1
|
De Rose S, Sillo F, Ghirardo A, Schnitzler JP, Balestrini R, Perotto S. Omics approaches to investigate pre-symbiotic responses of the mycorrhizal fungus Tulasnella sp. SV6 to the orchid host Serapias vomeracea. MYCORRHIZA 2025; 35:26. [PMID: 40172721 PMCID: PMC11965168 DOI: 10.1007/s00572-025-01188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
Like other plant-microbe symbioses, the establishment of orchid mycorrhiza (ORM) is likely to require specific communication and metabolic adjustments between the two partners. However, while modulation of plant and fungal metabolism has been investigated in fully established mycorrhizal tissues, the molecular changes occurring during the pre-symbiotic stages of the interaction remain largely unexplored in ORM. In this study, we investigated the pre-symbiotic responses of the ORM fungus Tulasnella sp. SV6 to plantlets of the orchid host Serapias vomeracea in a dual in vitro cultivation system. The fungal mycelium was harvested prior to physical contact with the orchid roots and the fungal transcriptome and metabolome were analyzed using RNA-seq and untargeted metabolomics approaches. The results revealed distinct transcriptomic and metabolomic remodelling of the ORM fungus in the presence of orchid plantlets, as compared to the free-living condition. The ORM fungus responds to the presence of the host plant with a significant up-regulation of genes associated with protein synthesis, amino acid and lipid biosynthesis, indicating increased metabolic activity. Metabolomic analysis supported the RNA-seq data, showing increased levels of amino acids and phospholipids, suggesting a remodelling of cell structure and signalling during the pre-symbiotic interaction. In addition, we identified an increase of transcripts of a small secreted protein that may play a role in early symbiotic signalling. Taken together, our results suggest that Tulasnella sp. SV6 may perceive information from orchid roots, leading to a readjustment of its transcriptomic and metabolomic profiles.
Collapse
Affiliation(s)
- Silvia De Rose
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, Torino, I-10135, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Torino, I-10125, Italy
| | - Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, Torino, I-10135, Italy
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Raffaella Balestrini
- National Research Council, Institute of Biosciences and Bioresources, Via Amendola 165/A, Bari, I-70126, Italy.
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Torino, I-10125, Italy.
| |
Collapse
|
2
|
Wu J, Li P, Zhu D, Ma H, Li M, Lai Y, Peng Y, Li H, Li S, Wei J, Bian X, Rahman A, Wu S. SlCRCa is a key D-class gene controlling ovule fate determination in tomato. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1966-1980. [PMID: 38561972 PMCID: PMC11182579 DOI: 10.1111/pbi.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 04/04/2024]
Abstract
Cell fate determination and primordium initiation on the placental surface are two key events for ovule formation in seed plants, which directly affect ovule density and seed yield. Despite ovules form in the marginal meristematic tissues of the carpels, angiosperm carpels evolved after the ovules. It is not clear how the development of the ovules and carpels is coordinated in angiosperms. In this study, we identify the S. lycopersicum CRABS CLAW (CRC) homologue SlCRCa as an essential determinant of ovule fate. We find that SlCRCa is not only expressed in the placental surface and ovule primordia but also functions as a D-class gene to block carpel fate and promote ovule fate in the placental surface. Loss of function of SlCRCa causes homeotic transformation of the ovules to carpels. In addition, we find low levels of the S. lycopersicum AINTEGUMENTA (ANT) homologue (SlANT2) favour the ovule initiation, whereas high levels of SlANT2 promote placental carpelization. SlCRCa forms heterodimer with tomato INNER NO OUTER (INO) and AGAMOUS (AG) orthologues, SlINO and TOMATO AGAMOUS1 (TAG1), to repress SlANT2 expression during the ovule initiation. Our study confirms that angiosperm basal ovule cells indeed retain certain carpel properties and provides mechanistic insights into the ovule initiation.
