1
|
Yokoyama T, Saino T, Nakamuta N, Yamamoto Y. Immunohistochemical localization of P2Y12 purinoceptors in the rat carotid body. Auton Neurosci 2024; 252:103158. [PMID: 38422662 DOI: 10.1016/j.autneu.2024.103158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The present study investigated the localization of the adenosine 5'-diphosphate (ADP)-selective P2Y12 purinoceptors in the rat carotid body using multilabeling immunofluorescence. Punctate immunoreactive products for P2Y12 were distributed in chemoreceptive type I cells immunoreactive to vesicular nucleotide transporter (VNUT) or dopamine beta-hydroxylase, but not in S100B-immunoreactive glial-like type II cells. P2Y12 immunoreactivity was localized in cell clusters containing VNUT-immunoreactive type I cells surrounded by the perinuclear cytoplasm and cytoplasmic processes of type II cells immunoreactive for ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and NTPDase3, which hydrolyze extracellular nucleotide tri- and/or di-phosphates. In ATP bioluminescence assays using carotid bodies, the degradation of extracellular ATP was attenuated in the presence of the selective NTPDases inhibitor ARL67156, suggesting ATP-degrading activity by NTPDases in the tissue. These results suggest that ATP released from type I cells is degraded into ADP and adenosine 5'-monophosphate by NTPDases expressed in type II cells, and that ADP modulates type I cells via P2Y12 purinoceptors.
Collapse
Affiliation(s)
- Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan.
| | - Tomoyuki Saino
- Department of Anatomy (Cell Biology), Iwate Medical University, Yahaba, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
2
|
Lazarov NE, Atanasova DY. Neurochemical Plasticity of the Carotid Body. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 237:105-122. [PMID: 37946079 DOI: 10.1007/978-3-031-44757-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A striking feature of the carotid body (CB) is its remarkable degree of plasticity in a variety of neurotransmitter/modulator systems in response to environmental stimuli, particularly following hypoxic exposure of animals and during ascent to high altitude. Current evidence suggests that acetylcholine and adenosine triphosphate are two major excitatory neurotransmitter candidates in the hypoxic CB, and they may also be involved as co-transmitters in hypoxic signaling. Conversely, dopamine, histamine and nitric oxide have recently been considered inhibitory transmitters/modulators of hypoxic chemosensitivity. It has also been revealed that interactions between excitatory and inhibitory messenger molecules occur during hypoxia. On the other hand, alterations in purinergic neurotransmitter mechanisms have been implicated in ventilatory acclimatization to hypoxia. Chronic hypoxia also induces profound changes in other neurochemical systems within the CB such as the catecholaminergic, peptidergic and nitrergic, which in turn may contribute to increased ventilatory and chemoreceptor responsiveness to hypoxia at high altitude. Taken together, current data suggest that complex interactions among transmitters markedly influence hypoxia-induced transmitter release from the CB. In addition, the expression of a wide variety of growth factors, proinflammatory cytokines and their receptors have been identified in CB parenchymal cells in response to hypoxia and their upregulated expression could mediate the local inflammation and functional alteration of the CB under hypoxic conditions.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria.
| | | |
Collapse
|
3
|
Argent LP, Bose A, Paton JFR. Intra-carotid body inter-cellular communication. J R Soc N Z 2022; 53:332-361. [PMID: 39439480 PMCID: PMC11459819 DOI: 10.1080/03036758.2022.2079681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
The classic peripheral chemoreflex response is a critical homeostatic mechanism. In healthy individuals, appropriate chemoreflex responses are triggered by acute activation of the carotid body - the principal chemosensory organ in mammals. However, the aberrant chronic activation of the carotid body can drive the elevated sympathetic activity underlying cardio-respiratory diseases such as hypertension, diabetes and heart failure. Carotid body resection induces intolerable side effects and so understanding how to modulate carotid body output without removing it, and whilst maintaining the physiological chemoreflex response, represents the next logical next step in the development of effective clinical interventions. By definition, excessive carotid body output must result from altered intra-carotid body inter-cellular communication. Alongside the canonical synaptic transmission from glomus cells to petrosal afferents, many other modes of information exchange in the carotid body have been identified, for example bidirectional signalling between type I and type II cells via ATP-induced ATP release, as well as electrical communication via gap junctions. Thus, herein we review the carotid body as an integrated circuit, discussing a variety of different inter-cellular signalling mechanisms and highlighting those that are potentially relevant to its pathological hyperactivity in disease with the aim of identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Liam P. Argent
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Aabharika Bose
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Julian F. R. Paton
- Manaaki Manawa – the Centre for Heart Research, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Abstract
The carotid body (CB) is a bilateral arterial chemoreceptor located in the carotid artery bifurcation with an essential role in cardiorespiratory homeostasis. It is composed of highly perfused cell clusters, or glomeruli, innervated by sensory fibers. Glomus cells, the most abundant in each glomerulus, are neuron-like multimodal sensory elements able to detect and integrate changes in several physical and chemical parameters of the blood, in particular O2 tension, CO2 and pH, as well as glucose, lactate, or blood flow. Activation of glomus cells (e.g., during hypoxia or hypercapnia) stimulates the afferent fibers which impinge on brainstem neurons to elicit rapid compensatory responses (hyperventilation and sympathetic activation). This chapter presents an updated view of the structural organization of the CB and the mechanisms underlying the chemosensory responses of glomus cells, with special emphasis on the molecular processes responsible for acute O2 sensing. The properties of the glomus cell-sensory fiber synapse as well as the organization of CB output are discussed. The chapter includes the description of recently discovered CB stem cells and progenitor cells, and their role in CB growth during acclimatization to hypoxemia. Finally, the participation of the CB in the mechanisms of disease is briefly discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Sevilla, Seville, Spain; Biomedical Research Center for Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Li C, Zhao B, Zhao C, Huang L, Liu Y. Metabotropic Glutamate Receptors 1 Regulates Rat Carotid Body Response to Acute Hypoxia via Presynaptic Mechanism. Front Neurosci 2021; 15:741214. [PMID: 34675769 PMCID: PMC8524001 DOI: 10.3389/fnins.2021.741214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The carotid body (CB) plays a critical role in oxygen sensing; however, the role of glutamatergic signaling in the CB response to hypoxia remains uncertain. We previously found that functional multiple glutamate transporters and inotropic glutamate receptors (iGluRs) are expressed in the CB. The aim of this present research is to investigate the expression of group I metabotropic glutamate receptors (mGluRs) (mGluR1 and 5) in the CB and its physiological function in rat CB response to acute hypoxia. Methods: RT-PCR and immunostaining were conducted to examine the mRNA and protein expression of group I mGluRs in the human and rat CB. Immunofluorescence staining was performed to examine the cellular localization of mGluR1 in the rat CB. In vitro carotid sinus nerve (CSN) discharge recording was performed to detect the physiological function of mGluR1 in CB response to acute hypoxia. Results: We found that (1) mRNAs of mGluR1 and 5 were both expressed in the human and rat CB. (2) mGluR1 protein rather than mGluR5 protein was present in rat CB. (3) mGluR1 was distributed in type I cells of rat CB. (4) Activation of mGluR1 inhibited the hypoxia-induced enhancement of CSN activity (CSNA), as well as prolonged the latency time of CB response to hypoxia. (5) The inhibitory effect of mGluR1 activation on rat CB response to hypoxia could be blocked by GABAB receptor antagonist. Conclusion: Our findings reveal that mGluR1 in CB plays a presynaptic feedback inhibition on rat CB response to hypoxia.
Collapse
Affiliation(s)
- Chaohong Li
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Baosheng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chenlu Zhao
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lu Huang
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yuzhen Liu
- Henan Key Laboratory of Neural Regeneration and Repairment, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| |
Collapse
|
6
|
Generation of Reactive Oxygen Species by Mitochondria. Antioxidants (Basel) 2021; 10:antiox10030415. [PMID: 33803273 PMCID: PMC8001687 DOI: 10.3390/antiox10030415] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are series of chemical products originated from one or several electron reductions of oxygen. ROS are involved in physiology and disease and can also be both cause and consequence of many biological scenarios. Mitochondria are the main source of ROS in the cell and, particularly, the enzymes in the electron transport chain are the major contributors to this phenomenon. Here, we comprehensively review the modes by which ROS are produced by mitochondria at a molecular level of detail, discuss recent advances in the field involving signalling and disease, and the involvement of supercomplexes in these mechanisms. Given the importance of mitochondrial ROS, we also provide a schematic guide aimed to help in deciphering the mechanisms involved in their production in a variety of physiological and pathological settings.
