1
|
Saiz-Bianco E, Urbanavicius J, Prunell G, Lagos P. Melanin-concentrating hormone does not modulate serotonin release in primary cultures of fetal raphe nucleus neurons. Neuropeptides 2019; 74:70-81. [PMID: 30642579 DOI: 10.1016/j.npep.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/03/2018] [Accepted: 12/30/2018] [Indexed: 11/18/2022]
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide present in neurons located in the hypothalamus that densely innervate serotonergic cells in the dorsal raphe nucleus (DRN). MCH administration into the DRN induces a depressive-like effect through a serotonergic mechanism. To further understand the interaction between MCH and serotonin, we used primary cultured serotonergic neurons to evaluate the effect of MCH on serotonergic release and metabolism by HPLC-ED measurement of serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) levels. We confirmed the presence of serotonergic neurons in the E14 rat rhombencephalon by immunohistochemistry and showed for the first time evidence of MCHergic fibers reaching the area. Cultures obtained from rhombencephalic tissue presented 2.2 ± 0.7% of serotonergic and 48.9 ± 5.4% of GABAergic neurons. Despite the low concentration of serotonergic neurons, we were able to measure basal cellular and extracellular levels of 5-HT and 5-HIAA without the addition of any serotonergic-enhancer drug. As expected, 5-HT release was calcium-dependent and induced by depolarization. 5-HT extracellular levels were significantly increased by incubation with serotonin reuptake inhibitors (citalopram and nortriptyline) and a monoamine-oxidase inhibitor (clorgyline), and were not significantly modified by a 5-HT1A autoreceptor agonist (8-OHDPAT). Even though serotonergic cells responded as expected to these pharmacological treatments, MCH did not induce significant modifications of 5-HT and 5-HIAA extracellular levels in the cultures. Despite this unexpected result, we consider that assessment of 5-HT and 5-HIAA levels in primary serotonergic cultures may be an adequate approach to study the effect of other drugs and modulators on serotonin release, uptake and turnover.
Collapse
Affiliation(s)
- Eugenia Saiz-Bianco
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jessika Urbanavicius
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Loiseau C, Cayetanot F, Joubert F, Perrin-Terrin AS, Cardot P, Fiamma MN, Frugiere A, Straus C, Bodineau L. Current Perspectives for the use of Gonane Progesteronergic Drugs in the Treatment of Central Hypoventilation Syndromes. Curr Neuropharmacol 2018; 16:1433-1454. [PMID: 28721821 PMCID: PMC6295933 DOI: 10.2174/1570159x15666170719104605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Central alveolar hypoventilation syndromes (CHS) encompass neurorespiratory diseases resulting from congenital or acquired neurological disorders. Hypercapnia, acidosis, and hypoxemia resulting from CHS negatively affect physiological functions and can be lifethreatening. To date, the absence of pharmacological treatment implies that the patients must receive assisted ventilation throughout their lives. OBJECTIVE To highlight the relevance of determining conditions in which using gonane synthetic progestins could be of potential clinical interest for the treatment of CHS. METHODS The mechanisms by which gonanes modulate the respiratory drive were put into the context of those established for natural progesterone and other synthetic progestins. RESULTS The clinical benefits of synthetic progestins to treat respiratory diseases are mixed with either positive outcomes or no improvement. A benefit for CHS patients has only recently been proposed. We incidentally observed restoration of CO2 chemosensitivity, the functional deficit of this disease, in two adult CHS women by desogestrel, a gonane progestin, used for contraception. This effect was not observed by another group, studying a single patient. These contradictory findings are probably due to the complex nature of the action of desogestrel on breathing and led us to carry out mechanistic studies in rodents. Our results show that desogestrel influences the respiratory command by modulating the GABAA and NMDA signaling in the respiratory network, medullary serotoninergic systems, and supramedullary areas. CONCLUSION Gonanes show promise for improving ventilation of CHS patients, although the conditions of their use need to be better understood.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Laurence Bodineau