Collapse
Affiliation(s)
- Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengxue Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Danyang Zhu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Haochuan Ma
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Meng Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yixuan Lai
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yuxin Peng
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Haixiao Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinbo Wei
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinxin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Abidur Rahman
- Department of Plant Bio‐Sciences, Faculty of AgricultureIwate UniversityMoriokaJapan
- United Graduate School of Agricultural SciencesIwate UniversityMoriokaJapan
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
3
|
Wang X, Yao R, Lv X, Yi Y, Tang X. Nectar robbing by bees affects the reproductive fitness of the distylous plant Tirpitzia sinensis (Linaceae). Ecol Evol 2023; 13:e10714. [PMID: 37953984 PMCID: PMC10638493 DOI: 10.1002/ece3.10714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Nectar robbing can affect plant reproductive success directly by influencing female and male fitness, and indirectly by affecting pollinator behavior. Flowers have morphological and chemical features that may protect them from nectar robbers. Previous studies on nectar robbing have focused mainly on homotypic plants. It remains unclear how nectar robbing affects the reproductive success of distylous plants, and whether defense strategies of two morphs are different. Nectar-robbing rates on the long- and short-styled morph (L-morph, S-morph) of the distylous Tirpitzia sinensis were investigated. We compared floral traits, the temporal pattern of change in nectar volume and sugar concentration, nectar secondary metabolites, and sugar composition between robbed and unrobbed flowers of two morphs. We tested direct effects of nectar robbing on female and male components of plant fitness and indirect effects of nectar robbing via pollinators. Nectar-robbing rates did not differ between the two morphs. Flowers with smaller sepals and petals were more easily robbed. The floral tube diameter and thickness were greater in L-morphs than in S-morphs, and the nectar rob holes were significantly smaller in L-morphs than in S-morphs. Nectar robbing significantly decreased nectar replenishment rate but did not affect nectar sugar concentration or sugar composition. After robbery, the quantities and diversity of secondary compounds in the nectar of S-morphs increased significantly and total relative contents of secondary compounds in L-morphs showed no obvious changes. Nectar robbing could decrease female fitness by decreasing pollen germination rate and thus decreasing seed set. Nectar robbing had no significant effects on male fitness. Robbed flowers were less likely to be visited by hawkmoth pollinators, especially in S-morphs. These results suggest that nectar robbing could directly and indirectly decrease the female fitness of T. sinensis, and different morphs have evolved different defense mechanisms in response to nectar-robbing pressure.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Renxiu Yao
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Xiaoqin Lv
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Xiaoxin Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
4
|
Fei CH, Tang SS, Shang SH, Dai J, Wang XY, Wang S, Liu WQ, Wang XF. Conspecific pollen advantage mediated by the extragynoecial compitum and its potential to resist interspecific reproductive interference between two Sagittaria species. FRONTIERS IN PLANT SCIENCE 2022; 13:956193. [PMID: 35937372 PMCID: PMC9354020 DOI: 10.3389/fpls.2022.956193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The extragynoecial compitum formed by the incomplete fusion of carpel margins, while allowing intercarpellary growth of pollen tubes in apocarpous angiosperms, may also increase the risk of reproductive interference caused by heterospecific pollen (HP) deposition. In Sagittaria, congeneric HP tubes grow via different paths and enter the ovules later than conspecific pollen (CP) tubes. However, it is unclear how the growth advantage of the CP tube helps ensure reproductive success when HP is deposited on the stigmas. We performed molecular characterization of interspecies-pollinated seeds to examine the consequences of interspecific pollen deposition between Sagittaria pygmaea and S. trifolia. We also conducted CP-HP (1:1) mixed pollination and delayed CP pollination treatments to explore the seed-siring abilities of CP and HP. Our results showed that although HP could trigger the development of fruits, the interspecies-pollinated seeds contained partially developed embryos and could not germinate. More than 70% of the embryos in these seeds were molecularly identified as hybrids of both species, suggesting that HP tubes could enter the ovules and fertilize the egg cells. Moreover, CP could sire more offspring (≥70%) after the CP-HP (1:1) mixed pollination treatment, even when HP reached the stigma 0.5-1 h earlier than CP (≥50%). Following adequate CP vs. HP (1:1) pollination on carpels on two sides of the apocarpous gynoecium, both species produced > 70% conspecific seeds, indicating that the CP tubes could occupy ovules that should be occupied by HP via the extragynoecial compitum. Our results reveal that in Sagittaria, pollen deposition from co-existing congeneric heterospecies leads to interspecific seed discounting. However, the CP advantage mediated by the extragynoecial compitum is an effective strategy to mitigate the effects of interspecific pollen deposition. This study improves our understanding of how apocarpous angiosperms with an extragynoecial compitum can maintain species stability and mitigate the negative reproductive interference effect from sympatrically distributed related species.