Collapse
|
7
|
Aldossary HS, Alzahrani AA, Nathanael D, Alhuthail EA, Ray CJ, Batis N, Kumar P, Coney AM, Holmes AP. G-Protein-Coupled Receptor (GPCR) Signaling in the Carotid Body: Roles in Hypoxia and Cardiovascular and Respiratory Disease. Int J Mol Sci 2020; 21:ijms21176012. [PMID: 32825527 PMCID: PMC7503665 DOI: 10.3390/ijms21176012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022] Open
Abstract
The carotid body (CB) is an important organ located at the carotid bifurcation that constantly monitors the blood supplying the brain. During hypoxia, the CB immediately triggers an alarm in the form of nerve impulses sent to the brain. This activates protective reflexes including hyperventilation, tachycardia and vasoconstriction, to ensure blood and oxygen delivery to the brain and vital organs. However, in certain conditions, including obstructive sleep apnea, heart failure and essential/spontaneous hypertension, the CB becomes hyperactive, promoting neurogenic hypertension and arrhythmia. G-protein-coupled receptors (GPCRs) are very highly expressed in the CB and have key roles in mediating baseline CB activity and hypoxic sensitivity. Here, we provide a brief overview of the numerous GPCRs that are expressed in the CB, their mechanism of action and downstream effects. Furthermore, we will address how these GPCRs and signaling pathways may contribute to CB hyperactivity and cardiovascular and respiratory disease. GPCRs are a major target for drug discovery development. This information highlights specific GPCRs that could be targeted by novel or existing drugs to enable more personalized treatment of CB-mediated cardiovascular and respiratory disease.
Collapse
Affiliation(s)
- Hayyaf S. Aldossary
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- College of Medicine, Basic Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Abdulaziz A. Alzahrani
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- Respiratory Care Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Demitris Nathanael
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Eyas A. Alhuthail
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- Collage of Sciences and Health Professions, Basic Sciences Department, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Clare J. Ray
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Nikolaos Batis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Prem Kumar
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Andrew M. Coney
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
| | - Andrew P. Holmes
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (H.S.A.); (A.A.A.); (D.N.); (E.A.A.); (C.J.R.); (P.K.); (A.M.C.)
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: ; Tel.: +44-121-415-8161
| |
Collapse
|
8
|
Abstract
The carotid body (CB) is an arterial chemoreceptor organ located in the carotid bifurcation and has a well-recognized role in cardiorespiratory regulation. The CB contains neurosecretory sensory cells (glomus cells), which release transmitters in response to hypoxia, hypercapnia, and acidemia to activate afferent sensory fibers terminating in the respiratory and autonomic brainstem centers. Knowledge of the physiology of the CB has progressed enormously in recent years. Herein we review advances concerning the organization and function of the cellular elements of the CB, with emphasis on the molecular mechanisms of acute oxygen sensing by glomus cells. We introduce the modern view of the CB as a multimodal integrated metabolic sensor and describe the properties of the CB stem cell niche, which support CB growth during acclimatization to chronic hypoxia. Finally, we discuss the increasing medical relevance of CB dysfunction and its potential impact on the mechanisms of disease.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla 41013, Spain; , .,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla 41009, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sevilla 41013, Spain
| |
Collapse
|
9
|
Tse A, Lee AK, Takahashi N, Gong A, Kasai H, Tse FW. Strong stimulation triggers full fusion exocytosis and very slow endocytosis of the small dense core granules in carotid glomus cells. J Neurogenet 2018; 32:267-278. [PMID: 30484390 DOI: 10.1080/01677063.2018.1497629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chemosensory glomus cells of the carotid bodies release transmitters, including ATP and dopamine mainly via the exocytosis of small dense core granules (SDCGs, vesicular diameter of ∼100 nm). Using carbon-fiber amperometry, we showed previously that with a modest uniform elevation in cytosolic Ca2+ concentration ([Ca2+]i of ∼0.5 µM), SDCGs of rat glomus cells predominantly underwent a "kiss-and-run" mode of exocytosis. Here, we examined whether a larger [Ca2+]i rise influenced the mode of exocytosis. Activation of voltage-gated Ca2+ channels by a train of voltage-clamped depolarizations which elevated [Ca2+]i to ∼1.6 μM increased the cell membrane capacitance by ∼2.5%. At 30 s after such a stimulus, only 5% of the added membrane was retrieved. Flash photolysis of caged-Ca2+ (which elevated [Ca2+]i to ∼16 μM) increased cell membrane capacitance by ∼13%, and only ∼30% of the added membrane was retrieved at 30 s after the UV flash. When exocytosis and endocytosis were monitored using the two-photon excitation and extracellular polar tracer (TEP) imaging of FM1-43 fluorescence in conjunction with photolysis of caged Ca2+, almost uniform exocytosis was detected over the cell's entire surface and it was followed by slow endocytosis. Immunocytochemistry showed that the cytoplasmic densities of dynamin I, II and clathrin (key proteins that mediate endocytosis) in glomus cells were less than half of those in adrenal chromaffin cells, suggesting that a lower expression of endocytotic machinery may underlie the slow endocytosis in glomus cells. An analysis of the relative change in the signals from two fluorescent dyes that simultaneously monitored the addition of vesicular volume and plasma membrane surface area, suggested that with an intense stimulus, SDCGs of glomus cells underwent full fusion without any significant "compound" exocytosis. Therefore, during a severe hypoxic challenge, glomus granules undergo full fusion for a more complete release of transmitters.
Collapse
Affiliation(s)
- Amy Tse
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Andy K Lee
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Noriko Takahashi
- b Department of Physiology , Kitasato University School of Medicine , Sagamihara , Japan
| | - Alex Gong
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| | - Haruo Kasai
- c Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine , The University of Tokyo , Bunkyo-ku , Japan.,d International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo , Bunkyo-ku , Japan
| | - Frederick W Tse
- a Department of Pharmacology and Neuroscience and Metal Health Institute , University of Alberta , Edmonton , Canada
| |
Collapse
|
10
|
Pulgar-Sepúlveda R, Varas R, Iturriaga R, Del Rio R, Ortiz FC. Carotid Body Type-I Cells Under Chronic Sustained Hypoxia: Focus on Metabolism and Membrane Excitability. Front Physiol 2018; 9:1282. [PMID: 30283346 PMCID: PMC6157308 DOI: 10.3389/fphys.2018.01282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic sustained hypoxia (CSH) evokes ventilatory acclimatization characterized by a progressive hyperventilation due to a potentiation of the carotid body (CB) chemosensory response to hypoxia. The transduction of the hypoxic stimulus in the CB begins with the inhibition of K+ currents in the chemosensory (type-I) cells, which in turn leads to membrane depolarization, Ca2+ entry and the subsequent release of one- or more-excitatory neurotransmitters. Several studies have shown that CSH modifies both the level of transmitters and chemoreceptor cell metabolism within the CB. Most of these studies have been focused on the role played by such putative transmitters and modulators of CB chemoreception, but less is known about the effect of CSH on metabolism and membrane excitability of type-I cells. In this mini-review, we will examine the effects of CSH on the ion channels activity and excitability of type-I cell, with a particular focus on the effects of CSH on the TASK-like background K+ channel. We propose that changes on TASK-like channel activity induced by CSH may contribute to explain the potentiation of CB chemosensory activity.
Collapse
Affiliation(s)
- Raúl Pulgar-Sepúlveda
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo Varas
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| | - Fernando C. Ortiz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
11
|
Porzionato A, Stocco E, Guidolin D, Agnati L, Macchi V, De Caro R. Receptor-Receptor Interactions of G Protein-Coupled Receptors in the Carotid Body: A Working Hypothesis. Front Physiol 2018; 9:697. [PMID: 29930516 PMCID: PMC6000251 DOI: 10.3389/fphys.2018.00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In the carotid body (CB), a wide series of neurotransmitters and neuromodulators have been identified. They are mainly produced and released by type I cells and act on many different ionotropic and metabotropic receptors located in afferent nerve fibers, type I and II cells. Most metabotropic receptors are G protein-coupled receptors (GPCRs). In other transfected or native cells, GPCRs have been demonstrated to establish physical receptor–receptor interactions (RRIs) with formation of homo/hetero-complexes (dimers or receptor mosaics) in a dynamic monomer/oligomer equilibrium. RRIs modulate ligand binding, signaling, and internalization of GPCR protomers and they are considered of relevance for physiology, pharmacology, and pathology of the nervous system. We hypothesize that RRI may also occur in the different structural elements of the CB (type I cells, type II cells, and afferent fibers), with potential implications in chemoreception, neuromodulation, and tissue plasticity. This ‘working hypothesis’ is supported by literature data reporting the contemporary expression, in type I cells, type II cells, or afferent terminals, of GPCRs which are able to physically interact with each other to form homo/hetero-complexes. Functional data about cross-talks in the CB between different neurotransmitters/neuromodulators also support the hypothesis. On the basis of the above findings, the most significant homo/hetero-complexes which could be postulated in the CB include receptors for dopamine, adenosine, ATP, opioids, histamine, serotonin, endothelin, galanin, GABA, cannabinoids, angiotensin, neurotensin, and melatonin. From a methodological point of view, future studies should demonstrate the colocalization in close proximity (less than 10 nm) of the above receptors, through biophysical (i.e., bioluminescence/fluorescence resonance energy transfer, protein-fragment complementation assay, total internal reflection fluorescence microscopy, fluorescence correlation spectroscopy and photoactivated localization microscopy, X-ray crystallography) or biochemical (co-immunoprecipitation, in situ proximity ligation assay) methods. Moreover, functional approaches will be able to show if ligand binding to one receptor produces changes in the biochemical characteristics (ligand recognition, decoding, and trafficking processes) of the other(s). Plasticity aspects would be also of interest, as development and environmental stimuli (chronic continuous or intermittent hypoxia) produce changes in the expression of certain receptors which could potentially invest the dynamic monomer/oligomer equilibrium of homo/hetero-complexes and the correlated functional implications.
