1
|
Perspectives on microRNAs and Phased Small Interfering RNAs in Maize ( Zea mays L.): Functions and Big Impact on Agronomic Traits Enhancement. PLANTS 2019; 8:plants8060170. [PMID: 31212808 PMCID: PMC6630462 DOI: 10.3390/plants8060170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/05/2023]
Abstract
Small RNA (sRNA) population in plants comprises of primarily micro RNAs (miRNAs) and small interfering RNAs (siRNAs). MiRNAs play important roles in plant growth and development. The miRNA-derived secondary siRNAs are usually known as phased siRNAs, including phasiRNAs and tasiRNAs. The miRNA and phased siRNA biogenesis mechanisms are highly conserved in plants. However, their functional conservation and diversification may differ in maize. In the past two decades, lots of miRNAs and phased siRNAs have been functionally identified for curbing important maize agronomic traits, such as those related to developmental timing, plant architecture, sex determination, reproductive development, leaf morphogenesis, root development and nutrition, kernel development and tolerance to abiotic stresses. In contrast to Arabidopsis and rice, studies on maize miRNA and phased siRNA biogenesis and functions are limited, which restricts the small RNA-based fundamental and applied studies in maize. This review updates the current status of maize miRNA and phased siRNA mechanisms and provides a survey of our knowledge on miRNA and phased siRNA functions in controlling agronomic traits. Furthermore, improvement of those traits through manipulating the expression of sRNAs or their targets is discussed.
Collapse
|
2
|
Katsarou K, Mitta E, Bardani E, Oulas A, Dadami E, Kalantidis K. DCL-suppressed Nicotiana benthamiana plants: valuable tools in research and biotechnology. MOLECULAR PLANT PATHOLOGY 2019; 20:432-446. [PMID: 30343523 PMCID: PMC6637889 DOI: 10.1111/mpp.12761] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA silencing is a universal mechanism involved in development, epigenetic modifications and responses to biotic and abiotic stresses. The major components of this mechanism are Dicer-like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) proteins. Understanding the role of each component is of great scientific and agronomic importance. Plants, including Nicotiana benthamiana, an important plant model, usually possess four DCL proteins, each of which has a specific role, namely being responsible for the production of an exclusive small RNA population. Here, we used RNA interference (RNAi) technology to target DCL proteins and produced single and combinatorial mutants for DCL. We analysed the phenotype for each DCL knockdown plant, together with the small RNA profile, by next-generation sequencing (NGS). We also investigated transgene expression, as well as viral infections, and were able to show that DCL suppression results in distinct developmental defects, changes in small RNA populations, increases in transgene expression and, finally, higher susceptibility in certain RNA viruses. Therefore, these plants are excellent tools for the following: (i) to study the role of DCL enzymes; (ii) to overexpress proteins of interest; and (iii) to understand the complex relationship between the plant silencing mechanism and biotic or abiotic stresses.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Eleni Mitta
- Department of BiologyUniversity of CreteHeraklionGreece
| | | | - Anastasis Oulas
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Present address:
Bioinformatics Group, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Elena Dadami
- Department of BiologyUniversity of CreteHeraklionGreece
- Present address:
RLP AgroScience, AlPlantaNeustadtGermany
| | - Kriton Kalantidis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Department of BiologyUniversity of CreteHeraklionGreece
| |
Collapse
|
3
|
Yew CL, Kakui H, Shimizu KK. Agrobacterium-mediated floral dip transformation of the model polyploid species Arabidopsis kamchatica. JOURNAL OF PLANT RESEARCH 2018; 131:349-358. [PMID: 29032409 DOI: 10.1007/s10265-017-0982-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Polyploidization has played an important role in the speciation and diversification of plant species. However, genetic analyses of polyploids are challenging because the vast majority of the model species are diploids. The allotetraploid Arabidopsis kamchatica, which originated through the hybridization of the diploid Arabidopsis halleri and Arabidopsis lyrata, is an emerging model system for studying various aspects of polyploidy. However, a transgenic method that allows the insertion of a gene of interest into A. kamchatica is still lacking. In this study, we investigated the early development of pistils in A. kamchatica and confirmed the formation of open pistils in young flower buds (stages 8-9), which is important for allowing Agrobacterium to access female reproductive tissues. We established a simple Agrobacterium-mediated floral dip transformation method to transform a gene of interest into A. kamchatica by dipping A. kamchatica inflorescences bearing many young flower buds into a 5% sucrose solution containing 0.05% Silwet L-77 and Agrobacterium harboring the gene of interest. We showed that a screenable marker comprising fluorescence-accumulating seed technology with green fluorescent protein was useful for screening the transgenic seeds of two accessions of A. kamchatica subsp. kamchatica and an accession of A. kamchatica subsp. kawasakiana.