- Address correspondence to this author at the Sorbonne Universités, UPMC Univ. Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75013, Paris, France; Tel: 33 1 40 77 97 15; Fax: 33 1 40 77 97 89; E-mail:
| |
Collapse
|
3
|
Dietrich-Muszalska A, Bartosz G, Sadowska-Bartosz I. The Role of Nitric Oxide and Nitrosative Stress in Schizophrenia. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-1-4939-0440-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
4
|
Maejima T, Masseck OA, Mark MD, Herlitze S. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels. Front Integr Neurosci 2013; 7:40. [PMID: 23734105 PMCID: PMC3661940 DOI: 10.3389/fnint.2013.00040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/03/2013] [Indexed: 11/13/2022] Open
Abstract
Serotonergic neurons project to virtually all regions of the central nervous system and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing, and reproductive success. Therefore, serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Takashi Maejima
- Department of Zoology and Neurobiology, Ruhr-University Bochum Bochum, Germany
| | | | | | | |
Collapse
|
5
|
Blockade of the NMDA and AMPA/kainate receptors in the dorsal raphe nucleus prevents the 5-HT₃ receptor agonist m-chlorophenylbiguanide-induced suppression of REM sleep in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1341-8. [PMID: 21514352 DOI: 10.1016/j.pnpbp.2011.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 11/22/2022]
Abstract
The effects of the selective 5-HT(3) receptor agonist m-chlorophenylbiguanide (m-CPBG), and of the NMDA (N-methyl-D-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate)/kainate antagonists AP-5 [(±)-2-amino-5-phosphono-pentanoic acid] and CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), respectively, were studied in adult male Wistar rats implanted for chronic sleep recordings. The compounds were microinjected directly into the dorsal raphe nucleus (DRN) during the light period of the 12-h light/12-h dark cycle. Infusion of m-CPBG (2 and 4mM) into the DRN induced a significant reduction of rapid-eye-movement sleep (REMS) and of the number of REM periods. Local infusion of AP-5 (0.5-1 mM) and CNQX (2 mM) significantly increased slow wave sleep (SWS). Pretreatment with AP-5 (0.5 mM) or CNQX (0.5 mM) antagonized the m-CPBG-induced suppression of REMS. It is proposed that the reduction of REMS after microinjection of m-CPBG into de DRN is related to the activation of glutamatergic interneurons that express the 5-HT(3) receptor and make synaptic contacts with serotonergic cells. The resultant increase of serotonin release at postsynaptic sites involved in the induction of REMS would provoke the suppression of the behavioral state. Our findings provide, in addition, new details concerning the pharmacology of DRN serotonergic neurons in the rat that may become relevant to the development of drugs for enhancing cortical and subcortical serotonergic neurotransmission.
Collapse
|
6
|
Bannai M, Kawai N, Nagao K, Nakano S, Matsuzawa D, Shimizu E. Oral administration of glycine increases extracellular serotonin but not dopamine in the prefrontal cortex of rats. Psychiatry Clin Neurosci 2011; 65:142-9. [PMID: 21414089 DOI: 10.1111/j.1440-1819.2010.02181.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Glycine, one of the non-essential amino acids, has been reported to be effective in reducing negative symptoms of schizophrenia. Recently, we found that glycine improves subjective sleep quality in humans. The aim of this study was to investigate the effects of oral glycine administration on endogenous 5-hydroxytryptamine (5-HT) and dopamine in the prefrontal cortex (PFC) of living rats. METHODS Microdialysis probes were inserted stereotaxically into the rat prefrontal cortex. Cortical levels of 5-HT and dopamine were measured following oral administration of 1 or 2 g/kg glycine, 2 g/kg d-serine, or 2 g/kg L-serine. RESULTS Both glycine and d-serine significantly increased extracellular 5-HT levels for 10 min, whereas dopamine levels remained unchanged. L-serine, in contrast, had no significant effects on 5-HT levels. CONCLUSIONS It is possible that the increase in 5-HT in response to glycine and d-serine was mediated by N-methyl-D-aspartate receptors. The transient increase in 5-HT in the PFC might be associated with the alleviation of negative symptoms in patients with schizophrenia and the amelioration of sleep quality in patients with insomnia.
