐Gasse 31030ViennaAustria
| |
Collapse
|
41
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
42
|
Tao SQ, Cao B, Tian CM, Liang YM. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum). BMC Genomics 2017; 18:651. [PMID: 28830353 PMCID: PMC5567642 DOI: 10.1186/s12864-017-4059-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 08/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rust fungi constitute the largest group of plant fungal pathogens. However, a paucity of data, including genomic sequences, transcriptome sequences, and associated molecular markers, hinders the development of inhibitory compounds and prevents their analysis from an evolutionary perspective. Gymnosporangium yamadae and G. asiaticum are two closely related rust fungal species, which are ecologically and economically important pathogens that cause apple rust and pear rust, respectively, proved to be devastating to orchards. In this study, we investigated the transcriptomes of these two Gymnosporangium species during the telial stage of their lifecycles. The aim of this study was to understand the evolutionary patterns of these two related fungi and to identify genes that developed by selection. RESULTS The transcriptomes of G. yamadae and G. asiaticum were generated from a mixture of RNA from three biological replicates of each species. We obtained 49,318 and 54,742 transcripts, with N50 values of 1957 and 1664, for G. yamadae and G. asiaticum, respectively. We also identified a repertoire of candidate effectors and other gene families associated with pathogenicity. A total of 4947 pairs of putative orthologues between the two species were identified. Estimation of the non-synonymous/synonymous substitution rate ratios for these orthologues identified 116 pairs with Ka/Ks values greater than1 that are under positive selection and 170 pairs with Ka/Ks values of 1 that are under neutral selection, whereas the remaining 4661 genes are subjected to purifying selection. We estimate that the divergence time between the two species is approximately 5.2 Mya. CONCLUSION This study constitutes a de novo assembly and comparative analysis between the transcriptomes of the two rust species G. yamadae and G. asiaticum. The results identified several orthologous genes, and many expressed genes were identified by annotation. Our analysis of Ka/Ks ratios identified orthologous genes subjected to positive or purifying selection. An evolutionary analysis of these two species provided a relatively precise divergence time. Overall, the information obtained in this study increases the genetic resources available for research on the genetic diversity of the Gymnosporangium genus.
Collapse
Affiliation(s)
- Si-Qi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Bin Cao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
43
|
Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol Mol Biol Rev 2017; 81:e00066-16. [PMID: 28356329 PMCID: PMC5485802 DOI: 10.1128/mmbr.00066-16] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization.
Collapse
Affiliation(s)
- Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Helen G Pennington
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
44
|
Sørensen CK, Labouriau R, Hovmøller MS. Temporal and Spatial Variability of Fungal Structures and Host Responses in an Incompatible Rust-Wheat Interaction. FRONTIERS IN PLANT SCIENCE 2017; 8:484. [PMID: 28446912 PMCID: PMC5389385 DOI: 10.3389/fpls.2017.00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/20/2017] [Indexed: 06/07/2023]
Abstract
Information about temporal and spatial variability of fungal structures and host responses is scarce in comparison to the vast amount of genetic, biochemical, and physiological studies of host-pathogen interactions. In this study, we used avirulent wild type and virulent mutant isolates of Puccinia striiformis to characterize the interactions in wheat carrying yellow rust Yr2 resistance. Both conventional and advanced microscopic techniques were used for a detailed study of morphology and growth of fungal colonies and associated host cell responses. The growth of the wild type isolates was highly restricted due to hypersensitive response (HR, plant cell death) indicated by autofluorescence and change in the shape of the affected plant cells. The host response appeared post-haustorial, but large variation in the time and stage of arrest was observed for individual fungal colonies, probably due to a delay between detection and response. Some colonies were stopped right after the formation of the primary infection hyphae whereas others formed highly branched mycelia. HR was first observed in host cells in direct contact with fungal structures, after which the defense responses spread to adjacent host cells, and eventually led to encasement of the fungal colony. Several cells with HR contained haustoria, which were small and underdeveloped, but some cells contained normal sized haustoria without signs of hypersensitivity. The growth of the virulent mutants in the resistant plants was similar to the growth in plants without Yr2 resistance, which is a strong indication that the incompatible phenotype was associated with Yr2. The interaction between P. striiformis and wheat with Yr2 resistance was highly variable in time and space, which demonstrate that histological studies are important for a deeper understanding of host-pathogen interactions and plant defense mechanisms in general.
