1
|
Pignat JM, Patelli A, Herrmann FR, Kaarna E, Joutsen A, Hallett M, Benninger DH. 50 Hz-Repetitive transcranial magnetic stimulation modulates brain connectivity in Parkinson's disease. Clin Neurophysiol 2025; 174:96-104. [PMID: 40239551 DOI: 10.1016/j.clinph.2025.02.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/19/2025] [Accepted: 02/17/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES High-frequency repetitive transcranial magnetic stimulation (rTMS) may modulate neuronal excitability and promote the presumed "pro-kinetic" gamma frequency, while attenuating the "anti-kinetic" beta frequency. This study explores whether 50 Hz-rTMS and intermittent Theta Burst Stimulation (iTBS), of the primary motor (M1) and dorsolateral prefrontal cortex (DLPFC) enhance the gamma activity and functional connectivity within the motor circuit in Parkinson's disease (PD). METHODS We investigated pre- and post-rTMS interventional EEG in 62 PD patients following 50 Hz-rTMS and iTBS. Power spectral analysis, along with coherence and mutual information embedded in metrics of graph theory, was applied to assess the functional connectivity across the whole brain. RESULTS We found changes in the cluster coefficient and local efficiency of gamma activity in the left M1 following iTBS, and wider-spread changes within the sensorimotor circuit following 50 Hz-rTMS. We found no changes in the power spectrum or entrainment of the gamma activity in the motor cortex or beyond. CONCLUSION The current 50 Hz-rTMS protocols modulate functional connectivity in PD patients, but not the power spectrum. These topological changes do not translate into clinical effects. These stimulation protocols may lack the specificity to be clinically effective. SIGNIFICANCE High frequency rTMS provides new insights in brain connectivity in the gamma bandwidth.
Collapse
Affiliation(s)
- J M Pignat
- Department of Neurology, University Hospital of Lausanne, Switzerland
| | - A Patelli
- Department of Neurology, University Hospital of Lausanne, Switzerland
| | - F R Herrmann
- Division of Geriatrics, Department of Internal Medicine, Rehabilitation and Geriatrics, University Hospitals and University of Geneva, Geneva, Switzerland
| | - E Kaarna
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - A Joutsen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| | - M Hallett
- Medical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - D H Benninger
- Department of Neurology, University Hospital of Lausanne, Switzerland; Department of Neurology, University of Basel, Reha Rheinfelden, Rheinfelden, Switzerland.
| |
Collapse
|
2
|
She X, Qi W, Nix KC, Menchaca M, Cline CC, Wu W, He Z, Baumer FM. Repetitive transcranial magnetic stimulation modulates brain connectivity in children with self-limited epilepsy with centrotemporal spikes. Brain Stimul 2025; 18:287-297. [PMID: 40010636 DOI: 10.1016/j.brs.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
OBJECTIVE Self-limited epilepsy with centrotemporal spikes (SeLECTS) is a common pediatric syndrome in which interictal epileptiform discharges (IEDs) emerge from the motor cortex and children often develop language deficits. IEDs may induce these language deficits by pathologically enhancing brain connectivity. Using a sham-controlled design, we test the impact of inhibitory low-frequency repetitive transcranial magnetic stimulation (rTMS) on connectivity and IEDs in SeLECTS. METHODS Nineteen children participated in a cross-over study comparing active vs. sham motor cortex rTMS. Single pulses of TMS combined with EEG (spTMS-EEG) were applied to the motor cortex before and after rTMS to probe connectivity. Connectivity was quantified by calculating the weighted phase lag index (wPLI) between six regions of interest: bilateral motor cortices (implicated in SeLECTS) and bilateral inferior frontal and superior temporal regions (important for language). IED frequency before and after rTMS was also quantified. RESULTS Active, but not sham, rTMS decreased wPLI connectivity between multiple regions, with the greatest reductions seen in superior temporal connections in the stimulated hemisphere. IED frequency decreased after active but not sham rTMS. SIGNIFICANCE Low-frequency rTMS reduces pathologic hyperconnectivity and IEDs in children with SeLECTS, making it a promising avenue for therapeutic interventions for SeLECTS and potentially other pediatric epilepsy syndromes.
Collapse
Affiliation(s)
- Xiwei She
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Wendy Qi
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kerry C Nix
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Miguel Menchaca
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Zihuai He
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Fiona M Baumer
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Wang Q, Gong A, Feng Z, Bai Y, Ziemann U. Interactions of transcranial magnetic stimulation with brain oscillations: a narrative review. Front Syst Neurosci 2024; 18:1489949. [PMID: 39698203 PMCID: PMC11652484 DOI: 10.3389/fnsys.2024.1489949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Brain responses to transcranial magnetic stimulation (TMS) can be recorded with electroencephalography (EEG) and comprise TMS-evoked potentials and TMS-induced oscillations. Repetitive TMS may entrain endogenous brain oscillations. In turn, ongoing brain oscillations prior to the TMS pulse can influence the effects of the TMS pulse. These intricate TMS-EEG and EEG-TMS interactions are increasingly attracting the interest of researchers and clinicians. This review surveys the literature of TMS and its interactions with brain oscillations as measured by EEG in health and disease.
Collapse
Affiliation(s)
- Qijun Wang
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Anjuan Gong
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhen Feng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
| | - Yang Bai
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang, Jiangxi, China
- Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, Nanchang, Jiangxi, China
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Deng X, Chen X, Li Y, Zhang B, Xu W, Wang J, Zang Y, Dong Q, Chen C, Li J. Online and offline effects of parietal 10 Hz repetitive transcranial magnetic stimulation on working memory in healthy controls. Hum Brain Mapp 2024; 45:e26636. [PMID: 38488458 PMCID: PMC10941606 DOI: 10.1002/hbm.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/30/2023] [Accepted: 02/12/2024] [Indexed: 03/18/2024] Open
Abstract
Parietal alpha activity shows a specific pattern of phasic changes during working memory. It decreases during the encoding and recall phases but increases during the maintenance phase. This study tested whether online rTMS delivered to the parietal cortex during the maintenance phase of a working memory task would increase alpha activity and hence improve working memory. Then, 46 healthy volunteers were randomly assigned to two groups to receive 3-day parietal 10 Hz online rTMS (either real or sham, 3600 pulses in total) that were time-locked to the maintenance phase of a spatial span task (180 trials in total). Behavioral performance on another spatial span task and EEG signals during a change detection task were recorded on the day before the first rTMS (pretest) and the day after the last rTMS (posttest). We found that rTMS improved performance on both online and offline spatial span tasks. For the offline change detection task, rTMS enhanced alpha activity within the maintenance phase and improved interference control of working memory at both behavioral (K score) and neural (contralateral delay activity) levels. These results suggested that rTMS with alpha frequency time-locked to the maintenance phase is a promising way to boost working memory.
Collapse
Affiliation(s)
- Xinping Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental HealthCapital Medical UniversityBeijingChina
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Bofan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Wending Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Jue Wang
- Institute of Sports Medicine and HealthChengdu Sport UniversityChengduChina
| | - Yu‐Feng Zang
- Institute of Psychological SciencesHangzhou Normal UniversityHangzhouChina
- Center for Cognition and Brain DisordersHangzhou Normal University Affiliated HospitalHangzhouChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| | - Chuansheng Chen
- Department of Psychological ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingP.R. China
| |
Collapse
|
5
|
Munot S, Kim N, Huang Y, Keller CJ. Direct cortical stimulation induces short-term plasticity of neural oscillations in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567302. [PMID: 38014071 PMCID: PMC10680685 DOI: 10.1101/2023.11.15.567302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Patterned brain stimulation is commonly employed as a tool for eliciting plasticity in brain circuits and treating neuropsychiatric disorders. Although widely used in clinical settings, there remains a limited understanding of how stimulation-induced plasticity influences neural oscillations and their interplay with the underlying baseline functional architecture. To address this question, we applied 15 minutes of 10Hz focal electrical simulation, a pattern identical to 'excitatory' repetitive transcranial magnetic stimulation (rTMS), to 14 medically-intractable epilepsy patients undergoing intracranial electroencephalographic (iEEG). We quantified the spectral features of the cortico-cortical evoked potential (CCEPs) in these patients before and after stimulation. We hypothesized that for a given region the temporal and spectral components of the CCEP predicted the location and degree of stimulation-induced plasticity. Across patients, low frequency power (alpha and beta) showed the broadest change, while the magnitude of change was stronger in high frequencies (beta and gamma). Next we demonstrated that regions with stronger baseline evoked spectral responses were more likely to undergo plasticity after stimulation. These findings were specific to a given frequency in a specific temporal window. Post-stimulation power changes were driven by the interaction between direction of change in baseline power and temporal window of change. Finally, regions exhibiting early increases and late decreases in evoked baseline power exhibited power changes after stimulation and were independent of stimulation location. Together, these findings that time-frequency baseline features predict post-stimulation plasticity effects demonstrate properties akin to Hebbian learning in humans and extend this theory to the temporal and spectral window of interest. These findings can help improve our understanding of human brain plasticity and lead to more effective brain stimulation techniques.
