1
|
Rieder GS, Braga MM, Mussulini BHM, Silva ES, Lazzarotto G, Casali EA, Oliveira DL, Franco JL, Souza DOG, Rocha JBT. Diphenyl Diselenide Attenuates Mitochondrial Damage During Initial Hypoxia and Enhances Resistance to Recurrent Hypoxia. Neurotox Res 2024; 42:13. [PMID: 38332435 DOI: 10.1007/s12640-024-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)2] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)2 was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)2 content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)2 effectively crossed the blood-brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)2 on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)2 should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.
Collapse
Affiliation(s)
- Guilherme S Rieder
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Marcos M Braga
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ben Hur M Mussulini
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Emerson S Silva
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Lazzarotto
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Emerson André Casali
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Diogo L Oliveira
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Jeferson L Franco
- Universidade Federal Do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil
| | - Diogo O G Souza
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - João Batista T Rocha
- Programa de Pós Graduação Em Bioquímica Toxicológica, Departamento de Bioquímica E Biologia Molecular, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
2
|
Shahcheraghi SH, Asl ER, Lotfi M, Ayatollahi J, Khaleghinejad SH, Aljabali AAA, Bakshi HA, El-Tanani M, Charbe NB, Serrano-Aroca Á, Mishra V, Mishra Y, Goyal R, Hromić-Jahjefendić A, Uversky VN, Lotfi M, Tambuwala MM. Non-coding RNAs as Key Regulators of the Notch Signaling Pathway in Glioblastoma: Diagnostic, Prognostic, and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1203-1216. [PMID: 38279763 DOI: 10.2174/0118715273277458231213063147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 01/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain malignancy originating from astrocytes, accounting for approximately 30% of central nervous system malignancies. Despite advancements in therapeutic strategies including surgery, chemotherapy, and radiopharmaceutical drugs, the prognosis for GBM patients remains dismal. The aggressive nature of GBM necessitates the identification of molecular targets and the exploration of effective treatments to inhibit its proliferation. The Notch signaling pathway, which plays a critical role in cellular homeostasis, becomes deregulated in GBM, leading to increased expression of pathway target genes such as MYC, Hes1, and Hey1, thereby promoting cellular proliferation and differentiation. Recent research has highlighted the regulatory role of non-coding RNAs (ncRNAs) in modulating Notch signaling by targeting critical mRNA expression at the post-transcriptional or transcriptional levels. Specifically, various types of ncRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to control multiple target genes and significantly contribute to the carcinogenesis of GBM. Furthermore, these ncRNAs hold promise as prognostic and predictive markers for GBM. This review aims to summarize the latest studies investigating the regulatory effects of ncRNAs on the Notch signaling pathway in GBM.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Hamid A Bakshi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia, 46001, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
3
|
Ferrari S, Galla R, Mulè S, Rosso G, Brovero A, Macchi V, Ruga S, Uberti F. The Role of Bifidobacterium bifidum novaBBF7, Bifidobacterium longum novaBLG2 and Lactobacillus paracasei TJB8 to Improve Mechanisms Linked to Neuronal Cells Protection against Oxidative Condition in a Gut-Brain Axis Model. Int J Mol Sci 2023; 24:12281. [PMID: 37569657 PMCID: PMC10419296 DOI: 10.3390/ijms241512281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Despite the identification of several innovative targets for avoiding cognitive decline, there has yet to be a widely accepted approach that deals with minimising the deterioration of cognitive function. In this light, recent studies suggest that regulating the gut-brain axis with probiotics is a potential therapeutic strategy to support brain health. For this reason, in vitro models were used to examine the efficacy of different probiotic combinations to enhance intestinal homeostasis and positively affect the brain. Therefore, the new formulation has been evaluated for its capacity to modify intestinal barrier functions in a 3D in vitro model without any adverse effects and directly impact the mechanisms underlying cognitive function in a gut-brain axis model. According to our findings, B. bifidum novaBBF7 10 mg/mL, B. longum novaBLG2 5 mg/mL and L. paracasei TJB8 10 mg/mL may successfully modify the intestinal barrier and improve SCFA production. Successively, the probiotics studied caused no harm at the neuronal level, as demonstrated by iNOS, mitochondrial potential, and cell viability tests, confirming their safety features and enhancing antioxidant mechanisms and antineuroinflammation activity. Additionally, the damage caused by oxidative stress was also healed, and critical pathways that result in cognitive impairment were changed by synergetic action, supporting the hypothesis that brain ageing and neurodegeneration are slowed down. All these findings demonstrate the ability of probiotics to affect cognitive processes and their ability to sustain the mechanisms underlying cognitive function by acting on intestinal function.
Collapse
Affiliation(s)
- Sara Ferrari
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rebecca Galla
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
- Noivita Srls, Spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Simone Mulè
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Giorgia Rosso
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Arianna Brovero
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Valentina Macchi
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Sara Ruga
- Noivita Srls, Spin Off, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Francesca Uberti
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
4
|
Immune Responses in Leishmaniases: An Overview. Trop Med Infect Dis 2022; 7:tropicalmed7040054. [PMID: 35448829 PMCID: PMC9029249 DOI: 10.3390/tropicalmed7040054] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a parasitic, widespread, and neglected disease that affects more than 90 countries in the world. More than 20 Leishmania species cause different forms of leishmaniasis that range in severity from cutaneous lesions to systemic infection. The diversity of leishmaniasis forms is due to the species of parasite, vector, environmental and social factors, genetic background, nutritional status, as well as immunocompetence of the host. Here, we discuss the role of the immune system, its molecules, and responses in the establishment, development, and outcome of Leishmaniasis, focusing on innate immune cells and Leishmania major interactions.
Collapse
|
5
|
Jeong H, Jeon YE, Yang JK, Kim J, Chung WJ, Lee YS, Shin DS. Synthesis of Caffeoyl-Prolyl-Histidyl-Xaa Derivatives and Evaluation of Their Activities and Stability upon Long-Term Storage. Int J Mol Sci 2021; 22:ijms22126301. [PMID: 34208348 PMCID: PMC8231216 DOI: 10.3390/ijms22126301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Antioxidants play a critical role in the treatment of degenerative diseases and delaying the aging of dermal tissue. Caffeic acid (CA) is a representative example of the antioxidants found in plants. However, CA is unsuitable for long-term storage because of its poor stability under ambient conditions. Caffeoyl-Pro-His-NH2 (CA-Pro-His-NH2, CA-PH) exhibits the highest antioxidant activity, free radical scavenging and lipid peroxidation inhibition activity among the histidine-containing CA-conjugated dipeptides reported to date. The addition of short peptides to CA, such as Pro-His, is assumed to synergistically enhance its antioxidative activity. In this study, several caffeoyl-prolyl-histidyl-Xaa-NH2 derivatives were synthesized and their antioxidative activities evaluated. CA-Pro-His-Asn-NH2 showed enhanced antioxidative activity and higher structural stability than CA-PH, even after long-term storage. CA-Pro-His-Asn-NH2 was stable for 3 months, its stability being evaluated by observing the changes in its NMR spectra. Moreover, the solid-phase synthetic strategy used to prepare these CA-Pro-His-Xaa-NH2 derivatives was optimized for large-scale production. We envision that CA-Pro-His-Xaa-NH2 derivatives can be used as potent dermal therapeutic agents and useful cosmetic ingredients.
Collapse
Affiliation(s)
- Hyeri Jeong
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul 04310, Korea; (H.J.); (Y.-E.J.)
| | - Young-Eun Jeon
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul 04310, Korea; (H.J.); (Y.-E.J.)
| | - Jin-Kyoung Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (J.-K.Y.); (J.K.)
| | - Jaehi Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (J.-K.Y.); (J.K.)
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea;
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea; (J.-K.Y.); (J.K.)