Collapse
Affiliation(s)
- Makoto Bannai
- Research Institute for Health Fundamentals, Ajinomoto Co., Inc., Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Serotonin 5-hT1A receptor activation prevents phosphorylation of NMDA receptor NR1 subunit in cerebral ischemia. J Physiol Biochem 2008; 63:203-11. [PMID: 18309776 DOI: 10.1007/bf03165783] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanisms involved in the neuroprotective effect of serotonin 5-HT1A receptor agonists on brain damage induced by ischemia remain to be fully elucidated. Given that serotonergic drugs may regulate N-methyl-D-aspartate (NMDA) receptor function, which is implicated in events leading to ischemia-induced neuronal cell death, this study sought to determine the effects of the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the levels of NMDA receptor NR1 subunit in gerbil hippocampus after transient global cerebral ischemia. Pretreatment with 8-OH-DPAT (1 mg/kg) prevented the neuronal loss in CA1 subfield 72 h after ischemia. NMDA receptor NR1 levels in whole hippocampus were not affected 24 h after ischemia, but the levels of the subunit phosphorylated at the protein kinase A (PKA) site, pNR1(Ser897), were significantly increased, and this increase was prevented by the same 8-OH-DPAT dose, a probable consequence of the increased phosphatase 1 (PP1) enzyme activity found in ischemic gerbils pretreated with the 5-HT1A receptor agonist. The results suggest that NR1 subunit phosphorylation plays a role in the neuroprotective effect of 8-OH-DPAT on cell damage induced by global cerebral ischemia in the gerbil hippocampus and support the potential interest of 5-HT1A receptor activation in the search for neuroprotective strategies.
Collapse
|
9
|
Salazar-Colocho P, Del Río J, Frechilla D. Neuroprotective effects of serotonin 5-HT 1A receptor activation against ischemic cell damage in gerbil hippocampus: Involvement of NMDA receptor NR1 subunit and BDNF. Brain Res 2008; 1199:159-66. [PMID: 18269931 DOI: 10.1016/j.brainres.2007.12.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 12/12/2007] [Indexed: 11/26/2022]
Abstract
It is known that the activation of 5-hydroxytryptamine receptor type 1A (5HT(1A) receptor) may protect against brain damage induced by transient global ischemia. The biochemical mechanisms that underlie this neuroprotective effect remain however to be fully elucidated. Given that serotonergic drugs may regulate N-methyl-d-aspartate (NMDA) receptor function, which is implicated in events leading to ischemia-induced neuronal cell death, and also stimulate the expression of brain-derived neurotrophic factor (BDNF), which is down-regulated in cerebral ischemia, we sought to determine the effects of the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the levels of NMDA receptor NR1 subunit and BDNF in gerbil hippocampus after transient global cerebral ischemia. Pretreatment with 8-OH-DPAT (1 mg/kg) prevented the neuronal loss in CA1 subfield 72 h after ischemia and also the dramatic decrease in BDNF immunoreactivity observed in this area at an earlier time. NMDA receptor NR1 levels in whole hippocampus were not affected 24 h after ischemia, but the levels of the subunit phosphorylated at the protein kinase A (PKA) site, pNR1(Ser897), were significantly increased, and this increase was prevented by the same 8-OH-DPAT dose, a probable consequence of the increased phosphatase 1 (PP1) enzyme activity found in ischemic gerbils pretreated with the 5-HT(1A) receptor agonist. The results indicate that both NR1 subunit phosphorylation and the neurotrophin BDNF account, at least in part, for the neuroprotective effect of 8-OH-DPAT on cell damage induced by global ischemia in the gerbil hippocampus and support the potential interest of 5-HT1A receptor activation in the search for neuroprotective strategies.