Collapse
Affiliation(s)
- Saachi Munot
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Naryeong Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| | - Yuhao Huang
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, USA
| | - Corey J. Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, USA
| |
Collapse
|
6
|
Zhang J, Ying C, Qian Z, Jiao X, Tang X, Kong G, Sun J, Wang J, Tang Y. Increased theta-low gamma phase-amplitude coupling in resting electroencephalography after intermittent theta burst stimulation. Neurophysiol Clin 2023; 53:102899. [PMID: 37801870 DOI: 10.1016/j.neucli.2023.102899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVE Intermittent theta burst stimulation (iTBS) is based on the phase-amplitude coupling (PAC) pattern. We aimed to investigate the effect of iTBS on PAC in resting electroencephalography (EEG), which may provide insight into the underlying mechanism. METHODS Twenty-one healthy volunteers were recruited and received both active and sham neuroimaging-guided iTBS on two separate days, which was precisely delivered to the right superior temporal gyrus. On each experimental day, resting EEG was recorded before and after stimulation for each participant. PACs across electrodes and frequency bands were calculated and compared to investigate the effect of iTBS. RESULTS Theta (4-6 Hz) -low gamma (45-55 Hz) PAC over the stimulation site had a significant interaction effect, which increased after the active iTBS but did not differ after the sham iTBS. No significant interaction effect occurred in other cross-frequency couplings such as delta-low gamma, alpha-low gamma, delta-high gamma, theta-high gamma, or alpha-high gamma PAC in the region of interest. CONCLUSION iTBS selectively modulated theta-low gamma PAC at the stimulation area, which exhibited both region- and frequency- specificity. This suggests that PAC may be a bridge connecting external neuromodulation to internal neuroplasticity.
Collapse
Affiliation(s)
- Jie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunwei Ying
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenying Qian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Jiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gai Kong
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, China; Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Vergallito A, Varoli E, Pisoni A, Mattavelli G, Del Mauro L, Feroldi S, Vallar G, Romero Lauro LJ. State-dependent effectiveness of cathodal transcranial direct current stimulation on cortical excitability. Neuroimage 2023; 277:120242. [PMID: 37348625 DOI: 10.1016/j.neuroimage.2023.120242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023] Open
Abstract
The extensive use of transcranial direct current stimulation (tDCS) in experimental and clinical settings does not correspond to an in-depth understanding of its underlying neurophysiological mechanisms. In previous studies, we employed an integrated system of Transcranial Magnetic Stimulation and Electroencephalography (TMS-EEG) to track the effect of tDCS on cortical excitability. At rest, anodal tDCS (a-tDCS) over the right Posterior Parietal Cortex (rPPC) elicits a widespread increase in cortical excitability. In contrast, cathodal tDCS (c-tDCS) fails to modulate cortical excitability, being indistinguishable from sham stimulation. Here we investigated whether an endogenous task-induced activation during stimulation might change this pattern, improving c-tDCS effectiveness in modulating cortical excitability. In Experiment 1, we tested whether performance in a Visuospatial Working Memory Task (VWMT) and a modified Posner Cueing Task (mPCT), involving rPPC, could be modulated by c-tDCS. Thirty-eight participants were involved in a two-session experiment receiving either c-tDCS or sham during tasks execution. In Experiment 2, we recruited sixteen novel participants who performed the same paradigm but underwent TMS-EEG recordings pre- and 10 min post- sham stimulation and c-tDCS. Behavioral results showed that c-tDCS significantly modulated mPCT performance compared to sham. At a neurophysiological level, c-tDCS significantly reduced cortical excitability in a frontoparietal network likely involved in task execution. Taken together, our results provide evidence of the state dependence of c-tDCS in modulating cortical excitability effectively. The conceptual and applicative implications are discussed.
Collapse
Affiliation(s)
- Alessandra Vergallito
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; NeuroMi, Milan Center for Neuroscience, Milano, Italy.
| | - Erica Varoli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alberto Pisoni
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; NeuroMi, Milan Center for Neuroscience, Milano, Italy
| | - Giulia Mattavelli
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, Pavia, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, 27100, Italy
| | - Lilia Del Mauro
- Department of Psychology, University of Milano-Bicocca, Milano, Italy
| | - Sarah Feroldi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Vallar
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; NeuroMi, Milan Center for Neuroscience, Milano, Italy; MiBTec - Mind and Behavior Technological Center, University of Milano-Bicocca, Milan, Italy
| | - Leonor J Romero Lauro
- Department of Psychology, University of Milano-Bicocca, Milano, Italy; NeuroMi, Milan Center for Neuroscience, Milano, Italy
| |
Collapse
|
8
|
Jin J, Wang X, Wang H, Li Y, Liu Z, Yin T. Train duration and inter-train interval determine the direction and intensity of high-frequency rTMS after-effects. Front Neurosci 2023; 17:1157080. [PMID: 37476832 PMCID: PMC10355321 DOI: 10.3389/fnins.2023.1157080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background and objective It has been proved that repetitive transcranial magnetic stimulation (rTMS) triggers the modulation of homeostatic metaplasticity, which causes the effect of rTMS to disappear or even reverse, and a certain length of interval between rTMS trains might break the modulation of homeostatic metaplasticity. However, it remains unknown whether the effects of high-frequency rTMS can be modulated by homeostatic metaplasticity by lengthening the train duration and whether homeostatic metaplasticity can be broken by prolonging the inter-train interval. Methods In this study, 15 subjects participated in two experiments including different rTMS protocols targeting the motor cortex. In the first experiment, high-frequency rTMS protocols with different train durations (2 s and 5 s) and an inter-train interval of 25 s were adopted. In the second experiment, high-frequency rTMS protocols with a train duration of 5 s and different inter-train intervals (50 s and 100 s) were adopted. A sham protocol was also included. Changes of motor evoked potential amplitude acquired from electromyography, power spectral density, and intra-region and inter-region functional connectivity acquired from electroencephalography in the resting state before and after each rTMS protocol were evaluated. Results High-frequency rTMS with 2 s train duration and 25 s inter-train interval increased cortex excitability and the power spectral density of bilateral central regions in the alpha frequency band and enhanced the functional connectivity between central regions and other brain regions. When the train duration was prolonged to 5 s, the after-effects of high-frequency rTMS disappeared. The after-effects of rTMS with 5 s train duration and 100 s inter-train interval were the same as those of rTMS with 2 s train duration and 25 s inter-train interval. Conclusion Our results indicated that train duration and inter-train interval could induce the homeostatic metaplasticiy and determine the direction of intensity of rTMS after-effects, and should certainly be taken into account when performing rTMS in both research and clinical practice.
Collapse
Affiliation(s)
- Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Han M, He J, Chen N, Gao Y, Wang Z, Wang K. Intermittent theta burst stimulation vs. high-frequency repetitive transcranial magnetic stimulation for post-stroke cognitive impairment: Protocol of a pilot randomized controlled double-blind trial. Front Neurosci 2023; 17:1121043. [PMID: 37065916 PMCID: PMC10098089 DOI: 10.3389/fnins.2023.1121043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionIntermittent theta burst stimulation (iTBS), a novel mode of transcranial magnetic stimulation (TMS), has curative effects on patients with post-stroke cognitive impairment (PSCI). However, whether iTBS will be more applicable in clinical use than conventional high-frequency repetitive transcranial magnetic stimulation (rTMS) is unknown. Our study aims to compare the difference in effect between iTBS and rTMS in treating PSCI based on a randomized controlled trial, as well as to determine its safety and tolerability, and to further explore the underlying neural mechanism.MethodsThe study protocol is designed as a single-center, double-blind, randomized controlled trial. Forty patients with PSCI will be randomly assigned to two different TMS groups, one with iTBS and the other with 5 Hz rTMS. Neuropsychological evaluation, activities of daily living, and resting electroencephalography will be conducted before treatment, immediately post-treatment, and 1 month after iTBS/rTMS stimulation. The primary outcome is the change in the Montreal Cognitive Assessment Beijing Version (MoCA-BJ) score from baseline to the end of the intervention (D11). The secondary outcomes comprise changes in resting electroencephalogram (EEG) indexes from baseline to the end of the intervention (D11) as well as the Auditory Verbal Learning Test, the symbol digit modality test, the Digital Span Test findings, and the MoCA-BJ scores from baseline to endpoint (W6).DiscussionIn this study, the effects of iTBS and rTMS will be evaluated using cognitive function scales in patients with PSCI as well as data from resting EEG, which allows for an in-depth exploration of underlying neural oscillations. In the future, these results may contribute to the application of iTBS for cognitive rehabilitation of patients with PSCI.
Collapse
|
10
|
Gornerova N, Brunovsky M, Klirova M, Novak T, Zaytseva Y, Koprivova J, Bravermanova A, Horacek J. The effect of low-frequency rTMS on auditory hallucinations, EEG source localization and functional connectivity in schizophrenia. Neurosci Lett 2023; 794:136977. [PMID: 36427815 DOI: 10.1016/j.neulet.2022.136977] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) diminishes auditory hallucinations (AHs). The aims of our study were a) to assess the efficacy of LF-rTMS in a randomized, sham-controlled double-blind alignment, b) to identify the electrophysiological changes accompanying the LF-rTMS, and c) to identify the influence of LF-rTMS on brain functional connectivity (FC). METHODS Nineteen schizophrenia patients with antipsychotic-resistant AHs were randomized to either active (n = 10) or sham (n = 9) LF-rTMS administered over the left temporo-parietal region for ten days. The clinical effect was assessed by the Auditory Hallucination Rating Scale (AHRS). The localization of the differences in electrical activity was identified by standardized low resolution brain electromagnetic tomography (sLORETA) and FC was measured by lagged phase synchronization. RESULTS AHRS scores were significantly improved for patients receiving active rTMS compared to the sham (median reduction: 40 % vs 12 %; p = 0.01). sLORETA revealed a decrease of alpha-2, beta-1,-2 bands in the left hemisphere in the active group. Active rTMS led to a decrease of the lagged phase connectivity in beta bands originating in areas close to the site of stimulation, and to a prevailing increase of alpha-2 FC. No significant differences in current density or FC were observed in the sham group. LIMITATIONS Limitations to our study included the small group sizes, and the disability of LORETA to assess subcortical neuronal activity. CONCLUSIONS LF-rTMS attenuated AHs and induced a decrease of higher frequency bands on the left hemisphere. The FC changes support the assumption that LF-rTMS is linked to the modulation of cortico-cortical coupling.
