1
|
Terry AV, Jones K, Bertrand D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res 2023; 191:106764. [PMID: 37044234 DOI: 10.1016/j.phrs.2023.106764] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are widely distributed both pre- and post-synaptically in the mammalian brain. By modulating cation flux across cell membranes, neuronal nAChRs regulate neuronal excitability and the release of a variety of neurotransmitters to influence multiple physiologic and behavioral processes including synaptic plasticity, motor function, attention, learning and memory. Abnormalities of neuronal nAChRs have been implicated in the pathophysiology of neurologic disorders including Alzheimer's disease, Parkinson's disease, epilepsy, and Tourette´s syndrome, as well as psychiatric disorders including schizophrenia, depression, and anxiety. The potential role of nAChRs in a particular illness may be indicated by alterations in the expression of nAChRs in relevant brain regions, genetic variability in the genes encoding for nAChR subunit proteins, and/or clinical or preclinical observations where specific ligands showed a therapeutic effect. Over the past 25 years, extensive preclinical and some early clinical evidence suggested that ligands at nAChRs might have therapeutic potential for neurologic and psychiatric disorders. However, to date the only approved indications for nAChR ligands are smoking cessation and the treatment of dry eye disease. It has been argued that progress in nAChR drug discovery has been limited by translational gaps between the preclinical models and the human disease as well as unresolved questions regarding the pharmacological goal (i.e., agonism, antagonism or receptor desensitization) depending on the disease.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912.
| | - Keri Jones
- Educational Innovation Institute, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| |
Collapse
|
2
|
Gorin BI, Tukhovskaya EA, Ismailova AM, Slashcheva GA, Lenina OA, Petrov KA, Kazeev IV, Murashev AN. Differences in bioavailability and cognitive-enhancing activity exerted by different crystal polymorphs of latrepirdine (Dimebon ®). Front Pharmacol 2023; 14:1091858. [PMID: 36909182 PMCID: PMC9992171 DOI: 10.3389/fphar.2023.1091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction: Pharmacokinetic characteristics as well as cognitive-enhancing nootropic activity of latrepirdine (Dimebon®) in relationship with its polymorphic forms have been studied in SD and Wistar rats. Methods: The pharmacokinetics of six polymorphs (A, B, C, D, E, F) of latrepirdine were studied in male SD rats after 7 days of oral administration in corn oil at a dose of 10 mg/kg once a day. Blood and brain samples were taken on the 7th day of administration at 15 min, 30 min, 60 min and 120 min after administration and analyzed for latrepirdine content by LC-MS. The cognitive-enhancing nootropic effect was studied in male and female Wistar rats after 9 days of oral administration in corn oil at a dose of 10 mg/kg, after prior administration of scopolamine, an agent that causes memory impairment similar to that in Alzheimer's disease. The animals' cognitive function was studied in the passive avoidance test. Results: When studying the pharmacokinetics, the highest bioavailability both in the blood and in the brain was demonstrated by polymorph E, whose AUC was the highest relative to other polymorphs. In the study of the cognitive-enhancing nootropic effect, polymorph E also showed the highest activity, whose values of the latent period of entering the dark chamber did not differ from control animals, and differed from other polymorphs. Conclusion: Thus, the crystal structure has been shown to play a key role in the bioavailability and efficacy of latrepirdine, and polymorph E has also been shown to be a promising drug for the treatment of neurodegenerative diseases associated with memory impairment, such as Alzheimer's disease.
Collapse
Affiliation(s)
| | - Elena A Tukhovskaya
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Alina M Ismailova
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Gulsara A Slashcheva
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center of Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center of Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Ilya V Kazeev
- Federal State Budgetary Institution National Medical Research Center of Oncology Named After N.N. N.N. Blokhin» of the Ministry of Health of Russia, Moscow, Russia
| | - Arkady N Murashev
- Biological Testing Laboratory, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
3
|
Kaneko S, Niki Y, Yamada K, Nasukawa D, Ujihara Y, Toda K. Systemic injection of nicotinic acetylcholine receptor antagonist mecamylamine affects licking, eyelid size, and locomotor and autonomic activities but not temporal prediction in male mice. Mol Brain 2022; 15:77. [PMID: 36068635 PMCID: PMC9450238 DOI: 10.1186/s13041-022-00959-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/05/2022] [Indexed: 12/26/2022] Open
Abstract
Nicotinic acetylcholine receptors are thought to be associated with a wide range of phenomena, such as movement, learning, memory, attention, and addiction. However, the causal relationship between nicotinic receptor activity and behavior remains unclear. Contrary to the studies that examined the functions of muscarinic acetylcholine receptors, the role of the nicotinic acetylcholine receptors on behavior has not been examined as extensively. Here, we examined the effects of intraperitoneal injection of mecamylamine, a nicotinic acetylcholine receptor antagonist, on the performance of male mice in a head-fixed temporal conditioning task and a free-moving open-field task. The head-fixed experimental setup allowed us to record and precisely quantify the licking response while the mice performed the behavioral task with no external cues. In addition, by combining the utility of the head-fixed experimental design with computer vision analysis based on deep learning algorithms, we succeeded in quantifying the eyelid size of awake mice. In the temporal conditioning task, we delivered a 10% sucrose solution every 10 s using a blunt-tipped needle placed within the licking distance of the mice. After the training, the mice showed increased anticipatory licking toward the timing of sucrose delivery, suggesting that the mice could predict the timing of the reward. Systemic injection of mecamylamine decreased licking behavior and caused eye closure but had no effect on learned conditioned predictive behavior in the head-fixed temporal conditioning task. In addition, the injection of mecamylamine decreased spontaneous locomotor activity in a dose-dependent manner in the free-moving open-field task. The results in the open-field experiments further revealed that the effect of mecamylamine on fecal output and urination, suggesting the effects on autonomic activities. Our achievement of successful eyelid size recording has potential as a useful approach in initial screening for drug discovery. Our study paves a way forward to understanding the role of nicotinic acetylcholine receptors on learning and behavior.
Collapse
Affiliation(s)
- Shohei Kaneko
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yasuyuki Niki
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Kota Yamada
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
- Japan Society for Promotion of Science, Tokyo, Japan
| | - Daiki Nasukawa
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yusuke Ujihara
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, TN, Memphis, USA
| | - Koji Toda
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Abstract
Cognitive impairment affects up to 80% of patients with Parkinson's disease (PD) and is associated with poor quality of life. PD cognitive dysfunction includes poor working memory, impairments in executive function and difficulty in set-shifting. The pathophysiology underlying cognitive impairment in PD is still poorly understood, but there is evidence to support involvements of the cholinergic, dopaminergic, and noradrenergic systems. Only rivastigmine, an acetyl- and butyrylcholinesterase inhibitor, is efficacious for the treatment of PD dementia, which limits management of cognitive impairment in PD. Whereas the role of the serotonergic system in PD cognition is less understood, through its interactions with other neurotransmitters systems, namely, the cholinergic system, it may be implicated in cognitive processes. In this chapter, we provide an overview of the pharmacological, clinical and pathological evidence that implicates the serotonergic system in mediating cognition in PD.
Collapse
|
5
|
Schneider JS, Kortagere S. Current concepts in treating mild cognitive impairment in Parkinson's disease. Neuropharmacology 2022; 203:108880. [PMID: 34774549 DOI: 10.1016/j.neuropharm.2021.108880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Impairment in various aspects of cognition is recognized as an important non-motor symptom of Parkinson's disease (PD). Mild cognitive impairment in PD (PD-MCI) is common in non-demented PD patients and is often associated with severity of motor symptoms, disease duration and increasing age. Further, PD-MCI can have a significant negative effect on performance of daily life activities and may be a harbinger of development of PD dementia. Thus, there is significant interest in developing therapeutic strategies to ameliorate cognitive deficits in PD and improve cognitive functioning of PD patients. However, due to significant questions that remain regarding the pathophysiology of cognitive dysfunction in PD, remediation of cognitive dysfunction in PD has proven difficult. In this paper, we will focus on PD-MCI and will review some of the current therapeutic approaches being taken to try to improve cognitive functioning in patients with PD-MCI.