Collapse
Affiliation(s)
- Pablo Salazar-Colocho
- Division of Neuroscience, CIMA, University of Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| | | | | |
Collapse
|
10
|
Birthelmer A, Ehret A, Riegert C, Rothmaier AK, Leemhuis J, Jackisch R. Modulation of electrically evoked serotonin release in cultured rat raphe neurons. J Neurochem 2006; 100:1613-25. [PMID: 17348865 DOI: 10.1111/j.1471-4159.2006.04287.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electrically evoked release of serotonin (5-HT) and its modulation via 5-HT autoreceptors and alpha(2)-heteroreceptors was studied in primary cell cultures prepared from the embryonic (ED 15) rat mesencephalic brain region comprising the raphe nuclei. Cultures were grown for up to 3 weeks on circular glass coverslips. They developed a dense network of non-neuronal and neuronal cells, some of which were positive for tryptophan hydroxylase. To measure 5-HT release, the cultures were pre-incubated with [(3)H]5-HT (in the presence of the selective noradrenaline reuptake inhibitor oxaprotiline [1 micromol/L]), superfused with modified Krebs-Henseleit medium containing 6-nitroqipazine [1 micromol/L] and electrically stimulated using two conditions. Condition A: 360 pulses, 3 Hz, 0.5 ms, 90 mA, or condition B: 4 pulses 100 Hz, 0.5 ms, 90 mA (a condition which diminishes interactions with endogenously released transmitters during ongoing stimulation). After only 1 week in culture, the electrically evoked overflow of [(3)H] was Ca(2+) dependent and tetrodotoxin sensitive, suggesting an action-potential-induced exocytotic release of 5-HT. Using stimulation condition A in cultures grown for 2 weeks, both basal and evoked 5-HT release were strongly enhanced by methiotepine (1 micromol/L) but unaffected by the 5-HT(1B) autoreceptor agonist CP-93, 129 (1 micromol/L) and the alpha(2)-adrenoceptor agonist UK-14, 304 (1 micromol/L). Conversely, using stimulation condition B, not only CP-93, 129 (IC(50) 8.1 +/- 1.4 nmol/L) and UK-14, 304 (IC(50) 14.9 +/- 1.6 nmol/L) had inhibitory effects on cells grown for 2 weeks, but also the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)tetralin. In conclusion, we describe for the first time electrically evoked release of 5-HT from primary cultures of fetal raphe cells and its modulation via 5-HT(1B) and 5-HT(1A) auto- and alpha(2)-heteroreceptors. Such cultured raphe cells may represent a suitable model to study expression and development of presynaptic receptors on serotonergic neurons in-vitro.
Collapse
Affiliation(s)
- Anja Birthelmer
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Laboratory of Neuropharmacology, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
de Kock CPJ, Cornelisse LN, Burnashev N, Lodder JC, Timmerman AJ, Couey JJ, Mansvelder HD, Brussaard AB. NMDA receptors trigger neurosecretion of 5-HT within dorsal raphe nucleus of the rat in the absence of action potential firing. J Physiol 2006; 577:891-905. [PMID: 17053037 PMCID: PMC1890386 DOI: 10.1113/jphysiol.2006.115311] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Activity and calcium-dependent release of neurotransmitters from the somatodendritic compartment is an important signalling mechanism between neurones throughout the brain. NMDA receptors and vesicles filled with neurotransmitters occur in close proximity in many brain areas. It is unknown whether calcium influx through these receptors can trigger the release of somatodendritic vesicles directly, or whether postsynaptic action potential firing is necessary for release of these vesicles. Here we addressed this question by studying local release of serotonin (5-HT) from dorsal raphé nucleus (DRN) neurones. We performed capacitance measurements to monitor the secretion of vesicles in giant soma patches, in response to short depolarizations and action potential waveforms. Amperometric measurements confirmed that secreted vesicles contained 5-HT. Surprisingly, two-photon imaging of DRN neurones in slices revealed that dendritic calcium concentration changes in response to somatic firing were restricted to proximal dendritic areas. This implied that alternative calcium entry pathways may dominate the induction of vesicle secretion from distal dendrites. In line with this, transient NMDA receptor activation, in the absence of action potential firing, was sufficient to induce capacitance changes. By monitoring GABAergic transmission onto DRN 5-HT neurones in slices, we show that endogenous NMDA receptor activation, in the absence of postsynaptic firing, induced release of 5-HT, which in turn increased the frequency of GABAergic inputs through activation of 5-HT(2) receptors. We propose here that calcium influx through NMDA receptors can directly induce postsynaptic 5-HT release from DRN neurones, which in turn may facilitate GABAergic input onto these cells.