Collapse
Affiliation(s)
- Natalie Gornerova
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic.
| | - Martin Brunovsky
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | - Monika Klirova
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | - Tomas Novak
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | - Yuliya Zaytseva
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | - Jana Koprivova
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| | | | - Jiri Horacek
- National Institute of Mental Health, Czech Republic; Third Medical Faculty of Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Farzan F, Bortoletto M. Identification and verification of a 'true' TMS evoked potential in TMS-EEG. J Neurosci Methods 2022; 378:109651. [PMID: 35714721 DOI: 10.1016/j.jneumeth.2022.109651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/05/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
The concurrent combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) can unveil functional neural mechanisms with applications in basic and clinical research. In particular, TMS-evoked potentials (TEPs) potentially allow studying excitability and connectivity of the cortex in a causal manner that is not easily or non-invasively attainable with other neuroimaging techniques. The TEP waveform is obtained by isolating the EEG responses phase-locked to the time of TMS application. The intended component in a TEP waveform is the cortical activation by the TMS-induced electric current, free of instrumental and physiological artifact sources. This artifact-free cortical activation can be referred to as 'true' TEP. However, due to many unwanted auxiliary effects of TMS, the interpretation of 'true' TEPs has not been free of controversy. This paper reviews the most recent understandings of 'true' TEPs and their application. In the first part of the paper, TEP components are defined according to recommended methodologies. In the second part, the verification of 'true' TEP is discussed along with its sensitivity to brain-state, age, and disease. The various proposed origins of TEP components are then presented in the context of existing literature. Throughout the paper, lessons learned from the past TMS-EEG studies are highlighted to guide the identification and interpretation of 'true' TEPs in future studies.
Collapse
Affiliation(s)
- Faranak Farzan
- eBrain Lab, School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia, Canada; University of Toronto, Department of Psychiatry, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Marta Bortoletto
- Neurophysiology lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
12
|
Faller J, Doose J, Sun X, Mclntosh JR, Saber GT, Lin Y, Teves JB, Blankenship A, Huffman S, Goldman RI, George MS, Brown TR, Sajda P. Daily prefrontal closed-loop repetitive transcranial magnetic stimulation (rTMS) produces progressive EEG quasi-alpha phase entrainment in depressed adults. Brain Stimul 2022; 15:458-471. [PMID: 35231608 PMCID: PMC8979612 DOI: 10.1016/j.brs.2022.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation modality that can treat depression, obsessive-compulsive disorder, or help smoking cessation. Research suggests that timing the delivery of TMS relative to an endogenous brain state may affect efficacy and short-term brain dynamics. OBJECTIVE To investigate whether, for a multi-week daily treatment of repetitive TMS (rTMS), there is an effect on brain dynamics that depends on the timing of the TMS relative to individuals' prefrontal EEG quasi-alpha rhythm (between 6 and 13 Hz). METHOD We developed a novel closed-loop system that delivers personalized EEG-triggered rTMS to patients undergoing treatment for major depressive disorder. In a double blind study, patients received daily treatments of rTMS over a period of six weeks and were randomly assigned to either a synchronized or unsynchronized treatment group, where synchronization of rTMS was to their prefrontal EEG quasi-alpha rhythm. RESULTS When rTMS is applied over the dorsal lateral prefrontal cortex (DLPFC) and synchronized to the patient's prefrontal quasi-alpha rhythm, patients develop strong phase entrainment over a period of weeks, both over the stimulation site as well as in a subset of areas distal to the stimulation site. In addition, at the end of the course of treatment, this group's entrainment phase shifts to be closer to the phase that optimally engages the distal target, namely the anterior cingulate cortex (ACC). These entrainment effects are not observed in the group that is given rTMS without initial EEG synchronization of each TMS train. CONCLUSIONS The entrainment effects build over the course of days/weeks, suggesting that these effects engage neuroplastic changes which may have clinical consequences in depression or other diseases.
Collapse
Affiliation(s)
- Josef Faller
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jayce Doose
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaoxiao Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, 20115, USA
| | - James R Mclntosh
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Orthopaedic Surgery, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Golbarg T Saber
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Neurology, University of Chicago, Chicago, IL, 60637, USA
| | - Yida Lin
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Joshua B Teves
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Aidan Blankenship
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sarah Huffman
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Robin I Goldman
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Truman R Brown
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Paul Sajda
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Radiology, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA; Data Science Institute, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
13
|
Mosabbir AA, Braun Janzen T, Al Shirawi M, Rotzinger S, Kennedy SH, Farzan F, Meltzer J, Bartel L. Investigating the Effects of Auditory and Vibrotactile Rhythmic Sensory Stimulation on Depression: An EEG Pilot Study. Cureus 2022; 14:e22557. [PMID: 35371676 PMCID: PMC8958118 DOI: 10.7759/cureus.22557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2022] [Indexed: 12/18/2022] Open
Abstract
Background Major depressive disorder (MDD) is a persistent psychiatric condition and one of the leading causes of global disease burden. In a previous study, we investigated the effects of a five-week intervention consisting of rhythmic gamma frequency (30-70 Hz) vibroacoustic stimulation in 20 patients formally diagnosed with MDD. In that study, the findings suggested a significant clinical improvement in depression symptoms as measured using the Montgomery-Asberg Depression Rating Scale (MADRS), with 37% of participants meeting the criteria for clinical response. The goal of the present research was to examine possible changes from baseline to posttreatment in resting-state electroencephalography (EEG) recordings using the same treatment protocol and to characterize basic changes in EEG related to treatment response. Materials and methods The study sample consisted of 19 individuals aged 18-70 years with a clinical diagnosis of MDD. The participants were assessed before and after a five-week treatment period, which consisted of listening to an instrumental musical track on a vibroacoustic device, delivering auditory and vibrotactile stimulus in the gamma-band range (30-70 Hz, with particular emphasis on 40 Hz). The primary outcome measure was the change in Montgomery-Asberg Depression Rating Scale (MADRS) from baseline to posttreatment and resting-state EEG. Results Analysis comparing MADRS score at baseline and post-intervention indicated a significant change in the severity of depression symptoms after five weeks (t = 3.9923, df = 18, p = 0.0009). The clinical response rate was 36.85%. Resting-state EEG power analysis revealed a significant increase in occipital alpha power (t = -2.149, df = 18, p = 0.04548), as well as an increase in the prefrontal gamma power of the responders (t = 2.8079, df = 13.431, p = 0.01442). Conclusions The results indicate that improvements in MADRS scores after rhythmic sensory stimulation (RSS) were accompanied by an increase in alpha power in the occipital region and an increase in gamma in the prefrontal region, thus suggesting treatment effects on cortical activity in depression. The results of this pilot study will help inform subsequent controlled studies evaluating whether treatment response to vibroacoustic stimulation constitutes a real and replicable reduction of depressive symptoms and to characterize the underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Toronto, CAN
| | - Sidney H Kennedy
- Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto, CAN
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, CAN
| | - Jed Meltzer
- Rotman Research Institute, Baycrest Health Sciences, Toronto, CAN
| | - Lee Bartel
- Faculty of Music, University of Toronto, Toronto, CAN
| |
Collapse
|
14
|
Rossi S, Santarnecchi E, Feurra M. Noninvasive brain stimulation and brain oscillations. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:239-247. [PMID: 35034738 DOI: 10.1016/b978-0-12-819410-2.00013-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent technological advances in the field of noninvasive brain stimulation (NIBS) have allowed to interact with endogenous brain oscillatory activity, the main neural communication code of our brain, opening new scenarios for transient modifications of cognitive and behavioral performances: such a possibility can be capitalized both for research purposes in healthy subjects, as well as in the context of therapeutic and rehabilitative settings. Among NiBS methodologies, transcranial magnetic stimulation (TMS) has been the first used to this purpose, and also thanks to the technical development of TMS-EEG co-registering systems, the mechanistic knowledge regarding the role of brain oscillations has been improved. Another approach to brain oscillations considers electric stimulation methods, such as transcranial direct current stimulation (tDCS), and especially transcranial alternating current stimulation (tACS), for which -however- some technical and conceptual caveats have emerged. In this chapter, we briefly review the uses of NiBS in this field up to now, by providing an update on the current status of research applications as well as of its attempts of exploitation in translational clinical applications, especially regarding motor disorders and for understanding and reducing some psychiatric symptoms.