Collapse
Affiliation(s)
| | - Elena Stocco
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Luigi Agnati
- Department of Diagnostic, Clinical Medicine and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Macchi
- Department of Neuroscience, University of Padua, Padua, Italy
| | | |
Collapse
|
12
|
Leonard EM, Salman S, Nurse CA. Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia. Front Physiol 2018; 9:225. [PMID: 29615922 PMCID: PMC5864924 DOI: 10.3389/fphys.2018.00225] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022] Open
Abstract
Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O2, CO2/H+, and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, heart failure, hypertension, and diabetes. In response to a decrease in O2 availability (hypoxia) and elevated CO2/H+ (acid hypercapnia), CB receptor type I (glomus) cells depolarize and release neurotransmitters that stimulate apposed chemoafferent nerve fibers. The central projections of those fibers in turn activate cardiorespiratory centers in the brainstem, leading to an increase in ventilation and sympathetic drive that helps restore blood PO2 and protect vital organs, e.g., the brain. Significant progress has been made in understanding how neurochemicals released from type I cells such as ATP, adenosine, dopamine, 5-HT, ACh, and angiotensin II help shape the CB afferent discharge during both normal and pathophysiological conditions. However, type I cells typically occur in clusters and in addition to their sensory innervation are ensheathed by the processes of neighboring glial-like, sustentacular type II cells. This morphological arrangement is reminiscent of a "tripartite synapse" and emerging evidence suggests that paracrine stimulation of type II cells by a variety of CB neurochemicals may trigger the release of "gliotransmitters" such as ATP via pannexin-1 channels. Further, recent data suggest novel mechanisms by which dopamine, acting via D2 receptors (D2R), may inhibit action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Shaima Salman
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
13
|
Nurse CA, Leonard EM, Salman S. Role of glial-like type II cells as paracrine modulators of carotid body chemoreception. Physiol Genomics 2018. [PMID: 29521602 DOI: 10.1152/physiolgenomics.00142.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mammalian carotid bodies (CB) are chemosensory organs that mediate compensatory cardiorespiratory reflexes in response to low blood PO2 (hypoxemia) and elevated CO2/H+ (acid hypercapnia). The chemoreceptors are glomus or type I cells that occur in clusters enveloped by neighboring glial-like type II cells. During chemoexcitation type I cells depolarize, leading to Ca2+-dependent release of several neurotransmitters, some excitatory and others inhibitory, that help shape the afferent carotid sinus nerve (CSN) discharge. Among the predominantly excitatory neurotransmitters are the purines ATP and adenosine, whereas dopamine (DA) is inhibitory in most species. There is a consensus that ATP and adenosine, acting via postsynaptic ionotropic P2X2/3 receptors and pre- and/or postsynaptic A2 receptors respectively, are major contributors to the increased CSN discharge during chemoexcitation. However, it has been proposed that the CB sensory output is also tuned by paracrine signaling pathways, involving glial-like type II cells. Indeed, type II cells express functional receptors for several excitatory neurochemicals released by type I cells including ATP, 5-HT, ACh, angiotensin II, and endothelin-1. Stimulation of the corresponding G protein-coupled receptors increases intracellular Ca2+, leading to the further release of ATP through pannexin-1 channels. Recent evidence suggests that other CB neurochemicals, e.g., histamine and DA, may actually inhibit Ca2+ signaling in subpopulations of type II cells. Here, we review evidence supporting neurotransmitter-mediated crosstalk between type I and type II cells of the rat CB. We also consider the potential contribution of paracrine signaling and purinergic catabolic pathways to the integrated sensory output of the CB during chemotransduction.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Erin M Leonard
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| | - Shaima Salman
- Department of Biology, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
14
|
Conde SV, Monteiro EC, Sacramento JF. Purines and Carotid Body: New Roles in Pathological Conditions. Front Pharmacol 2017; 8:913. [PMID: 29311923 PMCID: PMC5733106 DOI: 10.3389/fphar.2017.00913] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/29/2017] [Indexed: 01/28/2023] Open
Abstract
It is known that adenosine and adenosine-5′-triphosphate (ATP) are excitatory mediators involved in carotid body (CB) hypoxic signaling. The CBs are peripheral chemoreceptors classically defined by O2, CO2, and pH sensors. When hypoxia activates the CB, it induces the release of neurotransmitters from chemoreceptor cells leading to an increase in the action potentials frequency at the carotid sinus nerve (CSN). This increase in the firing frequency of the CSN is integrated in the brainstem to induce cardiorespiratory compensatory responses. In the last decade several pathologies, as, hypertension, diabetes, obstructive sleep apnea and heart failure have been associated with CB overactivation. In the first section of the present manuscript we review in a concise manner fundamental aspects of purine metabolism. The second section is devoted to the role of purines on the hypoxic response of the CB, providing the state-of-the art for the presence of adenosine and ATP receptors in the CB; for the role of purines at presynaptic level in CB chemoreceptor cells, as well as, its metabolism and regulation; at postsynaptic level in the CSN activity; and on the ventilatory responses to hypoxia. Recently, we have showed that adenosine is involved in CB hypersensitization during chronic intermittent hypoxia (CIH), which mimics obstructive sleep apnea, since caffeine, a non-selective adenosine receptor antagonist that inhibits A2A and A2B adenosine receptors, decreased CSN chemosensory activity in animals subjected to CIH. Apart from this involvement of adenosine in CB sensitization in sleep apnea, it was recently found that P2X3 ATP receptor in the CB contributes to increased chemoreflex hypersensitivity and hypertension in spontaneously hypertension rats. Therefore the last section of this manuscript is devoted to review the recent findings on the role of purines in CB-mediated pathologies as hypertension, diabetes and sleep apnea emphasizing the potential clinical importance of modulating purines levels and action to treat pathologies associated with CB dysfunction.
Collapse
Affiliation(s)
- Silvia V Conde
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Emilia C Monteiro
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- Centro de Estudos de Doenças Crónicas, NOVA Medical School - Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
15
|
Zhang M, Vollmer C, Nurse CA. Adenosine and dopamine oppositely modulate a hyperpolarization-activated current I h in chemosensory neurons of the rat carotid body in co-culture. J Physiol 2017; 596:3101-3117. [PMID: 28801916 DOI: 10.1113/jp274743] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Adenosine and dopamine (DA) are neuromodulators in the carotid body (CB) chemoafferent pathway, but their mechanisms of action are incompletely understood. Using functional co-cultures of rat CB chemoreceptor (type I) cells and sensory petrosal neurons (PNs), we show that adenosine enhanced a hyperpolarization-activated cation current Ih in chemosensory PNs via A2a receptors, whereas DA had the opposite effect via D2 receptors. Adenosine caused a depolarizing shift in the Ih activation curve and increased firing frequency, whereas DA caused a hyperpolarizing shift in the curve and decreased firing frequency. Acute hypoxia and isohydric hypercapnia depolarized type I cells concomitant with increased excitation of adjacent PNs; the A2a receptor blocker SCH58261 inhibited both type I and PN responses during hypoxia, but only the PN response during isohydric hypercapnia. We propose that adenosine and DA control firing frequency in chemosensory PNs via their opposing actions on Ih . ABSTRACT Adenosine and dopamine (DA) act as neurotransmitters or neuromodulators at the carotid body (CB) chemosensory synapse, but their mechanisms of action are not fully understood. Using a functional co-culture model of rat CB chemoreceptor (type I) cell clusters and juxtaposed afferent petrosal neurons (PNs), we tested the hypothesis that adenosine and DA act postsynaptically to modulate a hyperpolarization-activated, cyclic nucleotide-gated (HCN) cation current (Ih ). In whole-cell recordings from hypoxia-responsive PNs, cAMP mimetics enhanced Ih whereas the HCN blocker ZD7288 (2 μm) reversibly inhibited Ih . Adenosine caused a potentiation of Ih (EC50 ∼ 35 nm) that was sensitive to the A2a blocker SCH58261 (5 nm), and an ∼16 mV depolarizing shift in V½ for voltage dependence of Ih activation. By contrast, DA (10 μm) caused an inhibition of Ih that was sensitive to the D2 blocker sulpiride (1-10 μm), and an ∼11 mV hyperpolarizing shift in V½ . Sulpiride potentiated Ih in neurons adjacent to, but not distant from, type I cell clusters. DA also decreased PN action potential frequency whereas adenosine had the opposite effect. During simultaneous paired recordings, SCH58261 inhibited both the presynaptic hypoxia-induced receptor potential in type I cells and the postsynaptic PN response. By contrast, SCH58261 inhibited only the postsynaptic PN response induced by isohydric hypercapnia. Confocal immunofluorescence confirmed the localization of HCN4 subunits in tyrosine hydroxylase-positive chemoafferent neurons in tissue sections of rat petrosal ganglia. These data suggest that adenosine and DA, acting through A2a and D2 receptors respectively, regulate PN excitability via their opposing actions on Ih .