Collapse
|
45
|
Chen J, Lin B, Huang Q, Hu L, Zhuo K, Liao J. A novel Meloidogyne graminicola effector, MgGPP, is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism. PLoS Pathog 2017; 13:e1006301. [PMID: 28403192 PMCID: PMC5402989 DOI: 10.1371/journal.ppat.1006301] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/24/2017] [Accepted: 03/18/2017] [Indexed: 01/08/2023] Open
Abstract
Plant pathogen effectors can recruit the host post-translational machinery to mediate their post-translational modification (PTM) and regulate their activity to facilitate parasitism, but few studies have focused on this phenomenon in the field of plant-parasitic nematodes. In this study, we show that the plant-parasitic nematode Meloidogyne graminicola has evolved a novel effector, MgGPP, that is exclusively expressed within the nematode subventral esophageal gland cells and up-regulated in the early parasitic stage of M. graminicola. The effector MgGPP plays a role in nematode parasitism. Transgenic rice lines expressing MgGPP become significantly more susceptible to M. graminicola infection than wild-type control plants, and conversely, in planta, the silencing of MgGPP through RNAi technology substantially increases the resistance of rice to M. graminicola. Significantly, we show that MgGPP is secreted into host plants and targeted to the ER, where the N-glycosylation and C-terminal proteolysis of MgGPP occur. C-terminal proteolysis promotes MgGPP to leave the ER, after which it is transported to the nucleus. In addition, N-glycosylation of MgGPP is required for suppressing the host response. The research data provide an intriguing example of in planta glycosylation in concert with proteolysis of a pathogen effector, which depict a novel mechanism by which parasitic nematodes could subjugate plant immunity and promote parasitism and may present a promising target for developing new strategies against nematode infections.
Collapse
Affiliation(s)
- Jiansong Chen
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Borong Lin
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Qiuling Huang
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Lili Hu
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Kan Zhuo
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- * E-mail: (JLL); (KZ)
| | - Jinling Liao
- Laboratory of Plant Nematology, South China Agricultural University, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
- * E-mail: (JLL); (KZ)
| |
Collapse
|
46
|
Maia T, Badel JL, Marin‐Ramirez G, Rocha CDM, Fernandes MB, da Silva JCF, de Azevedo‐Junior GM, Brommonschenkel SH. The Hemileia vastatrix effector HvEC-016 suppresses bacterial blight symptoms in coffee genotypes with the S H 1 rust resistance gene. THE NEW PHYTOLOGIST 2017; 213:1315-1329. [PMID: 27918080 PMCID: PMC6079635 DOI: 10.1111/nph.14334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/16/2016] [Indexed: 05/03/2023]
Abstract
A number of genes that confer resistance to coffee leaf rust (SH 1-SH 9) have been identified within the genus Coffea, but despite many years of research on this pathosystem, the complementary avirulence genes of Hemileia vastatrix have not been reported. After identification of H. vastatrix effector candidate genes (HvECs) expressed at different stages of its lifecycle, we established an assay to characterize HvEC proteins by delivering them into coffee cells via the type-three secretion system (T3SS) of Pseudomonas syringae pv. garcae (Psgc). Employing a calmodulin-dependent adenylate cyclase assay, we demonstrate that Psgc recognizes a heterologous P. syringae T3SS secretion signal which enables us to translocate HvECs into the cytoplasm of coffee cells. Using this Psgc-adapted effector detector vector (EDV) system, we found that HvEC-016 suppresses the growth of Psgc on coffee genotypes with the SH 1 resistance gene. Suppression of bacterial blight symptoms in SH 1 plants was associated with reduced bacterial multiplication. By contrast, HvEC-016 enhanced bacterial multiplication in SH 1-lacking plants. Our findings suggest that HvEC-016 may be recognized by the plant immune system in a SH 1-dependent manner. Thus, our experimental approach is an effective tool for the characterization of effector/avirulence proteins of this important pathogen.