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan.
| |
Collapse
|
4
|
Fang X, Shi Y, Lu X, Chen Z, Qi Y. CMA33/XCT Regulates Small RNA Production through Modulating the Transcription of Dicer-Like Genes in Arabidopsis. MOLECULAR PLANT 2015; 8:1227-36. [PMID: 25770820 DOI: 10.1016/j.molp.2015.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 05/20/2023]
Abstract
Small RNAs (sRNAs) play important regulatory roles in various aspects of plant biology. They are processed from double-stranded RNA precursors by Dicer-like (DCL) proteins. There are three major classes of sRNAs in Arabidopsis: DCL1-dependent microRNA (miRNA), DCL3-dependent heterochromatic siRNA (hc-siRNA), and DCL4-dependent trans-acting siRNA (ta-siRNA). We have previously isolated a mutant with compromised miRNA activity, cma33. Here we show that CMA33 encodes a nuclear localized protein, XAP5 CIRCADIAN TIMEKEEPER (XCT). The cma33/xct mutation led to reduced accumulation of not only miRNAs but also hc-siRNAs and ta-siRNAs. Intriguingly, we found that the expression of DCL1, DCL3, and DCL4, but not other genes in the sRNA biogenesis pathways, was decreased in cma33/xct. Consistent with this, the occupancy of Pol II at DCL1, DCL3, and DCL4 genes was reduced upon the loss of CMA33/XCT. Collectively, our data suggest that CMA33/XCT modulates sRNA production through regulating the transcription of DCLs.
Collapse
Affiliation(s)
- Xiaofeng Fang
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yupeng Shi
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xiuli Lu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zulong Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | - Yijun Qi
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Wang YG, An M, Zhou SF, She YH, Li WC, Fu FL. Expression profile of maize microRNAs corresponding to their target genes under drought stress. Biochem Genet 2014; 52:474-93. [PMID: 25027834 DOI: 10.1007/s10528-014-9661-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 07/30/2013] [Indexed: 01/21/2023]
Abstract
Microarray assay of four inbred lines was used to identify 303 microRNAs differentially expressed under drought stress. The microRNAs were used for bioinformatics prediction of their target genes. The majority of the differentially expressed microRNA families showed different expression profiles at different time points of the stress process among the four inbred lines. Digital gene expression profiling revealed 54 genes targeted by 128 of the microRNAs differentially expressed under the same stress conditions. The differential expression of miR159 and miR168 was further validated by locked nucleic acid northern hybridization. These results indicated that miR159 and miR168, as well as numerous other microRNAs, play critical roles in signaling pathways of maize response to drought stress. However, the level of the post-transcriptional regulation mediated by microRNAs had different responses among genotypes, and the gene expression related to signaling pathways under drought stress is also regulated, possibly by multiple mechanisms.
Collapse
Affiliation(s)
- Ying-Ge Wang
- Maize Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, 611130, Sichuan, China
| | | | | | | | | | | |
Collapse
|
6
|
Moghe GD, Shiu SH. The causes and molecular consequences of polyploidy in flowering plants. Ann N Y Acad Sci 2014; 1320:16-34. [PMID: 24903334 DOI: 10.1111/nyas.12466] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polyploidy is an important force shaping plant genomes. All flowering plants are descendants of an ancestral polyploid species, and up to 70% of extant vascular plant species are believed to be recent polyploids. Over the past century, a significant body of knowledge has accumulated regarding the prevalence and ecology of polyploid plants. In this review, we summarize our current understanding of the causes and molecular consequences of polyploidization in angiosperms. We also provide a discussion on the relationships between polyploidy and adaptation and suggest areas where further research may provide a better understanding of polyploidy.
Collapse
|
7
|
Osabe K, Kawanabe T, Sasaki T, Ishikawa R, Okazaki K, Dennis ES, Kazama T, Fujimoto R. Multiple mechanisms and challenges for the application of allopolyploidy in plants. Int J Mol Sci 2012; 13:8696-8721. [PMID: 22942729 PMCID: PMC3430260 DOI: 10.3390/ijms13078696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/04/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022] Open
Abstract
An allopolyploid is an individual having two or more complete sets of chromosomes derived from different species. Generation of allopolyploids might be rare because of the need to overcome limitations such as co-existing populations of parental lines, overcoming hybrid incompatibility, gametic non-reduction, and the requirement for chromosome doubling. However, allopolyploids are widely observed among plant species, so allopolyploids have succeeded in overcoming these limitations and may have a selective advantage. As techniques for making allopolyploids are developed, we can compare transcription, genome organization, and epigenetic modifications between synthesized allopolyploids and their direct parental lines or between several generations of allopolyploids. It has been suggested that divergence of transcription caused either genetically or epigenetically, which can contribute to plant phenotype, is important for the adaptation of allopolyploids.