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Cathy Vollmer
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
16
|
Salman S, Vollmer C, McClelland GB, Nurse CA. Characterization of ectonucleotidase expression in the rat carotid body: regulation by chronic hypoxia. Am J Physiol Cell Physiol 2017. [PMID: 28637679 DOI: 10.1152/ajpcell.00328.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carotid body (CB) chemoreflex maintains blood Po2 and Pco2/H+ homeostasis and displays sensory plasticity during exposure to chronic hypoxia. Purinergic signaling via P1 and P2 receptors plays a pivotal role in shaping the afferent discharge at the sensory synapse containing catecholaminergic chemoreceptor (type I) cells, glial-like type II cells, and sensory (petrosal) nerve endings. However, little is known about the family of ectonucleotidases that control synaptic nucleotide levels. Using quantitative PCR (qPCR), we first compared expression levels of ectonucleoside triphosphate diphosphohydrolases (NTPDases1,2,3,5,6) and ecto-5'-nucleotidase (E5'Nt/CD73) mRNAs in juvenile rat CB vs. brain, petrosal ganglia, sympathetic (superior cervical) ganglia, and a sympathoadrenal chromaffin (MAH) cell line. In whole CB extracts, qPCR revealed a high relative expression of surface-located members NTPDase1,2 and E5'Nt/CD73, compared with low NTPDase3 expression. Immunofluorescence staining of CB sections or dissociated CB cultures localized NTPDase2,3 and E5'Nt/CD73 protein to the periphery of type I clusters, and in association with sensory nerve fibers and/or isolated type II cells. Interestingly, in CBs obtained from rats reared under chronic hypobaric hypoxia (~60 kPa, equivalent to 4,300 m) for 5-7 days, in addition to the expected upregulation of tyrosine hydroxylase and VEGF mRNAs, there was a significant upregulation of NTPDase3 and E5'Nt/CD73 mRNA, but a downregulation of NTPDase1 and NTPDase2 relative to normoxic controls. We conclude that NTPDase1,2,3 and E5'Nt/CD73 are the predominant surface-located ectonucleotidases in the rat CB and suggest that their differential regulation during chronic hypoxia may contribute to CB plasticity via control of synaptic ATP, ADP, and adenosine pools.
Collapse
Affiliation(s)
- Shaima Salman
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Cathy Vollmer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | - Colin A Nurse
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
17
|
Zhou T, Chien MS, Kaleem S, Matsunami H. Single cell transcriptome analysis of mouse carotid body glomus cells. J Physiol 2016; 594:4225-51. [PMID: 26940531 DOI: 10.1113/jp271936] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/24/2016] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Carotid body (CB) glomus cells mediate acute oxygen sensing and the initiation of the hypoxic ventilatory response, yet the gene expression profile of these cells is not available. We demonstrate that the single cell RNA-Seq method is a powerful tool for identifying highly expressed genes in CB glomus cells. Our single cell RNA-Seq results characterized novel CB glomus cell genes, including members of the G protein-coupled receptor signalling pathway, ion channels and atypical mitochondrial electron transport chain subunits. A heterologous cell-based screening identified acetate (which is known to affect CB glomus cell activity) as an agonist for the most highly abundant G protein-coupled receptor (Olfr78) in CB glomus cells. These data established the first transcriptome profile of CB glomus cells, highlighting genes with potential implications in CB chemosensory function. ABSTRACT The carotid body (CB) is a major arterial chemoreceptor containing glomus cells whose activities are regulated by changes in arterial blood content, including oxygen. Despite significant advancements in the characterization of their physiological properties, our understanding of the underlying molecular machinery and signalling pathway in CB glomus cells is still limited. To overcome this, we employed the single cell RNA-Seq method by performing next-generation sequencing on single glomus cell-derived cDNAs to eliminate contamination of genes derived from other cell types present in the CB. Using this method, we identified a set of genes abundantly expressed in glomus cells, which contained novel glomus cell-specific genes. Transcriptome and subsequent in situ hybridization and immunohistochemistry analyses identified abundant G protein-coupled receptor signalling pathway components and various types of ion channels, as well as members of the hypoxia-inducible factors pathway. A short-chain fatty acid olfactory receptor Olfr78, recently implicated in CB function, was the most abundant G protein-coupled receptor. Two atypical mitochondrial electron transport chain subunits (Ndufa4l2 and Cox4i2) were among the most specifically expressed genes in CB glomus cells, highlighting their potential roles in mitochondria-mediated oxygen sensing. The wealth of information provided by the present study offers a valuable foundation for identifying molecules functioning in the CB.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Safa Kaleem
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Centre, Durham, NC, USA.,Department of Neurobiology and Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
18
|
Murali S, Nurse CA. Purinergic signalling mediates bidirectional crosstalk between chemoreceptor type I and glial-like type II cells of the rat carotid body. J Physiol 2015; 594:391-406. [PMID: 26537220 DOI: 10.1113/jp271494] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/20/2015] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Carotid body chemoreceptors are organized in clusters containing receptor type I and contiguous glial-like type II cells. While type I cells depolarize and release ATP during chemostimulation, the role of type II cells which express purinergic P2Y2 receptors (P2Y2Rs) and ATP-permeable pannexin-1 (Panx-1) channels, is unclear. Here, we show that in isolated rat chemoreceptor clusters, type I cell depolarization induced by hypoxia, hypercapnia, or high K(+) caused delayed intracellular Ca(2+) elevations (Δ[Ca(2+)]i) in nearby type II cells that were inhibited by the P2Y2R blocker suramin, or by the nucleoside hydrolase apyrase. Likewise, stimulation of P2Y2Rs on type II cells caused a delayed, secondary Δ[Ca(2+)]i in nearby type I cells that was inhibited by blockers of Panx-1 channels, adenosine A2A receptors and 5'-ectonucleotidase. We propose that reciprocal crosstalk between type I and type II cells contributes to sensory processing in the carotid body via purinergic signalling pathways. ABSTRACT The mammalian carotid body (CB) is excited by blood-borne stimuli including hypoxia and acid hypercapnia, leading to respiratory and cardiovascular reflex responses. This chemosensory organ consists of innervated clusters of receptor type I cells, ensheathed by processes of adjacent glial-like type II cells. ATP is a major excitatory neurotransmitter released from type I cells and type II cells express purinergic P2Y2 receptors (P2Y2Rs), the activation of which leads to the opening of ATP-permeable, pannexin-1 (Panx-1) channels. While these properties support crosstalk between type I and type II cells during chemotransduction, direct evidence is lacking. To address this, we first exposed isolated rat chemoreceptor clusters to acute hypoxia, isohydric hypercapnia, or the depolarizing stimulus high K(+), and monitored intracellular [Ca(2+)] using Fura-2. As expected, these stimuli induced intracellular [Ca(2+)] elevations (Δ[Ca(2+)]i) in type I cells. Interestingly, however, there was often a delayed, secondary Δ[Ca(2+)]i in nearby type II cells that was reversibly inhibited by the P2Y2R antagonist suramin, or by the nucleoside hydrolase apyrase. By contrast, type II cell stimulation with the P2Y2R agonist uridine-5'-triphosphate (100 μm) often led to a delayed, secondary Δ[Ca(2+)]i response in nearby type I cells that was reversibly inhibited by the Panx-1 blocker carbenoxolone (5 μm). This Δ[Ca(2+)]i response was also strongly inhibited by blockers of either the adenosine A2A receptor (SCH 58261) or of the 5'-ectonucleotidase (AOPCP), suggesting it was due to adenosine arising from breakdown of ATP released through Panx-1 channels. Collectively, these data strongly suggest that purinergic signalling mechanisms mediate crosstalk between CB chemoreceptor and glial cells during chemotransduction.
Collapse
Affiliation(s)
- Sindhubarathi Murali
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
19
|
Nunes AR, Holmes AP, Conde SV, Gauda EB, Monteiro EC. Revisiting cAMP signaling in the carotid body. Front Physiol 2014; 5:406. [PMID: 25389406 PMCID: PMC4211388 DOI: 10.3389/fphys.2014.00406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022] Open
Abstract
Chronic carotid body (CB) activation is now recognized as being essential in the development of hypertension and promoting insulin resistance; thus, it is imperative to characterize the chemotransduction mechanisms of this organ in order to modulate its activity and improve patient outcomes. For several years, and although controversial, cyclic adenosine monophosphate (cAMP) was considered an important player in initiating the activation of the CB. However, its relevance was partially displaced in the 90s by the emerging role of the mitochondria and molecules such as AMP-activated protein kinase and O2-sensitive K+ channels. Neurotransmitters/neuromodulators binding to metabotropic receptors are essential to chemotransmission in the CB, and cAMP is central to this process. cAMP also contributes to raise intracellular Ca2+ levels, and is intimately related to the cellular energetic status (AMP/ATP ratio). Furthermore, cAMP signaling is a target of multiple current pharmacological agents used in clinical practice. This review (1) provides an outline on the classical view of the cAMP-signaling pathway in the CB that originally supported its role in the O2/CO2 sensing mechanism, (2) presents recent evidence on CB cAMP neuromodulation and (3) discusses how CB activity is affected by current clinical therapies that modify cAMP-signaling, namely dopaminergic drugs, caffeine (modulation of A2A/A2B receptors) and roflumilast (PDE4 inhibitors). cAMP is key to any process that involves metabotropic receptors and the intracellular pathways involved in CB disease states are likely to involve this classical second messenger. Research examining the potential modification of cAMP levels and/or interactions with molecules associated with CB hyperactivity is currently in its beginning and this review will open doors for future explorations.