Collapse
Affiliation(s)
- Simone Rossi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
| | - Emiliano Santarnecchi
- Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Matteo Feurra
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| |
Collapse
|
15
|
Liu B, Yan X, Chen X, Wang Y, Gao X. tACS facilitates flickering driving by boosting steady-state visual evoked potentials. J Neural Eng 2021; 18. [PMID: 34962233 DOI: 10.1088/1741-2552/ac3ef3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 11/12/2022]
Abstract
Objective.There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e. tACS. However, less is known about the interplay between the rhythmic stimulation and visual stimulation.Approach.Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20min 10Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS.Main results.Our result revealed that tACS boosted the 10Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min.Significance.Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xinyi Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Yijun Wang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
16
|
Hosseinian T, Yavari F, Kuo MF, Nitsche MA, Jamil A. Phase synchronized 6 Hz transcranial electric and magnetic stimulation boosts frontal theta activity and enhances working memory. Neuroimage 2021; 245:118772. [PMID: 34861393 DOI: 10.1016/j.neuroimage.2021.118772] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/30/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
Network-level synchronization of theta oscillations in the cerebral cortex is linked to many vital cognitive functions across daily life, such as executive functions or regulation of arousal and consciousness. However, while neuroimaging has uncovered the ubiquitous functional relevance of theta rhythms in cognition, there remains a limited set of techniques for externally enhancing and stabilizing theta in the human brain non-invasively. Here, we developed and employed a new phase-synchronized low-intensity electric and magnetic stimulation technique to induce and stabilize narrowband 6-Hz theta oscillations in a group of healthy human adult participants, and then demonstrated how this technique also enhances cognitive processing by assaying working memory. Our findings demonstrate a technological advancement of brain stimulation methods, while also validating the causal link between theta activity and concurrent cognitive behavior, which may ultimately help to not only explain mechanisms, but offer perspectives for restoring deficient theta-band network activity observed in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Tiam Hosseinian
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Fatemeh Yavari
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Min-Fang Kuo
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany
| | - Michael A Nitsche
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany; Department Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany.
| | - Asif Jamil
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Ardeystrasse 67, Dortmund 44139, Germany; Laboratory for Neuropsychiatry and Neuromodulation, Harvard Medical School, Massachusetts General Hospital, 149 Thirteenth Street, Boston, MA, USA.
| |
Collapse
|
17
|
Cortical mechanisms underlying variability in intermittent theta-burst stimulation-induced plasticity: A TMS-EEG study. Clin Neurophysiol 2021; 132:2519-2531. [PMID: 34454281 DOI: 10.1016/j.clinph.2021.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To test the hypothesis that intermittent theta burst stimulation (iTBS) variability depends on the ability to engage specific neurons in the primary motor cortex (M1). METHODS In a sham-controlled interventional study on 31 healthy volunteers, we used concomitant transcranial magnetic stimulation (TMS) and electroencephalography (EEG). We compared baseline motor evoked potentials (MEPs), M1 iTBS-evoked EEG oscillations, and resting-state EEG (rsEEG) between subjects who did and did not show MEP facilitation following iTBS. We also investigated whether baseline MEP and iTBS-evoked EEG oscillations could explain inter and intraindividual variability in iTBS aftereffects. RESULTS The facilitation group had smaller baseline MEPs than the no-facilitation group and showed more iTBS-evoked EEG oscillation synchronization in the alpha and beta frequency bands. Resting-state EEG power was similar between groups and iTBS had a similar non-significant effect on rsEEG in both groups. Baseline MEP amplitude and beta iTBS-evoked EEG oscillation power explained both inter and intraindividual variability in MEP modulation following iTBS. CONCLUSIONS The results show that variability in iTBS-associated plasticity depends on baseline corticospinal excitability and on the ability of iTBS to engage M1 beta oscillations. SIGNIFICANCE These observations can be used to optimize iTBS investigational and therapeutic applications.
Collapse
|
18
|
TMS-EEG Research to Elucidate the Pathophysiological Neural Bases in Patients with Schizophrenia: A Systematic Review. J Pers Med 2021; 11:jpm11050388. [PMID: 34068580 PMCID: PMC8150818 DOI: 10.3390/jpm11050388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental disorder, and its pathogenesis is complex. Recently, the glutamate hypothesis and the excitatory/inhibitory (E/I) imbalance hypothesis have been proposed as new pathological hypotheses for SCZ. Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) is a non-invasive novel method that enables us to investigate the cortical activity in humans, and this modality is a suitable approach to evaluate these hypotheses. In this study, we systematically reviewed TMS-EEG studies that investigated the cortical dysfunction of SCZ to examine the emerging hypotheses for SCZ. The following search terms were set in this systematic review: (TMS or ‘transcranial magnetic stimulation’) and (EEG or electroencephalog*) and (schizophrenia). We inspected the articles written in English that examined humans and were published by March 2020 via MEDLINE, Embase, PsycINFO, and PubMed. The initial search generated 379 studies, and 14 articles were finally identified. The current review noted that patients with SCZ demonstrated the E/I deficits in the prefrontal cortex, whose dysfunctions were also associated with cognitive impairment and clinical severity. Moreover, TMS-induced gamma activity in the prefrontal cortex was related to positive symptoms, while theta/delta band activities were associated with negative symptoms in SCZ. Thus, this systematic review discusses aspects of the pathophysiological neural basis of SCZ that are not explained by the traditional dopamine hypothesis exclusively, based on the findings of previous TMS-EEG research, mainly in terms of the E/I imbalance hypothesis. In conclusion, TMS-EEG neurophysiology can be applied to establish objective biomarkers for better diagnosis as well as to develop new therapeutic strategies for patients with SCZ.
Collapse
|
19
|
Klírová M, Voráčková V, Horáček J, Mohr P, Jonáš J, Dudysová DU, Kostýlková L, Fayette D, Krejčová L, Baumann S, Laskov O, Novák T. Modulating Inhibitory Control Processes Using Individualized High Definition Theta Transcranial Alternating Current Stimulation (HD θ-tACS) of the Anterior Cingulate and Medial Prefrontal Cortex. Front Syst Neurosci 2021; 15:611507. [PMID: 33859554 PMCID: PMC8042221 DOI: 10.3389/fnsys.2021.611507] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023] Open
Abstract
Increased frontal midline theta activity generated by the anterior cingulate cortex (ACC) is induced by conflict processing in the medial frontal cortex (MFC). There is evidence that theta band transcranial alternating current stimulation (θ-tACS) modulates ACC function and alters inhibitory control performance during neuromodulation. Multi-electric (256 electrodes) high definition θ-tACS (HD θ-tACS) using computational modeling based on individual MRI allows precise neuromodulation targeting of the ACC via the medial prefrontal cortex (mPFC), and optimizes the required current density with a minimum impact on the rest of the brain. We therefore tested whether the individualized electrode montage of HD θ-tACS with the current flow targeted to the mPFC-ACC compared with a fixed montage (non-individualized) induces a higher post-modulatory effect on inhibitory control. Twenty healthy subjects were randomly assigned to a sequence of three HD θ-tACS conditions (individualized mPFC-ACC targeting; non-individualized MFC targeting; and a sham) in a double-blind cross-over study. Changes in the Visual Simon Task, Stop Signal Task, CPT III, and Stroop test were assessed before and after each session. Compared with non-individualized θ-tACS, the individualized HD θ-tACS significantly increased the number of interference words and the interference score in the Stroop test. The changes in the non-verbal cognitive tests did not induce a parallel effect. This is the first study to examine the influence of individualized HD θ-tACS targeted to the ACC on inhibitory control performance. The proposed algorithm represents a well-tolerated method that helps to improve the specificity of neuromodulation targeting of the ACC.
Collapse
Affiliation(s)
- Monika Klírová
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Veronika Voráčková
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Horáček
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Mohr
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Juraj Jonáš
- National Institute of Mental Health, Prague, Czechia
| | - Daniela Urbaczka Dudysová
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Lenka Kostýlková
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Dan Fayette
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | | | | | - Olga Laskov
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomáš Novák
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
20
|
Honda Y, Nakamura S, Ogawa K, Yoshino R, Tobler PN, Nishimura Y, Tsutsui KI. Changes in beta and high-gamma power in resting-state electrocorticogram induced by repetitive transcranial magnetic stimulation of primary motor cortex in unanesthetized macaque monkeys. Neurosci Res 2021; 171:41-48. [PMID: 33705847 DOI: 10.1016/j.neures.2021.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is now widely used as a means of neuromodulation, but the details of the mechanisms by which rTMS works remain unclarified. As a step forward to unveiling the neural phenomena occurring underneath the TMS coil, we conducted an electrophysiological study using awake and unanesthetized monkeys with subdural electrocorticogram (ECoG) electrodes implanted over the primary motor cortex (MI). We evaluated the effects of low-frequency (1 Hz) and high-frequency (10 Hz) rTMS on the resting-state ECoG signals in the stimulated MI, as well as the motor evoked potentials (MEPs) in the contralateral hand. Following the 1-Hz rTMS application, the ECoG beta band power and the MEP amplitude were significantly decreased. Following the 10-Hz rTMS application, the ECoG high-gamma power and the MEP amplitude significantly increased. Given that beta and high-gamma activities in the ECoG reflect the synchronous firing and the firing frequency of cell assemblies, respectively, in local neural circuits, these results suggest that low-frequency rTMS inhibits neural activity by desynchronizing the firing activity of local circuits, whereas high-frequency rTMS facilitates neural activity by increasing the firing rate of cell assemblies in the local circuits.
