1
|
Alharbi KS. Non-coding RNAs as therapeutic targets in Parkinson's Disease: A focus on dopamine. Pathol Res Pract 2024; 263:155641. [PMID: 39395297 DOI: 10.1016/j.prp.2024.155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Parkinson's Disease is a highly complicated neurological disorder, with a key manifestation of loss of dopaminergic neurons. Despite the plethora of medicines that alleviate the symptoms, there is an urgent need for new treatments acting on the fundamental pathology of PD. Non-coding RNAs are becoming increasingly important in gene regulation and various cellular processes and are found to play a role in PD pathophysiology. This review analyzes the cross-talk of distinct ncRNAs with dopamine signaling. We attempt to constrain the various ncRNA networks that can activate dopamine production. First, we describe the deregulation of miRNAs that target dopamine receptors and have been implicated in PD. Next, we turn to the functions of lncRNAs in dopaminergic neurons and the connections to susceptibility genes for PD. Finally, we will analyze the novel circRNAs, such as ciRS-7, which may modulate dopamine-linked processes and serve as possible PD biomarkers. In this review, we describe recent progress in dopamine neuron revival to treat PD and the therapeutic potential of ncRNA. This review critically evaluates the available data, and we predict the role of some ncRNAs, such as PTBP1, to become candidate treatment targets in the future. Thus, this review aims to summarize the molecular causes for the deficit in dopamine signaling in PD and point to novel ncRNAs-linked therapeutic directions in neuroscience.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, AL Qassim 51452, Saudi Arabia.
| |
Collapse
|
2
|
Piazza A, Carlone R, Spencer GE. Non-canonical retinoid signaling in neural development, regeneration and synaptic function. Front Mol Neurosci 2024; 17:1371135. [PMID: 38516042 PMCID: PMC10954794 DOI: 10.3389/fnmol.2024.1371135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Canonical retinoid signaling via nuclear receptors and gene regulation is critical for the initiation of developmental processes such as cellular differentiation, patterning and neurite outgrowth, but also mediates nerve regeneration and synaptic functions in adult nervous systems. In addition to canonical transcriptional regulation, retinoids also exert rapid effects, and there are now multiple lines of evidence supporting non-canonical retinoid actions outside of the nucleus, including in dendrites and axons. Together, canonical and non-canonical retinoid signaling provide the precise temporal and spatial control necessary to achieve the fine cellular coordination required for proper nervous system function. Here, we examine and discuss the evidence supporting non-canonical actions of retinoids in neural development and regeneration as well as synaptic function, including a review of the proposed molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
3
|
Kaurani L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int J Mol Sci 2024; 25:2866. [PMID: 38474112 PMCID: PMC10931847 DOI: 10.3390/ijms25052866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Depression is a major contributor to the overall global burden of disease. The discovery of biomarkers for diagnosis or prediction of treatment responses and as therapeutic agents is a current priority. Previous studies have demonstrated the importance of short RNA molecules in the etiology of depression. The most extensively researched of these are microRNAs, a major component of cellular gene regulation and function. MicroRNAs function in a temporal and tissue-specific manner to regulate and modify the post-transcriptional expression of target mRNAs. They can also be shuttled as cargo of extracellular vesicles between the brain and the blood, thus informing about relevant mechanisms in the CNS through the periphery. In fact, studies have already shown that microRNAs identified peripherally are dysregulated in the pathological phenotypes seen in depression. Our article aims to review the existing evidence on microRNA dysregulation in depression and to summarize and evaluate the growing body of evidence for the use of microRNAs as a target for diagnostics and RNA-based therapies.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
4
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
5
|
Rao MV, Darji S, Stavrides PH, Goulbourne CN, Kumar A, Yang DS, Yoo L, Peddy J, Lee JH, Yuan A, Nixon RA. Autophagy is a novel pathway for neurofilament protein degradation in vivo. Autophagy 2023; 19:1277-1292. [PMID: 36131358 PMCID: PMC10012948 DOI: 10.1080/15548627.2022.2124500] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
How macroautophagy/autophagy influences neurofilament (NF) proteins in neurons, a frequent target in neurodegenerative diseases and injury, is not known. NFs in axons have exceptionally long half-lives in vivo enabling formation of large stable supporting networks, but they can be rapidly degraded during Wallerian degeneration initiated by a limited calpain cleavage. Here, we identify autophagy as a previously unrecognized pathway for NF subunit protein degradation that modulates constitutive and inducible NF turnover in vivo. Levels of NEFL/NF-L, NEFM/NF-M, and NEFH/NF-H subunits rise substantially in neuroblastoma (N2a) cells after blocking autophagy either with the phosphatidylinositol 3-kinase (PtdIns3K) inhibitor 3-methyladenine (3-MA), by depleting ATG5 expression with shRNA, or by using both treatments. In contrast, activating autophagy with rapamycin significantly lowers NF levels in N2a cells. In the mouse brain, NF subunit levels increase in vivo after intracerebroventricular infusion of 3-MA. Furthermore, using tomographic confocal microscopy, immunoelectron microscopy, and biochemical fractionation, we demonstrate the presence of NF proteins intra-lumenally within autophagosomes (APs), autolysosomes (ALs), and lysosomes (LYs). Our findings establish a prominent role for autophagy in NF proteolysis. Autophagy may regulate axon cytoskeleton size and responses of the NF cytoskeleton to injury and disease.
Collapse
Affiliation(s)
- Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Philip H Stavrides
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Asok Kumar
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Dun-Sheng Yang
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Lang Yoo
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - James Peddy
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.,Cell Biology, NewYork University Langone Medical Center, NY, USA.,NYU Neuroscience Institute, New York University, New York, NY, USA
| |
Collapse
|
6
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
7
|
Xylaki M, Paiva I, Al-Azzani M, Gerhardt E, Jain G, Islam MR, Vasili E, Wassouf Z, Schulze-Hentrich JM, Fischer A, Outeiro TF. miR-101a-3p Impairs Synaptic Plasticity and Contributes to Synucleinopathy. JOURNAL OF PARKINSON'S DISEASE 2023; 13:179-196. [PMID: 36744345 PMCID: PMC10041420 DOI: 10.3233/jpd-225055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Synucleinopathies are disorders characterized by the abnormal accumulation of α-synuclein (aSyn). Synaptic compromise is observed in synucleinopathies parallel to aSyn aggregation and is accompanied by transcript deregulation. OBJECTIVE We sought to identify microRNAs associated with synaptic processes that may contribute to synaptic dysfunction and degeneration in synucleinopathies. METHODS We performed small RNA-sequencing of midbrain from 6-month-old transgenic mice expressing A30P mutant aSyn, followed by comparative expression analysis. We then used real-time quantitative polymerase chain reaction (qPCR) for validation. Functional analysis was performed in primary neurons by biochemical assays and imaging. RESULTS We found several deregulated biological processes linked to the synapse. miR-101a-3p was validated as a synaptic miRNA upregulated in aSyn Tg mice and in the cortex of dementia with Lewy bodies patients. Mice and primary cultured neurons overexpressing miR-101a-3p showed downregulation of postsynaptic proteins GABA Ab2 and SAPAP3 and altered dendritic morphology resembling synaptic plasticity impairments and/or synaptic damage. Interestingly, primary cultured neuron exposure to recombinant wild-type aSyn species efficiently increased miR-101a-3p levels. Finally, a dynamic role of miR-101a-3p in synapse plasticity was shown by identifying downregulation of miR-101a-3p in a condition of enhanced synaptic plasticity modelled in Wt animals housed in enriched environment. CONCLUSION To conclude, we correlated pathologic aSyn with high levels of miR-101a-3p and a novel dynamic role of the miRNA in synaptic plasticity.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Isabel Paiva
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
- Present address: Laboratory of Cognitive and Adaptive Neuroscience, UMR 7364 (CNRS/ Strasbourg University), Strasbourg, France
| | - Mohammed Al-Azzani
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Zinah Wassouf
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | | | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Centre, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
- Scientific employee with an honorary contract at German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
8
|
Gao YN, Zhang YQ, Wang H, Deng YL, Li NM. A New Player in Depression: MiRNAs as Modulators of Altered Synaptic Plasticity. Int J Mol Sci 2022; 23:ijms23094555. [PMID: 35562946 PMCID: PMC9101307 DOI: 10.3390/ijms23094555] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
Depression is a psychiatric disorder that presents with a persistent depressed mood as the main clinical feature and is accompanied by cognitive impairment. Changes in neuroplasticity and neurogenesis greatly affect depression. Without genetic changes, epigenetic mechanisms have been shown to function by regulating gene expression during the body’s adaptation to stress. Studies in recent years have shown that as important regulatory factors in epigenetic mechanisms, microRNAs (miRNAs) play important roles in the development and progression of depression through the regulation of protein expression. Herein, we review the mechanisms of miRNA-mediated neuroplasticity in depression and discus synaptic structural plasticity, synaptic functional plasticity, and neurogenesis. Furthermore, we found that miRNAs regulate neuroplasticity through several signalling pathways to affect cognitive functions. However, these pathways do not work independently. Therefore, we try to identify synergistic correlations between miRNAs and multiple signalling pathways to broaden the potential pathogenesis of depression. In addition, in the future, dual-function miRNAs (protection/injury) are promising candidate biomarkers for the diagnosis of depression, and their regulated genes can potentially be used as target genes for the treatment of depression.
