1
|
Liang R, Ji X, Sheng Z, Liu J, Qiang S, Song X. Fitness and Rhizobacteria of F2, F3 Hybrids of Herbicide-Tolerant Transgenic Soybean and Wild Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:3184. [PMID: 36432913 PMCID: PMC9693618 DOI: 10.3390/plants11223184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The introduction of herbicide-tolerant (HT) transgenic soybeans (Glycine max (L.) Merr.) into farming systems raises great concern that transgenes may flow to endemic wild soybeans (Glycine soja Sieb. et Zucc.) via pollen, which may increase the ecological risks by increasing the fitness of hybrids under certain conditions and threaten the genetic diversity of wild soybean populations. In order to demonstrate the potential risk of gene flow from the HT soybean to the wild soybean, the fitness of F2 and F3 hybrids obtained from two wild soybean populations (HLJHRB-1, JSCZ) collected from China and the HT soybean was measured under farmland and wasteland soil conditions, as well as with or without weed competition. Compared with their wild progenitors, the F2 and F3 hybrids of HLJHRB-1 displayed a higher emergence rate, higher aboveground dry biomass, more pods and filled-seed plants, as well as better composite fitness under four planting conditions. The F2 and F3 hybrids of JSCZ also displayed a higher emergence rate, higher aboveground dry biomass, more pods, and more filled seeds per plant under mixed planting, whereas these characteristics were lower under pure planting conditions in wasteland and farmland soil. Therefore, the composite fitness of JSCZ hybrids was higher or lower depending on the planting conditions. Furthermore, the soil microbial communities of the F3 of HLJHRB-1, JSCZ, and the wild soybean were investigated with 16S rDNA sequencing, which showed that low alpha diversity of rhizobacteria was relative to high fitness, and Rhizobium played an important role in promoting F3 plant growth.
Collapse
|
2
|
Sohn SI, Thamilarasan SK, Pandian S, Oh YJ, Ryu TH, Lee GS, Shin EK. Interspecific Hybridization of Transgenic Brassica napus and Brassica rapa-An Overview. Genes (Basel) 2022; 13:genes13081442. [PMID: 36011353 PMCID: PMC9407623 DOI: 10.3390/genes13081442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
In nature, interspecific hybridization occurs frequently and can contribute to the production of new species or the introgression of beneficial adaptive features between species. It has great potential in agricultural systems to boost the process of targeted crop improvement. In the advent of genetically modified (GM) crops, it has a disadvantage that it involves the transgene escaping to unintended plants, which could result in non-specific weedy crops. Several crop species in the Brassica genus have close kinship: canola (Brassica napus) is an ancestral hybrid of B. rapa and B. oleracea and mustard species such as B. juncea, B. carinata, and B. nigra share common genomes. Hence, intraspecific hybridization among the Brassica species is most common, especially between B. napus and B. rapa. In general, interspecific hybrids cause numerous genetic and phenotypic changes in the parental lines. Consequently, their fitness and reproductive ability are also highly varied. In this review, we discuss the interspecific hybridization and reciprocal hybridization studies of B. napus and B. rapa and their potential in the controlled environment. Further, we address the fate of transgenes (herbicide resistance) and their ability to transfer to their progenies or generations. This could help us to understand the environmental influence of interspecific hybrids and how to effectively manage their transgene escape in the future.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
- Correspondence: ; Tel.: +82-063-238-4712
| | - Senthil Kumar Thamilarasan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Young-Ju Oh
- Institute for Future Environment Ecology Co., Ltd., Jeonju 54883, Korea
| | - Tae-Hun Ryu
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Eun-Kyoung Shin
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| |
Collapse
|
3
|
|
4
|
de Jong TJ, Escobedo Quevedo K, van der Veen-van Wijk CAM, Moshgani M. Performance of aneuploid backcross hybrids between the crop Brassica napus and its wild relative B. rapa. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:67-74. [PMID: 28921773 DOI: 10.1111/plb.12629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Crossings between the diploid wild Brassica rapa (AA, 2n = 20) and the tetraploid cultivar B. napus (AACC, 2n = 38) can readily be made. Backcrosses to the wild B. rapa (BC1 ) produce aneuploids with variable chromosome numbers between 20 and 29. How does survival and performance relate to DNA content of plants? Growth of the BC1 plants was measured in the lab. One plant in the F1 self-pollinated spontaneously and produced abundant F2 seeds that were also examined. The number of C-chromosomes was estimated from DNA values obtained with flow cytometry. Average DNA value of the BC1 was similar to that of the parents, which shows that C-chromosomes do not reduce success of pollen or embryos. The average DNA value in the F2 was 13% higher than in the F1 , suggesting that extra C-chromosomes facilitated gamete success and/or embryo survival. Under both optimal and drought stress conditions growth and survival of BC1 hybrids was similar to that of B. rapa. No significant correlations existed between growth or survival and DNA value. Aneuploid plants were not inferior under the conditions of the growth room and may persist in nature. We discuss other factors, such as herbivory, that could prevent hybrid establishment in the field.