Collapse
Affiliation(s)
- Cai-Hong Fei
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Sha-Sha Tang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Shu-He Shang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Dai
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin-Yi Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuai Wang
- College of Life Science, Hengyang Normal University, Hengyang, China
| | - Wei-Qi Liu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Fan Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Phillips HR, Landis JB, Specht CD. Revisiting floral fusion: the evolution and molecular basis of a developmental innovation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3390-3404. [PMID: 32152629 DOI: 10.1093/jxb/eraa125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/02/2020] [Indexed: 05/18/2023]
Abstract
Throughout the evolution of the angiosperm flower, developmental innovations have enabled the modification or elaboration of novel floral organs enabling subsequent diversification and expansion into new niches, for example the formation of novel pollinator relationships. One such developmental innovation is the fusion of various floral organs to form complex structures. Multiple types of floral fusion exist; each type may be the result of different developmental processes and is likely to have evolved multiple times independently across the angiosperm tree of life. The development of fused organs is thought to be mediated by the NAM/CUC3 subfamily of NAC transcription factors, which mediate boundary formation during meristematic development. The goal of this review is to (i) introduce the development of fused floral organs as a key 'developmental innovation', facilitated by a change in the expression of NAM/CUC3 transcription factors; (ii) provide a comprehensive overview of floral fusion phenotypes amongst the angiosperms, defining well-known fusion phenotypes and applying them to a systematic context; and (iii) summarize the current molecular knowledge of this phenomenon, highlighting the evolution of the NAM/CUC3 subfamily of transcription factors implicated in the development of fused organs. The need for a network-based analysis of fusion is discussed, and a gene regulatory network responsible for directing fusion is proposed to guide future research in this area.
Collapse
Affiliation(s)
- Heather R Phillips
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca NY, USA
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca NY, USA
| | - Chelsea D Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca NY, USA
| |
Collapse
|
6
|
Morphological diversity and function of the stigma in Ficus species (Moraceae). ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2018. [DOI: 10.1016/j.actao.2018.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Wang XY, Quan QM, Wang B, Li YX, Huang SQ. Pollen competition between morphs in a pollen-color dimorphic herb and the loss of phenotypic polymorphism within populations. Evolution 2018; 72:785-797. [PMID: 29399790 DOI: 10.1111/evo.13445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Xiao-Yue Wang
- Institute of Evolution and Ecology, School of Life Sciences; Central China Normal University; Wuhan 430079 China
- School of Life Science; Guizhou Normal University; Guiyang 550001 China
| | - Qiu-Mei Quan
- College of Environmental Science and Engineering; China West Normal University; Nanchong 637002 China
| | - Bo Wang
- State Key Lab of Hybrid Rice, College of Life Sciences; Wuhan University; Wuhan 430072 China
| | - Yun-Xiang Li
- College of Environmental Science and Engineering; China West Normal University; Nanchong 637002 China
| | - Shuang-Quan Huang
- Institute of Evolution and Ecology, School of Life Sciences; Central China Normal University; Wuhan 430079 China
| |
Collapse
|
8
|
Lau JYY, Pang C, Ramsden L, Saunders RMK. Stigmatic exudate in the Annonaceae: Pollinator reward, pollen germination medium or extragynoecial compitum? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:881-894. [PMID: 28880427 PMCID: PMC5725718 DOI: 10.1111/jipb.12598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 05/10/2023]
Abstract
Although "dry-type" stigmas are widely regarded as ancestral in angiosperms, the early-divergent family Annonaceae has copious stigmatic exudate. We evaluate three putative functions for this exudate: as a nutritive reward for pollinators; as a pollen germination medium; and as an extragynoecial compitum that enables pollen tube growth between carpels. Stigmatic exudate is fructose dominated (72.2%), but with high levels of glucose and sucrose; the dominance of hexose sugars and the diversity of amino acids observed, including many that are essential for insects, support a nutritive role for pollinators. Sugar concentration in pre-receptive flowers is high (28.2%), falling during the peak period of stigmatic receptivity (17.4%), and then rising again toward the end of the pistillate phase (32.9%). Pollen germination was highest in sugar concentrations <20%. Sugar concentrations during the peak pistillate phase therefore provide optimal osmolarity for pollen hydration and germination; subsequent changes in sugar concentration during anthesis reinforce protogyny (in which carpels mature before stamens), enabling the retention of concentrated exudate into the staminate phase as a pollinator food reward without the possibility of pollen germination. Intercarpellary growth of pollen tubes was confirmed: the exudate therefore also functions as a suprastylar extragynoecial compitum, overcoming the limitations of apocarpy.