Collapse
Affiliation(s)
- Ya-Nan Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
| | - Yong-Qian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.-Q.Z.); (Y.-L.D.)
| | - Hao Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.-Q.Z.); (Y.-L.D.)
| | - Nuo-Min Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.-N.G.); (H.W.)
- Correspondence:
| |
Collapse
|
9
|
Jauhari A, Singh T, Yadav S. Neurodevelopmental Disorders and Neurotoxicity: MicroRNA in Focus. J Chem Neuroanat 2022; 120:102072. [DOI: 10.1016/j.jchemneu.2022.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
10
|
Abstract
The function of the nervous system in conveying and processing information necessary to interact with the environment confers unique aspects on how the expression of genes in neurons is regulated. Three salient factors are that (1) neurons are the largest and among the most morphologically complex of all cells, with strict polarity, subcellular compartmentation, and long-distant transport of gene products, signaling molecules, and other materials; (2) information is coded in the temporal firing pattern of membrane depolarization; and (3) neurons must maintain a stable homeostatic level of activation to function so stimuli do not normally drive intracellular signaling to steady state. Each of these factors can require special methods of analysis differing from approaches used in non-neuronal cells. This review considers these three aspects of neuronal gene expression and the current approaches being used to analyze these special features of how the neuronal transcriptome is modulated by action potential firing.
Collapse
Affiliation(s)
- Philip R. Lee
- Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - R. Douglas Fields
- Nervous System Development and Plasticity Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
11
|
Rajgor D, Welle TM, Smith KR. The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons. Front Cell Dev Biol 2021; 9:711446. [PMID: 34336865 PMCID: PMC8317219 DOI: 10.3389/fcell.2021.711446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Neurons are highly complex polarized cells, displaying an extraordinary degree of spatial compartmentalization. At presynaptic and postsynaptic sites, far from the cell body, local protein synthesis is utilized to continually modify the synaptic proteome, enabling rapid changes in protein production to support synaptic function. Synapses undergo diverse forms of plasticity, resulting in long-term, persistent changes in synapse strength, which are paramount for learning, memory, and cognition. It is now well-established that local translation of numerous synaptic proteins is essential for many forms of synaptic plasticity, and much work has gone into deciphering the strategies that neurons use to regulate activity-dependent protein synthesis. Recent studies have pointed to a coordination of the local mRNA translation required for synaptic plasticity and the trafficking of membranous organelles in neurons. This includes the co-trafficking of RNAs to their site of action using endosome/lysosome “transports,” the regulation of activity-dependent translation at synapses, and the role of mitochondria in fueling synaptic translation. Here, we review our current understanding of these mechanisms that impact local translation during synaptic plasticity, providing an overview of these novel and nuanced regulatory processes involving membranous organelles in neurons.
Collapse
Affiliation(s)
- Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
12
|
Woods BJ, Van Vactor D. miRNA: local guardians of presynaptic function in plasticity and disease. RNA Biol 2021; 18:1014-1024. [PMID: 33586621 PMCID: PMC8216186 DOI: 10.1080/15476286.2020.1871214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
Environmental fitness is an essential component of animal survival. Fitness is achieved through responsive physiological plasticity of tissues across the entire body, and particularly in the nervous system. At the molecular level, neural plasticity is mediated via gene-environmental interactions whereby developmental cues and experience dependent input adapt neuronal function to ever changing demands. To this end, neuronal gene regulation must be coupled to changes in neural activity. Seminal discoveries of the 20th century demonstrated neural activity modifies gene expression through calcium-dependent gene transcription. Building on this model, recent work over the last two decades shows that mRNA products of transcriptional programming continue to be regulated in the neuron through the activity-dependent post-transcriptional action of microRNAs (miRNAs). miRNAs are special post-transcriptional regulators that can tune gene expression within the spatial and temporal requirements of synaptic compartments. This mode of gene regulation has proven to be essential for synaptic function and plasticity as miRNA loss of function is highly associated with neural disease. In this review we will discuss current perspective on the link between presynaptic plasticity and miRNA biogenesis in the neuron.
Collapse
Affiliation(s)
- Brandon J. Woods
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Kawatake-Kuno A, Murai T, Uchida S. The Molecular Basis of Depression: Implications of Sex-Related Differences in Epigenetic Regulation. Front Mol Neurosci 2021; 14:708004. [PMID: 34276306 PMCID: PMC8282210 DOI: 10.3389/fnmol.2021.708004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. Although the etiology and pathophysiology of MDD remain poorly understood, aberrant neuroplasticity mediated by the epigenetic dysregulation of gene expression within the brain, which may occur due to genetic and environmental factors, may increase the risk of this disorder. Evidence has also been reported for sex-related differences in the pathophysiology of MDD, with female patients showing a greater severity of symptoms, higher degree of functional impairment, and more atypical depressive symptoms. Males and females also differ in their responsiveness to antidepressants. These clinical findings suggest that sex-dependent molecular and neural mechanisms may underlie the development of depression and the actions of antidepressant medications. This review discusses recent advances regarding the role of epigenetics in stress and depression. The first section presents a brief introduction of the basic mechanisms of epigenetic regulation, including histone modifications, DNA methylation, and non-coding RNAs. The second section reviews their contributions to neural plasticity, the risk of depression, and resilience against depression, with a particular focus on epigenetic modulators that have causal relationships with stress and depression in both clinical and animal studies. The third section highlights studies exploring sex-dependent epigenetic alterations associated with susceptibility to stress and depression. Finally, we discuss future directions to understand the etiology and pathophysiology of MDD, which would contribute to optimized and personalized therapy.
Collapse
Affiliation(s)
- Ayako Kawatake-Kuno
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Suster I, Feng Y. Multifaceted Regulation of MicroRNA Biogenesis: Essential Roles and Functional Integration in Neuronal and Glial Development. Int J Mol Sci 2021; 22:ijms22136765. [PMID: 34201807 PMCID: PMC8269442 DOI: 10.3390/ijms22136765] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that function as endogenous gene silencers. Soon after the discovery of miRNAs, a subset of brain-enriched and brain-specific miRNAs were identified and significant advancements were made in delineating miRNA function in brain development. However, understanding the molecular mechanisms that regulate miRNA biogenesis in normal and diseased brains has become a prevailing challenge. Besides transcriptional regulation of miRNA host genes, miRNA processing intermediates are subjected to multifaceted regulation by canonical miRNA processing enzymes, RNA binding proteins (RBPs) and epitranscriptomic modifications. Further still, miRNA activity can be regulated by the sponging activity of other non-coding RNA classes, namely circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs). Differential abundance of these factors in neuronal and glial lineages partly underlies the spatiotemporal expression and function of lineage-specific miRNAs. Here, we review the continuously evolving understanding of the regulation of neuronal and glial miRNA biogenesis at the transcriptional and posttranscriptional levels and the cooperativity of miRNA species in targeting key mRNAs to drive lineage-specific development. In addition, we review dysregulation of neuronal and glial miRNAs and the detrimental impacts which contribute to developmental brain disorders.