Collapse
Affiliation(s)
- C P J de Kock
- Department of Experimental Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Adell A, Celada P, Abellán MT, Artigas F. Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:154-80. [PMID: 12423765 DOI: 10.1016/s0165-0173(02)00182-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is considerable interest in the regulation of the extracellular compartment of the transmitter serotonin (5-hydroxytryptamine, 5-HT) in the midbrain raphe nuclei because it can control the activity of ascending serotonergic systems and the release of 5-HT in terminal areas of the forebrain. Several intrinsic and extrinsic factors of 5-HT neurons that regulate 5-HT release in the dorsal (DR) and median (MnR) raphe nucleus are reviewed in this article. Despite its high concentration in the extracellular space of the raphe nuclei, the origin of this pool of the transmitter remains to be determined. Regardless of its origin, is has been shown that the release of 5-HT in the rostral raphe nuclei is partly dependent on impulse flow and Ca(2+) ions. The release in the DR and MnR is critically dependent on the activation of 5-HT autoreceptors in these nuclei. Yet, it appears that 5-HT autoreceptors do not tonically inhibit 5-HT release in the raphe nuclei but rather play a role as sensors that respond to an excess of the endogenous transmitter. Both DR and MnR are equally responsive to the reduction of 5-HT release elicited by the local perfusion of 5-HT(1A) receptor agonists. In contrast, the effects of selective 5-HT(1B) receptor agonists are more pronounced in the MnR than in the DR. However, the cellular localization of 5-HT(1B) receptors in the raphe nuclei remains to be established. Furthermore, endogenous noradrenaline and GABA tonically regulate the extracellular concentration of 5-HT although the degree of tonicity appears to depend upon the sleep/wake cycle and the behavioral state of the animal. Glutamate exerts a phasic facilitatory control over the release of 5-HT in the raphe nuclei through ionotropic glutamate receptors. Overall, it appears that the extracellular concentration of 5-HT in the DR and the MnR is tightly controlled by intrinsic serotonergic mechanisms as well as afferent connections.
Collapse
Affiliation(s)
- Albert Adell
- Department of Neurochemistry, Institut d'Investigacions Biomèdiques de Barcelona, CSIC (IDIBAPS), Carrer Rosselló 161, 6th floor, E-08036 Barcelona, Spain.
| | | | | | | |
Collapse
|
13
|
Abstract
Regulation of serotonin release by gamma-aminobutyric acid (GABA) and glutamate was examined by microdialysis in unanaesthetized rats. The GABA(A) receptor agonist muscimol, or the glutamate receptor agonists kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolaproprionate or N-methyl-D-aspartate were infused into the dorsal raphe nucleus (DRN) while extracellular serotonin was measured in the DRN and nucleus accumbens. Muscimol produced decreases, and the glutamate receptor agonists produced increases in serotonin. To determine if these receptors have a tonic influence on serotonergic neurons, glutamate or GABA(A) receptor antagonists were infused into the DRN. Kynurenate, a nonselective glutamate receptor blocker, produced a small, 30% decrease in serotonin. A similar decrease was obtained with combined infusion of AP-5 and DNQX into the DRN. The GABAA receptor blocker bicuculline produced an approximately three-fold increase in DRN serotonin. In conclusion, glutamate neurotransmitters have a weak tonic excitatory influence on serotonergic neurons in the rat DRN. However, the predominate influence is mediated by GABA(A) receptors.