Collapse
Affiliation(s)
- Ana R Nunes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Andrew P Holmes
- School of Clinical and Experimental Medicine, University of Birmingham Birmingham, UK
| | - Sílvia V Conde
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| | - Estelle B Gauda
- Neonatology Research Laboratories, Department of Pediatrics, Johns Hopkins Medical Institutions, Johns Hopkins University Baltimore, MD, USA
| | - Emília C Monteiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa Lisboa, Portugal
| |
Collapse
|
20
|
Carroll JL, Agarwal A, Donnelly DF, Kim I. Purinergic modulation of carotid body glomus cell hypoxia response during postnatal maturation in rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 758:249-53. [PMID: 23080169 DOI: 10.1007/978-94-007-4584-1_34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Carotid body (CB) glomus cells respond to hypoxia by releasing neurotransmitters, such as ATP, which are believed to stimulate excitatory receptors on apposed nerve endings of the carotid sinus nerves as well as bind to autoreceptors on the glomus cell membrane to modulate response magnitude. The CB response to hypoxia is small at birth and increases during postnatal maturation in mammals. As ATP has been shown to inhibit the glomus cell response to hypoxia via an autoreceptor mechanism, we hypothesized that ATP-mediated inhibition may vary with age and play a role in postnatal development of the hypoxia response magnitude. The effects of ATP on CB glomus cell intracellular calcium ([Ca(2+)](i)) responses to hypoxia were studied at two ages, P0-1 and P14-18. The inhibitory effect of ATP or a stable ATP analog on the glomus cell response to hypoxia was greater in newborn rats compared to the more mature age group. Use of selective P2Y receptor agonists and antagonists suggests that the inhibitory effect of ATP on the glomus cell [Ca(2+)](i) response to hypoxia may be mediated by a P2Y12 receptor. Thus, developmental changes in ATP-mediated glomus cell inhibition may play a role in carotid chemoreceptor postnatal maturation.
Collapse
Affiliation(s)
- John L Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | | | | | | |
Collapse
|
21
|
Piskuric NA, Nurse CA. Expanding role of ATP as a versatile messenger at carotid and aortic body chemoreceptors. J Physiol 2012; 591:415-22. [PMID: 23165772 DOI: 10.1113/jphysiol.2012.234377] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In mammals, peripheral arterial chemoreceptors monitor blood chemicals (e.g. O(2), CO(2), H(+), glucose) and maintain homeostasis via initiation of respiratory and cardiovascular reflexes. Whereas chemoreceptors in the carotid bodies (CBs), located bilaterally at the carotid bifurcation, control primarily respiratory functions, those in the more diffusely distributed aortic bodies (ABs) are thought to regulate mainly cardiovascular functions. Functionally, CBs sense partial pressure of O(2) ( ), whereas ABs are considered sensors of O(2) content. How these organs, with essentially a similar complement of chemoreceptor cells, differentially process these two different types of signals remains enigmatic. Here, we review evidence that implicates ATP as a central mediator during information processing in the CB. Recent data allow an integrative view concerning its interactions at purinergic P2X and P2Y receptors within the chemosensory complex that contains elements of a 'quadripartite synapse'. We also discuss recent studies on the cellular physiology of ABs located near the aortic arch, as well as immunohistochemical evidence suggesting the presence of pathways for P2X receptor signalling. Finally, we present a hypothetical 'quadripartite model' to explain how ATP, released from red blood cells during hypoxia, could contribute to the ability of ABs to sense O(2) content.
Collapse
Affiliation(s)
- Nikol A Piskuric
- Department of Biology, McMaster University, 1280 Main St West, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
22
|
Modulation of the carotid body sensory discharge by NO: An up-dated hypothesis. Respir Physiol Neurobiol 2012; 184:149-57. [DOI: 10.1016/j.resp.2012.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/08/2012] [Accepted: 04/15/2012] [Indexed: 11/23/2022]
|
23
|
Nurse CA, Piskuric NA. Signal processing at mammalian carotid body chemoreceptors. Semin Cell Dev Biol 2012; 24:22-30. [PMID: 23022231 DOI: 10.1016/j.semcdb.2012.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
Mammalian carotid bodies are richly vascularized chemosensory organs that sense blood levels of O(2), CO(2)/H(+), and glucose and maintain homeostatic regulation of these levels via the reflex control of ventilation. Carotid bodies consist of innervated clusters of type I (or glomus) cells in intimate association with glial-like type II cells. Carotid bodies make afferent connections with fibers from sensory neurons in the petrosal ganglia and receive efferent inhibitory innervation from parasympathetic neurons located in the carotid sinus and glossopharyngeal nerves. There are synapses between type I (chemosensory) cells and petrosal afferent terminals, as well as between neighboring type I cells. There is a broad array of neurotransmitters and neuromodulators and their ionotropic and metabotropic receptors in the carotid body. This allows for complex processing of sensory stimuli (e.g., hypoxia and acid hypercapnia) involving both autocrine and paracrine signaling pathways. This review summarizes and evaluates current knowledge of these pathways and presents an integrated working model on information processing in carotid bodies. Included in this model is a novel hypothesis for a potential role of type II cells as an amplifier for the release of a key excitatory carotid body neurotransmitter, ATP, via P2Y purinoceptors and pannexin-1 channels.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4K1.
| | | |
Collapse
|
24
|
Zhang M, Piskuric NA, Vollmer C, Nurse CA. P2Y2 receptor activation opens pannexin-1 channels in rat carotid body type II cells: potential role in amplifying the neurotransmitter ATP. J Physiol 2012; 590:4335-50. [PMID: 22733659 DOI: 10.1113/jphysiol.2012.236265] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Signal processing in the carotid body (CB) is initiated at receptor glomus (or type I) cells which depolarize and release the excitatory neurotransmitter ATP during chemoexcitation by hypoxia and acid hypercapnia. Glomus cell clusters (GCs) occur in intimate association with glia-like type II cells which express purinergic P2Y2 receptors (P2Y2Rs) but their function is unclear. Here we immunolocalize the gap junction-like protein channel pannexin-1 (Panx-1) in type II cells and show Panx-1 mRNA expression in the rat CB. As expected, type II cell activation within or near isolated GCs by P2Y2R agonists, ATP and UTP (100 μm), induced a rise in intracellular [Ca(2+)]. Moreover in perforated-patch whole cell recordings from type II cells, these agonists caused a prolonged depolarization and a concentration-dependent, delayed opening of non-selective ion channels that was prevented by Panx-1 blockers, carbenoxolone (5 μm) and 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS; 10 μm). Because Panx-1 channels serve as conduits for ATP release, we hypothesized that paracrine, type II cell P2Y2R activation leads to ATP-induced ATP release. In proof-of-principle experiments we used co-cultured chemoafferent petrosal neurones (PNs), which express P2X2/3 purinoceptors, as sensitive biosensors of ATP released from type II cells. In several cases, UTP activation of type II cells within or near GCs led to depolarization or increased firing in nearby PNs, and the effect was reversibly abolished by the selective P2X2/3 receptor blocker, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; 10 μm). We propose that CB type II cells may function as ATP amplifiers during chemotransduction via paracrine activation of P2Y2Rs and Panx-1 channels.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | |
Collapse
|
25
|
Tse A, Yan L, Lee AK, Tse FW. Autocrine and paracrine actions of ATP in rat carotid body. Can J Physiol Pharmacol 2012; 90:705-11. [PMID: 22509744 DOI: 10.1139/y2012-054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carotid bodies are peripheral chemoreceptors that detect lowering of arterial blood O(2) level. The carotid body comprises clusters of glomus (type I) cells surrounded by glial-like sustentacular (type II) cells. Hypoxia triggers depolarization and cytosolic [Ca(2+)] ([Ca(2+)](i)) elevation in glomus cells, resulting in the release of multiple transmitters, including ATP. While ATP has been shown to be an important excitatory transmitter in the stimulation of carotid sinus nerve, there is considerable evidence that ATP exerts autocrine and paracrine actions in carotid body. ATP acting via P2Y(1) receptors, causes hyperpolarization in glomus cells and inhibits the hypoxia-mediated [Ca(2+)](i) rise. In contrast, adenosine (an ATP metabolite) triggers depolarization and [Ca(2+)](i) rise in glomus cells via A(2A) receptors. We suggest that during prolonged hypoxia, the negative and positive feedback actions of ATP and adenosine may result in an oscillatory Ca(2+) signal in glomus cells. Such mechanisms may allow cyclic release of transmitters from glomus cells during prolonged hypoxia without causing cellular damage from a persistent [Ca(2+)](i) rise. ATP also stimulates intracellular Ca(2+) release in sustentacular cells via P2Y(2) receptors. The autocine and paracrine actions of ATP suggest that ATP has important roles in coordinating chemosensory transmission in the carotid body.