Collapse
Affiliation(s)
| | - Yue Feng
- Correspondence: ; Tel.: +1-404-727-0351
| |
Collapse
|
15
|
Yoshino Y, Roy B, Dwivedi Y. Differential and unique patterns of synaptic miRNA expression in dorsolateral prefrontal cortex of depressed subjects. Neuropsychopharmacology 2021; 46:900-910. [PMID: 32919404 PMCID: PMC8115313 DOI: 10.1038/s41386-020-00861-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
Altered synaptic plasticity is often associated with major depressive disorder (MDD). Disease-associated changes in synaptic functions are tightly correlated with altered microRNA (miRNA) expression. Here, we examined the role of miRNAs and their functioning at the synapse in MDD by examining miRNA processing machinery at synapse and sequencing miRNAs and analyzing their functions in synaptic and total tissue fractions obtained from dorsolateral prefrontal cortex (dlPFC) of 15 MDD and 15 matched non-psychiatric control subjects. A total of 333 miRNAs were reliably detected in the total tissue fraction. Multiple testing following the Benjamini-Hochberg false discovery rate [FDR] showed that 18 miRNAs were significantly altered (1 downregulated 4 up and 13 downregulated; p < 0.05) in MDD subjects. Out of 351 miRNAs reliably expressed in the synaptic fraction, 24 were uniquely expressed at synapse. In addition, 8 miRNAs (miR-215-5p, miR-192-5p, miR-202-5p, miR-19b-3p, miR-423-5p, miR-219a-2-3p; miR-511-5p, miR-483-5p showed significant (FDR corrected; p < 0.05) differential regulation in the synaptic fraction from dlPFC of MDD subjects. In vitro transfection studies and gene ontology revealed involvement of these altered miRNAs in synaptic plasticity, nervous system development, and neurogenesis. A shift in expression ratios (synaptic vs. total fraction) of miR-19b-3p, miR-376c-3p, miR-455-3p, and miR-337-3p were also noted in the MDD group. Moreover, an inverse relationship between the expression of precursor (pre-miR-19b-1, pre-miR-199a-1 and pre-miR-199a-2) and mature (miR-19b-3p, miR-199a-3p) miRNAs was found. Although not significantly, several miRNA processing enzymes (DROSHA [95%], DICER [17%], TARBP2 [38%]) showed increased expression patterns in MDD subjects. Our findings provide new insights into the understanding of the regulation of miRNAs at the synapse and their possible roles in MDD pathogenesis.
Collapse
Affiliation(s)
- Yuta Yoshino
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Bhaskar Roy
- grid.265892.20000000106344187Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
16
|
Su W, Bi X, Wang Y, Baudry M. Changes in neurodegeneration-related miRNAs in brains from CAPN1 -/- mice. BBA ADVANCES 2021; 1. [PMID: 34286311 PMCID: PMC8289118 DOI: 10.1016/j.bbadva.2021.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Calpain-1 knock-out (KO) mice exhibit enhanced susceptibility to neurodegeneration due to the lack of the neuroprotective function of calpain-1. Dicer has been shown to play a fundamental role in the biogenesis of most miRNAs. Here, we identified 45 differentially expressed miRNAs (DE miRNAs) in the brain of calpain-1 KO mice, as compared to wild-type mice. In particular, among all the DE miRNAs, 7 neurodegeneration-related miRNAs were found to be down-regulated in calpain-1 KO mice. We also found that Dicer is cleaved by calpain-1 in mouse brain, which generates an active fragment of Dicer with RNAse III activity and increases miRNA formation. Levels of active Dicer were reduced in brain homogenates from calpain-1 KO mice and incubation with calpain-1 and calcium restored Dicer activity and miRNA expression. Our results indicate that calpain-1 deletion results in decreased levels of active Dicer and changes in neurodegenerative-related miRNAs. These findings could account for some of the pathological changes found in brain of various mammals, including humans, with calpain-1 mutations or down-regulation.
Collapse
Affiliation(s)
- Wenyue Su
- Graduate College of Biomedical Sciences, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Yubin Wang
- Graduate College of Biomedical Sciences, United States
| | - Michel Baudry
- Graduate College of Biomedical Sciences, United States
| |
Collapse
|
17
|
Siedlecki-Wullich D, Miñano-Molina AJ, Rodríguez-Álvarez J. microRNAs as Early Biomarkers of Alzheimer's Disease: A Synaptic Perspective. Cells 2021; 10:113. [PMID: 33435363 PMCID: PMC7827653 DOI: 10.3390/cells10010113] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Pathogenic processes underlying Alzheimer's disease (AD) affect synaptic function from initial asymptomatic stages, long time before the onset of cognitive decline and neurodegeneration. Therefore, reliable biomarkers enabling early AD diagnosis and prognosis are needed to maximize the time window for therapeutic interventions. MicroRNAs (miRNAs) have recently emerged as promising cost-effective and non-invasive biomarkers for AD, since they can be readily detected in different biofluids, including cerebrospinal fluid (CSF) and blood. Moreover, a growing body of evidence indicates that miRNAs regulate synaptic homeostasis and plasticity processes, suggesting that they may be involved in early synaptic dysfunction during AD. Here, we review the current literature supporting a role of miRNAs during early synaptic deficits in AD, including recent studies evaluating their potential as AD biomarkers. Besides targeting genes related to Aβ and tau metabolism, several miRNAs also regulate synaptic-related proteins and transcription factors implicated in early synaptic deficits during AD. Furthermore, individual miRNAs and molecular signatures have been found to distinguish between prodromal AD and healthy controls. Overall, these studies highlight the relevance of considering synaptic-related miRNAs as potential biomarkers of early AD stages. However, further validation studies in large cohorts, including longitudinal studies, as well as implementation of standardized protocols, are needed to establish miRNA-based biomarkers as reliable diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Dolores Siedlecki-Wullich
- Department Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.J.M.-M.); (J.R.-Á.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
| | - Alfredo J. Miñano-Molina
- Department Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.J.M.-M.); (J.R.-Á.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
| | - José Rodríguez-Álvarez
- Department Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.J.M.-M.); (J.R.-Á.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
18
|
Grinkevich LN. The role of microRNAs in learning and long-term memory. Vavilovskii Zhurnal Genet Selektsii 2020; 24:885-896. [PMID: 35088002 PMCID: PMC8763713 DOI: 10.18699/vj20.687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been
paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in
length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently
being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have
been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation.
Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA
biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile
dementia, which are often accompanied by deterioration in the learning ability and by memory impairment.
Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest
in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well
as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory
formation, depending on the activation or inhibition of their expression. The review presents summarized data
on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with
sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving
cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active
mental and physical exercises.
Collapse
Affiliation(s)
- L. N. Grinkevich
- Pavlov Institute of Physiology of the Russian Academy of Sciences
| |
Collapse
|
19
|
Wang Y, Liu Y, Bi X, Baudry M. Calpain-1 and Calpain-2 in the Brain: New Evidence for a Critical Role of Calpain-2 in Neuronal Death. Cells 2020; 9:E2698. [PMID: 33339205 PMCID: PMC7765587 DOI: 10.3390/cells9122698] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/24/2023] Open
Abstract
Calpains are a family of soluble calcium-dependent proteases that are involved in multiple regulatory pathways. Our laboratory has focused on the understanding of the functions of two ubiquitous calpain isoforms, calpain-1 and calpain-2, in the brain. Results obtained over the last 30 years led to the remarkable conclusion that these two calpain isoforms exhibit opposite functions in the brain. Calpain-1 activation is required for certain forms of synaptic plasticity and corresponding types of learning and memory, while calpain-2 activation limits the extent of plasticity and learning. Calpain-1 is neuroprotective both during postnatal development and in adulthood, while calpain-2 is neurodegenerative. Several key protein targets participating in these opposite functions have been identified and linked to known pathways involved in synaptic plasticity and neuroprotection/neurodegeneration. We have proposed the hypothesis that the existence of different PDZ (PSD-95, DLG and ZO-1) binding domains in the C-terminal of calpain-1 and calpain-2 is responsible for their association with different signaling pathways and thereby their different functions. Results with calpain-2 knock-out mice or with mice treated with a selective calpain-2 inhibitor indicate that calpain-2 is a potential therapeutic target in various forms of neurodegeneration, including traumatic brain injury and repeated concussions.
Collapse
Affiliation(s)
- Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (Y.W.); (Y.L.)
| |
Collapse
|
20
|
Oliveira NCM, Lins ÉM, Massirer KB, Bengtson MH. Translational Control during Mammalian Neocortex Development and Postembryonic Neuronal Function. Semin Cell Dev Biol 2020; 114:36-46. [PMID: 33020045 DOI: 10.1016/j.semcdb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
The control of mRNA translation has key roles in the regulation of gene expression and biological processes such as mammalian cellular differentiation and identity. Methodological advances in the last decade have resulted in considerable progress towards understanding how translational control contributes to the regulation of diverse biological phenomena. In this review, we discuss recent findings in the involvement of translational control in the mammalian neocortex development and neuronal biology. We focus on regulatory mechanisms that modulate translational efficiency during neural stem cells self-renewal and differentiation, as well as in neuronal-related processes such as synapse, plasticity, and memory.