Collapse
Affiliation(s)
- Jenny Y. Y. Lau
- School of Biological Sciencesthe University of Hong KongPokfulam RoadHong KongChina
| | - Chun‐Chiu Pang
- School of Biological Sciencesthe University of Hong KongPokfulam RoadHong KongChina
| | - Lawrence Ramsden
- School of Biological Sciencesthe University of Hong KongPokfulam RoadHong KongChina
| | | |
Collapse
|
9
|
Luo SX, Liu TT, Cui F, Yang ZY, Hu XY, Renner SS. Coevolution with pollinating resin midges led to resin-filled nurseries in the androecia, gynoecia and tepals of Kadsura (Schisandraceae). ANNALS OF BOTANY 2017; 120:653-664. [PMID: 28444386 PMCID: PMC5714246 DOI: 10.1093/aob/mcx024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 02/23/2017] [Indexed: 05/04/2023]
Abstract
Background and Aims Resin is a defence against herbivores and a floral reward in a few African and South American species whose bee pollinators collect it for nest construction. Here we describe a new role for floral resin from the Asian genus Kadsura (Schisandraceae). Kadsura tepals tightly cover a globe formed by carpels (in females) or near-fused stamens with fleshy connectives (in male flowers of most, but not all species). Methods We carried out field observations at four sites in China and used pollinator behavioural assays, chemical analyses and time-calibrated insect and plant phylogenies to investigate the specificity of the interactions and their relationship to floral structure. Key Results Nocturnal resin midges ( Resseliella , Cecidomyiidae) walk around on the flowers' sexual organs to oviposit, thereby transferring pollen and wounding tissues. The larvae then develop in resin-filled chambers. Male and female floral scents are dominated by α-pinene, while the resinous exudate is dominated by caryophyllene. As revealed by barcoding of multiple midge larvae per flower species, the mutualisms are species specific and appear to have evolved over the past 6-9 million years. Conclusions Resin feeding, not pollen or ovule feeding, by midge larvae explains the abundant Kadsura exudates, highlighting the poorly known world of nocturnal flower-fly interactions.
Collapse
Affiliation(s)
- Shi-Xiao Luo
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Ting-Ting Liu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Fei Cui
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Zi-Yin Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Ying Hu
- Public Laboratory, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Susanne S Renner
- Systematic Botany and Mycology, Faculty of Biology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
10
|
Lora J, Hormaza JI, Herrero M. The Diversity of the Pollen Tube Pathway in Plants: Toward an Increasing Control by the Sporophyte. FRONTIERS IN PLANT SCIENCE 2016; 7:107. [PMID: 26904071 PMCID: PMC4746263 DOI: 10.3389/fpls.2016.00107] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/20/2016] [Indexed: 05/06/2023]
Abstract
Plants, unlike animals, alternate multicellular diploid, and haploid generations in their life cycle. While this is widespread all along the plant kingdom, the size and autonomy of the diploid sporophyte and the haploid gametophyte generations vary along evolution. Vascular plants show an evolutionary trend toward a reduction of the gametophyte, reflected both in size and lifespan, together with an increasing dependence from the sporophyte. This has resulted in an overlooking of the importance of the gametophytic phase in the evolution of higher plants. This reliance on the sporophyte is most notorious along the pollen tube journey, where the male gametophytes have to travel a long way inside the sporophyte to reach the female gametophyte. Along evolution, there is a change in the scenery of the pollen tube pathway that favors pollen competition and selection. This trend, toward apparently making complicated what could be simple, appears to be related to an increasing control of the sporophyte over the gametophyte with implications for understanding plant evolution.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora – University of Málaga – Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - José I. Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora – University of Málaga – Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - María Herrero
- Department of Pomology, Estación Experimental Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
11
|
Li PS, Thomas DC, Saunders RMK. Phylogenetic Reconstruction, Morphological Diversification and Generic Delimitation of Disepalum (Annonaceae). PLoS One 2015; 10:e0143481. [PMID: 26630651 PMCID: PMC4668016 DOI: 10.1371/journal.pone.0143481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/04/2015] [Indexed: 01/02/2023] Open
Abstract
Taxonomic delimitation of Disepalum (Annonaceae) is contentious, with some researchers favoring a narrow circumscription following segregation of the genus Enicosanthellum. We reconstruct the phylogeny of Disepalum and related taxa based on four chloroplast and two nuclear DNA regions as a framework for clarifying taxonomic delimitation and assessing evolutionary transitions in key morphological characters. Maximum parsimony, maximum likelihood and Bayesian methods resulted in a consistent, well-resolved and strongly supported topology. Disepalum s.l. is monophyletic and strongly supported, with Disepalum s.str. and Enicosanthellum retrieved as sister groups. Although this topology is consistent with both taxonomic delimitations, the distribution of morphological synapomorphies provides greater support for the inclusion of Enicosanthellum within Disepalum s.l. We propose a novel infrageneric classification with two subgenera. Subgen. Disepalum (= Disepalum s.str.) is supported by numerous synapomorphies, including the reduction of the calyx to two sepals and connation of petals. Subgen. Enicosanthellum lacks obvious morphological synapomorphies, but possesses several diagnostic characters (symplesiomorphies), including a trimerous calyx and free petals in two whorls. We evaluate changes in petal morphology in relation to hypotheses of the genetic control of floral development and suggest that the compression of two petal whorls into one and the associated fusion of contiguous petals may be associated with the loss of the pollination chamber, which in turn may be associated with a shift in primary pollinator. We also suggest that the formation of pollen octads may be selectively advantageous when pollinator visits are infrequent, although this would only be applicable if multiple ovules could be fertilized by each octad; since the flowers are apocarpous, this would require an extragynoecial compitum to enable intercarpellary growth of pollen tubes. We furthermore infer that the monocarp fruit stalks are likely to have evolved independently from those in other Annonaceae genera and may facilitate effective dispersal by providing a color contrast within the fruit.