Collapse
Affiliation(s)
- Amy Tse
- Department of Pharmacology and Center for Neuroscience, 9-70 Medical Science Building, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | | | | | | |
Collapse
|
26
|
Abstract
The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article.
Collapse
Affiliation(s)
- Prem Kumar
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom.
| | | |
Collapse
|
27
|
Ca2+ homeostasis and exocytosis in carotid glomus cells: role of mitochondria. Cell Calcium 2011; 51:155-63. [PMID: 22209034 DOI: 10.1016/j.ceca.2011.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/07/2011] [Accepted: 12/04/2011] [Indexed: 12/30/2022]
Abstract
In oxygen sensing carotid glomus (type 1) cells, the hypoxia-triggered depolarization can be mimicked by mitochondrial inhibitors. We examined the possibility that, other than causing glomus cell depolarization, mitochondrial inhibition can regulate transmitter release via changes in Ca(2+) dynamics. Under whole-cell voltage clamp conditions, application of the mitochondrial inhibitors, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or cyanide caused a dramatic slowing in the decay of the depolarization-triggered Ca(2+) signal in glomus cells. In contrast, inhibition of the Na(+)/Ca(2+) exchanger (NCX), plasma membrane Ca(2+)-ATPase (PMCA) pump or sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) pump had much smaller effects. Consistent with the notion that mitochondrial Ca(2+) uptake is the dominant mechanism in cytosolic Ca(2+) removal, inhibition of the mitochondrial uniporter with ruthenium red slowed the decay of the depolarization-triggered Ca(2+) signal. Hypoxia also slowed cytosolic Ca(2+) removal, suggesting a partial impairment of mitochondrial Ca(2+) uptake. Using membrane capacitance measurement, we found that the increase in the duration of the depolarization-triggered Ca(2+) signal after mitochondrial inhibition was associated with an enhancement of the exocytotic response. The role of mitochondria in the regulation of Ca(2+) signal and transmitter release from glomus cells highlights the importance of mitochondria in hypoxic chemotransduction in the carotid bodies.
Collapse
|
28
|
Yeung-Yam-Wah V, Lee AK, Tse A. Arachidonic acid mobilizes Ca2+ from the endoplasmic reticulum and an acidic store in rat pancreatic β cells. Cell Calcium 2011; 51:140-8. [PMID: 22197025 DOI: 10.1016/j.ceca.2011.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 11/17/2022]
Abstract
In rat pancreatic β cells, arachidonic acid (AA) triggered intracellular Ca(2+) release. This effect could be mimicked by eicosatetraynoic acid, indicating that AA metabolism is not required. The AA-mediated Ca(2+) signal was not affected by inhibition of ryanodine receptors or emptying of ryanodine-sensitive store but was reduced by ∼70% following the disruption of acidic stores (treatment with bafilomycin A1 or glycyl-phenylalanyl-β-naphthylamide (GPN)). The action of AA did not involve TRPM2 channels or NAADP receptors because intracellular dialysis of adenosine diphosphoribose (ADPR; an activator of TRPM2 channels) or NAADP did not affect the AA response. In contrast, stimulation of IP(3) receptors via intracellular dialysis of adenophostin A, or exogenous application of ATP largely abolished the AA-mediated Ca(2+) signal. Intracellular dialysis of heparin abolished the ATP-mediated Ca(2+) signal but not the AA response, suggesting that the action of AA did not involve the IP(3)-binding site. Treatment with the SERCA pump inhibitor, thapsigargin, reduced the amplitude of the AA-mediated Ca(2+) signal by ∼70%. Overall, our finding suggests that AA mobilizes Ca(2+) from the endoplasmic reticulum as well as an acidic store and both stores could be depleted by IP(3) receptor agonist. The possibility of secretory granules as targets of AA is discussed.
Collapse
|
29
|
Nurse CA. Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol 2010; 95:657-67. [PMID: 20360424 DOI: 10.1113/expphysiol.2009.049312] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The control of breathing depends critically on sensory inputs to the central pattern generator of the brainstem, arising from peripheral arterial chemoreceptors located principally in the carotid bodies (CBs). The CB receptors, i.e. glomus or type I cells, are excited by chemical stimuli in arterial blood, particularly hypoxia, hypercapnia, acidosis and low glucose, which initiate corrective reflex cardiorespiratory and cardiovascular adjustments. Type I cells occur in clusters and are innervated by petrosal afferent fibres. Synaptic specializations (both chemical and electrical) occur between type I cells and petrosal terminals, and between neighbouring type I cells. This, together with the presence of a wide array of neurotransmitters and neuromodulators linked to both ionotropic and metabotropic receptors, allows for a complex modulation of CB sensory output. Studies in several laboratories over the last 20 years have provided much insight into the transduction mechanisms. More recent studies, aided by the development of a co-culture model of the rat CB, have shed light on the role of neurotransmitters and neuromodulators in shaping the afferent response. This review highlights some of these developments, which have contributed to our current understanding of information processing at CB chemoreceptors.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1.
| |
Collapse
|
30
|
Yeung-Yam-Wah V, Lee AK, Tse FW, Tse A. Arachidonic acid stimulates extracellular Ca(2+) entry in rat pancreatic beta cells via activation of the noncapacitative arachidonate-regulated Ca(2+) (ARC) channels. Cell Calcium 2009; 47:77-83. [PMID: 20018371 DOI: 10.1016/j.ceca.2009.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/05/2009] [Accepted: 11/17/2009] [Indexed: 11/15/2022]
Abstract
Arachidonic acid (AA) is generated in the pancreatic islets during glucose stimulation. We investigated whether AA activated extracellular Ca(2+) entry in rat pancreatic beta cells via a pathway that was independent of the activation of voltage-gated Ca(2+) channels. The AA triggered [Ca(2+)](i) rise did not involve activation of GPR40 receptors or AA metabolism. When cells were voltage clamped at -70mV, the AA-mediated intracellular Ca(2+) release was accompanied by extracellular Ca(2+) entry. AA accelerated the rate of Mn(2+) quench of indo-1 fluorescence (near the Ca(2+)-independent wavelength of indo-1), reflecting the activation of a Ca(2+)-permeable pathway. The AA-mediated acceleration of Mn(2+) quench was inhibited by La(3+) but not by 2-APB (a blocker of capacitative Ca(2+) entry), suggesting the involvement of arachidonate-regulated Ca(2+) (ARC) channels. Consistent with this, intracellular application of the charged membrane-impermeant analog of AA, arachidonyl-coenzyme A (ACoA) triggered extracellular Ca(2+) entry, as well as the activation of a La(3+)-sensitive small inward current (1.7pA/pF) at -70mV. Our results indicate that the activation of ARC channels by intracellular AA triggers extracellular Ca(2+) entry. This action may contribute to the effects of AA on Ca(2+) signals and insulin secretion in rat beta cells.
Collapse
|
31
|
Zhang M, Clarke K, Zhong H, Vollmer C, Nurse CA. Postsynaptic action of GABA in modulating sensory transmission in co-cultures of rat carotid body via GABA(A) receptors. J Physiol 2008; 587:329-44. [PMID: 19029183 DOI: 10.1113/jphysiol.2008.165035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABA is expressed in carotid body (CB) chemoreceptor type I cells and has previously been reported to modulate sensory transmission via presynaptic GABA(B) receptors. Because low doses of clinically important GABA(A) receptor (GABA(A)R) agonists, e.g. benzodiazepines, have been reported to depress afferent CB responses to hypoxia, we investigated the potential contribution of GABA(A)R in co-cultures of rat type I cells and sensory petrosal neurones (PNs). During gramicidin perforated-patch recordings (to preserve intracellular Cl-), GABA and/or the GABA(A) agonist muscimol (50 microm) induced a bicuculline-sensitive membrane depolarization in isolated PNs. GABA-induced whole-cell currents reversed at approximately -38 mV and had an EC50 of approximately 10 microm (Hill coefficient = approximately 1) at -60 mV. During simultaneous PN and type I cell recordings at functional chemosensory units in co-culture, bicuculline reversibly potentiated the PN, but not type I cell, depolarizing response to hypoxia. Application of the CB excitatory neurotransmitter ATP (1 microm) over the soma of functional PN induced a spike discharge that was markedly suppressed during co-application with GABA (2 microm), even though GABA alone was excitatory. RT-PCR analysis detected expression of GABAergic markers including mRNA for alpha1, alpha2, beta2, gamma2S, gamma2L and gamma3 GABA(A)R subunits in petrosal ganglia extracts. Also, CB extracts contained mRNAs for GABA biosynthetic markers, i.e. glutamate decarboxylase (GAD) isoforms GAD 67A,E, and GABA transporter isoforms GAT 2,3 and BGT-1. In CB sections, sensory nerve endings apposed to type I cells were immunopositive for the GABA(A)R beta subunit. These data suggest that GABA, released from the CB during hypoxia, inhibits sensory discharge postsynaptically via a shunting mechanism involving GABA(A) receptors.