Collapse
Affiliation(s)
- Thiago Maia
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Jorge L. Badel
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Gustavo Marin‐Ramirez
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Cynthia de M. Rocha
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Michelle B. Fernandes
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - José C. F. da Silva
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Gilson M. de Azevedo‐Junior
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Sérgio H. Brommonschenkel
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| |
Collapse
|
47
|
Langhans M, Weber W, Babel L, Grunewald M, Meckel T. The right motifs for plant cell adhesion: what makes an adhesive site? PROTOPLASMA 2017; 254:95-108. [PMID: 27091341 DOI: 10.1007/s00709-016-0970-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
Cells of multicellular organisms are surrounded by and attached to a matrix of fibrous polysaccharides and proteins known as the extracellular matrix. This fibrous network not only serves as a structural support to cells and tissues but also plays an integral part in the process as important as proliferation, differentiation, or defense. While at first sight, the extracellular matrices of plant and animals do not have much in common, a closer look reveals remarkable similarities. In particular, the proteins involved in the adhesion of the cell to the extracellular matrix share many functional properties. At the sequence level, however, a surprising lack of homology is found between adhesion-related proteins of plants and animals. Both protein machineries only reveal similarities between small subdomains and motifs, which further underlines their functional relationship. In this review, we provide an overview on the similarities between motifs in proteins known to be located at the plant cell wall-plasma membrane-cytoskeleton interface to proteins of the animal adhesome. We also show that by comparing the proteome of both adhesion machineries at the level of motifs, we are also able to identify potentially new candidate proteins that functionally contribute to the adhesion of the plant plasma membrane to the cell wall.
Collapse
Affiliation(s)
- Markus Langhans
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany
| | - Wadim Weber
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany
| | - Laura Babel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany
| | - Miriam Grunewald
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany
| | - Tobias Meckel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, Germany, Schnittspahnstrasse 3, 64297, Darmstadt, Germany.
| |
Collapse
|
48
|
Characterization and comparative analysis of the genome of Puccinia sorghi Schwein, the causal agent of maize common rust. Fungal Genet Biol 2016; 112:31-39. [PMID: 27746189 DOI: 10.1016/j.fgb.2016.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/17/2016] [Accepted: 10/03/2016] [Indexed: 01/25/2023]
Abstract
Rust fungi are one of the most devastating pathogens of crop plants. The biotrophic fungus Puccinia sorghi Schwein (Ps) is responsible for maize common rust, an endemic disease of maize (Zea mays L.) in Argentina that causes significant yield losses in corn production. In spite of this, the Ps genomic sequence was not available. We used Illumina sequencing to rapidly produce the 99.6Mbdraft genome sequence of Ps race RO10H11247, derived from a single-uredinial isolate from infected maize leaves collected in the Argentine Corn Belt Region during 2010. High quality reads were obtained from 200bppaired-end and 5000bpmate-paired libraries and assembled in 15,722 scaffolds. A pipeline which combined an ab initio program with homology-based models and homology to in planta enriched ESTs from four cereal pathogenic fungus (the three sequenced wheat rusts and Ustilago maydis) was used to identify 21,087 putative coding sequences, of which 1599 might be part of the Ps RO10H11247 secretome. Among the 458 highly conserved protein families from the euKaryotic Orthologous Groups (KOG) that occur in a wide range of eukaryotic organisms, 97.5% have at least one member with high homology in the Ps assembly (TBlastN, E-value⩽e-10) covering more than 50% of the length of the KOG protein. Comparative studies with the three sequenced wheat rust fungus, and microsynteny analysis involving Puccinia striiformis f. sp. tritici (Pst, wheat stripe rust fungus), support the quality achieved. The results presented here show the effectiveness of the Illumina strategy for sequencing dikaryotic genomes of non-model organisms and provides reliable DNA sequence information for genomic studies, including pathogenic mechanisms of this maize fungus and molecular marker design.