Collapse
Affiliation(s)
- Jay S Schneider
- Dept. of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
6
|
Abstract
Heterocyclic aromatic amines (HAAs) are mainly formed in the pyrolysis process during high-temperature cooking of meat. Meat consumption is very typical of the western diet, and the amount of meat consumption in the eastern countries is growing rapidly; HAAs represents widespread exposure. HAAs are classified as possible human carcinogens; numerous epidemiological studies have demonstrated regular consumption of meat with HAAs as risk factor for cancers. Specific HAAs have received major attention. For example, 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine has been extensively studied as a genotoxicant and mutagen, with emergent literature on neurotoxicity. Harmane has been extensively studied for a role in essential tremors and potentially Parkinson's disease (PD). Harmane levels have been demonstrated to be elevated in blood and brain in essential tremor patients. Meat consumption has been implicated in the etiology of neurodegenerative diseases; however, the role of toxicants formed during meat preparation has not been studied. Epidemiological studies are currently examining the association between HAAs and risk of neurodegenerative diseases such as essential tremors and PD. Studies from our laboratory and others have provided strong evidence that HAA exposure produces PD and Alzheimer's disease-relevant neurotoxicity in cellular and animal models. In this review, we summarize and critically evaluate previous studies on HAA-induced neurotoxicity and the molecular basis of potential neurotoxic effects of HAAs. The available studies provide strong support for the premise that HAAs may impact neurological function and that addressing gaps in understanding of adverse neurological outcomes is critical to determine whether these compounds are modifiable risk factors.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Antidepressant-Like Properties of Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson's Disease. Toxins (Basel) 2021; 13:toxins13070505. [PMID: 34357977 PMCID: PMC8310221 DOI: 10.3390/toxins13070505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s patients often suffer from depression and anxiety, for which there are no optimal treatments. Hemiparkinsonian (hemi-PD) rats were used to test whether intrastriatal Botulinum neurotoxin-A (BoNT-A) application could also have antidepressant-like properties in addition to the known improvement of motor performance. To quantify depression- and anxiety-like behavior, the forced swim test, tail suspension test, open field test, and elevated plus maze test were applied to hemi-PD rats injected with BoNT-A or vehicle. Furthermore, we correlated the results in the forced swim test, open field test, and elevated plus maze test with the rotational behavior induced by apomorphine and amphetamine. Hemi-PD rats did not show significant anxiety-like behavior as compared with Sham 6-OHDA- + Sham BoNT-A-injected as well as with non-injected rats. However, hemi-PD rats demonstrated increased depression-like behaviors compared with Sham- or non-injected rats; this was seen by increased struggling frequency and increased immobility frequency. Hemi-PD rats intrastriatally injected with BoNT-A exhibited reduced depression-like behavior compared with the respective vehicle-receiving hemi-PD animals. The significant effects of intrastriatally applied BoNT-A seen in the forced swim test are reminiscent of those found after various antidepressant drug therapies. Our data correspond with the efficacy of BoNT-A treatment of glabellar frown lines in treating patients with major depression and suggest that also intrastriatal injected BoNT-A may have some antidepressant-like effect on hemi-PD.
Collapse
|
8
|
Choi SJ, Ma TC, Ding Y, Cheung T, Joshi N, Sulzer D, Mosharov EV, Kang UJ. Alterations in the intrinsic properties of striatal cholinergic interneurons after dopamine lesion and chronic L-DOPA. eLife 2020; 9:56920. [PMID: 32687053 PMCID: PMC7380940 DOI: 10.7554/elife.56920] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Changes in striatal cholinergic interneuron (ChI) activity are thought to contribute to Parkinson's disease pathophysiology and dyskinesia from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, but the physiological basis of these changes is unknown. We find that dopamine lesion decreases the spontaneous firing rate of ChIs, whereas chronic treatment with L-DOPA of lesioned mice increases baseline ChI firing rates to levels beyond normal activity. The effect of dopamine loss on ChIs was due to decreased currents of both hyperpolarization-activated cyclic nucleotide-gated (HCN) and small conductance calcium-activated potassium (SK) channels. L-DOPA reinstatement of dopamine normalized HCN activity, but SK current remained depressed. Pharmacological blockade of HCN and SK activities mimicked changes in firing, confirming that these channels are responsible for the molecular adaptation of ChIs to dopamine loss and chronic L-DOPA treatment. These findings suggest that targeting ChIs with channel-specific modulators may provide therapeutic approaches for alleviating L-DOPA-induced dyskinesia in PD patients.
Collapse
Affiliation(s)
- Se Joon Choi
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Thong C Ma
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - Yunmin Ding
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - Timothy Cheung
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - Neal Joshi
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Un Jung Kang
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| |
Collapse
|
9
|
Syeda T, Foguth RM, Llewellyn E, Cannon JR. PhIP exposure in rodents produces neuropathology potentially relevant to Alzheimer's disease. Toxicology 2020; 437:152436. [PMID: 32169473 PMCID: PMC7218929 DOI: 10.1016/j.tox.2020.152436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a public health crisis due to debilitating cognitive symptoms and lack of curative treatments, in the context of increasing prevalence. Thus, it is critical to identify modifiable risk factors. High levels of meat consumption may increase AD risk. Many toxins are formed during meat cooking such as heterocyclic aromatic amines (HAAs). Our prior studies have shown that HAAs produce dopaminergic neurotoxicity. Given the mechanistic and pathological overlap between AD and dopaminergic disorders we investigated whether exposure to 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a prevalent dietary HAA formed during high-temperature meat cooking, may produce AD-relevant neurotoxicity. Here, C57BL/6 mice were treated with 100 or 200 mg/kg PhIP for 8 h or 75 mg/kg for 4 weeks and 16 weeks. PhIP exposure for 8 h produced oxidative damage, and AD-relevant alterations in hippocampal synaptic proteins, Amyloid-beta precursor protein (APP), and β-Site amyloid precursor protein cleaving enzyme 1 (BACE1). PhIP exposure for 4 weeks resulted in an increase in BACE1. PhIP exposure for 16 weeks resulted in increased hippocampal oxidative damage, APP, BACE1, Aβ aggregation, and tau phosphorylation. Quantification of intracellular nitrotyrosine revealed oxidative damage in cholinergic neurons after 8 h, 4 weeks and 16 weeks of PhIP exposure. Our study demonstrates that increase in oxidative damage, APP and BACE1 might be a possible mechanism by which PhIP promotes Aβ aggregation. Given many patients with AD or PD exhibit neuropathological overlap, our study suggests that HAA exposure should be further studied for roles in mediating pathogenic overlap.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Rachel M Foguth
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States
| | - Emily Llewellyn
- Summer Research Opportunities Program, Purdue, University, West Lafayette, IN, 47907, United States; Department of Biology, Utah Valley University, Orem, Utah, 84058, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, United States; Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, IN, 47907, United States.
| |
Collapse
|
10
|
Aksoz BE, Aksoz E. Vital Role of Monoamine Oxidases and Cholinesterases in Central Nervous System Drug Research: A Sharp Dissection of the Pathophysiology. Comb Chem High Throughput Screen 2020; 23:877-886. [PMID: 32077819 DOI: 10.2174/1386207323666200220115154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoamine oxidase and cholinesterase enzymes are very critical enzymes that regulate the level of neurotransmitters such as acetylcholine and monoamines. Monoamine neurotransmitters and acetylcholine play a very important role in many physiological events. An increase or decrease in the amount of these neurotransmitters is observed in a wide range of central nervous system pathologies. Balancing the amount of these neurotransmitters is important in improving the progression of these diseases. Inhibitors of monoamine oxidase and cholinesterase enzymes are important in symptomatic therapy and delaying progression of a group of central nervous system disease manifested with memory loss, cognitive decline and psychiatric disturbances like depression. OBJECTIVE In this article, the relationship between central nervous system diseases and the vital role of the enzymes, monoamine oxidase and cholinesterase, is discussed on the pathophysiologic basis, focusing on drug research. CONCLUSION Monoamine oxidase and cholinesterase enzymes are still a good target for the development of novel drug active substances with optimized pharmacokinetic and pharmacodynamic properties, which can maximize the benefits of current therapy modalities.
Collapse
Affiliation(s)
- Begum E Aksoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| | - Erkan Aksoz
- Department of Pharmacology, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
11
|
Chen J, Cheuk IWY, Shin VY, Kwong A. Acetylcholine receptors: Key players in cancer development. Surg Oncol 2019; 31:46-53. [PMID: 31536927 DOI: 10.1016/j.suronc.2019.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/15/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Acetylcholine (ACh) was first identified as a classic neuromodulator and transmit signals through two subgroups of receptors, namely muscarinic receptors (mAChRs) and nicotinic receptors (nAChRs). Apart from its well-established physiological role in central nervous system (CNS) and peripheral nervous system (PNS), autonomic nervous system and neuromuscular junction, the widely distributed expression of AChRs in different human organs suggests roles in other biological processes in addition to synaptic transmission. Accumulating evidence revealed that cancer cell processes such as proliferation, apoptosis, angiogenesis and even epithelial-mesenchymal transition (EMT) are mediated by overexpression of AChRs in different kinds of tumors. In breast cancer, α7-nAChR and α9-nAChR were reported to be oncogenic. On the other hand, research on the role of mAChRs in breast cancer tumorgenesis is limited and confined to M3 receptor only. Since AChRs distributed in both CNS and PNS even non-neuronal tissues, there is an urgent need for the development of subtype-specific AChR antagonist which inhibits cancer cell progression with minimal intervention on the normal acetylcholine-regulated system within human body.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | | | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong; Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong; Centre of Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Hong Kong.
| |
Collapse
|
12
|
Ztaou S, Amalric M. Contribution of cholinergic interneurons to striatal pathophysiology in Parkinson's disease. Neurochem Int 2019; 126:1-10. [PMID: 30825602 DOI: 10.1016/j.neuint.2019.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of nigral dopaminergic neurons innervating the striatum, the main input structure of the basal ganglia. This creates an imbalance between dopaminergic inputs and cholinergic interneurons (ChIs) within the striatum. The efficacy of anticholinergic drugs, one of the earliest therapy for PD before the discovery of L-3,4-dihydroxyphenylalanine (L-DOPA) suggests an increased cholinergic tone in this disease. The dopamine (DA)-acetylcholine (ACh) balance hypothesis is now revisited with the use of novel cutting-edge techniques (optogenetics, pharmacogenetics, new electrophysiological recordings). This review will provide the background of the specific contribution of ChIs to striatal microcircuit organization in physiological and pathological conditions. The second goal of this review is to delve into the respective contributions of nicotinic and muscarinic receptor cholinergic subunits to the control of striatal afferent and efferent neuronal systems. Special attention will be given to the role played by muscarinic acetylcholine receptors (mAChRs) in the regulation of striatal network which may have important implications in the development of novel therapeutic strategies for motor and cognitive impairment in PD.