Collapse
Affiliation(s)
- R Tao
- Department of Cell Biology and Neuroscience, Rutgers University, Nelson Biology Laboratories, Piscataway, NJ 08854-8082, USA
| | | |
Collapse
|
14
|
Iravani MM, Muscat R, Kruk ZL. MK-801 interaction with the 5-HT transporter: a real-time study in brain slices using fast cyclic voltammetry. Synapse 1999; 32:212-24. [PMID: 10340631 DOI: 10.1002/(sici)1098-2396(19990601)32:3<212::aid-syn7>3.0.co;2-m] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effects of a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine ((+)-MK-801) and a competitive NMDA antagonist, (+/-)-3-2-carboxypiperazin-4-yl-propyl-1-phosphonic acid (CPP) were compared in electrically evoked 5-HT release in the brain slices incorporating the substantia nigra pars reticulata (SNr) or the dorsal raphé nucleus (DRN) using fast cyclic voltammetry (FCV). Electrical stimulation of either the SNr or the DRN with 50 pulses at frequencies greater than 10 Hz generated signals that were indistinguishable from 5-HT. In the SNr, 0.6-60 microM MK-801 concentration dependently potentiated stimulated 5-HT release. CPP 20 microM or NMDA 100 microM had no effect on 5-HT release evoked by electrical stimulation. In the SNr, 1 microM fluvoxamine or 0.6-60 microM MK-801 potentiated electrically evoked release of 5-HT. Pre-exposure to 20 microM MK-801 inhibited the enhancing effects of 1 microM fluvoxamine on electrically evoked 5-HT release in the SNr. In the DRN, the presence of 1 microM fluvoxamine or 20 microM MK-801 weakly potentiated 5-HT release. In the presence of 1 microM methiothepin (a nonselective 5-HT1-2 antagonist), 1 microM fluvoxamine or 20 microM MK-801 were equipotent in potentiating the concentration of 5-HT released in response to electrical stimulation. The T1/2 values for 5-HT release following MK-801 or fluvoxamine administration were significantly increased. Potentiation of 5-HT release by MK-801 in the SNr and the DRN and lack of effect of either CPP or NMDA on 5-HT release or uptake argues against a role for NMDA receptors in modulation of 5-HT release. Inhibition of fluvoxamine induced potentiation of 5-HT signal in the presence of MK-801 suggests that MK-801 and fluvoxamine may interact at the level of the 5-HT transporter.
Collapse
Affiliation(s)
- M M Iravani
- Neurodegenerative Disease Research Centre, Pharmacology Group, Kings College London, UK.
| | | | | |
Collapse
|
15
|
Oosterink BJ, Korte SM, Nyakas C, Korf J, Luiten PG. Neuroprotection against N-methyl-D-aspartate-induced excitotoxicity in rat magnocellular nucleus basalis by the 5-HT1A receptor agonist 8-OH-DPAT. Eur J Pharmacol 1998; 358:147-52. [PMID: 9808263 DOI: 10.1016/s0014-2999(98)00614-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present study reports the neuroprotective efficacy of the 5-HT1A receptor agonists 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and ipsapirone against in vivo excitotoxic neuronal injury. Excitotoxic cell death was induced by injections of N-methyl-D-aspartate (NMDA) in the rat magnocellular nucleus basalis. The neurodegenerative effects were quantified by image analysis of the axonal density of the nucleus basalis projection to the somatosensory cortex visualized with acetylcholinesterase histochemistry. Pretreatment with 8-OH-DPAT--but not ipsapirone--1 h prior to NMDA infusion showed significant preservation of cortical cholinergic innervation in all doses tested. Furthermore, 8-OH-DPAT exhibited sustained efficacy under homeothermic conditions in which the body temperature was maintained at 36.8 +/- 0.1 degrees C. These data indicate that selective 5-HT1A receptor activation by 8-OH-DPAT protects against NMDA-induced excitotoxic neuronal damage, probably as a result of 5-HT1A receptor-mediated neuronal hyperpolarization.