Collapse
Affiliation(s)
- Kenji Osabe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| | - Takahiro Kawanabe
- Watanabe Seed Co., Ltd, Machiyashiki, Misato-cho, Miyagi 987-8607, Japan; E-Mail:
| | - Taku Sasaki
- Watanabe Seed Co., Ltd, Machiyashiki, Misato-cho, Miyagi 987-8607, Japan; E-Mail:
| | - Ryo Ishikawa
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8510, Japan; E-Mail:
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK; E-Mail:
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata 950-2181, Japan; E-Mail:
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| | - Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981-8555, Japan; E-Mail:
| | - Ryo Fujimoto
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata 950-2181, Japan; E-Mail:
| |
Collapse
|
8
|
Bozorov TA, Pandey SP, Dinh ST, Kim SG, Heinrich M, Gase K, Baldwin IT. DICER-like proteins and their role in plant-herbivore interactions in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:189-206. [PMID: 22313877 DOI: 10.1111/j.1744-7909.2012.01104.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DICER-like (DCL) proteins produce small RNAs that silence genes involved in development and defenses against viruses and pathogens. Which DCLs participate in plant-herbivore interactions remains unstudied. We identified and stably silenced four distinct DCL genes by RNAi in Nicotiana attenuata (Torrey ex. Watson), a model for the study of plant-herbivore interactions. Silencing DCL1 expression was lethal. Manduca sexta larvae performed significantly better on ir-dcl3 and ir-dcl4 plants, but not on ir-dcl2 plants compared to wild type plants. Phytohormones, defense metabolites and microarray analyses revealed that when DCL3 and DCL4 were silenced separately, herbivore resistance traits were regulated in distinctly different ways. Crossing of the lines revealed complex interactions in the patterns of regulation. Single ir-dcl4 and double ir-dcl2 ir-dcl3 plants were impaired in JA accumulation, while JA-Ile was increased in ir-dcl3 plants. Ir-dcl3 and ir-dcl4 plants were impaired in nicotine accumulation; silencing DCL2 in combination with either DCL3 or DCL4 restored nicotine levels to those of WT. Trypsin proteinase inhibitor activity and transcripts were only silenced in ir-dcl3 plants. We conclude that DCL2/3/4 interact in a complex manner to regulate anti-herbivore defenses and that these interactions significantly complicate the already challenging task of understanding smRNA function in the regulation of biotic interactions.
Collapse
|
9
|
Zhang C, Ng DWK, Lu J, Chen ZJ. Roles of target site location and sequence complementarity in trans-acting siRNA formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:217-226. [PMID: 21910773 DOI: 10.1111/j.1365-313x.2011.04783.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In plants, many mRNAs and non-coding RNAs are cleaved by RNA-induced silencing complexes. After cleavage, only a limited number of RNAs are processed into trans-acting siRNAs (tasiRNAs). One reason is that 22 nt small RNAs, but not the more common 21 nt small RNAs, can efficiently trigger tasiRNA formation. The characteristics of the target transcripts may also affect tasiRNA production. Here we report the effects of target site location and sequence complementarity on tasiRNA formation. A synthetic sequence that included a miR173 target site and two siRNAs targeting an endogenous mRNA encoding PHYTOENE DESATURASE3 was introduced into a protein-coding (GFP) gene in the coding region or 3' UTR. tasiRNAs were generated in the transgenic seedlings, and the PDS3 mRNA level was reduced, leading to a photobleaching phenotype. It was found that tasiRNAs were most efficiently produced when the miR173 target site was placed immediately after the stop codon. Introducing premature stop codons caused a dramatic reduction of tasiRNAs and over-accumulation of 3' cleavage products, suggesting positive effects of translation on processing the 3' cleavage products into tasiRNAs. By systematically mutating the miR173 target site, we found that perfect complementarity between the 3' end of miR173 and the 5' end of the target sequence was crucial. Mismatches at that position abolished tasiRNA formation, but mismatches at the 5' end of miR173 had less effect. These data suggest important roles for translation and specific sequence complementarity in tasiRNA formation, providing new insights into tasiRNA biogenesis as well as a strategy for improving the efficiency of RNA interference (RNAi) using tasiRNAs.