- BeadTech Inc., 10-dong 4th, 49 Wonsi-ro, Danwon-gu, Ansan-si 15610, Korea
- Correspondence: (Y.-S.L.); (D.-S.S.); Tel.: +82-31-8084-8359 (Y.-S.L.); +82-2-2077-7236 (D.-S.S.)
| | - Dong-Sik Shin
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul 04310, Korea; (H.J.); (Y.-E.J.)
- Industry Collaboration Center, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.-S.L.); (D.-S.S.); Tel.: +82-31-8084-8359 (Y.-S.L.); +82-2-2077-7236 (D.-S.S.)
| |
Collapse
|
6
|
Yu Y, Ma L, Zhang H, Sun W, Zheng L, Liu C, Miao L. EPO could be regulated by HIF-1 and promote osteogenesis and accelerate bone repair. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:206-217. [PMID: 31851837 DOI: 10.1080/21691401.2019.1699827] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone defects caused by many factors prompt further study of pathological process and restoration methods. This study was aimed to clarify the effect of erythropoietin on the repair of bone defect. We added the designated concentration of rhEPO to endothelial progenitor cells and marrow stromal cells, then detected its osteogenic and angiogenesis effects. The results showed that rhEPO promoted the proliferation of EPC and ST2 by promoting the mitosis without affecting cell apoptosis. The protein and mRNA levels of angiogenesis and osteogenic related factors exhibited higher expressions. Additionally, rhEPO encapsulated in PLGA scaffolds accelerated the new bone formation in rat calvaria bone defect model. Since the centre of bone defect was hypoxia environment, we cultured EPC and ST2 under hypoxia. SiRNA and an inhibitor of HIF-1 were used to interfere HIF-1, then the following changes of VEGF and EPO were detected. The results showed that all the factors were upregulated under the hypoxia environment. The expression of VEGF at protein and mRNA level decreased as HIF-1 was inhibited or interfered from 6 h, while the mRNA expression of EPO from 6 h and changed significantly at protein level from 12 h. Therefore, EPO is a promising factor for further studies.
Collapse
Affiliation(s)
- Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Lan Ma
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - He Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Lichun Zheng
- Department of Preventive Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, PR China
| |
Collapse
|
7
|
Gábriel R, Pöstyéni E, Dénes V. Neuroprotective Potential of Pituitary Adenylate Cyclase Activating Polypeptide in Retinal Degenerations of Metabolic Origin. Front Neurosci 2019; 13:1031. [PMID: 31649495 PMCID: PMC6794456 DOI: 10.3389/fnins.2019.01031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP1-38) is a highly conserved member of the secretin/glucagon/VIP family. The repressive effect of PACAP1-38 on the apoptotic machinery has been an area of active research conferring a significant neuroprotective potential onto this peptide. A remarkable number of studies suggest its importance in the etiology of neurodegenerative disorders, particularly in relation to retinal metabolic disorders. In our review, we provide short descriptions of various pathological conditions (diabetic retinopathy, excitotoxic retinal injury and ischemic retinal lesion) in which the remedial effect of PACAP has been well demonstrated in various animal models. Of all the pathological conditions, diabetic retinopathy seems to be the most intriguing as it develops in 75% of patients with type 1 and 50% of patients with type 2 diabetes, with concomitant progression to legal blindness in about 5%. Several animal models have been developed in recent years to study retinal degenerations and out of these glaucoma and age-related retina degeneration models bear human recapitulations. PACAP neuroprotection is thought to operate through enhanced cAMP production upon binding to PAC1-R. However, the underlying signaling network that leads to neuroprotection is not fully understood. We observed that (i) PACAP is not equally efficient in the above conditions; (ii) in some cases more than one signaling pathways are activated; (iii) the coupling of PAC1-R and signaling is stage dependent; and (iv) PAC1-R is not the only receptor that must be considered to interpret the effects in our experiments. These observations point to a complex signaling mechanism, that involves alternative routes besides the classical cAMP/protein kinase A pathway to evoke the outstanding neuroprotective action. Consequently, the possible contribution of the other two main receptors (VPAC1-R and VPAC2-R) will also be discussed. Finally, the potential medical use of PACAP in some retinal and ocular disorders will also be reviewed. By taking advantage of, low-cost synthesis technologies today, PACAP may serve as an alternative to the expensive treatment modelities currently available in ocular or retinal conditions.
Collapse
Affiliation(s)
- Robert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Viktória Dénes
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Kovacs K, Vaczy A, Fekete K, Kovari P, Atlasz T, Reglodi D, Gabriel R, Gallyas F, Sumegi B. PARP Inhibitor Protects Against Chronic Hypoxia/Reoxygenation-Induced Retinal Injury by Regulation of MAPKs, HIF1α, Nrf2, and NFκB. Invest Ophthalmol Vis Sci 2019; 60:1478-1490. [PMID: 30973576 DOI: 10.1167/iovs.18-25936] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the eye, chronic hypoxia/reoxygenation (H/R) contributes to the development of a number of ocular disorders. H/R induces the production of reactive oxygen species (ROS), leading to poly(ADP-ribose) polymerase-1 (PARP1) activation that promotes inflammation, cell death, and disease progression. Here, we analyzed the protective effects of the PARP1 inhibitor olaparib in H/R-induced retina injury and investigated the signaling mechanisms involved. Methods A rat retinal H/R model was used to detect histologic and biochemical changes in the retina. Results H/R induced reductions in the thickness of most retinal layers, which were prevented by olaparib. Furthermore, H/R caused increased levels of Akt and glycogen synthase kinase-3β phosphorylation, which were further increased by olaparib, contributing to retina protection. By contrast, H/R-induced c-Jun N-terminal kinase and p38 mitogen-activated protein kinases (MAPK) phosphorylation and activation were reduced by olaparib, via mitogen-activated protein kinase phosphatase 1 (MKP-1) expression. In addition, H/R-induced hypoxia-inducible factor 1α (HIF1α) levels were decreased by olaparib, which possibly contributed to reduced VEGF expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression was slightly increased by H/R and was further activated by olaparib. Nuclear factor-κB (NFκB) was also activated by H/R through phosphorylation (Ser536) and acetylation (Lys310) of the p65 subunit, although this was significantly reduced by olaparib. Conclusions Olaparib reduced H/R-induced degenerative changes in retinal morphology. The protective mechanisms of olaparib most probably involved Nrf2 activation and ROS reduction, as well as normalization of HIF1α and related VEGF expression. In addition, olaparib reduced inflammation by NFκB dephosphorylation/inactivation, possibly via the PARP1 inhibition-MKP-1 activation-p38 MAPK inhibition pathway. PARP inhibitors represent potential therapeutics in H/R-induced retinal disease.