Collapse
Affiliation(s)
- Samira Ztaou
- Aix Marseille Univ, CNRS, LNC, FR3C, Marseille, France; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY, 10032, USA
| | | |
Collapse
|
13
|
Chuang YH, Paul KC, Sinsheimer JS, Bronstein JM, Bordelon YM, Ritz B. Genetic variants in nicotinic receptors and smoking cessation in Parkinson's disease. Parkinsonism Relat Disord 2019; 62:57-61. [PMID: 30777653 DOI: 10.1016/j.parkreldis.2019.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Negative associations between smoking and Parkinson's disease (PD) are well documented. While common biases may not explain this association, some studies have suggested reverse causality and ease of quitting might be an early sign of PD, possibly related to a reduced nicotinic response. We investigated nicotinic receptor (nAChR) genetics to add to our understanding of possible biologic mechanisms underlying the smoking-PD relationship. METHODS We relied on 612 patients and 691 controls enrolled in the PEG (Parkinson's Environment and Gene) study for whom we obtained information on smoking and quitting ease through interviews. Genotyping in the nAChR genes, i.e. CHRNA5-A3-B4 and CHRNB3-A6 gene regions that have been linked to smoking or quitting behaviors, were based on blood and saliva DNA samples. We assessed associations with logistic regression assuming logit-additive allelic effects and used product terms for genetic allele status and smoking or quitting assessing interactions. RESULTS As expected, we observed negative associations between smoking and PD that were strongest for current followed by former smokers. In former smokers, high quitting difficulty was negatively associated with PD risk (extremely hard vs. easy: OR = 0.62 [0.39-0.99], p = 0.05), meaning those who developed PD were able to quit smoking with less difficulty than controls. The CHRNA3 rs578776-A allele predicted quitting difficulty in smoking controls (OR = 0.53 [0.32-0.91], p = 0.02), but not in smoking PD patients (OR = 1.09 [0.61-1.95], p = 0.77). CONCLUSION Our study further corroborates previous findings that ease of quitting may be an early sign of PD onset related to a loss of nicotinic response in prodromal stages.
Collapse
Affiliation(s)
- Yu-Hsuan Chuang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
| | - Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
| | - Janet S Sinsheimer
- Department of Human Genetics and Biomathematics, UCLA David Geffen School of Medicine, Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Yvette M Bordelon
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA; Department of Environmental Health, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Masuoka T, Uwada J, Kudo M, Yoshiki H, Yamashita Y, Taniguchi T, Nishio M, Ishibashi T, Muramatsu I. Augmentation of Endogenous Acetylcholine Uptake and Cholinergic Facilitation of Hippocampal Long-Term Potentiation by Acetylcholinesterase Inhibition. Neuroscience 2019; 404:39-47. [PMID: 30708046 DOI: 10.1016/j.neuroscience.2019.01.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
Hippocampal cholinergic activity enhances long-term potentiation (LTP) of synaptic transmission in intrahippocampal circuits and regulates cognitive function. We recently demonstrated intracellular distribution of functional M1-muscarinic acetylcholine receptors (mAChRs) and neuronal uptake of acetylcholine (ACh) in the central nervous system. Here we examined whether endogenous ACh acts on intracellular M1-mAChRs following its uptake and causes cholinergic facilitation of hippocampal LTP. ACh esterase (AChE) activities and [3H]ACh uptake was measured in rat hippocampal segments. LTP of evoked field excitatory postsynaptic potentials at CA1 synapses was induced by high frequency stimulation in hippocampal slices. Pretreatment with diisopropylfluorophosphate (DFP) irreversibly inhibited AChE, augmented ACh uptake, and significantly enhanced the LTP. This cholinergic facilitation was inhibited by pirenzepine, a membrane-permeable M1 antagonist, while only the early stage of cholinergic facilitation was inhibited by a membrane-impermeable M1 antagonist, muscarinic toxin 7. Tetraethylammonium (TEA) inhibited ACh uptake in hippocampal segments and selectively suppressed late stage cholinergic facilitation without changing the early stage. In contrast, LTP in DFP-untreated slices was not affected by the muscarinic antagonists and TEA. Carbachol (CCh; an AChE-resistant muscarinic agonist) competed with ACh for its uptake and produced cholinergic facilitation of LTP in DFP-untreated slices. The late stage of CCh-induced facilitation was also selectively inhibited by TEA. Our results suggest that when AChE is inactivated by inhibitors, LTP in hippocampal slices is significantly enhanced by endogenous ACh and that cholinergic facilitation is caused by direct activation of cell-surface M1-mAChRs and subsequent activation of intracellular M1-mAChRs after ACh uptake.
Collapse
Affiliation(s)
- Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| | - Junsuke Uwada
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Makiko Kudo
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hatsumi Yoshiki
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | - Yuka Yamashita
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Takanobu Taniguchi
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Matomo Nishio
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| |
Collapse
|
15
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
16
|
Mann T, Zilles K, Klawitter F, Cremer M, Hawlitschka A, Palomero-Gallagher N, Schmitt O, Wree A. Acetylcholine Neurotransmitter Receptor Densities in the Striatum of Hemiparkinsonian Rats Following Botulinum Neurotoxin-A Injection. Front Neuroanat 2018; 12:65. [PMID: 30147647 PMCID: PMC6095974 DOI: 10.3389/fnana.2018.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
Cholinergic neurotransmission has a pivotal function in the caudate-putamen, and is highly associated with the pathophysiology of Parkinson's disease. Here, we investigated long-term changes in the densities of the muscarinic receptor subtypes M1, M2, M3 (mAchRs) and the nicotinic receptor subtype α4β2 (nAchRs) in the striatum of the 6-OHDA-induced hemiparkinsonian (hemi-PD) rat model using quantitative in vitro receptor autoradiography. Hemi-PD rats exhibited an ipsilateral decrease in striatal mAchR densities between 6 and 16%. Moreover, a massive and constant decrease in striatal nAchR density by 57% was found. A second goal of the study was to disclose receptor-related mechanisms for the positive motor effect of intrastriatally injected Botulinum neurotoxin-A (BoNT-A) in hemi-PD rats in the apomorphine rotation test. Therefore, the effect of intrastriatally injected BoNT-A in control and hemi-PD rats on mAchR and nAchR densities was analyzed and compared to control animals or vehicle-injected hemi-PD rats. BoNT-A administration slightly reduced interhemispheric differences of mAchR and nAchR densities in hemi-PD rats. Importantly, the BoNT-A effect on striatal nAchRs significantly correlated with behavioral testing after apomorphine application. This study gives novel insights of 6-OHDA-induced effects on striatal mAchR and nAchR densities, and partly explains the therapeutic effect of BoNT-A in hemi-PD rats on a cellular level.
Collapse
Affiliation(s)
- Teresa Mann
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Karl Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Felix Klawitter
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Markus Cremer
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany
| | | | - Nicola Palomero-Gallagher
- Research Centre Jülich, Institute of Neuroscience and Medicine INM-1, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Oliver Schmitt
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Andreas Wree
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| |
Collapse
|
17
|
Abstract
Alzheimer's disease is likely to be one of the challenges for the early part of the 21st century. Better knowledge of the molecular biology, genetics and pathogenesis of the condition have led to a host of psychopharmacological compounds being developed which may help in its the treatment, while epidemiological studies have suggested that existing treatments for other chronic conditions may have an effect on the presentation of Alzheimer's disease.
Collapse
|
18
|
Presynaptic Neuronal Nicotinic Receptors Differentially Shape Select Inputs to Auditory Thalamus and Are Negatively Impacted by Aging. J Neurosci 2017; 37:11377-11389. [PMID: 29061702 DOI: 10.1523/jneurosci.1795-17.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/05/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal.SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population.