Collapse
Affiliation(s)
- Min Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Stimulatory Actions of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) in Rat Carotid Glomus Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 605:69-74. [DOI: 10.1007/978-0-387-73693-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
|
33
|
Buckler KJ. TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 2007; 157:55-64. [PMID: 17416212 DOI: 10.1016/j.resp.2007.02.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/17/2022]
Abstract
Chemosensing by type-1 cells of the carotid body involves a series of events which culminate in the calcium-dependent secretion of neurotransmitter substances which then excite afferent nerves. This response is mediated via membrane depolarisation and voltage-gated calcium entry. Studies utilising isolated cells indicates that the membrane depolarisation in response to hypoxia, and acidosis, appears to be primarily mediated via the inhibition of a background K(+)-current. The pharmacological and biophysical characteristics of these channels suggest that they are probably closely related to the TASK subfamily of tandem-P-domain K(+)-channels. Indeed they show greatest similarity to TASK-1 and -3. In addition to being sensitive to hypoxia and acidosis, the background K(+)-channels of the type-1 cell are also remarkably sensitive to inhibition of mitochondrial energy metabolism. Metabolic poisons are known potent stimulants of the carotid body and cause membrane depolarisation of type-1 cells. In the presence of metabolic inhibitors hypoxic sensitivity is lost suggesting that oxygen sensing may itself be mediated via depression of mitochondrial energy production. Thus these TASK-like background channels play a central role in mediating the chemotransduction of several different stimuli within the type-1 cell. The mechanisms by which metabolic/oxygen sensitivity might be conferred upon these channels are briefly discussed.
Collapse
Affiliation(s)
- Keith J Buckler
- Department of Physiology Anatomy and Genetics, Sherrington Building, Parks Road, Oxford, UK.
| |
Collapse
|
34
|
Xu F, Tse FW, Tse A. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates the oxygen sensing type I (glomus) cells of rat carotid bodies via reduction of a background TASK-like K+current. J Neurochem 2007; 101:1284-93. [PMID: 17498241 DOI: 10.1111/j.1471-4159.2007.04468.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice are prone to sudden neonatal death and have reduced respiratory response to hypoxia. Here we found that PACAP-38 elevated cytosolic [Ca(2+)] ([Ca(2+)](i)) in the oxygen sensing type I cells but not the glial-like type II (sustentacular) cells of the rat carotid body. This action of PACAP could not be mimicked by vasoactive intestinal peptide but was abolished by PACAP 6-38, implicating the involvement of PAC(1) receptors. H89, a protein kinase A (PKA) inhibitor attenuated the PACAP response. Simultaneous measurement of membrane potential and [Ca(2+)](i) showed that the PACAP-mediated [Ca(2+)](i) rise was accompanied by depolarization and action potential firing. Ni(2+), a blocker of voltage-gated Ca(2+) channels (VGCC) or the removal of extracellular Ca(2+) reversibly inhibited the PACAP-mediated [Ca(2+)](i) rise. In the presence of tetraethylammonium (TEA) and 4-aminopyridine (4-AP), PACAP reduced a background K(+) current. Anandamide, a blocker of TWIK-related acid-sensitive K(+) (TASK)-like K(+) channel, occluded the inhibitory action of PACAP on K(+) current. We conclude that PACAP, acting via the PAC(1) receptors coupled PKA pathway inhibits a TASK-like K(+) current and causes depolarization and VGCC activation. This stimulatory action of PACAP in carotid type I cells can partly account for the role of PACAP in respiratory disorders.
Collapse
Affiliation(s)
- Fenglian Xu
- Department of Pharmacology and Center for Neurosciences, 9-70 Medical Science Building, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
35
|
Balbir A, Lee H, Okumura M, Biswal S, Fitzgerald RS, Shirahata M. A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am J Physiol Lung Cell Mol Physiol 2007; 292:L704-15. [PMID: 17098806 DOI: 10.1152/ajplung.00383.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The carotid body (CB) is the primary hypoxic chemosensory organ. Its hypoxic response appears to be genetically controlled. We have hypothesized that: 1) genes related to CB function are expressed less in the A/J mice (low responder to hypoxia) compared with DBA/2J mice (high responder to hypoxia); and 2) gene expression levels of morphogenic and trophic factors of the CB are significantly lower in the A/J mice than DBA/2J mice. This study utilizes microarray analysis to test these hypotheses. Three sets of CBs were harvested from both strains. RNA was isolated and used for global gene expression profiling (Affymetrix Mouse 430 v2.0 array). Statistically significant gene expression was determined as a minimum six counts of nine pairwise comparisons, a minimum 1.5-fold change, and P ≤ 0.05. Our results demonstrated that 793 genes were expressed less and that 568 genes were expressed more in the A/J strain vs. the DBA/2J strain. Analysis of individual genes indicates that genes encoding ion channels are differentially expressed between the two strains. Genes related to neurotransmitter metabolism, synaptic vesicles, and the development of neural crest-derived cells are expressed less in the A/J CB vs. the DBA/2J CB. Through pathway analysis, we have constructed a model that shows gene interactions and offers a roadmap to investigate CB development and hypoxic chemosensing/chemotransduction processes. Particularly, Gdnf, Bmp2, Kcnmb2, Tph1, Hif1a, and Arnt2 may contribute to the functional differences in the CB between the two strains. Bmp2, Phox2b, Dlx2, and Msx2 may be important for the morphological differences.
Collapse
Affiliation(s)
- Alexander Balbir
- Division of Physiology, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, E7610, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
36
|
Lahiri S, Mitchell CH, Reigada D, Roy A, Cherniack NS. Purines, the carotid body and respiration. Respir Physiol Neurobiol 2007; 157:123-9. [PMID: 17383945 PMCID: PMC1975770 DOI: 10.1016/j.resp.2007.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The carotid body is essential to detecting levels of oxygen in the blood and initiating the compensatory response. Increasing evidence suggests that the purines ATP and adenosine make a key contribution to this signaling by the carotid body. The glomus cells release ATP in response to hypoxia. This released ATP can stimulate P2X receptors on the carotid body to elevate intracellular Ca(2+) and to produce an excitatory response. This released ATP can be dephosphorylated to adenosine by a series of extracellular enzymes, which in turn can stimulate A(1), A(2A) and A(2B) adenosine receptors. Levels of extracellular adenosine can also be altered by membrane transporters. Endogenous adenosine stimulates these receptors to increase the ventilation rate and may modulate the catecholamine release from the carotid sinus nerve. Prolonged hypoxic challenge can alter the expression of purinergic receptors, suggesting a role in the adaptation. This review discusses evidence for a key role of ATP and adenosine in the hypoxic response of the carotid body, and emphasizes areas of new contributions likely to be important in the future.
Collapse
Affiliation(s)
- S. Lahiri
- Department of Physiology; University of Pennsylvania School of Medicine, Philadelphia, PA
| | - C. H. Mitchell
- Department of Physiology; University of Pennsylvania School of Medicine, Philadelphia, PA
| | - D. Reigada
- Department of Physiology; University of Pennsylvania School of Medicine, Philadelphia, PA
| | - A. Roy
- Department of Physiology; University of Pennsylvania School of Medicine, Philadelphia, PA
| | - N. S. Cherniack
- Departments of Medicine and Physiology, Case Western Reserve School of Medicine, Cleveland, OH
- Department of Medicine University of Medicine and Dentistry of New Jersey, Newark, NJ
| |
Collapse
|
37
|
Zapata P. Is ATP a suitable co-transmitter in carotid body arterial chemoreceptors? Respir Physiol Neurobiol 2007; 157:106-15. [PMID: 17276149 DOI: 10.1016/j.resp.2007.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/04/2007] [Accepted: 01/04/2007] [Indexed: 11/29/2022]
Abstract
A review is presented on carotid body ATP content, effects and release, receptors involved and results of their block by purinergic antagonists, and the possibility of cholinergic-purinergic co-transmission in the carotid body. Glomus cells release ACh and ATP upon physiological stimulation. Both agents and their agonists have chemo-excitatory actions and their combined effects disappear upon blocking n-ACh and P2X receptors. Both ACh and ATP also are capable of exciting the somata of chemosensory neurons of petrosal ganglia. Although a combined cholinergic-purinergic block suppresses the chemosensory activity in neurons co-cultured with glomus cells and some carotid body preparations in vitro, basal chemosensory activity and chemosensory responses to hypoxic stimuli persist in cat carotid body preparations in situ and in vitro. Therefore, ATP is an effective excitatory agent for carotid body chemosensory activity, although less potent than ACh; their joint participation may contribute to -- but does not entirely explain -- the transfer of chemoreceptor excitation from glomus cells to sensory endings in carotid body.