Collapse
Affiliation(s)
- Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Petra Kovari
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs Medical School, Pécs, Hungary.,Department of Sportbiology, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pécs Medical School, Pécs, Hungary
| | - Robert Gabriel
- Department of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary.,Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
9
|
Liu N, Yu Z, Xun Y, Shu P, Yue Y, Yuan S, Jiang Y, Huang Z, Yang X, Feng X, Xiang S, Wang X. Amyloid-β25-35 Upregulates Endogenous Neuroprotectant Neuroglobin via NFκB Activation in vitro. J Alzheimers Dis 2019; 64:1163-1174. [PMID: 30010125 DOI: 10.3233/jad-180163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neuroglobin (Ngb) has been reported to be increased in early and moderately advanced Alzheimer's disease (AD) stages but declined in the severe stage. However, its regulatory mechanisms and pathophysiological roles in the disease remain to be defined. In this study, we found that Ngb expression was significantly upregulated by low dose Aβ25-35, the neurotoxic fragment of Aβ1 - 40 and Aβ1 - 42, but was not further increased by a higher dose of Aβ25-35. Mutation analysis and supershift assay demonstrated that transcription factor Nuclear Factor κB (NFκB), κB2 and κB3 sites located in mouse Ngb promoter region were involved in dynamic regulation of Ngb expression in response to different doses of Aβ25-35 stimulation. In addition, we found that suppression of endogenous Ngb expression exacerbated Aβ25-35-induced neuronal cell death and mitochondrial dysfunction. Our results indicate that endogenous Ngb expression may be upregulated by low dose Aβ25-35, which is responsible for protecting against Aβ25-35-mediated neurotoxicity. These experimental findings suggest that upregulation of endogenous Ngb expression might be an effective intervention approach for AD.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Xun
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Pan Shu
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiwei Yue
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China.,Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shishan Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yinghua Jiang
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zixuan Huang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xing Feng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Van Acker ZP, Luyckx E, Dewilde S. Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation. Mol Neurobiol 2018; 56:2101-2122. [DOI: 10.1007/s12035-018-1212-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
|
11
|
He X, Cai Q, Li J, Guo W. Involvement of brain-gut axis in treatment of cerebral infarction by β-asaron and paeonol. Neurosci Lett 2018; 666:78-84. [DOI: 10.1016/j.neulet.2017.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
|
12
|
Liu S, Ai Q, Feng K, Li Y, Liu X. The cardioprotective effect of dihydromyricetin prevents ischemia-reperfusion-induced apoptosis in vivo and in vitro via the PI3K/Akt and HIF-1α signaling pathways. Apoptosis 2018; 21:1366-1385. [PMID: 27738772 DOI: 10.1007/s10495-016-1306-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Reperfusion therapy is widely used to treat acute myocardial infarction (AMI). However, further injury to the heart induced by rapidly initiating reperfusion is often encountered in clinical practice. A lack of pharmacological strategies in clinics limits the prognosis of patients with myocardial ischemia-reperfusion injury (MIRI). Dihydromyricetin (DMY) is one of the most abundant components in vine tea, commonly known as the tender stems and leaves of Ampelopsis grossedentata. The aim of this study was to evaluate the cardioprotection of DMY against myocardial ischemia-reperfusion (I/R) injury and to further investigate the underlying mechanism. An I/R injury was induced by left anterior descending coronary artery occlusion in adult male rats in vivo and a hypoxia-reoxygenation (H/R) injury in H9c2 cardiomyocytes in vitro. We found that DMY pretreatment provided significant protection against I/R-induced injury, including enhanced antioxidant capacity and inhibited apoptosis in vivo and in vitro. This effect correlated with the activation of the PI3K/Akt and HIF-1α signaling pathways. Conversely, blocking Akt activation with the PI3K inhibitor LY294002 effectively suppressed the protective effects of DMY against I/R-induced injury. In addition, the PI3K inhibitor partially blocked the effects of DMY on the upregulation of Bcl-2, Bcl-xl, procaspase-3, -8, and -9 protein expression and the downregulation of HIF-1α, Bnip3, Bax, Cyt-c, cleaved caspase-3, -8, and -9 protein expression. Collectively, these results showed that DMY decreased the apoptosis and necrosis by I/R treatment, and PI3K/Akt and HIF-1α plays a crucial role in protection during this process. These observations indicate that DMY has the potential to exert cardioprotective effects against I/R injury and the results might be important for the clinical efficacy of AMI treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Pharmacy Department, Xiangtan Central Hospital, No. 120, Heping Road, Yuhu District, Xiangtan, 411100, People's Republic of China
| | - Qidi Ai
- School of Pharmaceutical Science, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Kai Feng
- Oral Surgery, Dalian Stomatological Hospital, Dalian, 116021, People's Republic of China
| | - Yubing Li
- Pharmacy Department, Dalian (Municipal) Friendship Hospital, Dalian, 116001, People's Republic of China
| | - Xiang Liu
- Pharmacy Department, Xiangtan Central Hospital, No. 120, Heping Road, Yuhu District, Xiangtan, 411100, People's Republic of China.
| |
Collapse
|
13
|
Chen YQ, Zhong SM, Liu ST, Gao F, Li F, Zhao Y, Sun XH, Miao Y, Wang Z. Neuroprotective effect of 5ɑ-androst-3β,5,6β-triol on retinal ganglion cells in a rat chronic ocular hypertension model. Neurosci Lett 2017; 660:90-95. [PMID: 28919536 DOI: 10.1016/j.neulet.2017.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 01/01/2023]
Abstract
Previous studies have demonstrated that 5ɑ-androst-3β,5,6β-triol (Triol), a synthesized steroid compound, showed notable neuroprotective effect in cultured cortical neurons. In the present study, we explored whether and how Triol have neuroprotective effect on retinal ganglion cells (RGCs) in a chronic ocular hypertension (COH) rat model. COH model was produced by injecting superparamagnetic iron oxide micro-beads into the anterior chamber, and Triol was administrated (4.8μg/100g, i.p., once daily for 4 weeks). Immunohistochemistry experiments showed that in whole flat-mounted COH retinas, the number of CTB-labeled survival RGCs was progressively reduced, while TUNEL-positive signals were significantly increased from 1 to 4 weeks after the micro-bead injection. Triol administration significantly attenuated the reduction in the number of CTB-labeled RGCs, and partially reduced the increased number of TUNEL-positive signals in COH retinas. Furthermore, Triol administration partially reduced the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), and significantly rescued the activities of mitochondrial respiratory chain complex (MRCC) I/II/III in COH retinas. Our results suggest that Triol prevents RGCs from apoptotic death in COH retinas by reducing the lipid peroxidation and enhancing the activities of MRCCs.
Collapse
Affiliation(s)
- Yan-Qiu Chen
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shu-Min Zhong
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Shu-Ting Liu
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Feng Gao
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Fang Li
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yuan Zhao
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Xing-Huai Sun
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Yanying Miao
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhongfeng Wang
- Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Ophthalmology at Eye & ENT Hospital, Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| |
Collapse
|
14
|
Etti IC, Abdullah R, Kadir A, Hashim NM, Yeap SK, Imam MU, Ramli F, Malami I, Lam KL, Etti U, Waziri P, Rahman M. The molecular mechanism of the anticancer effect of Artonin E in MDA-MB 231 triple negative breast cancer cells. PLoS One 2017; 12:e0182357. [PMID: 28771532 PMCID: PMC5542509 DOI: 10.1371/journal.pone.0182357] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Nature has provided us with a wide spectrum of disease healing phytochemicals like Artonin E, obtained from the root bark of Artocarpus elasticus. This molecule had been predicted to be drug-like, possessing unique medicinal properties. Despite strides made in chemotherapy, prognosis of the heterogenous aggressive triple negative breast cancer is still poor. This study was conducted to investigate the mechanism of inhibition of Artonin E, a prenylated flavonoid on MDA-MB 231 triple negative breast cancer cell, with a view of mitigating the hallmarks displayed by these tumors. The anti-proliferative effect, mode of cell death and the mechanism of apoptosis induction were investigated. Artonin E, was seen to effectively relinquish MDA-MB 231 breast cancer cells of their apoptosis evading capacity, causing a half-maximal growth inhibition at low concentrations (14.3, 13.9 and 9.8 μM) after the tested time points (24, 48 and 72 hours), respectively. The mode of cell death was observed to be apoptosis with defined characteristics. Artonin E was seen to induce the activation of both extrinsic and intrinsic caspases initiators of apoptosis. It also enhanced the release of total reactive oxygen species which polarized the mitochondrial membrane, compounding the release of cytochrome c. Gene expression studies revealed the upregulation of TNF-related apoptosis inducing ligand and proapoptotic genes with down regulation of anti-apoptotic genes and proteins. A G2/M cell cycle arrest was also observed and was attributed to the observed upregulation of p21 independent of the p53 status. Interestingly, livin, a new member of the inhibitors of apoptosis was confirmed to be significantly repressed. In all, Artonin E showed the potential as a promising candidate to combat the aggressive triple negative breast cancer.