Collapse
|
19
|
Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson's disease. J Neural Transm (Vienna) 2017; 125:337-363. [PMID: 28861737 DOI: 10.1007/s00702-017-1774-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically characterized by cardinal motor deficits including bradykinesia, tremor, rigidity and postural instability. Over the past decades, it has become clear that PD symptoms extend far beyond motor signs to include cognitive, autonomic and psychiatric impairments, most likely resulting from cortical and subcortical lesions of non-dopaminergic systems. In addition to nigrostriatal dopaminergic degeneration, pathological examination of PD brains, indeed, reveals widespread distribution of intracytoplasmic inclusions (Lewy bodies) and death of non-dopaminergic neurons in the brainstem and thalamus. For that past three decades, the MPTP-treated monkey has been recognized as the gold standard PD model because it displays some of the key behavioral and pathophysiological changes seen in PD patients. However, a common criticism raised by some authors about this model, and other neurotoxin-based models of PD, is the lack of neuronal loss beyond the nigrostriatal dopaminergic system. In this review, we argue that this assumption is largely incorrect and solely based on data from monkeys intoxicated with acute administration of MPTP. Work achieved in our laboratory and others strongly suggest that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients. This review critically examines these data and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.
Collapse
Affiliation(s)
- Gunasingh J Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
| |
Collapse
|
20
|
Kljakic O, Janickova H, Prado VF, Prado MAM. Cholinergic/glutamatergic co-transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation. J Neurochem 2017; 142 Suppl 2:90-102. [PMID: 28421605 DOI: 10.1111/jnc.14003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
Abstract
It is well established that neurons secrete neuropeptides and ATP with classical neurotransmitters; however, certain neuronal populations are also capable of releasing two classical neurotransmitters by a process named co-transmission. Although there has been progress in our understanding of the molecular mechanism underlying co-transmission, the individual regulation of neurotransmitter secretion and the functional significance of this neuronal 'bilingualism' is still unknown. Striatal cholinergic interneurons (CINs) have been shown to secrete glutamate (Glu) in addition to acetylcholine (ACh) and are recognized for their role in the regulation of striatal circuits and behavior. Our review highlights the recent research into identifying mechanisms that regulate the secretion and function of Glu and ACh released by CINs and the roles these neurons play in regulating dopamine secretion and striatal activity. In particular, we focus on how the transporters for ACh (VAChT) and Glu (VGLUT3) influence the storage of neurotransmitters in CINs. We further discuss how these individual neurotransmitters regulate striatal computation and distinct aspects of behavior that are regulated by the striatum. We suggest that understanding the distinct and complementary functional roles of these two neurotransmitters may prove beneficial in the development of therapies for Parkinson's disease and addiction. Overall, understanding how Glu and ACh secreted by CINs impacts striatal activity may provide insight into how different populations of 'bilingual' neurons are able to develop sophisticated regulation of their targets by interacting with multiple receptors but also by regulating each other's vesicular storage. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Ornela Kljakic
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Helena Janickova
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
McOmish C, Pavey G, McLean C, Horne M, Dean B, Scarr E. Muscarinic receptor binding changes in postmortem Parkinson's disease. J Neural Transm (Vienna) 2016; 124:227-236. [PMID: 27873015 DOI: 10.1007/s00702-016-1629-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a devastating disorder, affecting approximately 2% of people aged 60 and above. It is marked by progressive neurodegeneration that has long been known to impact dopaminergic cells and circuits, but more recently the acetylcholine system has also been implicated in the complex aetiology and symptomatology of the disease. While broad changes in cholinergic markers have been described, insight into the contribution of specific acetylcholine receptors is less clear. To address this important unknown, in this study we performed [3H] pirenzepine, [3H] 4DAMP, and [3H] AF-DX 384 in situ radioligand binding on postmortem tissues from Brodmann's area 6, 9, 46, and the caudate putamen, from PD and matched controls to detect muscarinic M1, M3, and M1/2/4 receptors, respectively. We found no difference in [3H] pirenzepine binding between PD and controls across all regions assessed. [3H] 4DAMP binding was found to be higher in PD CPu and BA9 than in controls. [3H] AF-DX 384 was higher in BA9 of PD compared with controls. In sum, we show selective increase in M3 receptors in cortical and subcortical regions, as well as increased M2/M4 in cortical area BA9, which together support a role for cholinergic dysfunction in PD.
Collapse
Affiliation(s)
- Caitlin McOmish
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Howard Florey Laboratories, The Florey Neuroscience Institute, University of Melbourne, 30 Royal Parade, cnr Genetics Lane, Melbourne, VIC, 3052, Australia.
| | - Geoff Pavey
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Catriona McLean
- Department Anatomical Pathology, Alfred Hospital, Melbourne, VIC, Australia
| | - Malcolm Horne
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Elizabeth Scarr
- The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
| |
Collapse
|
22
|
De Beaumont L, Pelleieux S, Lamarre-Théroux L, Dea D, Poirier J. Butyrylcholinesterase K and Apolipoprotein E-ɛ4 Reduce the Age of Onset of Alzheimer’s Disease, Accelerate Cognitive Decline, and Modulate Donepezil Response in Mild Cognitively Impaired Subjects. J Alzheimers Dis 2016; 54:913-922. [DOI: 10.3233/jad-160373] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Louis De Beaumont
- Douglas Mental Health University Institute, McGill University, Verdun, Montreal, Canada
| | - Sandra Pelleieux
- Douglas Mental Health University Institute, McGill University, Verdun, Montreal, Canada
| | | | - Doris Dea
- Douglas Mental Health University Institute, McGill University, Verdun, Montreal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, McGill University, Verdun, Montreal, Canada
- Center for Studies in the Prevention of Alzheimer’s Disease, McGill University, Verdun, Montreal, Canada
| | | |
Collapse
|
23
|
Higher levels of different muscarinic receptors in the cortex and hippocampus from subjects with Alzheimer’s disease. J Neural Transm (Vienna) 2016; 124:273-284. [DOI: 10.1007/s00702-016-1625-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022]
|
24
|
Perez-Lloret S, Barrantes FJ. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson's disease. NPJ PARKINSONS DISEASE 2016; 2:16001. [PMID: 28725692 PMCID: PMC5516588 DOI: 10.1038/npjparkd.2016.1] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 01/04/2023]
Abstract
In view of its ability to explain the most frequent motor symptoms of Parkinson’s Disease (PD), degeneration of dopaminergic neurons has been considered one of the disease’s main pathophysiological features. Several studies have shown that neurodegeneration also affects noradrenergic, serotoninergic, cholinergic and other monoaminergic neuronal populations. In this work, the characteristics of cholinergic deficits in PD and their clinical correlates are reviewed. Important neurophysiological processes at the root of several motor and cognitive functions remit to cholinergic neurotransmission at the synaptic, pathway, and circuital levels. The bulk of evidence highlights the link between cholinergic alterations and PD motor symptoms, gait dysfunction, levodopa-induced dyskinesias, cognitive deterioration, psychosis, sleep abnormalities, autonomic dysfunction, and altered olfactory function. The pathophysiology of these symptoms is related to alteration of the cholinergic tone in the striatum and/or to degeneration of cholinergic nuclei, most importantly the nucleus basalis magnocellularis and the pedunculopontine nucleus. Several results suggest the clinical usefulness of antimuscarinic drugs for treating PD motor symptoms and of inhibitors of the enzyme acetylcholinesterase for the treatment of dementia. Data also suggest that these inhibitors and pedunculopontine nucleus deep-brain stimulation might also be effective in preventing falls. Finally, several drugs acting on nicotinic receptors have proved efficacious for treating levodopa-induced dyskinesias and cognitive impairment and as neuroprotective agents in PD animal models. Results in human patients are still lacking.
Collapse
Affiliation(s)
- Santiago Perez-Lloret
- Institute of Cardiologic Research, National Scientific and Research Council (ININCA-CONICET), Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA-CONICET, Faculty of Medical Sciences, Buenos Aires, Argentina
| |
Collapse
|
25
|
Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Res Bull 2016; 120:63-74. [DOI: 10.1016/j.brainresbull.2015.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/16/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
|
26
|
Weltzin MM, Schulte MK. Desformylflustrabromine Modulates α4β2 Neuronal Nicotinic Acetylcholine Receptor High- and Low-Sensitivity Isoforms at Allosteric Clefts Containing the β2 Subunit. J Pharmacol Exp Ther 2015; 354:184-94. [PMID: 26025967 PMCID: PMC4518072 DOI: 10.1124/jpet.115.223933] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
Alterations in expression patterns of α4β2 nicotinic acetylcholine receptors have been demonstrated to alter cholinergic neurotransmission and are implicated in neurologic disorders, including autism, nicotine addiction, Alzheimer's disease, and Parkinson's disease. Positive allosteric modulators (PAMs) represent promising new leads in the development of therapeutic agents for the treatment of these disorders. This study investigates the involvement of the β2-containing subunit interfaces of α4β2 receptors in the modulation of acetylcholine (ACh)-induced responses by the PAM desformylflustrabromine (dFBr). Eight amino acids on the principal face of the β2 subunit were mutated to alanine to explore the involvement of this region in the potentiation of ACh-induced currents by dFBr. ACh-induced responses obtained from wild-type and mutant α4β2 receptors expressed in Xenopus laevis oocytes were recorded in the presence and absence of dFBr using two-electrode voltage clamp electrophysiology. Wild-type and mutant receptors were expressed in both high and low ACh sensitivity isoforms by using biased injection ratios of 1:5 or 5:1 α4 to β2 complementary RNA. Mutations were made in the B, C, and A loops of the principal face of the β2 subunit, which are regions not involved in the binding of ACh. Mutant β2(Y120A) significantly eliminated dFBr potency in both isoform preparations. Several other mutations altered dFBr potentiation levels in both preparations. Our findings support the involvement of the principal face of the β2 subunit in dFBr modulation of ACh-induced responses. Findings from this study will aid in the improved design of dFBr-like PAMs for potential therapeutic use.