Collapse
Affiliation(s)
- Yasutaka Honda
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Shinya Nakamura
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Kentaro Ogawa
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Rintaro Yoshino
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Philippe N Tobler
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, 8006 Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, Switzerland
| | - Yukio Nishimura
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
21
|
Biabani M, Fornito A, Coxon JP, Fulcher BD, Rogasch NC. The correspondence between EMG and EEG measures of changes in cortical excitability following transcranial magnetic stimulation. J Physiol 2021; 599:2907-2932. [DOI: 10.1113/jp280966] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mana Biabani
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
| | - James P. Coxon
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
| | - Ben D. Fulcher
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
- School of Physics The University of Sydney Sydney New South Wales 2006 Australia
| | - Nigel C. Rogasch
- The Turner Institute for Brain and Mental Health School of Psychological Sciences Monash University Victoria Australia
- Discipline of Psychiatry Adelaide Medical School University of Adelaide Adelaide South Australia Australia
- Hopwood Centre for Neurobiology Lifelong Health Theme South Australian Health and Medical Research Institute (SAHMRI) Adelaide South Australia Australia
| |
Collapse
|
22
|
Noda Y. Potential Neurophysiological Mechanisms of 1Hz-TMS to the Right Prefrontal Cortex for Depression: An Exploratory TMS-EEG Study in Healthy Participants. J Pers Med 2021; 11:jpm11020068. [PMID: 33498917 PMCID: PMC7910865 DOI: 10.3390/jpm11020068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The present study aimed to examine the acute neurophysiological effects of 1Hz transcranial magnetic stimulation (TMS) administered to the right dorsolateral prefrontal cortex (DLPFC) in healthy participants. METHODS TMS combined with simultaneous electroencephalography (EEG) recording was conducted for 21 healthy participants. For the right DLPFC, 1Hz-TMS (100 pulses/block × 17 sessions) was applied in the resting-state, while for the left DLPFC, 1Hz-TMS (100 pulses/block × 2 sessions) was administered during the verbal fluency tasks (VFTs). For TMS-EEG data, independent component analysis (ICA) was applied to extract TMS-evoked EEG potentials to calculate TMS-related power as well as TMS-related coherence from the F4 and F3 electrode sites during the resting-state and VFTs. RESULTS TMS-related power was significantly increased in alpha, beta, and gamma bands by 1Hz-TMS at the stimulation site during the resting-state, while TMS-related power was significantly increased in alpha and beta bands but not in the gamma band during the VFTs. On the other hand, TMS-related coherence in alpha and beta bands significantly increased but not in gamma band by 1Hz-TMS that was administered to the right DLPFC in resting-state, whereas there were no significant changes in coherence for all frequency bands by 1Hz-TMS that applied to the left DLPFC during the VFTs. CONCLUSIONS Collectively, 1Hz-repetitive TMS (rTMS) to the right DLPFC may rapidly neuromodulate EEG activity, which might be associated with a therapeutic mechanism for depression.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
23
|
Zhang X, Guo Y, Gao B, Long J. Alpha Frequency Intervention by Electrical Stimulation to Improve Performance in Mu-Based BCI. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1262-1270. [PMID: 32305926 DOI: 10.1109/tnsre.2020.2987529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The accuracy of brain-computer interfaces (BCIs) is important for effective communication and control. The mu-based BCI is one of the most widely used systems, of which the related methods to improve users' accuracy are still poorly studied, especially for the BCI illiteracy. Here, we examined a way to enhance mu-based BCI performance by electrically stimulating the ulnar nerve of the contralateral wrist at the alpha frequency (10 Hz) during left- and right-hand motor imagination in two BCI groups (literate and illiterate). We demonstrate that this alpha frequency intervention enhances the classification accuracy between left- and right-hand motor imagery from 66.41% to 81.57% immediately after intervention and to 75.28% two days after intervention in the BCI illiteracy group, while classification accuracy improves from 82.12% to 91.84% immediately after intervention and to 89.03% two days after intervention in the BCI literacy group. However, the classification accuracy did not change before and after the sham intervention (no electrical stimulation). Furthermore, the ERD on the primary sensorimotor cortex during left- or right-hand motor imagery tasks was more visible at the mu-rhythm (8-13 Hz) after alpha frequency intervention. Alpha frequency intervention increases the mu-rhythm power difference between left- and right-hand motor imagery tasks. These results provide evidence that alpha frequency intervention is an effective way to improve BCI performance by regulating the mu-rhythm which might provide a way to reduce BCI illiteracy.
Collapse
|
24
|
de Almeida AC, Massote MA, Ichinose RM, Miranda de Sá AMFL. Spectral F Test for detecting TMS/EEG responses. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Wagner J, Makeig S, Hoopes D, Gola M. Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Front Hum Neurosci 2019; 13:263. [PMID: 31427937 PMCID: PMC6689956 DOI: 10.3389/fnhum.2019.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 12/25/2022] Open
Abstract
Recent applications of simultaneous scalp electroencephalography (EEG) and transcranial magnetic stimulation (TMS) suggest that adapting stimulation to underlying brain states may enhance neuroplastic effects of TMS. It is often assumed that longer-lasting effects of TMS on brain function may be mediated by phasic interactions between TMS pulses and endogenous cortical oscillatory dynamics. The mechanisms by which TMS exerts its neuromodulatory effects, however, remain unknown. Here, we discuss evidence concerning the functional effects on synaptic plasticity of oscillatory cross-frequency coupling in cortical networks as a potential framework for understanding the neuromodulatory effects of TMS. We first discuss evidence for interactions between endogenous oscillatory brain dynamics and externally induced electromagnetic field activity. Alpha band (8-12 Hz) activities are of special interest here because of the wide application and therapeutic effectiveness of rhythmic TMS (rTMS) using a stimulus repetition frequency at or near 10 Hz. We discuss the large body of literature on alpha oscillations suggesting that alpha oscillatory cycles produce periodic inhibition or excitation of neuronal processing through phase-amplitude coupling (PAC) of low-frequency oscillations with high-frequency broadband (or gamma) bursting. Such alpha-gamma coupling may reflect excitability of neuronal ensembles underlying neuroplasticity effects of TMS. We propose that TMS delivery with simultaneous EEG recording and near real-time estimation of source-resolved alpha-gamma PAC might be used to select the precise timing of TMS pulse deliveries so as to enhance the neuroplastic effects of TMS therapies.
Collapse
Affiliation(s)
- Johanna Wagner
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - Scott Makeig
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States
| | - David Hoopes
- Department of Radiation Medicine and Applied Sciences, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Mateusz Gola
- Swartz Center for Computational Neurosciences, Institute for Neural Computation, University of California, San Diego, San Diego, CA, United States.,Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
26
|
Rhythmic low-field magnetic stimulation may improve depression by increasing brain-derived neurotrophic factor. CNS Spectr 2019; 24:313-321. [PMID: 29460712 DOI: 10.1017/s1092852917000670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Low-field magnetic stimulation (LFMS) has mood-elevating effect, and the increase of brain-derived neurotrophic factor (BDNF) is associated with antidepressant treatment. We evaluated the effects and association with BDNF of rhythmic LFMS in the treatment of major depressive disorder (MDD). METHODS A total of 22 MDD patients were randomized to rhythmic alpha stimulation (RAS) or rhythmic delta stimulation (RDS), with 5 sessions per week, lasting for 6 weeks. Outcomes assessments included the 17-item Hamilton Depression Rating Scale (HAMD-17), the Hamilton Anxiety Rating Scale (HAMA), and the Clinical Global Impressions-Severity scale (CGI-S) at baseline and at weeks 1, 2, 3, 4, and 6. Serum BDNF level was measured at baseline and at weeks 2, 4, and 6. RESULTS HAMD-17, HAMA, and CGI-S scores were significantly reduced with both RAS and RDS. RAS patients had numerically greater reductions in HAMD-17 scores than RDS patients (8.9 ± 7.4 vs. 6.2 ± 6.2, effect size [ES]=0.40), while RDS patients had greater improvement in HAMA scores (8.2 ± 8.0 vs. 5.3 ± 5.8, ES=0.42). RAS was associated with clinically relevant advantages in response (54.5% vs. 18.2%, number-needed-to-treat [NNT]=3) and remission (36.4% vs. 9.1%, NNT=4). BDNF increased significantly during the 6-week study period (p<0.05), with greater increases in RAS at weeks 4 and 6 (ES=0.66-0.76) and statistical superiority at week 2 (p=0.034, ES=1.23). Baseline BDNF in the 8 responders (24.8±9.0 ng/ml) was lower than in the 14 nonresponders (31.1±7.3 ng/ml, p=0.083, ES=-0.79), and BDNF increased more in responders (8.9±7.8 ng/ml) than in nonresponders (1.8±3.5 ng/ml, p=0.044). The change in BDNF at week 2 was the most strongly predicted response (p=0.016). CONCLUSIONS Rhythmic LFMS was effective for MDD. BDNF may moderate/mediate the efficacy of LFMS.
Collapse
|
27
|
Saari J, Kallioniemi E, Tarvainen M, Julkunen P. Oscillatory TMS-EEG-Responses as a Measure of the Cortical Excitability Threshold. IEEE Trans Neural Syst Rehabil Eng 2019; 26:383-391. [PMID: 29432109 DOI: 10.1109/tnsre.2017.2779135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive tool to perturb brain activity. In TMS studies, the stimulation intensity (SI) is commonly normalized to the resting motor threshold (rMT) that produces muscle responses in 50% of stimulations applied to the motor cortex (M1). Since rMT is influenced by spinal excitability and coil-to-cortex distance, responses recorded from the cortex, instead of a peripheral muscle, could provide a more accurate marker for cortical excitability. Combining TMS with electroencephalography (EEG) enables the measurement of brain-wide cortical reactivity to TMS. We quantified TMS-induced changes in oscillatory power and the phase of EEG with event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). We studied the SI-dependency of ERSP and ITC responses by stimulating the dominant M1 of ten healthy volunteers using single-pulse TMS with 150 pulses at 60%, 80%, 100%, and 120% of rMT. We found SI-dependent ERSP and ITC responses in M1, most notably with the wide-band (8-70 Hz) early ITC responses averaged 20-60 ms after TMS. With approximately linear SI-dependence, the early ITC response was consistent between SIs (intraclass correlation = 0.78, ). Our results reveal the potential of oscillatory EEG responses, in place of rMT, as a measure of the cortical excitability threshold in M1.