Collapse
Affiliation(s)
- Natássia Cristina Martins Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Érico Moreto Lins
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; PhD Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP 13083-862, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Mário Henrique Bengtson
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil.
| |
Collapse
|
21
|
Kiltschewskij DJ, Cairns MJ. Transcriptome-Wide Analysis of Interplay between mRNA Stability, Translation and Small RNAs in Response to Neuronal Membrane Depolarization. Int J Mol Sci 2020; 21:ijms21197086. [PMID: 32992958 PMCID: PMC7582590 DOI: 10.3390/ijms21197086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Experience-dependent changes to neural circuitry are shaped by spatially-restricted activity-dependent mRNA translation. Although the complexity of mRNA translation in neuronal cells is widely appreciated, translational profiles associated with neuronal excitation remain largely uncharacterized, and the associated regulatory mechanisms are poorly understood. Here, we employed ribosome profiling, mRNA sequencing and small RNA sequencing to profile transcriptome-wide changes in mRNA translation after whole cell depolarization of differentiated neuroblast cultures, and investigate the contribution of sequence-specific regulatory mechanisms. Immediately after depolarization, a functional partition between transcriptional and translational responses was uncovered, in which many mRNAs were subjected to significant changes in abundance or ribosomal occupancy, but not both. After an extended (2 h) post-stimulus rest phase, however, these changes became synchronized, suggesting that there are different layers of post-transcriptional regulation which are temporally separated but become coordinated over time. Globally, changes in mRNA abundance and translation were found to be associated with a number of intrinsic mRNA features, including mRNA length, GC% and secondary structures; however, the effect of these factors differed between both post-depolarization time-points. Furthermore, small RNA sequencing revealed that miRNAs and tRNA-derived small RNA fragments were subjected to peak changes in expression immediately after stimulation, during which these molecules were predominantly associated with fluctuations in mRNA abundance, consistent with known regulatory mechanisms. These data suggest that excitation-associated neuronal translation is subjected to extensive temporal coordination, with substantial contributions from a number of sequence-dependent regulatory mechanisms.
Collapse
Affiliation(s)
- Dylan J. Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
- Schizophrenia Research Institute, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-02-4921-8670
| |
Collapse
|
22
|
Conte G, Nguyen NT, Alves M, de Diego-Garcia L, Kenny A, Nicke A, Henshall DC, Jimenez-Mateos EM, Engel T. P2X7 Receptor-Dependent microRNA Expression Profile in the Brain Following Status Epilepticus in Mice. Front Mol Neurosci 2020; 13:127. [PMID: 32982684 PMCID: PMC7485385 DOI: 10.3389/fnmol.2020.00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
The ionotropic ATP-gated P2X7 receptor is an important contributor to inflammatory signaling cascades via the release of Interleukin-1β, as well as having roles in cell death, neuronal plasticity and the release of neurotransmitters. Accordingly, there is interest in targeting the P2X7 receptor for the treatment of epilepsy. However, the signaling pathways downstream of P2X7 receptor activation remain incompletely understood. Notably, recent studies showed that P2X7 receptor expression is controlled, in part, by microRNAs (miRNAs). Here, we explored P2X7 receptor-dependent microRNA expression by comparing microRNA expression profiles of wild-type (wt) and P2X7 receptor knockout mice before and after status epilepticus. Genome-wide microRNA profiling was performed using hippocampi from wt and P2X7 receptor knockout mice following status epilepticus induced by intra-amygdala kainic acid. This revealed that the genetic deletion of the P2X7 receptor results in distinct patterns of microRNA expression. Specifically, we found that in vehicle-injected control mice, the lack of the P2X7 receptor resulted in the up-regulation of 50 microRNAs and down-regulation of 35 microRNAs. Post-status epilepticus, P2X7 receptor deficiency led to the up-regulation of 44 microRNAs while 13 microRNAs were down-regulated. Moreover, there was only limited overlap among identified P2X7 receptor-dependent microRNAs between control conditions and post-status epilepticus, suggesting that the P2X7 receptor regulates the expression of different microRNAs during normal physiology and pathology. Bioinformatic analysis revealed that genes targeted by P2X7 receptor-dependent microRNAs were particularly overrepresented in pathways involved in intracellular signaling, inflammation, and cell death; processes that have been repeatedly associated with P2X7 receptor activation. Moreover, whereas genes involved in signaling pathways and inflammation were common among up- and down-regulated P2X7 receptor-dependent microRNAs during physiological and pathological conditions, genes associated with cell death seemed to be restricted to up-regulated microRNAs during both physiological conditions and post-status epilepticus. Taken together, our results demonstrate that the P2X7 receptor impacts on the expression profile of microRNAs in the brain, thereby possibly contributing to both the maintenance of normal cellular homeostasis and pathological processes.
Collapse
Affiliation(s)
- Giorgia Conte
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ngoc T Nguyen
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,FutureNeuro, Science Foundation Ireland (SFI) Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Mariana Alves
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Laura de Diego-Garcia
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Aidan Kenny
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,FutureNeuro, Science Foundation Ireland (SFI) Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Eva M Jimenez-Mateos
- Discipline of Physiology, School of Medicine, Trinity College Ireland, The University of Dublin, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland.,FutureNeuro, Science Foundation Ireland (SFI) Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| |
Collapse
|
23
|
Brain Dicer1 Is Down-Regulated in a Mouse Model of Alzheimer's Disease Via Aβ42-Induced Repression of Nuclear Factor Erythroid 2-Related Factor 2. Mol Neurobiol 2020; 57:4417-4437. [PMID: 32737764 DOI: 10.1007/s12035-020-02036-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
Dicer1 is a microRNA-processing enzyme which plays critical roles in neuronal survival and neuritogenesis. Dicer1 deletion induces neurodegeneration or degeneration in retinal pigment epithelium, which is associated with oxidative stress. Oxidative stress is thought to be central in the pathogenesis of Alzheimer's disease (AD). Therefore, we hypothesize that Dicer1 may play roles in AD. Using immunoblotting and quantitative real-time PCR, Dicer1 protein and mRNA were reduced in the hippocampi of the AD mouse model APPswe/PSEN1dE9 compared with littermate controls. SiRNA-mediated Dicer1 knockdown induced oxidative stress and apoptosis and reduced mitochondrial membrane potential in cultured neurons. Chronic Aβ42 exposure decreased Dicer1 and nuclear factor erythroid 2-related factor 2 (Nrf2) which were reversed by N-acetyl-cystein. Nrf2 overexpression increased Dicer1 mRNA and protein and reverted the Aβ42-induced Dicer1 reduction. We further cloned Dicer1 promoter variants harboring the Nrf2-binding site, the antioxidant response elements (ARE), into a luciferase reporter and found that simultaneous transfection of Nrf2-expressing plasmid increased luciferase expression from these promoter constructs. ChIP assays indicated that Nrf2 directly interacted with the ARE motifs in the Dicer1 promoter. Furthermore, Dicer1 overexpression in cultured neurons reverted Aβ42-induced neurite deficits. Notably, injection of Dicer1-expressing adenovirus into the hippocampus of the mice significantly improved spatial learning. Altogether, we found novel roles of Dicer1 in AD and a novel regulatory pathway for Dicer1. These results suggest that Dicer1 is a target in AD therapy, especially at the early stage of this disorder. In this study, we found that Dicer1 was reduced in the brain of AD mice which is the first report to examine Dicer1 in AD. We further found (i) that Aβ42 exposure decreased Dicer1 via attenuating Nrf2-ARE signaling and (ii) injection of Dicer1-expressing adenovirus into the hippocampus of the AD mice significantly improved spatial learning. Altogether, we found novel roles of Dicer1 in AD and a novel regulatory pathway for Dicer1. This study may open new avenues for investigating potential pathognomonics and pathogenesis in AD.