Collapse
Affiliation(s)
- Imaobong Christopher Etti
- Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Pharmacology and Toxicology, University of Uyo, Uyo, Nigeria
| | - Rasedee Abdullah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Selangor, Malaysia
| | - Arifah Kadir
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Swee Keong Yeap
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience, University Putra Malaysia, Selangor, Malaysia
| | - Mustapha Umar Imam
- School of Public Health, Zhengzhou University, Zhengzhou city, Henan Province, PR China
| | - Faiqah Ramli
- Institute of Bioproduct Development, Universiti Technologyi Malaysia, Johor, Malaysia
| | - Ibrahim Malami
- MAKNA-Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kian Lim Lam
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Ubong Etti
- Department of Biochemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Peter Waziri
- MAKNA-Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Marsitoh Rahman
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Bogdanovski DA, DiFazio LT, Bogdanovski AK, Csóka B, Jordan GB, Paul ER, Antonioli L, Pilip SA, Nemeth ZH. Hypoxia-inducible-factor-1 in trauma and critical care. J Crit Care 2017; 42:207-212. [PMID: 28779702 DOI: 10.1016/j.jcrc.2017.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 12/27/2022]
Abstract
HIF-1 is a ubiquitous signaling molecule constantly expressed by the body, but is degraded during normoxic conditions. In hypoxic conditions, it persists and is active. Hypoxia is often associated with trauma due to interrupted blood flow, inflammation or other reasons, causing HIF-1 to be active in signaling and recovery. In this review, the function of HIF-1 is examined, as well as its clinical significance with regard to trauma and critical care. Using this information, we then identify potential points of treatment and intervention.
Collapse
Affiliation(s)
| | | | | | - Balázs Csóka
- Dept. of Surgery, Rutgers-New Jersey Medical School, United States.
| | | | - Elina R Paul
- Dept. of Surgery, Morristown Medical Center, United States.
| | - Luca Antonioli
- Dept. of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | | | - Zoltan H Nemeth
- Dept. of Surgery, Morristown Medical Center, United States; Dept. of Surgery, Rutgers-New Jersey Medical School, United States.
| |
Collapse
|
16
|
Du Y, Li J, Xu T, Zhou DD, Zhang L, Wang X. MicroRNA-145 induces apoptosis of glioma cells by targeting BNIP3 and Notch signaling. Oncotarget 2017; 8:61510-61527. [PMID: 28977881 PMCID: PMC5617441 DOI: 10.18632/oncotarget.18604] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/22/2017] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are involved in the pathogenesis of various human cancers. Here we show that miR-145 expression is decreased in human glioma samples, rat glioma tissues, and glioma cell lines, while expression of BNIP3 is increased. Over-expression of miR-145 or suppression of BNIP3 induced glioma cell apoptosis. BNIP3 is localized in the nucleus in glioma cells, and miR-145 inhibits BNIP3 expression by binding to the 3’ untranslated region of its mRNA. Interestingly, miR-145 and BNIP3 regulate glioma cell apoptosis by modulating Notch signaling. These results indicate that miR-145 increases glioma cell apoptosis by inhibiting BNIP3 and Notch signaling, and suggest that miR-145 may serve as a novel therapeutic target for malignant glioma.
Collapse
Affiliation(s)
- Yan Du
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Juan Li
- Anhui Provincial Hospital, Hefei 230032, China
| | - Tao Xu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Dan-Dan Zhou
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
17
|
Wang X, Luo Y, Sun H, Feng J, Ma S, Liu J, Huang B. Dynamic expression changes of Bcl-2, Caspase-3 and Hsp70 in middle cerebral artery occlusion rats. Brain Inj 2016; 29:93-7. [PMID: 25158066 DOI: 10.3109/02699052.2014.945958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND This study aimed to study the dynamic changes of B cell lymphoma/leukaemia 2 (Bcl-2), caspase-3 and heat shock response protein 70 (Hsp70) in blood serum following acute middle cerebral artery occlusion (MCAO) in rats. METHODS Occlusion of the cerebral artery was accomplished via the intraluminal filament, followed by the TTC staining evaluation and neurological deficit score. Meanwhile, the blood serum was extracted at 0.5, 2, 3, 6, 12 and 24 hours and 3 and 7 days after surgery. The serum expression levels of caspase-3, Bcl-2 and Hsp70 were determined using ELISA kits according to the manufacturer's protocols. Expression correlations between Bcl-2 and Hsp70, Bcl-2 and caspase-3 were analysed using correl function. A rats model was successfully established. RESULTS The expression of all three indexes, including Bcl-2, caspase-3 and Hsp70, was significantly increased after surgery (p < 0.05) and peaked at 12, 24 and 24 hours, respectively. Up to 7 days after MCAO, the expression levels of these proteins recovered to the control levels. There were positive correlations between the expressions of Bcl-2 and Hsp70, Bcl-2 and caspase-3 (p < 0.05). CONCLUSIONS The altered expressions of these proteins in the blood serum may result in many symptoms in acute ischaemic stroke individuals.
Collapse
Affiliation(s)
- Xiaoping Wang
- a Department of Neurology , Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital , Chengdu, Sichuan , PR China , and
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Ischemia as a serious neurodegenerative disorder causes together with reperfusion injury many changes in nervous tissue. Most of the neuronal damage is caused by complex of biochemical reactions and substantial processes, such as protein agregation, reactions of free radicals, insufficient blood supply, glutamate excitotoxicity, and oxidative stress. The result of these processes can be apoptotic or necrotic cell death and it can lead to an irreversible damage. Therefore, neuroprotection and prevention of the neurodegeneration are highly important topics to study. There are several approaches to prevent the ischemic damage. Use of many modern therapeutical methods and the incorporation of several substances into the diet of patients is possible to stimulate the endogenous protective mechanisms and improve the life quality.
Collapse
Affiliation(s)
- Maria Lalkovičová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Viera Danielisová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| |
Collapse
|
19
|
Zhu XQ, Li XM, Zhao YD, Ji XL, Wang YP, Fu YM, Wang HD, Lu DX, Qi RB. Effects of Senegenin against hypoxia/reoxygenation-induced injury in PC12 cells. Chin J Integr Med 2016; 22:353-61. [PMID: 26759162 DOI: 10.1007/s11655-015-2091-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the effect and the potential mechanism of Senegenin (Sen) against injury induced by hypoxia/reoxygenation (H/R) in highly differentiated PC12 cells. METHODS The cultured PC12 cells were treated with H/R in the presence or absence of Sen (60 μmol/L). Four groups were included in the experiment: control group, H/R group, H/R+Sen group and Sen group. Cell viability of each group and the level of lactate dehydrogenase (LDH) in culture medium were detected for the pharmacological effect of Sen. Hoechst 33258 staining and annexin V/propidium iodide double staining were used to analyze the apoptosis rate. Moreover, mitochondrial membrane potential (△Ψm), reactive oxygen species (ROS) and intracellular free calcium ([Ca(2+)]i) were measured by fluorescent staining and flow cytometry. Cleaved caspase-3 and activity of NADPH oxidase (NOX) were determined by colorimetric protease assay and enzyme linked immunosorbent assay, respectively. RESULTS Sen significantly elevated cell viability (P<0.05), decreased the leakage of LDH (P<0.05) and apoptosis rate (P<0.05) in H/R-injured PC12 cells. Sen maintained the value of △Ψm (P<0.05) and suppressed the activity of caspase-3 (P<0.05). Moreover, Sen reduced ROS accumulation P<0.05) and [Ca(2+)]i increment (P<0.05) by inhibiting the activity of NOX (P<0.05). CONCLUSION Sen may exert cytoprotection against H/R injury by decreasing the levels of intracellular ROS and [Ca(2+)]i, thereby suppressing the mitochondrial pathway of cellular apoptosis.