Collapse
Affiliation(s)
- Maegan M Weltzin
- Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (M.M.W.); and Department of Pharmaceutical Science, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania (M.K.S.)
| | - Marvin K Schulte
- Division of Neurobiology, Barrow Neurologic Institute, Phoenix, Arizona (M.M.W.); and Department of Pharmaceutical Science, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania (M.K.S.)
| |
Collapse
|
27
|
Colloby SJ, McKeith IG, Wyper DJ, O'Brien JT, Taylor JP. Regional covariance of muscarinic acetylcholine receptors in Alzheimer's disease using (R, R) [(123)I]-QNB SPECT. J Neurol 2015; 262:2144-53. [PMID: 26122542 DOI: 10.1007/s00415-015-7827-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is characterised by deficits in cholinergic neurotransmission and subsequent receptor changes. We investigated (123)I-iodo-quinuclidinyl-benzilate (QNB) SPECT images using spatial covariance analysis (SCA), to detect an M1/M4 receptor spatial covariance pattern (SCP) that distinguished AD from controls. Furthermore, a corresponding regional cerebral blood flow (rCBF) SCP was also derived. Thirty-nine subjects (15 AD and 24 healthy elderly controls) underwent (123)I-QNB and (99m)Tc-exametazime SPECT. Voxel SCA was simultaneously applied to the set of smoothed/registered scans, generating a series of eigenimages representing common intercorrelated voxels across subjects. Linear regression identified individual M1/M4 and rCBF SCPs that discriminated AD from controls. The M1/M4 SCP showed concomitant decreased uptake in medial temporal, inferior frontal, basal forebrain and cingulate relative to concomitant increased uptake in frontal poles, occipital, pre-post central and precuneus/superior parietal regions (F1,37 = 85.7, p < 0.001). A largely different perfusion SCP was obtained showing concomitant decreased rCBF in medial and superior temporal, precuneus, inferior parietal and cingulate relative to concomitant increased rCBF in cerebellum, pre-post central, putamen, fusiform and brain stem/midbrain regions (F1,37 = 77.5, p < 0.001). The M1/M4 SCP expression correlated with the duration of cognitive symptoms (r = 0.90, p < 0.001), whereas the rCBF SCP expression negatively correlated with MMSE, CAMCOG and CAMCOGmemory (r ≥ |0.63|, p ≤ 0.006). (123)I-QNB SPECT revealed an M1/M4 basocortical covariance pattern, distinct from rCBF, reflecting the duration of disease rather than current clinical symptoms. This approach could be more sensitive than univariate methods in characterising the cholinergic/rCBF changes that underpin the clinical phenotype of AD.
Collapse
Affiliation(s)
- Sean J Colloby
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Ian G McKeith
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - David J Wyper
- SINAPSE, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Level E4, Box 189, Cambridge, CB2 0QC, UK
| | - John-Paul Taylor
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
28
|
Matsumoto M. Dopamine signals and physiological origin of cognitive dysfunction in Parkinson's disease. Mov Disord 2015; 30:472-83. [PMID: 25773863 DOI: 10.1002/mds.26177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/08/2015] [Accepted: 01/19/2015] [Indexed: 11/12/2022] Open
Abstract
The pathological hallmark of Parkinson's disease (PD) is the degeneration of midbrain dopamine neurons. Cognitive dysfunction is a feature of PD patients even at the early stages of the disease. Electrophysiological studies on dopamine neurons in awake animals provide contradictory accounts of the role of dopamine. These studies have established that dopamine neurons convey a unique signal associated with rewards rather than cognitive functions. Emphasizing their role in reward processing leads to difficulty in developing hypothesis as to how cognitive impairments in PD are associated with the degeneration of dopamine circuitry. A hint to resolve this contradiction came from recent electrophysiological studies reporting that dopamine neurons transmit more diverse signals than previously thought. These studies suggest that dopamine neurons are divided into at least two functional subgroups, one signaling "motivational value" and the other signaling "salience." The former subgroup fits well with the conventional reward theory, whereas the latter subgroup has been shown to transmit signals related to salient but non-rewarding experiences such as aversive stimulations and cognitively demanding situations. This article reviews recent advances in understanding the non-reward functions of dopamine, and then discusses the possibility that cognitive dysfunction in PD is at least partially caused by the degeneration of the dopamine neuron subgroup signaling the salience of events in the environment.
Collapse
Affiliation(s)
- Masayuki Matsumoto
- Laboratory of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
[(125)I]Iodo-ASEM, a specific in vivo radioligand for α7-nAChR. Nucl Med Biol 2015; 42:488-493. [PMID: 25687449 DOI: 10.1016/j.nucmedbio.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/25/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022]
Abstract
[(125)I]Iodo-ASEM, a new radioligand with high affinity and selectivity for α7-nAChRs (K(i) = 0.5 nM; α7/α4β2 = 3414), has been synthesized in radiochemical yield of 33 ± 6% from the corresponding di-butyltriazene derivative and at high specific radioactivity (1600Ci/mmol; 59.2 MBq/μmol). [(125)I]Iodo-ASEM readily entered the brains of normal CD-1 mice and specifically and selectively labeled cerebral α7-nAChRs. [(125)I]iodo-ASEM is a new useful tool for studying α7-nAChR.
Collapse
|
30
|
Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 2015; 36:96-108. [PMID: 25639674 PMCID: PMC4324614 DOI: 10.1016/j.tips.2014.12.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/30/2023]
Abstract
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.
Collapse
Affiliation(s)
- Kelly T Dineley
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Anshul A Pandya
- Chukchi Campus, Department of Bioscience, College of Rural and Community Development, University of Alaska Fairbanks, P.O. Box 297, Kotzebue, AK 99752-0297, USA
| | - Jerrel L Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH), Department of Health and Human Services (DHHS), F2-08, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
31
|
Lim SAO, Kang UJ, McGehee DS. Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 2014; 6:22. [PMID: 25374536 PMCID: PMC4204445 DOI: 10.3389/fnsyn.2014.00022] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.
Collapse
Affiliation(s)
| | - Un Jung Kang
- Department of Neurology, Columbia University New York, NY, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago Chicago, IL, USA ; Department of Anesthesia and Critical Care, University of Chicago Chicago, IL, USA
| |
Collapse
|
32
|
Ritz B, Lee PC, Lassen CF, Arah OA. Parkinson disease and smoking revisited: ease of quitting is an early sign of the disease. Neurology 2014; 83:1396-402. [PMID: 25217056 DOI: 10.1212/wnl.0000000000000879] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess whether being able to quit smoking is an early marker of Parkinson disease (PD) onset rather than tobacco being "neuroprotective," we analyzed information about ease of quitting and nicotine substitute use. METHODS For this case-control study, we identified 1,808 patients with PD diagnosed between 1996 and 2009 from Danish registries, matched 1,876 population controls on sex and year of birth, and collected lifestyle information. We estimated odds ratios and 95% confidence intervals with logistic regression adjusting for matching factors and confounders. RESULTS Fewer patients with PD than controls ever established a smoking habit. Among former smokers, those with greater difficulty quitting or using nicotine substitutes were less likely to develop PD, with the risk being lowest among those reporting "extremely difficult to quit" compared with "easy to quit." Nicotine substitute usage was strongly associated with quitting difficulty and duration of smoking, i.e., most strongly among current smokers, followed by former smokers who had used nicotine substitutes, and less strongly among former smokers who never used substitutes. CONCLUSIONS Our data support the notion that patients with PD are able to quit smoking more easily than controls. These findings are compatible with a decreased responsiveness to nicotine during the prodromal phase of PD. We propose that ease of smoking cessation is an aspect of premanifest PD similar to olfactory dysfunction, REM sleep disorders, or constipation and suggests that the apparent "neuroprotective" effect of smoking observed in epidemiologic studies is due to reverse causation.