Collapse
|
24
|
Vasu MM, Sumitha PS, Rahna P, Thanseem I, Anitha A. microRNAs in Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4368-4378. [PMID: 31692427 DOI: 10.2174/1381612825666191105120901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Efforts to unravel the extensive impact of the non-coding elements of the human genome on cell homeostasis and pathological processes have gained momentum over the last couple of decades. miRNAs refer to short, often 18-25 nucleotides long, non-coding RNA molecules which can regulate gene expression. Each miRNA can regulate several mRNAs. METHODS This article reviews the literature on the roles of miRNAs in autism. RESULTS Considering the fact that ~ 1% of the human DNA encodes different families of miRNAs, their overall impact as critical regulators of gene expression in the mammalian brain should be immense. Though the autism spectrum disorders (ASDs) are predominantly genetic in nature and several candidate genes are already identified, the highly heterogeneous and multifactorial nature of the disorder makes it difficult to identify common genetic risk factors. Several studies have suggested that the environmental factors may interact with the genetic factors to increase the risk. miRNAs could possibly be one of those factors which explain this link between genetics and the environment. CONCLUSION In the present review, we have summarized our current knowledge on miRNAs and their complex roles in ASD, and also on their therapeutic applications.
Collapse
Affiliation(s)
- Mahesh Mundalil Vasu
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Puthiripadath S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Parakkal Rahna
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Kavalappara, Shoranur, Palakkad - 679 523, Kerala, India
| |
Collapse
|
25
|
MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 2020; 16:506-519. [DOI: 10.1038/s41582-020-0369-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
|
26
|
Kiltschewskij DJ, Geaghan MP, Cairns MJ. Characterising the Transcriptional and Translational Impact of the Schizophrenia-Associated miR-1271-5p in Neuronal Cells. Cells 2020; 9:cells9041014. [PMID: 32325711 PMCID: PMC7226585 DOI: 10.3390/cells9041014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/14/2023] Open
Abstract
MicroRNA (miRNA) coordinate complex gene expression networks in cells that are vital to support highly specialised morphology and cytoarchitecture. Neurons express a rich array of miRNA, including many that are specific or enriched, which have important functions in this context and implications for neurological conditions. While the neurological function of a number of brain-derived miRNAs have been examined thoroughly, the mechanistic basis of many remain obscure. In this case, we investigated the transcriptome-wide impact of schizophrenia-associated miR-1271-5p in response to bidirectional modulation. Alteration of miR-1271-5p induced considerable changes to mRNA abundance and translation, which spanned a diverse range of cellular functions, including directly targeted genes strongly associated with cytoskeletal dynamics and cellular junctions. Mechanistic analyses additionally revealed that upregulation of miR-1271-5p predominantly repressed mRNAs through destabilisation, wherein 3'UTR and coding sequence binding sites exhibited similar efficacy. Knockdown, however, produced no discernible trend in target gene expression and strikingly resulted in increased expression of the highly conserved miR-96-5p, which shares an identical seed region with miR-1271-5p, suggesting the presence of feedback mechanisms that sense disruptions to miRNA levels. These findings indicate that, while bidirectional regulation of miR-1271-5p results in substantial remodeling of the neuronal transcriptome, these effects are not inverse in nature. In addition, we provide further support for the idea that destabilisation of mRNA is the predominant mechanism by which miRNAs regulate complementary mRNAs.
Collapse
Affiliation(s)
- Dylan J. Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia; (D.J.K.); (M.P.G.)
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
| | - Michael P. Geaghan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia; (D.J.K.); (M.P.G.)
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia; (D.J.K.); (M.P.G.)
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
- Schizophrenia Research Institute, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-02-4921-8670
| |
Collapse
|
27
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Dicer up-regulation by inhibition of specific proteolysis in differentiating monocytic cells. Proc Natl Acad Sci U S A 2020; 117:8573-8583. [PMID: 32220961 PMCID: PMC7165444 DOI: 10.1073/pnas.1916249117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Dicer is a ribonuclease III enzyme in biosynthesis of miRNAs, regulators of gene expression involved in macrophage differentiation. We found a specific truncation of Dicer in monocytic cells resulting from apparently constitutive cleavage by a serine protease. Inhibition of this proteolytic truncation, which occurred during macrophage differentiation in presence of TLR ligands or prostaglandin E2, up-regulates full-length Dicer and promotes miR biosynthesis. Regulation of transcription of pri-miRNA is one mode to regulate biosynthesis of mature miRNA. Inhibition of constitutive proteolysis of Dicer, as described here, provides a second layer of regulation, at the level of miRNA processing. Our data provide insights to Dicer and miRNAs in macrophage polarization/differentiation, a key process in the innate immune response. Dicer is a ribonuclease III enzyme in biosynthesis of micro-RNAs (miRNAs). Here we describe a regulation of Dicer expression in monocytic cells, based on proteolysis. In undifferentiated Mono Mac 6 (MM6) cells, full-length Dicer was undetectable; only an ∼50-kDa fragment appeared in Western blots. However, when MM6 cells were treated with zymosan or LPS during differentiation with TGF-β and 1,25diOHvitD3, full-length Dicer became abundant together with varying amounts of ∼170- and ∼50-kDa Dicer fragments. Mass spectrometry identified the Dicer fragments and showed cleavage about 450 residues upstream from the C terminus. Also, PGE2 (prostaglandin E2) added to differentiating MM6 cells up-regulated full-length Dicer, through EP2/EP4 and cAMP. The TLR stimuli strongly induced miR-146a-5p, while PGE2 increased miR-99a-5p and miR-125a-5p, both implicated in down-regulation of TNFα. The Ser protease inhibitor AEBSF (4-[2-aminoethyl] benzene sulfonyl fluoride) up-regulated full-length Dicer, both in MM6 cells and in primary human blood monocytes, indicating a specific proteolytic degradation. However, AEBSF alone did not lead to a general increase in miR expression, indicating that additional mechanisms are required to increase miRNA biosynthesis. Finally, differentiation of monocytes to macrophages with M-CSF or GM-CSF strongly up-regulated full-length Dicer. Our results suggest that differentiation regimens, both in the MM6 cell line and of peripheral blood monocytes, inhibit an apparently constitutive Dicer proteolysis, allowing for increased formation of miRNAs.
Collapse
|
29
|
Nawalpuri B, Ravindran S, Muddashetty RS. The Role of Dynamic miRISC During Neuronal Development. Front Mol Biosci 2020; 7:8. [PMID: 32118035 PMCID: PMC7025485 DOI: 10.3389/fmolb.2020.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Activity-dependent protein synthesis plays an important role during neuronal development by fine-tuning the formation and function of neuronal circuits. Recent studies have shown that miRNAs are integral to this regulation because of their ability to control protein synthesis in a rapid, specific and potentially reversible manner. miRNA mediated regulation is a multistep process that involves inhibition of translation before degradation of targeted mRNA, which provides the possibility to store and reverse the inhibition at multiple stages. This flexibility is primarily thought to be derived from the composition of miRNA induced silencing complex (miRISC). AGO2 is likely the only obligatory component of miRISC, while multiple RBPs are shown to be associated with this core miRISC to form diverse miRISC complexes. The formation of these heterogeneous miRISC complexes is intricately regulated by various extracellular signals and cell-specific contexts. In this review, we discuss the composition of miRISC and its functions during neuronal development. Neurodevelopment is guided by both internal programs and external cues. Neuronal activity and external signals play an important role in the formation and refining of the neuronal network. miRISC composition and diversity have a critical role at distinct stages of neurodevelopment. Even though there is a good amount of literature available on the role of miRNAs mediated regulation of neuronal development, surprisingly the role of miRISC composition and its functional dynamics in neuronal development is not much discussed. In this article, we review the available literature on the heterogeneity of the neuronal miRISC composition and how this may influence translation regulation in the context of neuronal development.
Collapse
Affiliation(s)
- Bharti Nawalpuri
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,School of Chemical and Biotechnology, Shanmugha Arts, Science, and Technology and Research Academy (SASTRA) University, Thanjavur, India
| | - Sreenath Ravindran
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Ravi S Muddashetty
- Centre for Brain Development and Repair, Institute for Stem Cell Science and Regenerative Medicine (Instem), Bangalore, India
| |
Collapse
|
30
|
Thelen MP, Kye MJ. The Role of RNA Binding Proteins for Local mRNA Translation: Implications in Neurological Disorders. Front Mol Biosci 2020; 6:161. [PMID: 32010708 PMCID: PMC6974540 DOI: 10.3389/fmolb.2019.00161] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
As neurons are one of the most highly polarized cells in our body, they require sophisticated cellular mechanisms to maintain protein homeostasis in their subcellular compartments such as axons and dendrites. When neuronal protein homeostasis is disturbed due to genetic mutations or deletions, this often results in degeneration of neurons leading to devastating outcome such as spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and fragile X syndrome (FXS). Ribonucleoprotein (RNP) complexes are macromolecular complexes composed of RNA binding proteins (RBPs) and their target RNAs. RBPs contain RNA binding domains and bind to RNA molecules via specific sequence motifs. RNP complexes have various functions in gene expression including messenger RNA (mRNA) trafficking, RNA processing and silencing. In neurons, RBPs deliver specific sets of mRNAs to subcellular compartments such as axons and dendrites to be locally translated. Mutations or deletions in genes coding for RNPs have been reported as causes for neurological disorders such as SMA, ALS, and FXS. As RBPs determine axonal or dendritic mRNA repertoires as well as proteomes by trafficking selective mRNAs and regulating local protein synthesis, they play a crucial role for neuronal function. In this review, we summarize the role of well-known RBPs, SMN, TDP-43, FUS, and FMRP, and review their function for local protein synthesis in neurons. Furthermore, we discuss their pathological contribution to the neurological disorders.