Collapse
|
28
|
Desideri D, Zrenner C, Gordon PC, Ziemann U, Belardinelli P. Nil effects of μ-rhythm phase-dependent burst-rTMS on cortical excitability in humans: A resting-state EEG and TMS-EEG study. PLoS One 2018; 13:e0208747. [PMID: 30532205 PMCID: PMC6286140 DOI: 10.1371/journal.pone.0208747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/21/2018] [Indexed: 11/24/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can induce excitability changes of a stimulated brain area through synaptic plasticity mechanisms. High-frequency (100 Hz) triplets of rTMS synchronized to the negative but not the positive peak of the ongoing sensorimotor μ-rhythm isolated with the concurrently acquired electroencephalography (EEG) resulted in a reproducible long-term potentiation like increase of motor evoked potential (MEP) amplitude, an index of corticospinal excitability (Zrenner et al. 2018, Brain Stimul 11:374–389). Here, we analyzed the EEG and TMS-EEG data from (Zrenner et al., 2018) to investigate the effects of μ-rhythm-phase-dependent burst-rTMS on EEG-based measures of cortical excitability. We used resting-state EEG to assess μ- and β-power in the motor cortex ipsi- and contralateral to the stimulation, and single-pulse TMS-evoked and induced EEG responses in the stimulated motor cortex. We found that μ-rhythm-phase-dependent burst-rTMS did not significantly change any of these EEG measures, despite the presence of a significant differential and reproducible effect on MEP amplitude. We conclude that EEG measures of cortical excitability do not reflect corticospinal excitability as measured by MEP amplitude. Most likely this is explained by the fact that rTMS induces complex changes at the molecular and synaptic level towards both excitation and inhibition that cannot be differentiated at the macroscopic level by EEG.
Collapse
Affiliation(s)
- Debora Desideri
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pedro Caldana Gordon
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Service of Interdisciplinary Neuromodulation, Laboratory of Neuroscience (LIM27) and National Institute of Biomarkers in Psychiatry (INBioN), Department and Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Paolo Belardinelli
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Pellicciari MC, Bonnì S, Ponzo V, Cinnera AM, Mancini M, Casula EP, Sallustio F, Paolucci S, Caltagirone C, Koch G. Dynamic reorganization of TMS-evoked activity in subcortical stroke patients. Neuroimage 2018; 175:365-378. [DOI: 10.1016/j.neuroimage.2018.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/21/2022] Open
|
30
|
Underlying neural alpha frequency patterns associated with intra-hemispheric inhibition during an interhemispheric transfer task. Biol Psychol 2018; 136:39-45. [PMID: 29782970 DOI: 10.1016/j.biopsycho.2018.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/13/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022]
Abstract
Interhemispheric transfer measured via differences in right- or left-handed motoric responses to lateralized visual stimuli, known as the crossed-uncrossed difference (CUD), is one way of identifying patterns of processing that are vital for understanding the transfer of neural signals. Examination of interhemispheric transfer by means of the CUD is not entirely explained by simple measures of response time. Multiple processes contribute to wide variability observed in CUD reaction times. Prior research has suggested that intra-hemispheric inhibitory processes may be involved in regulation of speed of transfer. Our study examined electroencephalography recordings and time-locked alpha frequency activity while 18 participants responded to lateralized targets during performance of the Poffenberger Paradigm. Our results suggest that there are alpha frequency differences at fronto-central lateral electrodes based on target, hand-of-response, and receiving hemisphere. These findings suggest that early motoric inhibitory mechanisms may help explain the wide range of variability typically seen with the CUD.
Collapse
|
31
|
Prismatic Adaptation Modulates Oscillatory EEG Correlates of Motor Preparation but Not Visual Attention in Healthy Participants. J Neurosci 2017; 38:1189-1201. [PMID: 29255004 PMCID: PMC5792477 DOI: 10.1523/jneurosci.1422-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/24/2017] [Accepted: 11/14/2017] [Indexed: 11/21/2022] Open
Abstract
Prismatic adaption (PA) has been proposed as a tool to induce neural plasticity and is used to help neglect rehabilitation. It leads to a recalibration of visuomotor coordination during pointing as well as to aftereffects on a number of sensorimotor and attention tasks, but whether these effects originate at a motor or attentional level remains a matter of debate. Our aim was to further characterize PA aftereffects by using an approach that allows distinguishing between effects on attentional and motor processes. We recorded EEG in healthy human participants (9 females and 7 males) while performing a new double step, anticipatory attention/motor preparation paradigm before and after adaptation to rightward-shifting prisms, with neutral lenses as a control. We then examined PA aftereffects through changes in known oscillatory EEG signatures of spatial attention orienting and motor preparation in the alpha and beta frequency bands. Our results were twofold. First, we found PA to rightward-shifting prisms to selectively affect EEG signatures of motor but not attentional processes. More specifically, PA modulated preparatory motor EEG activity over central electrodes in the right hemisphere, contralateral to the PA-induced, compensatory leftward shift in pointing movements. No effects were found on EEG signatures of spatial attention orienting over occipitoparietal sites. Second, we found the PA effect on preparatory motor EEG activity to dominate in the beta frequency band. We conclude that changes to intentional visuomotor, rather than attentional visuospatial, processes underlie the PA aftereffect of rightward-deviating prisms in healthy participants. SIGNIFICANCE STATEMENT Prismatic adaptation (PA) has been proposed as a tool to induce neural plasticity in both healthy participants and patients, due to its aftereffect impacting on a number of visuospatial and visuomotor functions. However, the neural mechanisms underlying PA aftereffects are poorly understood as only little neuroimaging evidence is available. Here, we examined, for the first time, the origin of PA aftereffects studying oscillatory brain activity. Our results show a selective modulation of preparatory motor activity following PA in healthy participants but no effect on attention-related activity. This provides novel insight into the PA aftereffect in the healthy brain and may help to inform interventions in neglect patients.
Collapse
|
32
|
The impact of GABAergic drugs on TMS-induced brain oscillations in human motor cortex. Neuroimage 2017; 163:1-12. [DOI: 10.1016/j.neuroimage.2017.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/07/2017] [Accepted: 09/09/2017] [Indexed: 11/19/2022] Open
|
33
|
Kelley NJ, Hortensius R, Schutter DJ, Harmon-Jones E. The relationship of approach/avoidance motivation and asymmetric frontal cortical activity: A review of studies manipulating frontal asymmetry. Int J Psychophysiol 2017; 119:19-30. [DOI: 10.1016/j.ijpsycho.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
|
34
|
Määttä S, Könönen M, Kallioniemi E, Lakka T, Lintu N, Lindi V, Ferreri F, Ponzo D, Säisänen L. Development of cortical motor circuits between childhood and adulthood: A navigated TMS-HdEEG study. Hum Brain Mapp 2017; 38:2599-2615. [PMID: 28218489 PMCID: PMC6866783 DOI: 10.1002/hbm.23545] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
Motor functions improve during childhood and adolescence, but little is still known about the development of cortical motor circuits during early life. To elucidate the neurophysiological hallmarks of motor cortex development, we investigated the differences in motor cortical excitability and connectivity between healthy children, adolescents, and adults by means of navigated suprathreshold motor cortex transcranial magnetic stimulation (TMS) combined with high-density electroencephalography (EEG). We demonstrated that with development, the excitability of the motor system increases, the TMS-evoked EEG waveform increases in complexity, the magnitude of induced activation decreases, and signal spreading increases. Furthermore, the phase of the oscillatory response to TMS becomes less consistent with age. These changes parallel an improvement in manual dexterity and may reflect developmental changes in functional connectivity. Hum Brain Mapp 38:2599-2615, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Määttä
- Department of Clinical NeurophysiologyInstitute of Clinical Medicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
| | - Mervi Könönen
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
- Department of Clinical RadiologyKuopio University HospitalKuopioFinland
| | - Elisa Kallioniemi
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Timo Lakka
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of Clinical Physiology and Nuclear MedicineKuopio University HospitalKuopioFinland
- Kuopio Research Institute of Exercise MedicineKuopioFinland
| | - Niina Lintu
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
| | - Virpi Lindi
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
| | - Florinda Ferreri
- Department of Clinical NeurophysiologyInstitute of Clinical Medicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of NeurologyUniversity Campus BiomedicoRomeItaly
| | - David Ponzo
- Department of NeurologyUniversity Campus BiomedicoRomeItaly
| | - Laura Säisänen
- Department of Clinical NeurophysiologyInstitute of Clinical Medicine, Faculty of Health Sciences, University of Eastern FinlandKuopioFinland
- Department of Clinical NeurophysiologyKuopio University HospitalKuopioFinland
| |
Collapse
|
35
|
Pellicciari MC, Veniero D, Miniussi C. Characterizing the Cortical Oscillatory Response to TMS Pulse. Front Cell Neurosci 2017; 11:38. [PMID: 28289376 PMCID: PMC5326778 DOI: 10.3389/fncel.2017.00038] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/07/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgow, UK
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio FatebenefratelliBrescia, Italy
- Center for Mind/Brain Sciences - CIMeC, University of TrentoRovereto, Italy
| |
Collapse
|
36
|
Noh NA. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram. Malays J Med Sci 2016; 23:5-16. [PMID: 27660540 DOI: 10.21315/mjms2016.23.4.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP-/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Nor Azila Noh
- Department of Medical Science I, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Pandan Indah, 55100 Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Resting state brain dynamics and its transients: a combined TMS-EEG study. Sci Rep 2016; 6:31220. [PMID: 27488504 PMCID: PMC4973226 DOI: 10.1038/srep31220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/14/2016] [Indexed: 11/08/2022] Open
Abstract
The brain at rest exhibits a spatio-temporally rich dynamics which adheres to systematic behaviours that persist in task paradigms but appear altered in disease. Despite this hypothesis, many rest state paradigms do not act directly upon the rest state and therefore cannot confirm hypotheses about its mechanisms. To address this challenge, we combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to study brain's relaxation toward rest following a transient perturbation. Specifically, TMS targeted either the medial prefrontal cortex (MPFC), i.e. part of the Default Mode Network (DMN) or the superior parietal lobule (SPL), involved in the Dorsal Attention Network. TMS was triggered by a given brain state, namely an increase in occipital alpha rhythm power. Following the initial TMS-Evoked Potential, TMS at MPFC enhances the induced occipital alpha rhythm, called Event Related Synchronisation, with a longer transient lifetime than TMS at SPL, and a higher amplitude. Our findings show a strong coupling between MPFC and the occipital alpha power. Although the rest state is organized around a core of resting state networks, the DMN functionally takes a special role among these resting state networks.