Collapse
Affiliation(s)
- Beate Ritz
- From the Department of Epidemiology (B.R., O.A.A.), University of California at Los Angeles School of Public Health; Department of Neurology (B.R.), School of Medicine, University of California at Los Angeles; Department of Health Care Management (P.-C.L.), College of Healthcare Administration and Management, National Taipei University of Nursing Health Sciences, Taiwan; and Danish Cancer Society Research Center (C.F.L.), Danish Cancer Society, Copenhagen, Denmark.
| | - Pei-Chen Lee
- From the Department of Epidemiology (B.R., O.A.A.), University of California at Los Angeles School of Public Health; Department of Neurology (B.R.), School of Medicine, University of California at Los Angeles; Department of Health Care Management (P.-C.L.), College of Healthcare Administration and Management, National Taipei University of Nursing Health Sciences, Taiwan; and Danish Cancer Society Research Center (C.F.L.), Danish Cancer Society, Copenhagen, Denmark
| | - Christina F Lassen
- From the Department of Epidemiology (B.R., O.A.A.), University of California at Los Angeles School of Public Health; Department of Neurology (B.R.), School of Medicine, University of California at Los Angeles; Department of Health Care Management (P.-C.L.), College of Healthcare Administration and Management, National Taipei University of Nursing Health Sciences, Taiwan; and Danish Cancer Society Research Center (C.F.L.), Danish Cancer Society, Copenhagen, Denmark
| | - Onyebuchi A Arah
- From the Department of Epidemiology (B.R., O.A.A.), University of California at Los Angeles School of Public Health; Department of Neurology (B.R.), School of Medicine, University of California at Los Angeles; Department of Health Care Management (P.-C.L.), College of Healthcare Administration and Management, National Taipei University of Nursing Health Sciences, Taiwan; and Danish Cancer Society Research Center (C.F.L.), Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
33
|
Isaias IU, Spiegel J, Brumberg J, Cosgrove KP, Marotta G, Oishi N, Higuchi T, Küsters S, Schiller M, Dillmann U, van Dyck CH, Buck A, Herrmann K, Schloegl S, Volkmann J, Lassmann M, Fassbender K, Lorenz R, Samnick S. Nicotinic acetylcholine receptor density in cognitively intact subjects at an early stage of Parkinson's disease. Front Aging Neurosci 2014; 6:213. [PMID: 25177294 PMCID: PMC4132266 DOI: 10.3389/fnagi.2014.00213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/03/2014] [Indexed: 11/20/2022] Open
Abstract
We investigated in vivo brain nicotinic acetylcholine receptor (nAChR) distribution in cognitively intact subjects with Parkinson’s disease (PD) at an early stage of the disease. Fourteen patients and 13 healthy subjects were imaged with single photon emission computed tomography and the radiotracer 5-[123I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine ([123I]5IA). Patients were selected according to several criteria, including short duration of motor signs (<7 years) and normal scores at an extensive neuropsychological evaluation. In PD patients, nAChR density was significantly higher in the putamen, the insular cortex and the supplementary motor area and lower in the caudate nucleus, the orbitofrontal cortex, and the middle temporal gyrus. Disease duration positively correlated with nAChR density in the putamen ipsilateral (ρ = 0.56, p < 0.05) but not contralateral (ρ = 0.49, p = 0.07) to the clinically most affected hemibody. We observed, for the first time in vivo, higher nAChR density in brain regions of the motor and limbic basal ganglia circuits of subjects with PD. Our findings support the notion of an up-regulated cholinergic activity at the striatal and possibly cortical level in cognitively intact PD patients at an early stage of disease.
Collapse
Affiliation(s)
| | - Jörg Spiegel
- Department of Neurology, Saarland University , Homburg/Saar , Germany
| | - Joachim Brumberg
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| | - Kelly P Cosgrove
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Giorgio Marotta
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Naoya Oishi
- Human Brain Research Center, Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| | - Sebastian Küsters
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| | - Markus Schiller
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| | - Ulrich Dillmann
- Department of Neurology, Saarland University , Homburg/Saar , Germany
| | | | - Andreas Buck
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| | - Susanne Schloegl
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg , Würzburg , Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University , Homburg/Saar , Germany
| | - Reinhard Lorenz
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University of Würzburg , Würzburg , Germany
| |
Collapse
|
34
|
Patel S, Grizzell JA, Holmes R, Zeitlin R, Solomon R, Sutton TL, Rohani A, Charry LC, Iarkov A, Mori T, Echeverria Moran V. Cotinine halts the advance of Alzheimer's disease-like pathology and associated depressive-like behavior in Tg6799 mice. Front Aging Neurosci 2014; 6:162. [PMID: 25100990 PMCID: PMC4107855 DOI: 10.3389/fnagi.2014.00162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/24/2014] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is associated with cognitive and non-cognitive symptoms for which there are currently no effective therapies. We have previously reported that cotinine, a natural product obtained from tobacco leaves, prevented memory loss and diminished amyloid-β (Aβ) plaque pathology in transgenic 6799 mice (Tg6799 mice) when treated prior to the development of the pathology. We have also shown that cotinine reduces depressive-like behavior in normal and chronically stressed C57BL/6 mice. Here, we extend our previous studies by investigating the effects of cotinine on the progression of AD-like pathology, depressive-like behavior, and the mechanisms underlying its beneficial effects in Tg6799 mice when left untreated until after a more advanced stage of the disease's development. The results show that vehicle-treated Tg6799 mice displayed an accentuated loss of working memory and an abundant Aβ plaque pathology that were accompanied by higher levels of depressive-like behavior as compared to control littermates. By contrast, prolonged daily cotinine treatment to Tg6799 mice, withheld until after a mid-level progression of AD-like pathology, reduced Aβ levels/plaques and depressive-like behavior. Moreover, this treatment paradigm dramatically improved working memory as compared to control littermates. The beneficial effects of cotinine were accompanied by an increase in the expression of the active form of protein kinase B and the postsynaptic density protein 95 in the hippocampi and frontal cortices of Tg6799 mice. This suggests that cotinine halts the progression of AD-like pathology while reducing depressive-like behavior by stimulating signaling pathways supporting synaptic plasticity in Tg6799 mice. The potential use of cotinine to treat cognitive and non-cognitive symptoms of AD is discussed.
Collapse
Affiliation(s)
- Sagar Patel
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - J Alex Grizzell
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA ; Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | - Rosalee Holmes
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - Ross Zeitlin
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - Rosalynn Solomon
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - Thomas L Sutton
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - Adeeb Rohani
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - Laura C Charry
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA
| | - Alexandre Iarkov
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA ; Center of Research in Biomedical Sciences, Universidad Autónoma de Chile Santiago, Chile
| | - Takashi Mori
- Departments of Biomedical Sciences and Pathology, Saitama Medical Center and Saitama Medical University Kawagoe, Saitama, Japan
| | - Valentina Echeverria Moran
- Research and Development Service, Department of Veterans Affairs, Bay Pines VA Healthcare System Bay Pines, FL, USA ; Center of Research in Biomedical Sciences, Universidad Autónoma de Chile Santiago, Chile ; Research Service, Department of Veterans Affairs, Tampa VA Healthcare System Tampa, FL, USA ; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| |
Collapse
|
35
|
Abstract
There is increasing interest in the clinical effects of cholinergic basal forebrain and tegmental pedunculopontine complex (PPN) projection degeneration in Parkinson's disease (PD). Recent evidence supports an expanded role beyond cognitive impairment, including effects on olfaction, mood, REM sleep behavior disorder, and motor functions. Cholinergic denervation is variable in PD without dementia and may contribute to clinical symptom heterogeneity. Early in vivo imaging evidence that impaired cholinergic integrity of the PPN associates with frequent falling in PD is now confirmed by human post-mortem evidence. Brainstem cholinergic lesioning studies in primates confirm the role of the PPN in mobility impairment. Degeneration of basal forebrain cholinergic projections correlates with decreased walking speed. Cumulatively, these findings provide evidence for a new paradigm to explain dopamine-resistant features of mobility impairments in PD. Recognition of the increased clinical role of cholinergic system degeneration may motivate new research to expand indications for cholinergic therapy in PD.
Collapse
Affiliation(s)
- Martijn L T M Müller
- Functional Neuroimaging, Cognitive, and Mobility Laboratory, Department of Radiology, Division of Nuclear Medicine, University of Michigan, 24 Frank Lloyd Wright Dr, Box #362, Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
36
|
Horti AG, Gao Y, Kuwabara H, Wang Y, Abazyan S, Yasuda RP, Tran T, Xiao Y, Sahibzada N, Holt DP, Kellar KJ, Pletnikov MV, Pomper MG, Wong DF, Dannals RF. 18F-ASEM, a radiolabeled antagonist for imaging the α7-nicotinic acetylcholine receptor with PET. J Nucl Med 2014; 55:672-7. [PMID: 24556591 DOI: 10.2967/jnumed.113.132068] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The α7-nicotinic cholinergic receptor (α7-nAChR) is a key mediator of brain communication and has been implicated in a wide variety of central nervous system disorders. None of the currently available PET radioligands for α7-nAChR are suitable for quantitative PET imaging, mostly because of insufficient specific binding. The goal of this study was to evaluate the potential of (18)F-ASEM ((18)F-JHU82132) as an α7-nAChR radioligand for PET. METHODS The inhibition binding assay and receptor functional properties of ASEM were assessed in vitro. The brain regional distribution of (18)F-ASEM in baseline and blockade were evaluated in DISC1 mice (dissection) and baboons (PET). RESULTS ASEM is an antagonist for the α7-nAChR with high binding affinity (Ki = 0.3 nM). (18)F-ASEM readily entered the baboon brain and specifically labeled α7-nAChR. The in vivo specific binding of (18)F-ASEM in the brain regions enriched with α7-nAChRs was 80%-90%. SSR180711, an α7-nAChR-selective partial agonist, blocked (18)F-ASEM binding in the baboon brain in a dose-dependent manner, suggesting that the binding of (18)F-ASEM was mediated by α7-nAChRs and the radioligand was suitable for drug evaluation studies. In the baboon baseline studies, the brain regional volume of distribution (VT) values for (18)F-ASEM were 23 (thalamus), 22 (insula), 18 (hippocampus), and 14 (cerebellum), whereas in the binding selectivity (blockade) scan, all regional VT values were reduced to less than 4. The range of regional binding potential values in the baboon brain was from 3.9 to 6.6. In vivo cerebral binding of (18)F-ASEM and α7-nAChR expression in mutant DISC1 mice, a rodent model of schizophrenia, was significantly lower than in control animals, which is in agreement with previous postmortem human data. CONCLUSION (18)F-ASEM holds promise as a radiotracer with suitable imaging properties for quantification of α7-nAChR in the human brain.