Collapse
Affiliation(s)
- Xiao-Qing Zhu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, China
- Clifford Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 511496, China
| | - Xue-Min Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yan-Dong Zhao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xi-Luan Ji
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yan-Ping Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yong-Mei Fu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Hua-Dong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Da-Xiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ren-Bin Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Huang X, Yang K, Zhang Y, Wang Q, Li Y. Quinolinic acid induces cell apoptosis in PC12 cells through HIF-1-dependent RTP801 activation. Metab Brain Dis 2016; 31:435-44. [PMID: 26738727 DOI: 10.1007/s11011-015-9782-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/22/2015] [Indexed: 02/01/2023]
Abstract
Neurological disease comprises a series of disorders featuring brain dysfunction and neuronal cell death. Among the factors contributing to neuronal death, excitotoxicity induced by excitatory amino acids, such as glutamate, plays a critical role. However, the mechanisms about how the excitatory amino acids induce neuronal death remain elucidated. In this study, we investigated the role of HIF-1α (hypoxia inducible factor-1α) and RTP801 in cell apoptosis induced by quinolinic acid (QUIN), a glutamatergic agonist, in PC12 cells. We found that QUIN at 5 μM increased the expression of HIF-1α significantly with a peak at 24 h. After the treatment with QUIN (5-20 μM) for 24 h, the cells exhibited decreased viability and cell apoptosis with a concomitant increased expression of apoptosis related proteins. QUIN treatment also induced the generation of intracellular reactive oxygen species and RTP801 up-regulation in a HIF-1α-dependent manner that were inhibited by 2-methoxyestradiol, a HIF-1α inhibitor. Importantly, HIF-1 or RTP801 invalidation by siRNA rescued the cell apoptosis induced by QUIN or cobalt chloride, a chemical inducer of HIF-1. Taken together, these findings support the concept that neurotoxicity induced by QUIN is associated with HIF-1-dependent RTP801 activation and provide insight into the potential of RTP801 inhibitor in treatment of neurological disorders.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Kaiyong Yang
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yi Zhang
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiang Wang
- Department of Preventive Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yongjin Li
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
21
|
Gui L, Liu B, Lv G. Hypoxia induces autophagy in cardiomyocytes via a hypoxia-inducible factor 1-dependent mechanism. Exp Ther Med 2016; 11:2233-2239. [PMID: 27284306 PMCID: PMC4887955 DOI: 10.3892/etm.2016.3190] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 08/26/2015] [Indexed: 12/18/2022] Open
Abstract
Hypoxia frequently accompanies such vascular disorders as atherosclerosis, thrombosis and ischemia/reperfusion injury. Myocardial ischemia/reperfusion, in particular, is a major contributor to cardiomyocyte impairment. Autophagy is a dynamic, self-catabolic process that has been implicated in a wide range of physiological processes and the pathogenesis of diverse diseases. The aim of the present study was to investigate the promotion of autophagy by hypoxia in a rat H9c2 heart cell line and determine the regulatory role of hypoxia-inducible factor 1 (HIF-1) in the hypoxia-induced autophagy in H9c2 cells, using quantitative green fluorescent protein-microtubule-associated protein 1 light chain 3 analysis and electron microscopy of autophagic vesicles. In addition, western blot and quantitative polymerase chain reaction analysis of autophagy-associated markers was conducted. In addition, the role of HIF-1-mediated autophagy in the hypoxia-induced impairment of H9c2 cells was examined, as a measure of cellular viability, using an MTT assay. The results demonstrated that autophagy was induced in H9c2 cells under hypoxia, and the autophagy induction triggered by hypoxia could be enhanced by HIF-1α overexpression and inhibited by HIF-1α knockdown. Furthermore, the HIF-1-mediated autophagy ameliorated the reduction in the H9c2 cell viability induced by hypoxia. These findings provide a novel insight into the hypoxic-ischemic injury to cardiomyocytes and give evidence for the occurrence of HIF-1-mediated autophagy in myocardial ischemia.
Collapse
Affiliation(s)
- Lan Gui
- Department of Basic Theory, Sports Institute of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China; Institute of Mongolian Genome and Genetic Diseases, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Batu Liu
- Sports Department, Sports Institute of Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| | - Guang Lv
- Institute of Pathogenic Microbiology and Immunology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028041, P.R. China
| |
Collapse
|
22
|
Neuroprotective Effects of Alpha-Mangostin on MPP(+)-Induced Apoptotic Cell Death in Neuroblastoma SH-SY5Y Cells. J Toxicol 2015; 2015:919058. [PMID: 26357513 PMCID: PMC4556078 DOI: 10.1155/2015/919058] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/05/2015] [Indexed: 12/22/2022] Open
Abstract
In vitro studies have shown that extracts from mangosteen (Garcinia mangostana Linn.) act as antioxidants and cytoprotective agents against oxidative damage. The protective effect of alpha-mangostin, the major xanthone found in the pericarp of the mangosteen, in cellular models of Parkinson's disease (PD), has not been investigated. This study aims to investigate whether alpha-mangostin could protect SH-SY5Y neuroblastoma cells from MPP+-induced apoptosis. The effects of alpha-mangostin on MPP+-induced cell death were evaluated with a cell viability assay, staining for nuclear DNA morphology, flow cytometry for apoptotic cells and reactive oxygen species (ROS) production, quantitative real-time PCR for the expression of p53, Bax, and Bcl-2, and western blot analysis for cleaved caspase-3. Concomitant treatment with alpha-mangostin attenuated the effect of MPP+ on cell viability and apoptotic cell death. Alpha-mangostin reduced ROS formation induced by MPP+. Bax/Bcl-2 expression ratio and expression of p53 were significantly lower in cells cocultured with alpha-mangostin and MPP+. The cotreated cells showed a significant decrease in activated caspase-3 compared with MPP+ treatment alone. Our data suggest that cytoprotection of alpha-mangostin against MPP+-induced apoptosis may be associated with the reduction of ROS production, modulating the balance of pro- and antiapoptotic genes, and suppression of caspase-3 activation.
Collapse
|
23
|
Serum amyloid A receptor blockade and incorporation into high-density lipoprotein modulates its pro-inflammatory and pro-thrombotic activities on vascular endothelial cells. Int J Mol Sci 2015; 16:11101-24. [PMID: 25988387 PMCID: PMC4463692 DOI: 10.3390/ijms160511101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/25/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
The acute phase protein serum amyloid A (SAA), a marker of inflammation, induces expression of pro-inflammatory and pro-thrombotic mediators including ICAM-1, VCAM-1, IL-6, IL-8, MCP-1 and tissue factor (TF) in both monocytes/macrophages and endothelial cells, and induces endothelial dysfunction—a precursor to atherosclerosis. In this study, we determined the effect of pharmacological inhibition of known SAA receptors on pro-inflammatory and pro-thrombotic activities of SAA in human carotid artery endothelial cells (HCtAEC). HCtAEC were pre-treated with inhibitors of formyl peptide receptor-like-1 (FPRL-1), WRW4; receptor for advanced glycation-endproducts (RAGE), (endogenous secretory RAGE; esRAGE) and toll-like receptors-2/4 (TLR2/4) (OxPapC), before stimulation by added SAA. Inhibitor activity was also compared to high-density lipoprotein (HDL), a known inhibitor of SAA-induced effects on endothelial cells. SAA significantly increased gene expression of TF, NFκB and TNF and protein levels of TF and VEGF in HCtAEC. These effects were inhibited to variable extents by WRW4, esRAGE and OxPapC either alone or in combination, suggesting involvement of endothelial cell SAA receptors in pro-atherogenic gene expression. In contrast, HDL consistently showed the greatest inhibitory action, and often abrogated SAA-mediated responses. Increasing HDL levels relative to circulating free SAA may prevent SAA-mediated endothelial dysfunction and ameliorate atherogenesis.