Collapse
Affiliation(s)
- B J Oosterink
- Department of Animal Physiology, Graduate School of Behavioral and Cognitive Neuroscience, University of Groningen, Haren, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Pallotta M, Segieth J, Whitton PS. N-methyl-d-aspartate receptors regulate 5-HT release in the raphe nuclei and frontal cortex of freely moving rats: differential role of 5-HT1A autoreceptors. Brain Res 1998; 783:173-8. [PMID: 9507110 DOI: 10.1016/s0006-8993(97)01333-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of infusing N-methyl-d-aspartate (NMDA) into the raphe nuclei on release of 5-HT in this brain region and also the frontal cortex of the same animal were studied using in vivo microdialysis in freely moving rats. Infusion of 25 microM NMDA into the raphe led to a substantial decrease in dialysate 5-HT in this region and a prolonged increase in terminal 5-HT release in the frontal cortex. These effects were blocked by the specific NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (D-AP5; 100 microM). When 25 microM NMDA was co-infused into the raphe with the selective 5-HT1A receptor antagonist (N-¿2-¿4-(2-methoxyphenyl)-1-piperazinyl¿ethyl-N-(2-pyridinyl) cyclohexanecarboxamide) (WAY-100635; 1.0 microM) the effect of NMDA infusion was unaltered. WAY-100635 infused alone into the raphe did not alter local 5-HT or extracellular 5-HT in the cortex. Infusion of 100 microM NMDA into the raphe was followed by an increase in local dialysate 5-HT and a decrease in 5-HT release in the cortex. These changes were reversed by D-AP5. Following infusion of 100 microM NMDA with 1.0 microM WAY-100635 into the raphe local 5-HT release was still increased, however, the decrease in 5-HT observed in the frontal cortex was abolished. These data suggest that the degree of NMDA receptor activation leads to dramatically different outcomes with regard to serotonergic transmission to the frontal cortex. Furthermore, there appears to be a differential role of the 5-HT1A autoreceptor in regulating these effects. These data are discussed in relation to other studies on the regulation of serotonergic transmission in ascending pathways.
Collapse
Affiliation(s)
- M Pallotta
- Istituti Di Farmacologia i Tossicologia, Facolta Di Medicina E Chirugia, Universita Degli Studi Di Napoli, 'Fredeirico II', Via Constantinaopli 16, 80138 Napoli, Italy
| | | | | |
Collapse
|
17
|
Singewald N, Kaehler ST, Hemeida R, Philippu A. Influence of excitatory amino acids on basal and sensory stimuli-induced release of 5-HT in the locus coeruleus. Br J Pharmacol 1998; 123:746-52. [PMID: 9517395 PMCID: PMC1565214 DOI: 10.1038/sj.bjp.0701656] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The interactions between 5-hydroxytryptaminergic neurones and excitatory amino acid utilizing neurones were studied in the locus coeruleus of conscious, freely moving rats. The locus coeruleus was superfused with artificial cerebrospinal fluid through a push-pull cannula and 5-hydroxytryptamine (5-HT) was determined in the superfusate that was continuously collected in time periods of 10 min. 2. Superfusion of the locus coeruleus with the NMDA receptor antagonist AP5 (10 microM), kynurenic acid (1 mM), or the AMPA/kainate receptor antagonist DNQX (10 microM) reduced the 5-HT release in the locus coeruleus. 3. Superfusion with the agonists NMDA (50 microM), kainic acid (50 microM) or AMPA (10 microM) enhanced the release rate of 5-HT. AP5 (10 microM) blocked the stimulant effect of NMDA, while tetrodotoxin (1 microM) failed to influence the NMDA-induced release of 5-HT. In the presence of 10 microM DNQX, the releasing effect of 50 microM kainic acid was abolished. 4. Pain elicited by tail pinch, as well as noise-induced stress, increased the release of 5-HT. Superfusion of the locus coeruleus with 10 microM AP5 reduced the tail pinch-induced 5-HT release. AP5 (10 microM) did not affect the noise-induced release of 5-HT which was reduced, when the locus coeruleus was superfused simultaneously with this concentration of AP5 and 1 microM kynurenic acid. DNQX (10 mM) failed to influence the release of 5-HT induced by tail pinch or noise. 5. The findings suggest that 5-hydroxytryptaminergic neurones of the locus coeruleus are tonically modulated by excitatory amino acids via NMDA and AMPA/kainate receptors. The release of 5-HT elicited by tail pinch and noise is mediated to a considerable extent through endogenous excitatory amino acids acting on NMDA receptors, while AMPA/kainate receptors are not involved in this process.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