Collapse
Affiliation(s)
- Andrew G Horti
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thiriez C, Villafane G, Grapin F, Fenelon G, Remy P, Cesaro P. Can nicotine be used medicinally in Parkinson’s disease? Expert Rev Clin Pharmacol 2014; 4:429-36. [DOI: 10.1586/ecp.11.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Laursen B, Mørk A, Plath N, Kristiansen U, Bastlund JF. Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration. Brain Res 2013; 1543:253-62. [PMID: 24231553 DOI: 10.1016/j.brainres.2013.10.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 01/22/2023]
Abstract
The Alzheimer's disease (AD) mouse model Tg2576 overexpresses an AD associated mutant variant of human APP and accumulates amyloid beta (Aβ) in an age-dependent manner. Using the selective cholinergic immunotoxin mu p75-saporin (SAP), we induced a partial basal forebrain cholinergic degeneration (BFCD) in 3 months old male Tg2576 mice to co-express cholinergic degeneration with Aβ overexpression as these characteristics constitutes key hallmarks of AD. At 9 months, SAP lesioned Tg2576 mice were cognitively impaired in two spatial paradigms addressing working memory and mid to long-term memory. Conversely, there was no deterioration of cognitive functioning in sham lesioned Tg2576 mice or wild type littermates (wt) receiving the immunotoxin. At 10 months of age, release of acetylcholine (ACh) was addressed by microdialysis in conscious mice. Scopolamine-induced increases in hippocampal ACh efflux was significantly reduced in SAP lesioned Tg2576 mice compared to sham lesioned Tg2576 mice. Intriguingly, there was no significant difference in ACh efflux between wt treatment groups. Following SAP treatment, choline acetyltransferase activity was reduced in the hippocampus and frontal cortex and the reduction was comparable between groups. Our results suggest that partial BFCD acts collectively with increased levels of Aβ to induce cognitive decline and to compromise cholinergic release. Tg2576 mice with BFCD may constitute a new and suitable AD mouse model to study the interrelations between cholinergic deficits and amsyloid deposition.
Collapse
Affiliation(s)
- Bettina Laursen
- H. Lundbeck A/S, Synaptic Transmission 1, Ottiliavej 9, 2500 Valby, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Arne Mørk
- H. Lundbeck A/S, Synaptic Transmission 1, Ottiliavej 9, 2500 Valby, Denmark
| | - Niels Plath
- H. Lundbeck A/S, Synaptic Transmission 1, Ottiliavej 9, 2500 Valby, Denmark
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | |
Collapse
|
39
|
Inestrosa NC, Godoy JA, Vargas JY, Arrazola MS, Rios JA, Carvajal FJ, Serrano FG, Farias GG. Nicotine prevents synaptic impairment induced by amyloid-β oligomers through α7-nicotinic acetylcholine receptor activation. Neuromolecular Med 2013; 15:549-69. [PMID: 23842742 DOI: 10.1007/s12017-013-8242-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/26/2013] [Indexed: 11/30/2022]
Abstract
An emerging view on Alzheimer disease's (AD) pathogenesis considers amyloid-β (Aβ) oligomers as a key factor in synaptic impairment and rodent spatial memory decline. Alterations in the α7-nicotinic acetylcholine receptor (α7-nAChR) have been implicated in AD pathology. Herein, we report that nicotine, an unselective α7-nAChR agonist, protects from morphological and synaptic impairments induced by Aβ oligomers. Interestingly, nicotine prevents both early postsynaptic impairment and late presynaptic damage induced by Aβ oligomers through the α7-nAChR/phosphatidylinositol-3-kinase (PI3K) signaling pathway. On the other hand, a cross-talk between α7-nAChR and the Wnt/β-catenin signaling pathway was revealed by the following facts: (1) nicotine stabilizes β-catenin, in a concentration-dependent manner; (2) nicotine prevents Aβ-induced loss of β-catenin through the α7-nAChR; and (3) activation of canonical Wnt/β-catenin signaling induces α7-nAChR expression. Analysis of the α7-nAChR promoter indicates that this receptor is a new Wnt target gene. Taken together, these results demonstrate that nicotine prevents memory deficits and synaptic impairment induced by Aβ oligomers. In addition, nicotine improves memory in young APP/PS1 transgenic mice before extensive amyloid deposition and senile plaque development, and also in old mice where senile plaques have already formed. Activation of the α7-nAChR/PI3K signaling pathway and its cross-talk with the Wnt signaling pathway might well be therapeutic targets for potential AD treatments.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, PO Box 114-D, Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The use of functional imaging in neurodegenerative diseases has increased in recent years, with applications in research into the underlying pathophysiology, aiding in diagnosis, or evaluating new treatments. In Parkinson's disease (PD), these imaging methods have expanded our understanding of the disease beyond dopaminergic deficits. Moreover, functional imaging methods have described alterations in functional networks relating not only to the motor symptoms, but also to many nonmotor features of PD, such as cognitive dysfunction. From a clinical viewpoint, functional imaging methods can assist in monitoring disease progression, such as in the context of clinical trials, and holds the potential to aid in early diagnosis of PD and differentiation from other parkinsonian disorders.
Collapse
|
41
|
Kanno T, Shimizu T, Tanaka A, Nishimoto T, Nishizaki T. Free fatty acid derivative HUHS2002 potentiates α7 ACh receptor responses through indirect activation of CaMKII. Lipids 2012; 47:865-71. [PMID: 22820984 DOI: 10.1007/s11745-012-3701-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
The present study examined the effect of 4-[4-(Z)-hept-1-enyl-phenoxy] butyric acid (HUHS2002), a free fatty acid derivative, on α7 acetylcholine (ACh) receptor responses. HUHS2002 potentiated whole-cell membrane currents through α7 ACh receptors expressed in Xenopus oocytes in a concentration (1-100 nM)-dependent manner, reaching about 140 % of the original amplitude at 100 nM 50 min after a 10-min treatment. The HUHS2002 effect was prevented by KN-93, an inhibitor of Ca²⁺/calmodulin-dependent protein kinase II (CaMKII), while it was not affected by GF109203X, an inhibitor of protein kinase C (PKC), or H-89, an inhibitor of protein kinase A (PKA). In the in situ CaMKII assay using cultured rat hippocampal neurons, HUHS2002 activated CaMKII and the activation was abolished by KN-93. In the cell-free assay of protein phosphatase 1 (PP1), HUHS2002 partially inhibited PP1 activity. Taken together, these results indicate that HUHS2002 potentiates α7 ACh receptor responses by indirectly activating CaMKII, possibly via inhibition of PP1.
Collapse
Affiliation(s)
- Takeshi Kanno
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | | | | | | | | |
Collapse
|
42
|
Weltzin MM, Huang Y, Schulte MK. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES. Eur J Pharmacol 2012; 732:159-68. [PMID: 22732654 DOI: 10.1016/j.ejphar.2012.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 05/29/2012] [Accepted: 06/05/2012] [Indexed: 11/28/2022]
Abstract
A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Maegan M Weltzin
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks Fairbank, AK 99775, USA
| | - Yanzhou Huang
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks Fairbank, AK 99775, USA
| | - Marvin K Schulte
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks Fairbank, AK 99775, USA.
| |
Collapse
|
43
|
Petrou M, Kotagal V, Bohnen NI. An update on brain imaging in parkinsonian dementia. ACTA ACUST UNITED AC 2012; 4:201-213. [PMID: 22768021 DOI: 10.2217/iim.12.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disturbances of cognition are frequent in Parkinson's disease (PD). Unlike severe loss of dopamine early in PD, extensive cholinergic losses have been consistently reported in PD with dementia. Cholinergic imaging suggests that basal forebrain cholinergic system degeneration appears early in PD and worsens with dementia development. Cortical cholinergic denervation is similar in PD with dementia and dementia with Lewy bodies, supporting a common disease spectrum, at least with respect to cholinergic pathology. Presence of cerebral amyloidopathy in the setting of parkinsonism may accelerate cognitive decline. Novel MRI techniques illustrate the widespread presence of neurodegeneration in PD with dementia, affecting white matter tracts and connectivity functions. This review will outline current concepts regarding dementia development in PD and discuss their correlation with functional and structural neuroimaging including PET and MRI.