Collapse
Affiliation(s)
| | - Min Jeong Kye
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Bas-Orth C, Koch M, Lau D, Buchthal B, Bading H. A microRNA signature of toxic extrasynaptic N-methyl-D-aspartate (NMDA) receptor signaling. Mol Brain 2020; 13:3. [PMID: 31924235 PMCID: PMC6954508 DOI: 10.1186/s13041-020-0546-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022] Open
Abstract
The cellular consequences of N-Methyl-D-Aspartate receptor (NMDAR) stimulation depend on the receptors' subcellular localization. Synaptic NMDARs promote plasticity and survival whereas extrasynaptic NMDARs mediate excitotoxicity and contribute to cell death in neurodegenerative diseases. The mechanisms that couple activation of extrasynaptic NMDARs to cell death remain incompletely understood. We here show that activation of extrasynaptic NMDARs by bath application of NMDA or L-glutamate leads to the upregulation of a group of 19 microRNAs in cultured mouse hippocampal neurons. In contrast, none of these microRNAs is induced upon stimulation of synaptic activity. Increased microRNA expression depends on the pri-miRNA processing enzyme Drosha, but not on de novo gene transcription. These findings suggest that toxic NMDAR signaling involves changes in the expression levels of particular microRNAs.
Collapse
Affiliation(s)
- Carlos Bas-Orth
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany. .,Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| | - Mirja Koch
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - David Lau
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Bettina Buchthal
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
32
|
Tong X, Yu N, Han R, Wang T. Function of Dicer with regard to Energy Homeostasis Regulation, Structural Modification, and Cellular Distribution. Int J Endocrinol 2020; 2020:6420816. [PMID: 32774363 PMCID: PMC7397435 DOI: 10.1155/2020/6420816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/30/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
As a type III ribonuclease (RNase III) specifically cleaving double-stranded RNA substrates into short fragments, Dicer is indispensable in a range of physi/pathologic processes, e.g., nutrient deprivation, hypoxia, or DNA damage. Therefore, much interest has been paid to the research of this protein as well as its products like microRNAs (miRNAs). The close relationship between Dicer levels and fluctuations of nutrient availability suggests that the protein participates in the regulation of systemic energy homeostasis. Through miRNAs, Dicer regulates the hypothalamic melanocortin-4 system and central autophagy promoting energy expenditure. Moreover, by influencing canonical energy sensors like adenosine monophosphate-activated protein kinase (AMPK) or mammalian target of rapamycin (mTOR), Dicer favors catabolism in the periphery. Taken together, Dicer might be targeted in the control of energy dysregulation. However, factors affecting its RNase activity should be noted. Firstly, modulation of structural integrity affects its role as a ribonuclease. Secondly, although previously known as a cytosolic endoribonuclease, evidence suggests Dicer can relocalize into the nucleus where it could also produce small RNAs. In this review, we probe into involvement of Dicer in energy homeostasis as well as its structural integrity or cellular distribution which affects its ability to produce miRNAs, in the hope of providing novel insights into its mechanism of action for future application.
Collapse
Affiliation(s)
- Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Tongsheng Wang
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
33
|
Fritsche L, Teuber-Hanselmann S, Soub D, Harnisch K, Mairinger F, Junker A. MicroRNA profiles of MS gray matter lesions identify modulators of the synaptic protein synaptotagmin-7. Brain Pathol 2019; 30:524-540. [PMID: 31663645 PMCID: PMC8018161 DOI: 10.1111/bpa.12800] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
We established microRNA (miRNA) profiles in gray and white matter multiple sclerosis (MS) lesions and identified seven miRNAs which were significantly more upregulated in the gray matter lesions. Five of those seven miRNAs, miR‐330‐3p, miR‐4286, miR‐4488, let‐7e‐5p, miR‐432‐5p shared the common target synaptotagmin7 (Syt7). Immunohistochemistry and transcript analyses using nanostring technology revealed a maldistribution of Syt7, with Syt7 accumulation in neuronal soma and decreased expression in axonal structures. This maldistribution could be at least partially explained by an axonal Syt7 transport disturbance. Since Syt7 is a synapse‐associated molecule, this maldistribution could result in impairment of neuronal functions in MS patients. Thus, our results lead to the hypothesis that the overexpression of these five miRNAs in gray matter lesions is a cellular mechanism to reduce further endogenous neuronal Syt7 production. Therefore, miRNAs seem to play an important role as modulators of neuronal structures in MS.
Collapse
Affiliation(s)
- Lena Fritsche
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | | | - Daniel Soub
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Kim Harnisch
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| | - Fabian Mairinger
- Institute of Pathology, University Hospital Essen, D-45147, Essen, Germany
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147, Essen, Germany
| |
Collapse
|
34
|
Kiltschewskij D, Cairns MJ. Temporospatial guidance of activity-dependent gene expression by microRNA: mechanisms and functional implications for neural plasticity. Nucleic Acids Res 2019; 47:533-545. [PMID: 30535081 PMCID: PMC6344879 DOI: 10.1093/nar/gky1235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/30/2018] [Indexed: 01/08/2023] Open
Abstract
MicroRNA are major regulators of neuronal gene expression at the post-transcriptional and translational levels. This layer of control is critical for spatially and temporally restricted gene expression, facilitating highly dynamic changes to cellular structure and function associated with neural plasticity. Investigation of microRNA function in the neural system, however, is at an early stage, and many aspects of the mechanisms employing these small non-coding RNAs remain unclear. In this article, we critically review current knowledge pertaining to microRNA function in neural activity, with emphasis on mechanisms of microRNA repression, their subcellular remodelling and functional impacts on neural plasticity and behavioural phenotypes.
Collapse
Affiliation(s)
- Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2323, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton, NSW, 2323, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2323, Australia.,Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton, NSW, 2323, Australia
| |
Collapse
|
35
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|
36
|
Rocchi A, Moretti D, Lignani G, Colombo E, Scholz-Starke J, Baldelli P, Tkatch T, Benfenati F. Neurite-Enriched MicroRNA-218 Stimulates Translation of the GluA2 Subunit and Increases Excitatory Synaptic Strength. Mol Neurobiol 2019; 56:5701-5714. [DOI: 10.1007/s12035-019-1492-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
|
37
|
Thomas KT, Gross C, Bassell GJ. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front Mol Neurosci 2018; 11:455. [PMID: 30618607 PMCID: PMC6299112 DOI: 10.3389/fnmol.2018.00455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first microRNA 25 years ago, microRNAs (miRNAs) have emerged as critical regulators of gene expression within the mammalian brain. miRNAs are small non-coding RNAs that direct the RNA induced silencing complex to complementary sites on mRNA targets, leading to translational repression and/or mRNA degradation. Within the brain, intra- and extracellular signaling events tune the levels and activities of miRNAs to suit the needs of individual neurons under changing cellular contexts. Conversely, miRNAs shape neuronal communication by regulating the synthesis of proteins that mediate synaptic transmission and other forms of neuronal signaling. Several miRNAs have been shown to be critical for brain function regulating, for example, enduring forms of synaptic plasticity and dendritic morphology. Deficits in miRNA biogenesis have been linked to neurological deficits in humans, and widespread changes in miRNA levels occur in epilepsy, traumatic brain injury, and in response to less dramatic brain insults in rodent models. Manipulation of certain miRNAs can also alter the representation and progression of some of these disorders in rodent models. Recently, microdeletions encompassing MIR137HG, the host gene which encodes the miRNA miR-137, have been linked to autism and intellectual disability, and genome wide association studies have linked this locus to schizophrenia. Recent studies have demonstrated that miR-137 regulates several forms of synaptic plasticity as well as signaling cascades thought to be aberrant in schizophrenia. Together, these studies suggest a mechanism by which miRNA dysregulation might contribute to psychiatric disease and highlight the power of miRNAs to influence the human brain by sculpting communication between neurons.