Collapse
|
38
|
Nicolo P, Fargier R, Laganaro M, Guggisberg AG. Neurobiological Correlates of Inhibition of the Right Broca Homolog during New-Word Learning. Front Hum Neurosci 2016; 10:371. [PMID: 27516735 PMCID: PMC4963391 DOI: 10.3389/fnhum.2016.00371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has demonstrated beneficial effects on motor learning. It would be important to obtain a similar enhancement for verbal learning. However, previous studies have mostly assessed short-term effects of rTMS on language performance and the effect on learning is largely unknown. This study examined whether an inhibition of the right Broca homolog has long-term impact on neural processes underlying the acquisition of new words in healthy individuals. Sixteen young participants trained a new-word learning paradigm with rare, mostly unknown objects and their corresponding words immediately after continuous theta burst stimulation (cTBS) or sham stimulation of right inferior frontal gyrus (IFG) in a cross-over design. Neural effects were assessed with electroencephalography (EEG) source power analyses during the naming task as well as coherence analyses at rest 1 day before and after training. Inhibition of the right Broca homolog did not affect new word learning performance at the group level. Behavioral and neural responses to cTBS were variable across participants and were associated with the magnitude of resting-state alpha-band coherence between the stimulated area and the rest of the brain before stimulation. Only participants with high intrinsic alpha-band coherence between the stimulated area and the rest of the brain before stimulation showed the expected inhibition during naming and greater learning performance. In conclusion, our study confirms that cTBS can induce lasting modulations of neural processes which are associated with learning, but the effect depends on the individual network state.
Collapse
Affiliation(s)
- Pierre Nicolo
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital GenevaGeneva, Switzerland; Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Medical School, University of GenevaGeneva, Switzerland
| | - Raphaël Fargier
- Faculty of Psychology and Educational Sciences, University of Geneva Geneva, Switzerland
| | - Marina Laganaro
- Faculty of Psychology and Educational Sciences, University of Geneva Geneva, Switzerland
| | - Adrian G Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital GenevaGeneva, Switzerland; Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Medical School, University of GenevaGeneva, Switzerland
| |
Collapse
|
39
|
Goldsworthy MR, Vallence AM, Yang R, Pitcher JB, Ridding MC. Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction. Eur J Neurosci 2016; 43:572-9. [DOI: 10.1111/ejn.13142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Mitchell R. Goldsworthy
- The Robinson Research Institute; School of Medicine; University of Adelaide; Adelaide 5005 Australia
| | - Ann-Maree Vallence
- The Robinson Research Institute; School of Medicine; University of Adelaide; Adelaide 5005 Australia
- School of Psychology and Exercise Science; Murdoch University; Perth WA Australia
| | - Ruiting Yang
- The Robinson Research Institute; School of Medicine; University of Adelaide; Adelaide 5005 Australia
| | - Julia B. Pitcher
- The Robinson Research Institute; School of Medicine; University of Adelaide; Adelaide 5005 Australia
| | - Michael C. Ridding
- The Robinson Research Institute; School of Medicine; University of Adelaide; Adelaide 5005 Australia
| |
Collapse
|
40
|
Del Felice A, Bellamoli E, Formaggio E, Manganotti P, Masiero S, Cuoghi G, Rimondo C, Genetti B, Sperotto M, Corso F, Brunetto G, Bricolo F, Gomma M, Serpelloni G. Neurophysiological, psychological and behavioural correlates of rTMS treatment in alcohol dependence. Drug Alcohol Depend 2016; 158:147-53. [PMID: 26679060 DOI: 10.1016/j.drugalcdep.2015.11.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Addiction is associated with dorso-lateral prefrontal cortex (DLPFC) dysfunction and altered brain-oscillations. High frequency repetitive transcranial magnetic stimulation (HFrTMS) over DLPFC reportedly reduces drug craving. Its effects on neuropsychological, behavioural and neurophysiological are unclear. METHODS We assessed psychological, behavioural and neurophysiological effects of 4 sessions of 10-min adjunctive HFrTMS over the left DLPFC during two weeks during a residential programme for alcohol detoxification. Participants were randomized to active HFrTMS (10 Hz, 100% motor threshold) or sham. Immediately before the first and after the last session, 32-channels EEG was recorded and alcohol craving Visual Analogue Scale, Symptom Check List-90-R, Numeric Stroop task and Go/No-go task administered. Tests were repeated at 1-month follow-up. RESULTS 17 subjects (mean age 44.7 years, 4 F) were assessed. Active rTMS subjects performed better at Stroop test at end of treatment (p=0.036) and follow up (p=0.004) and at Go-NoGo at end of treatment (p=0.05) and follow up (p=0.015). Depressive symptoms decreased at end of active treatment (p=0.036). Active-TMS showed an overall decrease of fast EEG frequencies after treatment compared to sham (p=0.026). No significant modifications over time or group emerged for craving and number of drinks at follow up. CONCLUSION 4 HFrTMS sessions over two weeks on the left DLPFC can improve inhibitory control task and selective attention and reduce depressive symptoms. An overall reduction of faster EEG frequencies was observed. Nonetheless, this schedule is ineffective in reducing craving and alcohol intake.
Collapse
Affiliation(s)
- Alessandra Del Felice
- Department of Neuroscience-DSN, University of Padova, Via Giustiniani 2, Padua, Italy.
| | - Elisa Bellamoli
- Department of Neurological and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Emanuela Formaggio
- Department of Neurophysiology, Foundation IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Paolo Manganotti
- Neurology Clinic, University Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Stefano Masiero
- Department of Neuroscience-DSN, University of Padova, Via Giustiniani 2, Padua, Italy
| | - Giuseppe Cuoghi
- Institute of Constructivist Psychology, Via Martiri della Libertà 13, 35137 Padua, Italy
| | - Claudia Rimondo
- National Coordination Centre for NIDA Collaborations, Via Germania 20, 37136 Verona, Italy
| | - Bruno Genetti
- Explora-Centro di Ricerca e Analisi Statistica, Via Cà Pisani 7, Padua, Vigodarzere, Italy
| | - Milena Sperotto
- Explora-Centro di Ricerca e Analisi Statistica, Via Cà Pisani 7, Padua, Vigodarzere, Italy
| | - Flavia Corso
- Addiction Department, ULSS 20, Via Germania 20, 37136 Verona, Italy
| | | | | | - Maurizio Gomma
- Addiction Department, ULSS 20, Via Germania 20, 37136 Verona, Italy
| | | |
Collapse
|
41
|
Veniero D, Vossen A, Gross J, Thut G. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity. Front Cell Neurosci 2015; 9:477. [PMID: 26696834 PMCID: PMC4678227 DOI: 10.3389/fncel.2015.00477] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/23/2015] [Indexed: 11/24/2022] Open
Abstract
A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity.
Collapse
Affiliation(s)
- Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | | | - Joachim Gross
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| |
Collapse
|
42
|
Stocco A, Prat CS, Losey DM, Cronin JA, Wu J, Abernethy JA, Rao RPN. Playing 20 Questions with the Mind: Collaborative Problem Solving by Humans Using a Brain-to-Brain Interface. PLoS One 2015; 10:e0137303. [PMID: 26398267 PMCID: PMC4580467 DOI: 10.1371/journal.pone.0137303] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/16/2015] [Indexed: 11/26/2022] Open
Abstract
We present, to our knowledge, the first demonstration that a non-invasive brain-to-brain interface (BBI) can be used to allow one human to guess what is on the mind of another human through an interactive question-and-answering paradigm similar to the “20 Questions” game. As in previous non-invasive BBI studies in humans, our interface uses electroencephalography (EEG) to detect specific patterns of brain activity from one participant (the “respondent”), and transcranial magnetic stimulation (TMS) to deliver functionally-relevant information to the brain of a second participant (the “inquirer”). Our results extend previous BBI research by (1) using stimulation of the visual cortex to convey visual stimuli that are privately experienced and consciously perceived by the inquirer; (2) exploiting real-time rather than off-line communication of information from one brain to another; and (3) employing an interactive task, in which the inquirer and respondent must exchange information bi-directionally to collaboratively solve the task. The results demonstrate that using the BBI, ten participants (five inquirer-respondent pairs) can successfully identify a “mystery item” using a true/false question-answering protocol similar to the “20 Questions” game, with high levels of accuracy that are significantly greater than a control condition in which participants were connected through a sham BBI.