Collapse
Affiliation(s)
- T J de Jong
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | | | | | - M Moshgani
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
- Department of Environmental Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| |
Collapse
|
5
|
Hooftman DAP, Bullock JM, Morley K, Lamb C, Hodgson DJ, Bell P, Thomas J, Hails RS. Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats. ANNALS OF BOTANY 2015; 115:147-157. [PMID: 25452253 PMCID: PMC4284111 DOI: 10.1093/aob/mcu213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/26/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND AIMS Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. METHODS Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. KEY RESULTS The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. CONCLUSIONS Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.
Collapse
Affiliation(s)
- Danny A P Hooftman
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - James M Bullock
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Kathryn Morley
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Caroline Lamb
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - David J Hodgson
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Philippa Bell
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Jane Thomas
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Rosemary S Hails
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| |
Collapse
|
6
|
Luijten SH, Schidlo NS, Meirmans PG, de Jong TJ. Hybridisation and introgression between Brassica napus and B. rapa in the Netherlands. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:262-267. [PMID: 24889091 DOI: 10.1111/plb.12197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
We used flow cytometry, chromosome counting and AFLP markers to investigate gene flow from the crop plant oilseed rape, Brassica napus (AACC) to wild B. rapa (AA) in the Netherlands. From 89 B. napus source populations investigated, all near cropping fields or at transhipment sites, only 19 contained a B. rapa population within a 2.5-km radius. During our survey we found only three populations with F1 hybrids (AAC), as recognized by their nine extra chromosomes and by flow cytometry. These hybrids were all collected in mixed populations where the two species grew in close proximity. Populations with F1 hybrids were not close to crops, but instead were located on road verges with highly disturbed soils, in which both species were probably recruited from the soil seed bank. Many plants in the F2, BC1 or higher backcrosses are expected to carry one to eight C chromosomes. However, these plants were not observed among the hybrids. We further investigated introgression with molecular markers (AFLP) and compared sympatric B. rapa populations (near populations of B. napus) with control populations of B. rapa (no B. napus within at least 7 km). We found no difference between sympatric and control populations in the number of C markers in B. rapa, nor did we find that these sympatric populations closely resembled B. napus. Our data show that hybrids occur but also suggest no recent introgression of alleles from the crop plant B. napus into wild B. rapa in the Dutch populations studied.
Collapse
Affiliation(s)
- S H Luijten
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands; Science4Nature, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
7
|
Statement on a conceptual framework for the risk assessment of certain food additives re‐evaluated under Commission Regulation (EU) No 257/2010. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
8
|
Scientific Opinion on application (EFSA‐GMO‐BE‐2011‐101) for the placing on the market of herbicide‐tolerant genetically modified oilseed rape MON 88302 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
9
|
Liu Y, Wei W, Ma K, Li J, Liang Y, Darmency H. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:42-51. [PMID: 23987810 DOI: 10.1016/j.plantsci.2013.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 07/04/2013] [Accepted: 07/06/2013] [Indexed: 06/02/2023]
Abstract
Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
10
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape events Ms8, Rf3 and Ms8 × Rf3 for import, processing and feed uses in Austria. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
12
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape events Ms8, Rf3 and Ms8 × Rf3 for import, processing and feed uses in Austria. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|