Collapse
Affiliation(s)
- Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Gross
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
38
|
Dwivedi Y. MicroRNAs in depression and suicide: Recent insights and future perspectives. J Affect Disord 2018; 240:146-154. [PMID: 30071418 PMCID: PMC6108934 DOI: 10.1016/j.jad.2018.07.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023]
Abstract
Suicide is a major public health concern. A significant proportion of depressed individuals show suicidal ideation. The currently available medications are not optimal and a large number of depressed/suicidal patients do not respond to these medications. Thus, there is an urgent need to fully understand the neurobiological mechanisms associated with depression and suicidal behavior and to find novel targets for therapeutic interventions. In this regard, microRNAs (miRNAs), member of small non-coding RNA family, have emerged as an invaluable tool not only to understand disease pathogenesis but also to precisely pinpoint the targets that can be developed as drugs. In this review, these aspects have been discussed in a comprehensive and critical manner.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 7th Avenue, Birmingham, AL 35294, USA.
| |
Collapse
|
39
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
40
|
Gershoni-Emek N, Altman T, Ionescu A, Costa CJ, Gradus-Pery T, Willis DE, Perlson E. Localization of RNAi Machinery to Axonal Branch Points and Growth Cones Is Facilitated by Mitochondria and Is Disrupted in ALS. Front Mol Neurosci 2018; 11:311. [PMID: 30233312 PMCID: PMC6134038 DOI: 10.3389/fnmol.2018.00311] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Local protein synthesis in neuronal axons plays an important role in essential spatiotemporal signaling processes; however, the molecular basis for the post-transcriptional regulation controlling this process in axons is still not fully understood. Here we studied the axonal mechanisms underlying the transport and localization of microRNA (miRNA) and the RNAi machinery along the axon. We first identified miRNAs, Dicer, and Argonaute-2 (Ago2) in motor neuron (MN) axons. We then studied the localization of RNAi machinery and demonstrated that mitochondria associate with miR-124 and RNAi proteins in axons. Importantly, this co-localization occurs primarily at axonal branch points and growth cones. Moreover, using live cell imaging of a functional Cy3-tagged miR-124, we revealed that this miRNA is actively transported with acidic compartments in axons, and associates with stalled mitochondria at growth cones and axonal branch points. Finally, we observed enhanced retrograde transport of miR-124-Cy3, and a reduction in its localization to static mitochondria in MNs expressing the ALS causative gene hSOD1G93A. Taken together, our data suggest that mitochondria participate in the axonal localization and transport of RNAi machinery, and further imply that alterations in this mechanism may be associated with neurodegeneration in ALS.
Collapse
Affiliation(s)
- Noga Gershoni-Emek
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Topaz Altman
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ionescu
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Tal Gradus-Pery
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, United States.,Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Eran Perlson
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Macro roles for microRNAs in neurodegenerative diseases. Noncoding RNA Res 2018; 3:154-159. [PMID: 30175288 PMCID: PMC6114258 DOI: 10.1016/j.ncrna.2018.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) are typically adult-onset progressive disorders that perturb neuronal function, plasticity and health that arise through a host of one or more genetic and/or environmental factors. Over the last decade, numerous studies have shown that mutations in RNA binding proteins and changes in miRNA profiles within the brain are significantly altered during the progression towards NDs – suggesting miRNAs may be one of these contributing factors. Interestingly, the molecular and cellular functions of miRNAs in NDs is largely understudied and could remain a possible avenue for exploring therapeutic treatments for various NDs. In this review, I describe findings which have implicated miRNAs in various NDs and discuss how future studies focused around miRNA-mediated gene silencing could aid in furthering our understanding of maintaining a healthy brain.
Collapse
|
42
|
Wang Q, He Q, Chen Y, Shao W, Yuan C, Wang Y. JNK-mediated microglial DICER degradation potentiates inflammatory responses to induce dopaminergic neuron loss. J Neuroinflammation 2018; 15:184. [PMID: 29907159 PMCID: PMC6003208 DOI: 10.1186/s12974-018-1218-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
Background Amplified inflammation is important for the progression of Parkinson’s disease (PD). However, how this enhanced inflammation is regulated remains largely unknown. Deletion of DICER leads to progressive dopamine neuronal loss and induces gliosis. We hypothesized that the homeostasis of microglial DICER would be responsible for the amplified inflammation in the mouse model of PD. Methods The microglia or C57BL/6 mice were treated or injected with l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP+), respectively, for the model establishment. Microglia and astrocytes sorted by fluorescence-activated cell sorter (FACS) were assayed by quantitative real-time PCR, Western blotting, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), immunohistofluorescence, and mass spectrometry. Results Microglial DICER was phosphorylated at serine 1456 by c-jun N-terminal kinase (JNK) and downregulated in response to 1-methyl-4-phenylpyridinium (MPP+), a causative agent in PD. Inhibition of JNK phosphorylation of DICER at serine 1456 rescued the MPP+-induced DICER degradation, suppressed microglial inflammatory process, and prevented the loss of tyrosine hydroxylase-expressing neurons in the mouse MPTP model. Conclusions JNK-mediated microglial DICER degradation potentiates inflammation to induce dopaminergic neuronal loss. Thus, preventing microglial DICER degradation could be a novel strategy for controlling neuroinflammation in PD. Electronic supplementary material The online version of this article (10.1186/s12974-018-1218-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Wang
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Qian He
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Yifei Chen
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Wei Shao
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Chao Yuan
- Center of Cognition and Brain Science, Beijing Institute of Medical Sciences, Beijing, 100000, People's Republic of China
| | - Yizheng Wang
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
43
|
Paradis-Isler N, Boehm J. NMDA receptor-dependent dephosphorylation of serine 387 in Argonaute 2 increases its degradation and affects dendritic spine density and maturation. J Biol Chem 2018; 293:9311-9325. [PMID: 29735530 DOI: 10.1074/jbc.ra117.001007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Argonaute (AGO) proteins are essential components of the microRNA (miRNA) pathway. AGO proteins are loaded with miRNAs to target mRNAs and thereby regulate mRNA stability and protein translation. As such, AGO proteins are important actors in controlling local protein synthesis, for instance, at dendritic spines and synapses. Although miRNA-mediated regulation of dendritic mRNAs has become a focus of intense interest over the past years, the mechanisms regulating neuronal AGO proteins remain largely unknown. Here, using rat hippocampal neurons, we report that dendritic Ago2 is down-regulated by the proteasome upon NMDA receptor activation. We found that Ser-387 in Ago2 is dephosphorylated upon NMDA treatment and that this dephosphorylation precedes Ago2 degradation. Expressing Ser-387 phosphorylation-deficient or phosphomimetic Ago2 in neurons, we observed that this phosphorylation site is involved in modulating dendritic spine morphology and postsynaptic density protein 95 (PSD-95) expression in spines. Collectively, our results point toward a signaling pathway linking NMDA receptor-dependent Ago2 dephosphorylation and turnover to postsynaptic structural changes. They support a model in which NMDA receptor-mediated dephosphorylation of Ago2 and Ago2 turnover contributes to the de-repression of mRNAs involved in spine growth and maturation.