Collapse
|
24
|
Ulbrich F, Kaufmann KB, Coburn M, Lagrèze WA, Roesslein M, Biermann J, Buerkle H, Loop T, Goebel U. Neuroprotective effects of Argon are mediated via an ERK-1/2 dependent regulation of heme-oxygenase-1 in retinal ganglion cells. J Neurochem 2015; 134:717-27. [PMID: 25876941 DOI: 10.1111/jnc.13115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/22/2022]
Abstract
Retinal ischemia and reperfusion injuries (R-IRI) damage neuronal tissue permanently. Recently, we demonstrated that Argon exerts anti-apoptotic and protective properties. The molecular mechanism remains unclear. We hypothesized that Argon inhalation exert neuroprotective effects in rats retinal ganglion cells (RGC) via an ERK-1/2 dependent regulation of heat-shock proteins. Inhalation of Argon (75 Vol%) was performed after R-IRI on the rats' left eyes for 1 h immediately or with delay. Retinal tissue was harvested after 24 h to analyze mRNA and protein expression of heat-shock proteins -70, -90 and heme-oxygenase-1, mitogen-activated protein kinases (p38, JNK, ERK-1/2) and histological changes. To analyze ERK dependent effects, the ERK inhibitor PD98059 was applicated prior to Argon inhalation. RGC count was analyzed 7 days after injury. Statistics were performed using anova. Argon significantly reduced the R-IRI-affected heat-shock protein expression (p < 0.05). While Argon significantly induced ERK-1/2 expression (p < 0.001), inhibition of ERK-1/2 before Argon inhalation resulted in significantly lower vital RGCs (p < 0.01) and increase in heme-oxygenase-1 (p < 0.05). R-IRI-induced RGC loss was reduced by Argon inhalation (p < 0.001). Immunohistochemistry suggested ERK-1/2 activation in Müller cells. We conclude, that Argon treatment protects R-IRI-induced apoptotic loss of RGC via an ERK-1/2 dependent regulation of heme-oxygenase-1. We proposed the following possible mechanism for Argon-mediated neuroprotection: Argon exerts its protective effects via an induction of an ERK with subsequent suppression of the heat shock response. In conclusion, ischemia and reperfusion injuries and subsequent neuronal apoptosis are attenuated. These novel findings may open up new opportunities for Argon as a therapeutic option, especially since Argon is not toxic.
Collapse
Affiliation(s)
- Felix Ulbrich
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Freiburg, Germany
| | - Kai B Kaufmann
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Freiburg, Germany
| | - Mark Coburn
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Martin Roesslein
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Freiburg, Germany
| | - Julia Biermann
- Eye Center, University Medical Center, Freiburg, Germany
| | - Hartmut Buerkle
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Freiburg, Germany
| | - Torsten Loop
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center, Freiburg, Germany
| |
Collapse
|
25
|
Wu J, Lei Z, Yu J. Hypoxia induces autophagy in human vascular endothelial cells in a hypoxia-inducible factor 1‑dependent manner. Mol Med Rep 2014; 11:2677-82. [PMID: 25514934 DOI: 10.3892/mmr.2014.3093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/28/2014] [Indexed: 11/06/2022] Open
Abstract
Hypoxia has been widely implicated in numerous pathological conditions, including those associated with inflammation and tumorigenesis. A number of recent studies have implicated hypoxia in the control of microvascular damage, the basis for which is not fully understood. In the present study, it was identified that autophagy was induced in human umbilical vein endothelial cells (HUVECs) post treatment with hypoxia, and the induction of autophagy by hypoxia was enhanced by hypoxia‑inducible factor 1 (HIF‑1) gene overexpression and inhibited by HIF‑1 knockout. Furthermore, the autophagy induced by overexpression of HIF‑1 was associated with a reduction of HUVEC cell viability. Therefore, HIF‑1 reduced HUVEC cell viability by inducing autophagy. These findings provide evidence of an important link between hypoxia and microvascular damage associated with HIF‑1‑related autophagy.
Collapse
Affiliation(s)
- Jianbo Wu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhen Lei
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
26
|
Miao G, Zhao H, Guo K, Cheng J, Zhang S, Zhang X, Cai Z, Miao H, Shang Y. Mechanisms underlying attenuation of apoptosis of cortical neurons in the hypoxic brain by flavonoids from the stems and leaves of Scutellaria baicalensis Georgi. Neural Regen Res 2014; 9:1592-8. [PMID: 25368645 PMCID: PMC4211200 DOI: 10.4103/1673-5374.141784] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2014] [Indexed: 01/23/2023] Open
Abstract
Flavonoids from the stems and leaves of Scutellaria baicalensis Georgi, an antioxidant, markedly improve memory impairments and neuronal injuries. In the present study, primary cortical neurons of rats were exposed to potassium cyanide to establish a model of in vitro neural cell apoptosis. Inhibition of apoptosis by flavonoids from the stems and leaves of Scutellaria baicalensis Georgi at concentrations of 18.98, 37.36, and 75.92 μg/mL was detected using this model. These flavonoids dramatically increased cell survival, inhibited cell apoptosis and excessive production of malondialdehyde, and increased the activities of superoxide dismutase, glutathione peroxidase, and Na(+)-K(+)-ATPase in primary cortical neurons exposed to potassium cyanide. The flavonoids from the stems and leaves of Scutellaria baicalensis Georgi were originally found to have a polyhydric structure and to protect against cerebral hypoxia in in vitro and in vivo models, including hypoxia induced by potassium cyanide or cerebral ischemia. The present study suggests that flavonoids from the stems and leaves of Scutellaria baicalensis Georgi exert neuroprotective effects via modulation of oxidative stress, such as malondialdehyde, superoxide dismutase, glutathione peroxidase and Na(+)-K(+)-ATPase disorders induced by potassium cyanide.
Collapse
Affiliation(s)
- Guangxin Miao
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Hongxiang Zhao
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Ke Guo
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Jianjun Cheng
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Shufeng Zhang
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Xiaofeng Zhang
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Zhenling Cai
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei Province, China
| | - Hong Miao
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| | - Yazhen Shang
- Institute of Traditional Chinese Medicine, Chengde Medical College / Key Subject Construction Project of Hebei Provincial College / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development, Chengde, Hebei Province, China
| |
Collapse
|
27
|
Duong TTH, Chami B, McMahon AC, Fong GM, Dennis JM, Freedman SB, Witting PK. Pre-treatment with the synthetic antioxidant T-butyl bisphenol protects cerebral tissues from experimental ischemia reperfusion injury. J Neurochem 2014; 130:733-47. [PMID: 24766199 DOI: 10.1111/jnc.12747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 04/16/2014] [Accepted: 04/20/2014] [Indexed: 12/30/2022]
Abstract
Treatments to inhibit or repair neuronal cell damage sustained during focal ischemia/reperfusion injury in stroke are largely unavailable. We demonstrate that dietary supplementation with the antioxidant di-tert-butyl-bisphenol (BP) before injury decreases infarction and vascular complications in experimental stroke in an animal model. We confirm that BP, a synthetic polyphenol with superior radical-scavenging activity than vitamin E, crosses the blood-brain barrier and accumulates in rat brain. Supplementation with BP did not affect blood pressure or endogenous vitamin E levels in plasma or cerebral tissue. Pre-treatment with BP significantly lowered lipid, protein and thiol oxidation and decreased infarct size in animals subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. This neuroprotective action was accompanied by down-regulation of hypoxia inducible factor-1α and glucose transporter-1 mRNA levels, maintenance of neuronal tissue ATP concentration and inhibition of pro-apoptotic factors that together enhanced cerebral tissue viability after injury. That pre-treatment with BP ameliorates oxidative damage and preserves cerebral tissue during focal ischemic insult indicates that oxidative stress plays at least some causal role in promoting tissue damage in experimental stroke. The data strongly suggest that inhibition of oxidative stress through BP scavenging free radicals in vivo contributes significantly to neuroprotection. We demonstrate that pre-treatment with ditert-butyl bisphenol(Di-t-Bu-BP) inhibits lipid, protein, and total thiol oxidation and decreases caspase activation and infarct size in rats subjected to middle cerebral artery occlusion (2 h) and reperfusion (24 h) injury. These data suggest that inhibition of oxidative stress contributes significantly to neuroprotection.