Collapse
Affiliation(s)
- Changqing Zhang
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
10
|
Ng DWK, Zhang C, Miller M, Palmer G, Whiteley M, Tholl D, Chen ZJ. cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. THE PLANT CELL 2011; 23:1729-40. [PMID: 21602291 PMCID: PMC3123960 DOI: 10.1105/tpc.111.083915] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/05/2011] [Accepted: 05/03/2011] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in plant and animal development, but the cause and effect of miRNA expression divergence between closely related species and in interspecific hybrids or allopolyploids are unknown. Here, we show differential regulation of a miR163-mediated pathway in allotetraploids and their progenitors, Arabidopsis thaliana and Arabidopsis arenosa. miR163 is a recently evolved miRNA in A. thaliana and highly expressed in A. thaliana, but its expression was undetectable in A. arenosa and repressed in resynthesized allotetraploids. Repression of A. arenosa MIR163 (Aa MIR163) is caused by a weak cis-acting promoter and putative trans-acting repressor(s) present in A. arenosa and allotetraploids. Moreover, ectopic Aa MIR163 precursors were processed more efficiently in A. thaliana than in resynthesized allotetraploids, suggesting a role of posttranscriptional regulation in mature miR163 abundance. Target genes of miR163 encode a family of small molecule methyltransferases involved in secondary metabolite biosynthetic pathways that are inducible by a fungal elicitor, alamethicin. Loss of miR163 or overexpression of miR163 in mir163 mutant plants alters target transcript and secondary metabolite profiles. We suggest that cis- and trans-regulation of miRNA and other genes provides a molecular basis for natural variation of biochemical and metabolic pathways that are important to growth vigor and stress responses in Arabidopsis-related species and allopolyploids.
Collapse
MESH Headings
- Alamethicin/pharmacology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- DNA, Complementary/genetics
- Epigenesis, Genetic
- Fatty Acids, Unsaturated/metabolism
- Gene Expression Regulation, Plant/genetics
- Gene Transfer, Horizontal
- Genes, Plant/genetics
- Genome, Plant/genetics
- Methyltransferases/drug effects
- Methyltransferases/genetics
- Methyltransferases/metabolism
- MicroRNAs/genetics
- Mutagenesis, Insertional
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Polyploidy
- Promoter Regions, Genetic/genetics
- RNA, Plant/genetics
- Sequence Analysis, DNA
- Species Specificity
- Stress, Physiological
Collapse
Affiliation(s)
- Danny W-K. Ng
- Section of Molecular Cell and Developmental Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, Texas 78712
| | - Changqing Zhang
- Section of Molecular Cell and Developmental Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, Texas 78712
| | - Marisa Miller
- Section of Molecular Cell and Developmental Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, Texas 78712
| | - Gregory Palmer
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Marvin Whiteley
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech University, Blacksburg, Virginia 24061
| | - Z. Jeffrey Chen
- Section of Molecular Cell and Developmental Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, Texas 78712
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
- Address correspondence to
| |
Collapse
|
11
|
Yaakov B, Kashkush K. Massive alterations of the methylation patterns around DNA transposons in the first four generations of a newly formed wheat allohexaploid. Genome 2011; 54:42-9. [DOI: 10.1139/g10-091] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid and reproducible genomic changes can be induced during the early stages of the life of nascent allopolyploid species. In a previous study, it was shown that following allopolyploidization, cytosine methylation changes can affect up to 11% of the wheat genome. However, the methylation patterns around transposable elements (TEs) were never studied in detail. We used transposon methylation display (TMD) to assess the methylation patterns of CCGG sites flanking three TE families (Balduin, Apollo, and Thalos) in the first four generations of a newly formed wheat allohexaploid. In addition, transposon display (TD), using a methylation-insensitive restriction enzyme, was applied to search for genomic rearrangements at the TE insertion sites. We observed that up to 54% of CCGG sites flanking the three TE families showed changes in methylation patterns in the first four generations of a newly formed wheat allohexaploid, where hypermethylation was predominant. Over 70% of the changes in TMD patterns occurred in the first two generations of the newly formed allohexaploid. Furthermore, analysis of 555 TE insertion sites by TD and 18 cases by site-specific PCR revealed a full additive pattern in the allohexaploid, an indication for lack of massive rearrangements. These data indicate that following allopolyplodization, DNA-TE insertion sites can undergo a significantly high level of methylation changes compared with methylation changes of other genomic sequences.
Collapse
Affiliation(s)
- Beery Yaakov
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| |
Collapse
|
12
|
|