Collapse
Affiliation(s)
- Nicolas Paradis-Isler
- From the Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jannic Boehm
- From the Département Neurosciences, Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
44
|
De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front Endocrinol (Lausanne) 2018; 9:2. [PMID: 29387042 PMCID: PMC5776102 DOI: 10.3389/fendo.2018.00002] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a common metabolic disorder predisposing to diabetic cardiomyopathy and atherosclerotic cardiovascular disease (CVD), which could lead to heart failure through a variety of mechanisms, including myocardial infarction and chronic pressure overload. Pathogenetic mechanisms, mainly linked to hyperglycemia and chronic sustained hyperinsulinemia, include changes in metabolic profiles, intracellular signaling pathways, energy production, redox status, increased susceptibility to ischemia, and extracellular matrix remodeling. The close relationship between type 2 DM and CVD has led to the common soil hypothesis, postulating that both conditions share common genetic and environmental factors influencing this association. However, although the common risk factors of both CVD and type 2 DM, such as obesity, insulin resistance, dyslipidemia, inflammation, and thrombophilia, can be identified in the majority of affected patients, less is known about how these factors influence both conditions, so that efforts are still needed for a more comprehensive understanding of this relationship. The genetic, epigenetic, and environmental backgrounds of both type 2 DM and CVD have been more recently studied and updated. However, the underlying pathogenetic mechanisms have seldom been investigated within the broader shared background, but rather studied in the specific context of type 2 DM or CVD, separately. As the precise pathophysiological links between type 2 DM and CVD are not entirely understood and many aspects still require elucidation, an integrated description of the genetic, epigenetic, and environmental influences involved in the concomitant development of both diseases is of paramount importance to shed new light on the interlinks between type 2 DM and CVD. This review addresses the current knowledge of overlapping genetic and epigenetic aspects in type 2 DM and CVD, including microRNAs and long non-coding RNAs, whose abnormal regulation has been implicated in both disease conditions, either etiologically or as cause for their progression. Understanding the links between these disorders may help to drive future research toward an integrated pathophysiological approach and to provide future directions in the field.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Daniela P. Foti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| |
Collapse
|
45
|
Smalheiser NR. Rediscovering Don Swanson: the Past, Present and Future of Literature-Based Discovery. JOURNAL OF DATA AND INFORMATION SCIENCE 2017; 2:43-64. [PMID: 29355246 PMCID: PMC5771422 DOI: 10.1515/jdis-2017-0019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The late Don R. Swanson was well appreciated during his lifetime as Dean of the Graduate Library School at University of Chicago, as winner of the American Society for Information Science Award of Merit for 2000, and as author of many seminal articles. In this informal essay, I will give my personal perspective on Don's contributions to science, and outline some current and future directions in literature-based discovery that are rooted in concepts that he developed.
Collapse
Affiliation(s)
- Neil R Smalheiser
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612 USA, +1 312-413-4581
| |
Collapse
|
46
|
Sambandan S, Akbalik G, Kochen L, Rinne J, Kahlstatt J, Glock C, Tushev G, Alvarez-Castelao B, Heckel A, Schuman EM. Activity-dependent spatially localized miRNA maturation in neuronal dendrites. Science 2017; 355:634-637. [PMID: 28183980 DOI: 10.1126/science.aaf8995] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 11/17/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression by binding to target messenger RNAs (mRNAs) and preventing their translation. In general, the number of potential mRNA targets in a cell is much greater than the miRNA copy number, complicating high-fidelity miRNA-target interactions. We developed an inducible fluorescent probe to explore whether the maturation of a miRNA could be regulated in space and time in neurons. A precursor miRNA (pre-miRNA) probe exhibited an activity-dependent increase in fluorescence, suggesting the stimulation of miRNA maturation. Single-synapse stimulation resulted in a local maturation of miRNA that was associated with a spatially restricted reduction in the protein synthesis of a target mRNA. Thus, the spatially and temporally regulated maturation of pre-miRNAs can be used to increase the precision and robustness of miRNA-mediated translational repression.
Collapse
Affiliation(s)
- Sivakumar Sambandan
- Max Planck Institute for Brain Research, Max-von-Laue Straße 4, 60438 Frankfurt, Germany
| | - Güney Akbalik
- Max Planck Institute for Brain Research, Max-von-Laue Straße 4, 60438 Frankfurt, Germany
| | - Lisa Kochen
- Max Planck Institute for Brain Research, Max-von-Laue Straße 4, 60438 Frankfurt, Germany
| | - Jennifer Rinne
- Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt, Germany
| | - Josefine Kahlstatt
- Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt, Germany
| | - Caspar Glock
- Max Planck Institute for Brain Research, Max-von-Laue Straße 4, 60438 Frankfurt, Germany
| | - Georgi Tushev
- Max Planck Institute for Brain Research, Max-von-Laue Straße 4, 60438 Frankfurt, Germany
| | | | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University, 60438 Frankfurt, Germany. .,Cluster of Excellence "Macromolecular Complexes in Action," Goethe University, 60438 Frankfurt, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max-von-Laue Straße 4, 60438 Frankfurt, Germany. .,Cluster of Excellence "Macromolecular Complexes in Action," Goethe University, 60438 Frankfurt, Germany
| |
Collapse
|
47
|
Wei CW, Luo T, Zou SS, Wu AS. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory. Life Sci 2017; 188:118-122. [PMID: 28866103 DOI: 10.1016/j.lfs.2017.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
The importance of non-coding RNA involved in biological processes has become apparent in recent years and the mechanism of transcriptional regulation has also been identified. MicroRNAs (miRNAs) represent a class of small regulatory non-coding RNAs of 22bp in length that mediate gene silencing by identifying specific sequences in the target messenger RNAs (mRNAs). Many miRNAs are highly expressed in the central nervous system in a spatially and temporally controlled manner in normal physiology, as well as in certain pathological conditions. There is growing evidence that a considerable number of specific miRNAs play important roles in synaptic plasticity, learning and memory function. In addition, the dysfunction of these molecules may also contribute to the etiology of several neurodegenerative diseases. Here we provide an overview of the current literatures, which support non-coding RNA-mediated gene function regulation represents an important but underappreciated, layer of epigenetic control that facilitates learning and memory functions.
Collapse
Affiliation(s)
- Chang-Wei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ting Luo
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Shan-Shan Zou
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - An-Shi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
48
|
Chang MY, Park S, Choi JJ, Kim YK, Suh MW, Lee JH, Oh SH, Park MK. MicroRNAs 218a-5p, 219a-5p, and 221-3p regulate vestibular compensation. Sci Rep 2017; 7:8701. [PMID: 28821887 PMCID: PMC5562769 DOI: 10.1038/s41598-017-09422-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Unilateral vestibular deafferentation (UVD) interrupts afferent signals from one side, resulting in an imbalance of the resting activity between bilateral vestibular nuclei. Vestibular compensation is the process of balancing the resting activity to reestablish homeostasis. Here, we investigated microRNAs (miRNAs) that regulate vestibular compensation using the Sprague-Dawley rat. After determining the progression of vestibular compensation following UVD, microarray analysis was performed and nine miRNAs were selected as candidates. Following validation by quantitative reverse transcription-PCR, three miRNAs remained. We assessed the effect of these miRNAs on vestibular compensation using miRNA oligomers. We compared the results of the rotarod test and 5-bromo-2'-deoxyuridine immunohistochemistry following UVD between the control group and the groups in which the candidate miRNA oligomers were administered. Administration of miR-218a-5p, 219a-5p, and 221-3p oligomers significantly affected vestibular compensation. Target pathway analysis of these miRNAs supported our results. Our findings suggest that the miRNAs 218a-5p, 219a-5p, and 221-3p regulate vestibular compensation.
Collapse
Affiliation(s)
- Mun Young Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, 06973, Republic of Korea.,Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sohyeon Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jun Jae Choi
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, 61186, Republic of Korea
| | - Myung-Whan Suh
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jun Ho Lee
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung Ha Oh
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Moo Kyun Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
49
|
Michely J, Kraft S, Müller U. miR-12 and miR-124 contribute to defined early phases of long-lasting and transient memory. Sci Rep 2017; 7:7910. [PMID: 28801686 PMCID: PMC5554235 DOI: 10.1038/s41598-017-08486-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/11/2017] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are important epigenetic regulators of mRNA translation implicated in long-lasting synaptic plasticity and long-term memory (LTM). Since recent findings demonstrated a role of epigenetic regulation of gene expression in early memory phases we investigated whether epigenetic regulation by miRNAs also contributes to early memory phases. We used the olfactory associative learning paradigm in honeybees and addressed the contribution of miRNAs depending on the conditioning strength. We selected miR-12, miR-124, and miR-125 that have been implicated in processes of neuronal plasticity and analysed their contribution to non-associative and associative learning using miRNA inhibitors. Blocking miR-12, miR-124, or miR125 neither affects gustatory sensitivity nor habituation nor sensitization. Blocking the function of miR-12 and miR-124 during and shortly after 3-trial conditioning impairs different early memory phases. Although different, the function of miR-12 and miR-124 is also required for early phases of transient memory that is induced by 1-trial conditioning. Blocking miR-125 has no effect on early memory independent of the conditioning strength. These findings demonstrate that distinct miRNAs contribute to early phases of both, transient memories as well as long-lasting memories.
Collapse
Affiliation(s)
- Julia Michely
- Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology) Faculty NT - Natural Science and Technology, Saarland University, D-66123, Saarbrücken, Germany
| | - Susanne Kraft
- Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology) Faculty NT - Natural Science and Technology, Saarland University, D-66123, Saarbrücken, Germany
| | - Uli Müller
- Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology) Faculty NT - Natural Science and Technology, Saarland University, D-66123, Saarbrücken, Germany.
| |
Collapse
|
50
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|