Collapse
Affiliation(s)
- Andrea Stocco
- Department of Psychology, University of Washington, Seattle, Washington, United States of America; Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington, United States of America
| | - Chantel S Prat
- Department of Psychology, University of Washington, Seattle, Washington, United States of America; Institute for Learning & Brain Sciences, University of Washington, Seattle, Washington, United States of America
| | - Darby M Losey
- Department of Computer Science & Engineering, University of Washington, Seattle, Washington, United States of America
| | - Jeneva A Cronin
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Joseph Wu
- Department of Computer Science & Engineering, University of Washington, Seattle, Washington, United States of America
| | - Justin A Abernethy
- Department of Psychology, University of Washington, Seattle, Washington, United States of America
| | - Rajesh P N Rao
- Department of Computer Science & Engineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
43
|
Hartwigsen G, Bergmann TO, Herz DM, Angstmann S, Karabanov A, Raffin E, Thielscher A, Siebner HR. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive level. PROGRESS IN BRAIN RESEARCH 2015; 222:261-87. [PMID: 26541384 DOI: 10.1016/bs.pbr.2015.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can be used to construct causal network models. These models can identify spatiotemporal changes in effective connectivity during distinct cognitive states and allow for examining how effective connectivity is shaped by NTBS. (iii) Modeling the NTBS effects based on neuroimaging can be complemented by behavior-based cognitive models that exploit variations in task performance. For instance, NTBS-induced changes in response speed and accuracy can be explicitly modeled in a cognitive framework accounting for the speed-accuracy trade-off. This enables to dissociate between behavioral NTBS effects that emerge in the context of rapid automatic responses or in the context of slow deliberate responses. We argue that these complementary modeling approaches facilitate the use of NTBS as a means of dissecting the causal architecture of cognitive systems of the human brain.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany.
| | - Til Ole Bergmann
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany
| | - Damian Marc Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Steffen Angstmann
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Anke Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Estelle Raffin
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Grenoble Institute of Neuroscience, Research Centre U836 Inserm-UJF, Team 11 Brain Function & Neuromodulation, Grenoble, France
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Biomedical Engineering Section, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|
44
|
Krawinkel LA, Engel AK, Hummel FC. Modulating pathological oscillations by rhythmic non-invasive brain stimulation-a therapeutic concept? Front Syst Neurosci 2015; 9:33. [PMID: 25852495 PMCID: PMC4362311 DOI: 10.3389/fnsys.2015.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/18/2015] [Indexed: 01/26/2023] Open
Abstract
A large amount of studies of the last decades revealed an association between human behavior and oscillatory activity in the human brain. Alike, abnormalities of oscillatory activity were related with pathological behavior in many neuropsychiatric disorders, such as in Parkinson’s disease (PD) or in schizophrenia (SCZ). As a therapeutic tool, non-invasive brain stimulation (NIBS) has demonstrated the potential to improve behavioral performance in patients suffering from neuropsychiatric disorders. Since evidence accumulates that NIBS might be able to modulate oscillatory activity and related behavior in a scientific setting, this review focuses on discussing potential interventional strategies to target abnormalities in oscillatory activity in neuropsychiatric disorders. In particular, we will review oscillatory changes described in patients after stroke, with PD or suffering from SCZ. Potential ways of targeting interventionally the underlying pathological oscillations to improve related pathological behavior will be further discussed.
Collapse
Affiliation(s)
- Lutz A Krawinkel
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | - Friedhelm C Hummel
- BrainImaging and NeuroStimulation (BINS) Laboratory, Department of Neurology, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Neurology, Favoloro University, Medical School Buenos Aires, Argentina
| |
Collapse
|
45
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1937] [Impact Index Per Article: 193.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
Affiliation(s)
- P M Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - D Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - R Chen
- Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Z Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R Di Iorio
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.
| | - V Di Lazzaro
- Department of Neurology, University Campus Bio-medico, Rome, Italy
| | - F Ferreri
- Department of Neurology, University Campus Bio-medico, Rome, Italy; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - M S George
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - H Matsumoto
- Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - C Miniussi
- Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M A Nitsche
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - A Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - S Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - J C Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - H R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Y Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - V Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
46
|
Bortoletto M, Veniero D, Thut G, Miniussi C. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neurosci Biobehav Rev 2014; 49:114-24. [PMID: 25541459 DOI: 10.1016/j.neubiorev.2014.12.014] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/14/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022]
Abstract
Recent developments in neuroscience have emphasised the importance of integrated distributed networks of brain areas for successful cognitive functioning. Our current understanding is that the brain has a modular organisation in which segregated networks supporting specialised processing are linked through a few long-range connections, ensuring processing integration. Although such architecture is structurally stable, it appears to be flexible in its functioning, enabling long-range connections to regulate the information flow and facilitate communication among the relevant modules, depending on the contingent cognitive demands. Here we show how insights brought by the coregistration of transcranial magnetic stimulation and electroencephalography (TMS-EEG) integrate and support recent models of functional brain architecture. Moreover, we will highlight the types of data that can be obtained through TMS-EEG, such as the timing of signal propagation, the excitatory/inhibitory nature of connections and causality. Last, we will discuss recent emerging applications of TMS-EEG in the study of brain disorders.
Collapse
Affiliation(s)
- Marta Bortoletto
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Domenica Veniero
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Carlo Miniussi
- Cognitive Neuroscience Section, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Neuroscience Section, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
47
|
Vossen A, Gross J, Thut G. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment. Brain Stimul 2014; 8:499-508. [PMID: 25648377 PMCID: PMC4464304 DOI: 10.1016/j.brs.2014.12.004] [Citation(s) in RCA: 353] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/03/2014] [Accepted: 12/14/2014] [Indexed: 12/27/2022] Open
Abstract
Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8–12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment “echoes.” To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. Methods 12 healthy participants were stimulated at around individual α-frequency for 11–15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. Results α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. Intermittent periodic stimulation of occipital areas with alpha-tACS enhances offline EEG alpha power. Alpha-aftereffects cannot be explained by neuronal entrainment but are more likely due to plastic changes. We propose a physiological constraint to a recent model of tACS-induced spike-timing dependent plasticity.
Collapse
Affiliation(s)
- Alexandra Vossen
- School of Psychology, University of Glasgow, 58 Hillhead Street, Glasgow G12 8QB, United Kingdom.
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow G12 8QB, United Kingdom
| | - Gregor Thut
- Institute of Neuroscience and Psychology, University of Glasgow, 58 Hillhead Street, Glasgow G12 8QB, United Kingdom.
| |
Collapse
|
48
|
Flipping the switch: mechanisms that regulate memory consolidation. Trends Cogn Sci 2014; 18:629-34. [DOI: 10.1016/j.tics.2014.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/12/2014] [Accepted: 08/25/2014] [Indexed: 11/30/2022]
|
49
|
A Local Signature of LTP-Like Plasticity Induced by Repetitive Paired Associative Stimulation. Brain Topogr 2014; 28:238-49. [DOI: 10.1007/s10548-014-0396-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022]
|
50
|
Kawasaki M, Uno Y, Mori J, Kobata K, Kitajo K. Transcranial magnetic stimulation-induced global propagation of transient phase resetting associated with directional information flow. Front Hum Neurosci 2014; 8:173. [PMID: 24723875 PMCID: PMC3971180 DOI: 10.3389/fnhum.2014.00173] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 03/09/2014] [Indexed: 11/16/2022] Open
Abstract
Electroencephalogram (EEG) phase synchronization analyses can reveal large-scale communication between distant brain areas. However, it is not possible to identify the directional information flow between distant areas using conventional phase synchronization analyses. In the present study, we applied transcranial magnetic stimulation (TMS) to the occipital area in subjects who were resting with their eyes closed, and analyzed the spatial propagation of transient TMS-induced phase resetting by using the transfer entropy (TE), to quantify the causal and directional flow of information. The time-frequency EEG analysis indicated that the theta (5 Hz) phase locking factor (PLF) reached its highest value at the distant area (the motor area in this study), with a time lag that followed the peak of the transient PLF enhancements of the TMS-targeted area at the TMS onset. Phase-preservation index (PPI) analyses demonstrated significant phase resetting at the TMS-targeted area and distant area. Moreover, the TE from the TMS-targeted area to the distant area increased clearly during the delay that followed TMS onset. Interestingly, the time lags were almost coincident between the PLF and TE results (152 vs. 165 ms), which provides strong evidence that the emergence of the delayed PLF reflects the causal information flow. Such tendencies were observed only in the higher-intensity TMS condition, and not in the lower-intensity or sham TMS conditions. Thus, TMS may manipulate large-scale causal relationships between brain areas in an intensity-dependent manner. We demonstrated that single-pulse TMS modulated global phase dynamics and directional information flow among synchronized brain networks. Therefore, our results suggest that single-pulse TMS can manipulate both incoming and outgoing information in the TMS-targeted area associated with functional changes.
Collapse
Affiliation(s)
- Masahiro Kawasaki
- Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba Tsukuba, Japan ; Rhythm-based Brain Information Processing Unit, RIKEN BSI-TOYOTA Collaboration Center Wako, Japan ; Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute Wako, Japan
| | - Yutaka Uno
- Rhythm-based Brain Information Processing Unit, RIKEN BSI-TOYOTA Collaboration Center Wako, Japan
| | - Jumpei Mori
- Rhythm-based Brain Information Processing Unit, RIKEN BSI-TOYOTA Collaboration Center Wako, Japan ; School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University Yokohama, Japan
| | - Kenji Kobata
- Rhythm-based Brain Information Processing Unit, RIKEN BSI-TOYOTA Collaboration Center Wako, Japan ; School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University Yokohama, Japan
| | - Keiichi Kitajo
- Rhythm-based Brain Information Processing Unit, RIKEN BSI-TOYOTA Collaboration Center Wako, Japan ; Laboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute Wako, Japan
| |
Collapse
|