Collapse
Affiliation(s)
- Thi Thuy Hong Duong
- Vascular Biology Group, ANZAC Research Institute, Concord Hospital, Concord, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Cai X, Freedman SB, Witting PK. Serum amyloid A stimulates cultured endothelial cells to migrate and proliferate: inhibition by the multikinase inhibitor BIBF1120. Clin Exp Pharmacol Physiol 2014; 40:662-70. [PMID: 23819722 DOI: 10.1111/1440-1681.12148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/18/2013] [Accepted: 06/27/2013] [Indexed: 11/30/2022]
Abstract
In the present study, we tested whether serum amyloid A (SAA) protein, an established biomarker of inflammation, also plays a role in stimulating neovascularization. To evaluate this possibility, human carotid artery endothelial (HCtAE) cells were cultured and cellular migration and the proinflammatory and/or thrombotic activity of SAA (0, 1 or 10 μg/mL) on vascular endothelial cells was verified by determining gene regulation relative to control (in the absence of SAA). Exposure of HCtAE cells to SAA increased expression of the transcription factor nuclear factor-κB (NFKB), tumour necrosis factor (TNF) and pro-coagulative tissue factor (F3), and stimulated phosphorylation of the P65 subunit of the NFKB complex. Enhanced production of TNF and NFKB was paralleled by increased vascular endothelial growth factor (VEGF) mRNA and protein expression, as demonstrated by quantitative polymerase chain reaction, western blotting and ELISA. Administration of 10 μg/mL SAA enhanced endothelial cell migration (1.6-fold vs control), stimulated regrowth of HCtAE cells after mechanical injury (~1.2-fold vs control) and increased endothelial tube formation relative to control after 6 h. The SAA-mediated enhancement of endothelial cell migration, proliferation and tube formation were markedly inhibited by pretreatment of HCtAE cells with the multi-angiokinase receptor inhibitor BIBF1120 (100 nmol/L), although SAA-stimulated gene responses for F3 and NFKB were unaffected by 100 nmol/L BIBF1120 pretreatment. Overall, BIBF1120 inhibited the pro-angiogenic activity of SAA on vascular endothelial cells in this experimental model of inflammation.
Collapse
Affiliation(s)
- Xiaoping Cai
- Discipline of Pathology, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
29
|
Chen J, Leng T, Chen W, Yan M, Yin W, Huang Y, Lin S, Duan D, Lin J, Wu G, Zhang J, Yan G. A synthetic steroid 5α-androst-3β,5,6β-triol blocks hypoxia/reoxygenation-induced neuronal injuries via protection of mitochondrial function. Steroids 2013; 78:996-1002. [PMID: 23811019 DOI: 10.1016/j.steroids.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/18/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
Ischemic stroke is a leading cause of death worldwide, yet therapies are limited. During periods of ischemia following reperfusion in ischemic stroke, not only loss of energy supply, but a few other factors including mitochondrial dysfunction and oxidative stress also make vital contribution to neuronal injury. Here we synthesized a steroid compound 5α-androst-3β,5,6β-triol by 3 steps starting from dehydroepiandrosterone and examined its effect on mitochondrial function and oxidative stress in primary cultured cortical neurons exposed to hypoxia followed by reoxygenation. 5α-Androst-3β,5,6β-triol dose-dependently protected cortical neurons from hypoxia/reoxygenation exposure. Rates of reduction in neuronal viability, loss of mitochondrial membrane potential, disruption of ATP production and oxidative stress were ameliorated in 5α-androst-3β,5,6β-triol pretreated cultures. In summary, these results suggest that 5α-androst-3β,5,6β-triol is neuroprotective against hypoxia/reoxygenation induced neuronal injuries through mediation of mitochondrial function and oxidative stress.
Collapse
Affiliation(s)
- Jiesi Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou 510080, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Song Z, Zhou W, Shu R, Ni J. Hypoxia induces apoptosis and autophagic cell death in human periodontal ligament cells through HIF-1α pathway. Cell Prolif 2012; 45:239-48. [PMID: 22429763 PMCID: PMC6496313 DOI: 10.1111/j.1365-2184.2012.00810.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 12/29/2011] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Oxygen deficiency caused by occlusal trauma and smoking can be present in patients with periodontitis. However, biochemical events important in periodontal tissues during hypoxia remain unclear. The aim of this study was to investigate effects of hypoxia on apoptosis and autophagy of human periodontal ligament cells (PDLCs) in vitro. MATERIALS AND METHODS Human PDLCs were obtained and cultured in vitro. Cell viability, apoptosis, autophagy and gene and protein expression were measured in presence and absence of cobalt chloride (CoCl(2)). RESULTS CoCl(2) induced cytotoxicity of human PDLCs in a concentration-dependent manner dependent on macromolecular synthesis, and resulted in apoptosis and mitochondrial dysfunction. CoCl(2) also induced redistribution of autophagy marker LC3, increased ratio of LC3-IIto LC3-Iand function of lysosomes. Furthermore, CoCl(2) promoted expression of HIF-1α following upregulation of expressions of Bnip3. Significant increases in expression of IL-1β and MMP-8 were also observed. All these results were reversed by pre-treatment with antioxidant N-acetylcysteine. CONCLUSIONS Our data showed that CoCl(2) could induce cytotoxicity through mitochondria- apoptotic and autophagic pathways involved in HIF-1α. CoCl(2 -treated PDLCs may serve as an in vitro model for studies of molecular mechanisms in periodontitis.
Collapse
Affiliation(s)
- Z.‐C. Song
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghaiChina
| | - W. Zhou
- Department of PharmacologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - R. Shu
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghaiChina
| | - J. Ni
- Department of PeriodontologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghaiChina
| |
Collapse
|
31
|
|
32
|
Wang X, Ma S, Qi G. Effect of hypoxia-inducible factor 1-alpha on hypoxia/reoxygenation-induced apoptosis in primary neonatal rat cardiomyocytes. Biochem Biophys Res Commun 2012; 417:1227-34. [DOI: 10.1016/j.bbrc.2011.12.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/23/2011] [Indexed: 12/21/2022]
|
33
|
Yu Z, Liu N, Wang Y, Li X, Wang X. Identification of neuroglobin-interacting proteins using yeast two-hybrid screening. Neuroscience 2011; 200:99-105. [PMID: 22079573 DOI: 10.1016/j.neuroscience.2011.10.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 01/27/2023]
Abstract
Neuroglobin (Ngb) is a globin protein that is highly and specifically expressed in brain neurons. A large volume of evidence has proven that Ngb is a neuroprotective molecule against hypoxic/ischemic brain injury and other related neurological disorder; however, the underlying mechanisms remain poorly understood. Aiming to provide more clues in understanding the molecular mechanisms of Ngb's neuroprotection, we performed yeast two-hybrid screening to search for proteins that interact with Ngb. From a mouse brain cDNA library, we found totally 36 proteins that potentially interact with Ngb, and 10 of them were each identified in multiple positive clones. The shared sequences within these multiple clones are more likely to be Ngb-interacting domains. In primary cultured mouse cortical neurons, immuno-precipitation was performed to confirm the interactions of selected proteins with Ngb. The discovered Ngb-interacting proteins in this study include those involved in energy metabolism, mitochondria function, and signaling pathways for cell survival and proliferation. Our findings provide molecular targets for investigating protein interaction-based biological functions and neuroprotective mechanisms of Ngb.