Collapse
Affiliation(s)
- P Zapata
- Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
38
|
Campanucci VA, Zhang M, Vollmer C, Nurse CA. Expression of multiple P2X receptors by glossopharyngeal neurons projecting to rat carotid body O2-chemoreceptors: role in nitric oxide-mediated efferent inhibition. J Neurosci 2006; 26:9482-93. [PMID: 16971532 PMCID: PMC6674604 DOI: 10.1523/jneurosci.1672-06.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In mammals, ventilation is peripherally controlled by the carotid body (CB), which receives afferent innervation from the petrosal ganglion and efferent innervation from neurons located along the glossopharyngeal nerve (GPN). GPN neurons give rise to the "efferent inhibitory" pathway via a plexus of neuronal nitric oxide (NO) synthase-positive fibers, believed to be responsible for CB chemoreceptor inhibition via NO release. Although NO is elevated during natural CB stimulation by hypoxia, the underlying mechanisms are unclear. We hypothesized that ATP, released by rat CB chemoreceptors (type 1 cells) and/or red blood cells during hypoxia, may directly activate GPN neurons and contribute to NO-mediated inhibition. Using combined electrophysiological, molecular, and confocal immunofluorescence techniques, we detected the expression of multiple P2X receptors in GPN neurons. These receptors involve at least four different purinergic subunits: P2X2 [and the splice variant P2X2(b)], P2X3, P2X4, and P2X7. Using a novel coculture preparation of CB type I cell clusters and GPN neurons, we tested the role of P2X signaling on CB function. In cocultures, fast application of ATP, or its synthetic analog 2',3'-O-(4 benzoylbenzoyl)-ATP, caused type I cell hyperpolarization that was prevented in the presence of the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide potassium. These data suggest that ATP released during hypoxic stress from CB chemoreceptors (and/or red blood cells) will cause GPN neuron depolarization mediated by multiple P2X receptors. Activation of this pathway will lead to calcium influx and efferent inhibition of CB chemoreceptors via NO synthesis and consequent release.
Collapse
|
39
|
Faustino EVS, Donnelly DF. An important functional role of persistent Na+ current in carotid body hypoxia transduction. J Appl Physiol (1985) 2006; 101:1076-84. [PMID: 16778007 DOI: 10.1152/japplphysiol.00090.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Systemic hypoxia in mammals is sensed and transduced by the carotid body into increased action potential (AP) frequency on the sinus nerve, resulting in increased ventilation. The mechanism of hypoxia transduction is not resolved, but previous work suggested that fast Na(+) channels play an important role in determining the rate and timing of APs (Donnelly, DF, Panisello JM, and Boggs D. J Physiol. 511: 301-311, 1998). We speculated that Na(+) channel activity between APs, termed persistent Na(+) current (I(NaP)), is responsible for AP generation that and riluzole and phenytoin, which inhibit this current, would impair organ function. Using whole cell patch clamp recording of intact petrosal neurons with projections to the carotid body, we demonstrated that I(NaP) is present in chemoreceptor afferent neurons and is inhibited by riluzole. Furthermore, discharge frequencies of single-unit, chemoreceptor activity, in vitro, during normoxia (Po(2) 150 Torr) and during acute hypoxia (Po(2) 90 Torr) were significantly reduced by riluzole concentrations at or above 5 microM, and by phenytoin at 100 microM, without significant affect on nerve conduction time, AP magnitude (inferred from extracellular field), and AP duration. The effect of both drugs appeared solely postsynaptic because hypoxia-induced catecholamine release in the carotid body was not altered by either drug. The respiratory response of unanesthetized, unrestrained 2-wk-old rats to acute hypoxia (12% inspired O(2) fraction), which was measured with whole body plethysmography, was significantly reduced after treatment with riluzole (2 mg/kg ip) and phenytoin (20 mg/kg ip). We conclude that I(NaP) is present in chemoreceptor afferent neurons and serves an important role in peripheral chemoreceptor function and, hence, in the ventilatory response to hypoxia.
Collapse
Affiliation(s)
- Edward Vincent S Faustino
- Department of Pediatrics, Section of Critical Care and Applied Physiology, Yale University School of Medicine, 333 Cedar St., PO Box 208064, New Haven, CT 06520-8064, USA.
| | | |
Collapse
|
40
|
Xu F, Xu J, Tse FW, Tse A. Adenosine stimulates depolarization and rise in cytoplasmic [Ca2+] in type I cells of rat carotid bodies. Am J Physiol Cell Physiol 2006; 290:C1592-8. [PMID: 16436472 DOI: 10.1152/ajpcell.00546.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During hypoxia, the level of adenosine in the carotid bodies increases as a result of ATP catabolism and adenosine efflux via adenosine transporters. Using Ca2+imaging, we found that adenosine, acting via A2Areceptors, triggered a rise in cytoplasmic [Ca2+] ([Ca2+]i) in type I (glomus) cells of rat carotid bodies. The adenosine response could be mimicked by forskolin (but not its inactive analog), and could be abolished by the PKA inhibitor H89. Simultaneous measurements of membrane potential (perforated patch recording) and [Ca2+]ishowed that the adenosine-mediated [Ca2+]irise was accompanied by depolarization. Ni2+, a voltage-gated Ca2+channel (VGCC) blocker, abolished the adenosine-mediated [Ca2+]irise. Although adenosine was reported to inhibit a 4-aminopyridine (4-AP)-sensitive K+current, 4-AP failed to trigger any [Ca2+]irise, or to attenuate the adenosine response. In contrast, anandamide, an inhibitor of the TWIK-related acid-sensitive K+-1 (TASK-1) channels, triggered depolarization and [Ca2+]irise. The adenosine response was attenuated by anandamide but not by tetraethylammonium. Our results suggest that adenosine, acting via the adenylate cyclase and PKA pathways, inhibits the TASK-1 K+channels. This leads to depolarization and activation of Ca2+entry via VGCC. This excitatory action of adenosine on type I cells may contribute to the chemosensitivity of the carotid body during hypoxia.
Collapse
Affiliation(s)
- Fenglian Xu
- Dept. of Pharmacology and Center for Neurosciences, Univ. of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
41
|
Abstract
Carotid bodies are the sensory organs for detecting systemic hypoxia and the ensuing reflexes prevent the development of tissue/cellular hypoxia. Although every mammalian cell responds to hypoxia, O2 sensing by the carotid body is unique in that it responds instantaneously (within seconds) to even a modest drop in arterial PO2. Sensing hypoxia in the carotid body requires an initial transduction step involving O2 sensor(s) and transmitter(s) for subsequent activation of the afferent nerve ending. This brief review focuses on: (a) whether the transduction involves 'single' or 'multiple' O2 sensors; (b) the identity of the excitatory transmitter(s) responsible for afferent nerve activation by hypoxia; and (c) whether inhibitory transmitters have any functional role. The currently proposed O2 sensors include various haem-containing proteins, and a variety of O2-sensitive K+ channels. It is proposed that the transduction involves an ensemble of, and interactions between, haem-containing proteins and O2-sensitive K+-channel proteins functioning as a 'chemosome'; the former for conferring sensitivity to wide range of PO2 values and the latter for the rapidity of the response. Hypoxia releases both excitatory and inhibitory transmitters from the carotid body. ATP is emerging as an important excitatory transmitter for afferent nerve activation by hypoxia. Whereas the inhibitory messengers act in concert with excitatory transmitters like a 'push-pull' mechanism to prevent over excitation, conferring the 'slowly adapting' nature of the afferent nerve activation during prolonged hypoxia. Further studies are needed to test the interactions between putative O2 sensors and excitatory and inhibitory transmitters in the carotid body.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, 1090 Euclid Avenue, Cleveland, OH 44019, USA.
| |
Collapse
|
42
|
Nurse CA. Neurotransmission and neuromodulation in the chemosensory carotid body. Auton Neurosci 2005; 120:1-9. [PMID: 15955746 DOI: 10.1016/j.autneu.2005.04.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 11/20/2022]
Abstract
The mammalian carotid body is a small chemosensory organ that helps maintain the chemical composition of arterial blood via reflex control of ventilation. Thus, in response to decreased PO2 (hypoxia), increased PCO2 (hypercapnia), or decreased pH (acidity), chemoreceptor glomus or type I cells become stimulated and release neuroactive agents that excite apposed sensory terminals of the carotid sinus nerve. The resulting increase in afferent discharge ultimately leads to corrective changes in ventilation so as to maintain blood gas and pH homeostasis. Recent evidence that the organ can also sense low glucose further emphasizes its role as a polymodal sensor of blood-borne stimuli. The chemoreceptors occur in organized cell clusters that receive sensory innervation from petrosal afferents and are intimately associated with the blood supply. Additionally, synaptic specializations between neighboring receptor cells allow for autocrine and paracrine regulation of the sensory output. Though not without controversy, significant progress has been made in elucidating the various chemotransductive pathways, as well as the neurotransmitter and neuromodulatory mechanisms that translate the receptor potential into an afferent sensory discharge. Progress in the latter has been hampered by the presence of a wide variety of endogenous ligands, and an even broader spectrum of receptor subtypes, that apparently help shape the chemoreceptor output and afferent discharge. This review will highlight recent advances in understanding the role of these neuroactive ligands in carotid body function.
Collapse
Affiliation(s)
- Colin A Nurse
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1.
| |
Collapse
|