Collapse
|
49
|
Xie J, Li S, Mo C, Xiao X, Peng D, Wang G, Xiao Y. Genome and Transcriptome Sequences Reveal the Specific Parasitism of the Nematophagous Purpureocillium lilacinum 36-1. Front Microbiol 2016; 7:1084. [PMID: 27486440 PMCID: PMC4949223 DOI: 10.3389/fmicb.2016.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/28/2016] [Indexed: 01/12/2023] Open
Abstract
Purpureocillium lilacinum is a promising nematophagous ascomycete able to adapt diverse environments and it is also an opportunistic fungus that infects humans. A microbial inoculant of P. lilacinum has been registered to control plant parasitic nematodes. However, the molecular mechanism of the toxicological processes is still unclear because of the relatively few reports on the subject. In this study, using Illumina paired-end sequencing, the draft genome sequence and the transcriptome of P. lilacinum strain 36-1 infecting nematode-eggs were determined. Whole genome alignment indicated that P. lilacinum 36-1 possessed a more dynamic genome in comparison with P. lilacinum India strain. Moreover, a phylogenetic analysis showed that the P. lilacinum 36-1 had a closer relation to entomophagous fungi. The protein-coding genes in P. lilacinum 36-1 occurred much more frequently than they did in other fungi, which was a result of the depletion of repeat-induced point mutations (RIP). Comparative genome and transcriptome analyses revealed the genes that were involved in pathogenicity, particularly in the recognition, adhesion of nematode-eggs, downstream signal transduction pathways and hydrolase genes. By contrast, certain numbers of cellulose and xylan degradation genes and a lack of polysaccharide lyase genes showed the potential of P. lilacinum 36-1 as an endophyte. Notably, the expression of appressorium-formation and antioxidants-related genes exhibited similar infection patterns in P. lilacinum strain 36-1 to those of the model entomophagous fungi Metarhizium spp. These results uncovered the specific parasitism of P. lilacinum and presented the genes responsible for the infection of nematode-eggs.
Collapse
Affiliation(s)
- Jialian Xie
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Shaojun Li
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Chenmi Mo
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Xueqiong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Gaofeng Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
50
|
Kulkarni KS, Zala HN, Bosamia TC, Shukla YM, Kumar S, Fougat RS, Patel MS, Narayanan S, Joshi CG. De novo Transcriptome Sequencing to Dissect Candidate Genes Associated with Pearl Millet-Downy Mildew (Sclerospora graminicola Sacc.) Interaction. FRONTIERS IN PLANT SCIENCE 2016; 7:847. [PMID: 27446100 PMCID: PMC4916200 DOI: 10.3389/fpls.2016.00847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/30/2016] [Indexed: 05/21/2023]
Abstract
Understanding the plant-pathogen interactions is of utmost importance to design strategies for minimizing the economic deficits caused by pathogens in crops. With an aim to identify genes underlying resistance to downy mildew, a major disease responsible for productivity loss in pearl millet, transcriptome analysis was performed in downy mildew resistant and susceptible genotypes upon infection and control on 454 Roche NGS platform. A total of ~685 Mb data was obtained with 1 575 290 raw reads. The raw reads were pre-processed into high-quality (HQ) reads making to ~82% with an average of 427 bases. The assembly was optimized using four assemblers viz. Newbler, MIRA, CLC and Trinity, out of which MIRA with a total of 14.10 Mb and 90118 transcripts proved to be the best for assembling reads. Differential expression analysis depicted 1396 and 936 and 1000 and 1591 transcripts up and down regulated in resistant inoculated/resistant control and susceptible inoculated/susceptible control respectively with a common of 3644 transcripts. The pathways for secondary metabolism, specifically the phenylpropanoid pathway was up-regulated in resistant genotype. Transcripts up-regulated as a part of defense response included classes of R genes, PR proteins, HR induced proteins and plant hormonal signaling transduction proteins. The transcripts for skp1 protein, purothionin, V type proton ATPase were found to have the highest expression in resistant genotype. Ten transcripts, selected on the basis of their involvement in defense mechanism were validated with qRT-PCR and showed positive co-relation with transcriptome data. Transcriptome analysis evoked potentials of hypersensitive response and systemic acquired resistance as possible mechanism operating in defense mechanism in pearl millet against downy mildew infection.
Collapse
Affiliation(s)
- Kalyani S. Kulkarni
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
- Department of Biotechnology, ICAR-Indian Institute of Rice ResearchHyderabad, India
| | - Harshvardhan N. Zala
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | - Tejas C. Bosamia
- Department of Biotechnology, Junagadh Agriculture UniversityJunagadh, India
| | - Yogesh M. Shukla
- Department of Biochemistry, Anand Agricultural UniversityAnand, India
| | - Sushil Kumar
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | - Ranbir S. Fougat
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | - Mruduka S. Patel
- Department of Agricultural Biotechnology, Anand Agricultural UniversityAnand, India
| | | | - Chaitanya G. Joshi
- Department of Animal Biotechnology, Anand Agricultural UniversityAnand, India
| |
Collapse
|