Collapse
Affiliation(s)
- Pui-Sze Li
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Daniel C. Thomas
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Richard M. K. Saunders
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- * E-mail:
| |
Collapse
|
12
|
Zhang Y, Zhang L, Zhao X, Huang S, Zhao J. Effects of tidal action on pollination and reproductive allocation in an estuarine emergent wetland plant-Sagittaria graminea (Alismataceae). PLoS One 2013; 8:e78956. [PMID: 24244393 PMCID: PMC3823993 DOI: 10.1371/journal.pone.0078956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/17/2013] [Indexed: 11/21/2022] Open
Abstract
In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water) on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water.
Collapse
Affiliation(s)
- Yanwen Zhang
- Department of Biology, Eastern Liaoning University, Dandong, China
- Department of Biology, Changchun Normal University, Changchun, China
| | - Lihui Zhang
- Department of Biology, Changchun Normal University, Changchun, China
| | - Xingnan Zhao
- Department of Biology, Changchun Normal University, Changchun, China
| | - Shengjun Huang
- Department of Biology, Eastern Liaoning University, Dandong, China
| | - Jimin Zhao
- Department of Biology, Changchun Normal University, Changchun, China
| |
Collapse
|
13
|
Mangla Y, Tandon R, Goel S, Raina SN. Structural organization of the gynoecium and pollen tube path in
Himalayan sea buckthorn, Hippophae rhamnoides
(Elaeagnaceae). AOB PLANTS 2013; 5:plt015. [PMCID: PMC4130438 DOI: 10.1093/aobpla/plt015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/18/2013] [Indexed: 06/04/2023]
Abstract
Gynoecium of Hippophae rhamnoides (Elaeagnaceae) is comprised of a
single carpel and develops by enfolding of the carpel margins. The enfolding results
in a vertical slit over the ventral surface of ovary. The pollen tube path is
initially sub-stigmatic and is subsequently along the epidermal surface of slit. The
tube accesses the solitary ovule through a pore positioned in the slit. These
findings would be useful in understanding the evolution of transmitting tract in
general and knowledge of pollen-pistil interaction of the species in particular. Closure of carpels or angiospermy, a key developmental innovation, has been
accomplished through different ontogenic routes among the flowering plants. The
mechanism of angiospermy produces structural novelties in the gynoecium, which in
turn affects the progamic phase. In this paper, we present the structural details of
the gynoecium and functional attributes of the progamic phase of Hippophae
rhamnoides, a dioecious species of Elaeagnaceae. The gynoecium is
unicarpellate, and the carpel is dorsiventrally symmetric and conduplicate. The
pollen tube path comprises a prominent, ventrally localized dry and non-papillate
stigma, a pseudostyle and a dorsally protruded superior ovary. The pollen tube path
in the stigmatic region is subdermal, and from the pseudostyle onwards, it resides
over the epidermis of conduplicated margins. The epidermal cells along this region
are secretory but produce sparse extracellular matrix. The tube approaches the
solitary ovule through a tiny conduit in the carpel, the ventral pore. The duration
of the entire progamic phase is ∼72 h. The observed mean pollen tube length
from stigma to ovule was 908.13 ± 180 µm and the mean tube growth rate
was 18.75 µm h−1. The study demonstrates that sea buckthorn,
a core eudicot, has a simple gynoecium with a pollen tube pathway that incorporates
elements of both completely externalized and internalized compitum.
Collapse
Affiliation(s)
- Yash Mangla
- Department of Botany,
University of Delhi, Delhi 110
007, India
| | - Rajesh Tandon
- Department of Botany,
University of Delhi, Delhi 110
007, India
| | - Shailendra Goel
- Department of Botany,
University of Delhi, Delhi 110
007, India
| | - S. N. Raina
- Amity Institute of Biotechnology,
Amity University, Sector 125, Noida 210 303,
Uttar Pradesh, India
| |
Collapse
|