Collapse
|
44
|
Mehta M, Adem A, Kahlon MS, Sabbagh MN. The nicotinic acetylcholine receptor: smoking and Alzheimer's disease revisited. Front Biosci (Elite Ed) 2012; 4:169-80. [PMID: 22201862 PMCID: PMC5502782 DOI: 10.2741/367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies regarding Alzheimer's disease (AD) in smokers currently suggest inconsistent results. The clinicopathological findings also vary as to how AD pathology is affected by smoking behavior. Even though clinicopathological, functional, and epidemiological studies in humans do not present a consistent picture, much of the in vitro data implies that nicotine has neuroprotective effects when used in neurodegenerative disorder models. Current studies of the effects of nicotine and nicotinic agonists on cognitive function in both the non-demented and those with AD are not convincing. More data is needed to determine whether repetitive activation of nAChR with intermittent or acute exposure to nicotine, acute activation of nAChR, or long-lasting inactivation of nAChR secondary to chronic nicotine exposure will have a therapeutic effect and/or explain the beneficial effects of those types of drugs. Other studies show multifaceted connections between nicotine, nicotinic agonists, smoking, and nAChRs implicated in AD etiology. Although many controversies still exist, ongoing studies are revealing how nicotinic receptor changes and functions may be significant to the neurochemical, pathological, and clinical changes that appear in AD.
Collapse
Affiliation(s)
- Mona Mehta
- Banner Sun Health Research Institute, Sun City, AZ
| | - Abdu Adem
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Al Ain, United Arab Emirates 3. Arizona Neurological Institute, Sun City, AZ
| | | | | |
Collapse
|
45
|
Quik M, Wonnacott S. α6β2* and α4β2* nicotinic acetylcholine receptors as drug targets for Parkinson's disease. Pharmacol Rev 2011; 63:938-66. [PMID: 21969327 PMCID: PMC3186078 DOI: 10.1124/pr.110.003269] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the "gold standard" for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA.
| | | |
Collapse
|
46
|
Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res 2011; 221:564-73. [PMID: 20060022 PMCID: PMC2888997 DOI: 10.1016/j.bbr.2009.12.048] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 12/26/2009] [Indexed: 01/08/2023]
Abstract
Although Parkinson disease (PD) is viewed traditionally as a motor syndrome secondary to nigrostriatal dopaminergic denervation, recent studies emphasize non-motor features. Non-motor comorbidities, such as cognitive impairment, are likely the result of an intricate interplay of multi-system degenerations and neurotransmitter deficiencies extending beyond the loss of dopaminergic nigral neurons. The pathological hallmark of parkinsonian dementia is the presence of extra-nigral Lewy bodies that can be accompanied by other pathologies, such as senile plaques. Lewy first identified the eponymous Lewy body in neurons of the nucleus basalis of Meynert (nbM), the source of cholinergic innervation of the cerebral cortex. Although cholinergic denervation is recognized as a pathological hallmark of Alzheimer disease (AD), in vivo neuroimaging studies reveal loss of cerebral cholinergic markers in parkinsonian dementia similar to or more severe than in prototypical AD. Imaging studies agree with post-mortem evidence suggesting that basal forebrain cholinergic system degeneration appears early in PD and worsens coincident with the appearance of dementia. Early cholinergic denervation in PD without dementia appears to be heterogeneous and may make specific contributions to the PD clinical phenotype. Apart from well-known cognitive and behavioral deficits, central, in particular limbic, cholinergic denervation may be associated with progressive deficits of odor identification in PD. Recent evidence indicates also that subcortical cholinergic denervation, probably due to degeneration of brainstem pedunculopontine nucleus neurons, may relate to the presence of dopamine non-responsive gait and balance impairments, including falls, in PD.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
47
|
The cholinergic system in aging and neuronal degeneration. Behav Brain Res 2011; 221:555-63. [DOI: 10.1016/j.bbr.2010.11.058] [Citation(s) in RCA: 692] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022]
|
48
|
Synthesis and in vitro evaluation of novel nortropane derivatives as potential radiotracers for muscarinic m(2) receptors. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2011; 2011:709416. [PMID: 21755053 PMCID: PMC3132655 DOI: 10.1155/2011/709416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/03/2011] [Accepted: 03/25/2011] [Indexed: 11/18/2022]
Abstract
Disturbances of the cerebral cholinergic neurotransmitter system are present in neurodegenerative disorders. SPECT or PET imaging, using radiotracers that selectively target muscarinic receptor subtypes, may be of value for in vivo evaluation of such conditions. 6β-acetoxynortropane, a potent muscarinic M(2) receptor agonist, has previously demonstrated nanomolar affinity and high selectivity for this receptor. Based on this compound we synthesized four nortropane derivatives that are potentially suitable for SPECT imaging of the M(2) receptor. 6β-acetoxynortropane and the novel derivatives were tested in vitro for affinity to the muscarinic M(1-3) receptors. The original 6β-acetoxynortropane displayed high affinity (K(i) = 70-90 nM) to M(2) receptors and showed good selectivity ratios to the M(1) (65-fold ratio) and the M(3) (70-fold ratio) receptors. All new derivatives showed reduced affinity to the M(2) subtype and loss of subtype selectivity. It is therefore concluded that the newly synthesized derivatives are not suitable for human SPECT imaging of M(2) receptors.
Collapse
|
49
|
Caviness JN, Lue L, Adler CH, Walker DG. Parkinson's disease dementia and potential therapeutic strategies. CNS Neurosci Ther 2011; 17:32-44. [PMID: 21199444 PMCID: PMC6493795 DOI: 10.1111/j.1755-5949.2010.00216.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Dementia in Parkinson's disease (PD-D) has only been acknowledged in the recent three decades, but research in this field has accelerated. The purpose of this review was to discuss advances in PD-D regarding biomarker correlates and potential therapeutic targets. Attention and executive dysfunction, memory deficits that improve with cueing, and visual hallucinations are characteristic in PD-D. PD-D dramatically increases the disability and misery of the disease. Current treatment for PD-D is symptomatic, modest, and only transiently effective. There is wide agreement that more effective treatment is needed, but this will require more knowledge about PD-D pathophysiology. Advances in the pathogenesis of PD have focused on the substantia nigra, which is the location from where the pathophysiology of motor symptoms primarily arises in initial stages. In contradistinction, pathology studies have suggested that cognitive decline correlates with cortical and subcortical-cortical projection pathway abnormalities. There is evidence that substantia nigra mechanisms, including protein aggregation of α-synuclein (e.g., Lewy bodies) may also play a role in cortical neuron degeneration. Other different mechanisms, such as Alzheimer's disease pathology (e.g., Aβ aggregation) may be operant for PD-D. Biomarkers of various types are being proposed for the study of PD-D as well as for objective measures of PD-D prediction and progression. Therapeutic targets are currently derived mostly from general PD neurodegeneration research rather than cortical PD neurodegeneration per se. Protein aggregation, genes that are associated with PD, oxidative stress, inflammation, and trophic factors constitute the major classes of therapeutic targets for PD-D. More research is needed on the specific aspects of cortical dysfunction and degeneration that create PD-D.
Collapse
|
50
|
Weltzin MM, Schulte MK. Pharmacological characterization of the allosteric modulator desformylflustrabromine and its interaction with alpha4beta2 neuronal nicotinic acetylcholine receptor orthosteric ligands. J Pharmacol Exp Ther 2010; 334:917-26. [PMID: 20516140 PMCID: PMC2939658 DOI: 10.1124/jpet.110.167684] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/28/2010] [Indexed: 11/22/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of ligand-gated ion channels. nAChRs are involved in modulating nicotinic-based signal transmission in the central nervous system and are implicated in a range of disorders. Desformylflustrabromine (dFBr) is a positive allosteric modulator that potentiates alpha4beta2 nAChRs. It has been reported that dFBr is selective for the alpha4beta2 receptor relative to other common nAChR subtypes (Neurosci Lett 373:144-149, 2005). Coapplication of dFBr with acetylcholine (ACh) produces a bell-shaped dose-response curve with a peak potentiation of more than 265% (Bioorg Med Chem Lett 17:4855-4860, 2007) at dFBr concentrations <10 microM and inhibition of responses at concentrations >10 microM. The potentiation and inhibition components of dFBr-modulated responses were examined by using two-electrode voltage clamp and human alpha4beta2 nAChRs expressed in Xenopus laevis oocytes. Currents to both partial and full agonists were potentiated by dFBr. Responses to low-efficacy agonists were potentiated significantly more than responses to high-efficacy agonists. Antagonist pIC(50) values were unaffected by coapplication of dFBr. In addition to its potentiating effects, dFBr was able to induce current spikes when applied to desensitized receptors, suggestive of a shift in equilibrium from the desensitized to open conformation. In contrast to potentiation, inhibition of ACh responses by dFBr depends on membrane potential and is probably the result of open-channel block by dFBr and ACh. Our data indicate distinct mechanisms for the potentiation and inhibition components of dFBr action. dFBr could prove useful for therapeutic enhancement of responses at alpha4beta2-containing synapses.
Collapse
Affiliation(s)
- Maegan M Weltzin
- Department of Chemistry and Biochemistry, University of Alaska, 900 Yukon Drive, Fairbanks, AK 99775, USA
| | | |
Collapse
|