18
|
Abstract
The influence of serotonin (5-HT) depletion (5,7-dihydroxytryptamine, 5,7-DHT, 250.0 micrograms, ICV), on behavioral effects of non-competitive (MK-801) and competitive (CGP 37849) NMDA antagonists, was examined in rats. 5,7-DHT induced very potent and long lasting decrease in the 5-HT concentration in the brainstem and limbic forebrain. One week after 5,7-DHT administration, dopamine metabolism was found enhanced in the brainstem. The lesion did not change rat baseline motor and exploratory activity, but it significantly disinhibited animals' behavior suppressed by shock, in the Vogel test. Serotonin depletion revealed locomotor stimulating effect of MK-801, administered IP at the doses of 0.05 and 0.2 mg/kg. However, no change in striatal dopamine metabolism was detected in rats injected with the same dose of MK-801 (0.2 mg/kg), and examined one week after serotonergic denervation. Serotonergic lesions antagonized both enhancements of exploratory behavior, and motor suppression produced by the dose of 1.0 and 10.0 mg/kg of CGP 37849, respectively. Thus, 5,7-DHT-induced lesions influenced in a complex way the effects of NMDA antagonists. It is reasoned, that enhancement of motor stimulating effects of MK-801 in neurotoxin pretreated animals, reflects synergistic disinhibition of activity of dopaminergic neurons by MK-801 and serotonin depletion. On the other hand, antagonism of CGP 37849-caused motor depression can be explained by the lowering influence of 5,7-DHT on serotonin content. It is known that the release of serotonin is strongly stimulated by higher doses of CGP 37849, and takes part in the expression of some symptoms of the serotonin-like syndrome, including motor disturbances.
Collapse
Affiliation(s)
- A Płaźnik
- Department of Pharmacology and Physiology of the Nervous System, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | |
Collapse
|
19
|
Communications. Br J Pharmacol 1996. [DOI: 10.1111/j.1476-5381.1996.tb17246.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
20
|
Strosznajder J, Chalimoniuk M, Samochocki M. Activation of serotonergic 5-HT1A receptor reduces Ca(2+)- and glutamatergic receptor-evoked arachidonic acid and No/cGMP release in adult hippocampus. Neurochem Int 1996; 28:439-44. [PMID: 8740452 DOI: 10.1016/0197-0186(95)00103-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stimulation of glutamatergic NMDA receptor in adult rat hippocampal synaptoneurosomes induces statistically significant Ca(2+)-dependent liberation of arachidonic acid (AA) and nitric oxide (NO)-activated cGMP synthesis. NMDA acting for 5 min at 100 microM markedly increases, by approx. 25%, Ca(2+)-mediated AA release from phospholipids of hippocampal synaptoneurosomes. Prolonged stimulation of NMDA receptor up to 10 min has smaller stimulatory effect and enhances AA release by about 6%. Moreover, NMDA activates NO-dependent cGMP production by approx. 5 times more than the Ca2+ itself. Release of both these second messengers is completely blocked by the competitive NMDA antagonist, APV (100 microM). The NMDA-mediated cGMP elevation completely depends on NO action, and is abolished by the specific inhibitor of NO synthase, NG-nitro-L-arginine. Moreover, serotonin at 10 microM in the presence of 10 microM pargyline, potently decreases both Ca(2+)- and NMDA receptor-mediated AA and cGMP release in hippocampal synaptoneurosomes. The agonist of 5-HT1A receptor, buspirone, in a way similar to serotonin itself, counteracts the Ca(2+)- and also NMDA receptor-evoked AA release and cGMP accumulation. An antagonist of 5-HT1A receptor, NAN-190, eliminates the effect of serotonin and buspirone on AA and NO/cGMP liberation. An antagonist of serotonergic 5-HT2 receptor, ketanserin, has no effect on the Ca2+ and serotonin action. These results indicate that serotonin, through 5-HT1A receptor, potently antagonizes the action of excitatory amino acid for AA release and NO/cGMP synthesis in the adult rat hippocampus. In conclusion, the interaction of serotonin with the glutamatergic system in the hippocampus may play an important role in the modulation of a signal transduction pathway, and by this molecular mechanism serotonin may exert a neuroprotective effect on hippocampal neurons.
Collapse
Affiliation(s)
- J Strosznajder
- Laboratory of Cellular Signalling, Polish Academy of Sciences, Warsaw, Poland
| | | | | |
Collapse
|