Collapse
Affiliation(s)
- Z Yu
- Neuroprotection Research Laboratory, Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Charlestown, MA, USA.
| | | | | | | | | |
Collapse
|
34
|
Wei X, Yu Z, Cho KS, Chen H, Malik MTA, Chen X, Lo EH, Wang X, Chen DF. Neuroglobin is an endogenous neuroprotectant for retinal ganglion cells against glaucomatous damage. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2788-97. [PMID: 21967817 DOI: 10.1016/j.ajpath.2011.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 12/23/2022]
Abstract
Neuroglobin (NGB), a newly discovered member of the globin superfamily, may regulate neuronal survival under hypoxia or oxidative stress. Although NGB is greatly expressed in retinal neurons, the biological functions of NGB in retinal diseases remain largely unknown. We investigated the role of NGB in an experimental model of glaucoma, a neurodegenerative disorder that usually involves elevation of intraocular pressure (IOP). Elevated IOP is thought to induce oxidative stress in retinal ganglion cells (RGCs), thereby causing RGC death and, eventually, blindness. We found that NGB plays a critical role in increasing RGC resistance to ocular hypertension and glaucomatous damage. Elevation of IOP stimulated a transient up-regulation of endogenous NGB in RGCs. Constitutive overexpression of NGB in transgenic mice prevented RGC damage induced by glutamate cytotoxicity in vitro and/or by chronic IOP elevation in vivo. Moreover, overexpression of NGB attenuated ocular hypertension-induced superoxide production and the associated decrease in ATP levels in mice, suggesting that NGB acts as an endogenous neuroprotectant to reduce oxidative stress and improve mitochondrial function, thereby promoting RGC survival. Thus, NGB may modulate RGC susceptibility to glaucomatous neural damage. Manipulating the expression and bioactivity of NGB may represent a novel therapeutic strategy for glaucoma.
Collapse
Affiliation(s)
- Xin Wei
- Schepens Eye Research Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tang XQ, Ren YK, Chen RQ, Zhuang YY, Fang HR, Xu JH, Wang CY, Hu B. Formaldehyde induces neurotoxicity to PC12 cells involving inhibition of paraoxonase-1 expression and activity. Clin Exp Pharmacol Physiol 2011; 38:208-14. [PMID: 21261675 DOI: 10.1111/j.1440-1681.2011.05485.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. Formaldehyde (FA) has been found to cause toxicity to neurons. However, its neurotoxic mechanisms have not yet been clarified. Increasing evidence has shown that oxidative damage is one of the most critical effects of formaldehyde exposure. Paraoxonase-1 (PON-1) is a pivotal endogenous anti-oxidant. Thus, we hypothesized that FA-mediated downregulation of PON1 is associated with its neurotoxicity. 2. In the present work, we used PC12 cells to study the neurotoxicity of FA and explore whether PON-1 is implicated in FA-induced neurotoxicity. 3. We found that FA has potent cytotoxic and apoptotic effects on PC12 cells. FA induces an accumulation of intracellular reactive oxygen species along with downregulation of Bcl-2 expression, as well as increased cytochrome c release. FA significantly suppressed the expression and activity of PON-1 in PC12 cells. Furthermore, H(2)S, an endogenous anti-oxidant gas, antagonizes FA-induced cytotoxicity as well as 2-hydroxyquinoline, a specific inhibitor of PON-1, which also induces cytotoxicity to PC12 cells. 4. The results of the present study provide, for the first time, evidence that the inhibitory effect on PON-1 expression and activity is involved in the neurotoxicity of FA, and suggest a promising role of PON-1 as a novel therapeutic strategy for FA-mediated toxicity.
Collapse
Affiliation(s)
- Xiao-Qing Tang
- Department of Physiology, Medical College, University of South China, Hengyang, Hunan, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim HB, Shanu A, Wood S, Parry SN, Collet M, McMahon A, Witting PK. Phenolic antioxidants tert-butyl-bisphenol and vitamin E decrease oxidative stress and enhance vascular function in an animal model of rhabdomyolysis yet do not improve acute renal dysfunction. Free Radic Res 2011; 45:1000-12. [PMID: 21726176 DOI: 10.3109/10715762.2011.590137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Rhabdomyolysis (RM) caused by severe burn releases extracellular myoglobin (Mb) that accumulates in the kidney. Extracellular Mb is a pro-oxidant. This study tested whether supplementation with tert-butyl-bisphenol (BP) or vitamin E (Vit E, as α-tocopherol) at 0.12% w/w in the diet inhibits acute renal failure (ARF) in an animal model of RM. After RM-induction in rats, creatinine clearance decreased (p < 0.01), proteinuria increased (p < 0.001) and renal-tubule damage was detected. Accompanying ARF, biomarkers of oxidative stress (lipid oxidation and hemeoxygenase-1 (HO-1) gene and protein activity) increased in the kidney (p < 0.05). Supplemented BP or Vit E decreased lipid oxidation (p < 0.05) and HO-1 gene/activity and restored aortic cyclic guanylyl monophosphate in control animals (p < 0.001), yet ARF was unaffected. Antioxidant supplementation inhibited oxidative stress, yet was unable to ameliorate ARF in this animal model indicating that oxidative stress in kidney and vascular cells may not be causally related to renal dysfunction elicited by RM.
Collapse
Affiliation(s)
- Hyun Bo Kim
- Discipline of Pathology, Redox Biology Group, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Dietz GPH. Protection by neuroglobin and cell-penetrating peptide-mediated delivery in vivo: a decade of research. Comment on Cai et al: TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol. 2011; 227(1): 224-31. Exp Neurol 2011; 231:1-10. [PMID: 21620833 DOI: 10.1016/j.expneurol.2011.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 12/09/2022]
Abstract
Over the last decade, numerous studies have suggested that neuroglobin is able to protect against the effects of ischemia. However, such results have mostly been based on models using transgenic overexpression or viral delivery. As a therapy, new technology would need to be applied to enable delivery of high concentrations of neuroglobin shortly after the patient suffers the stroke. An approach to deliver proteins in ischemia in vivo in a timely manner is the use of cell-penetrating peptides (CPP). CPP have been used in animal models for brain diseases for about a decade as well. In a recent issue of Experimental Neurology, Cai and colleagues test the effect of CPP-coupled neuroglobin in an in vivo stroke model. They find that the fusion protein protects the brain against the effect of ischemia when applied before stroke onset. Here, a concise review of neuroglobin research and the application of CPP peptides in hypoxia and ischemia is provided.
Collapse
Affiliation(s)
- Gunnar P H Dietz
- Dep. 851, Neurodegeneration II, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
| |
Collapse
|
38
|
Shanu A, Parry SN, Wood S, Rodas E, Witting PK. The synthetic polyphenol tert-butyl-bisphenol inhibits myoglobin-induced dysfunction in cultured kidney epithelial cells. Free Radic Res 2011; 44:843-53. [PMID: 20528578 DOI: 10.3109/10715762.2010.485993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract Rhabdomyolysis caused by severe burn releases extracellular myoglobin (Mb) that accumulates in the kidney and urine (maximum [Mb] approximately 50 microM) (termed myoglobinuria). Extracellular Mb can be a pro-oxidant. This study cultured Madin-Darby-canine-kidney-Type-II (MDCK II) cells in the presence of Mb and tested whether supplementation with a synthetic tert-butyl-polyphenol (tert-butyl-bisphenol; t-BP) protects these renal cells from dysfunction. In the absence of t-BP, cells exposed to 0-100 microM Mb for 24 h showed a dose-dependent decrease in ATP and the total thiol (TSH) redox status without loss of viability. Gene expression of superoxide dismutases-1/2, haemoxygenase-1 and tumour necrosis factor increased and receptor-mediated endocytosis of transferrin and monolayer permeability decreased significantly. Supplementation with t-BP before Mb-insult maintained ATP and the TSH redox status, diminished antioxidant/pro-inflammatory gene responses, enhanced monolayer permissiveness and restored transferrin uptake. Overall, bolstering the total antioxidant capacity of the kidney may protect against oxidative stress induced by experimental myoglobinuria.
Collapse
Affiliation(s)
- Anu Shanu
- Discipline of Pathology, Redox Biology Group, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | |
Collapse
|
39
|
Wang HC, Brumaghim JL. Polyphenol Compounds as Antioxidants for Disease Prevention: Reactive Oxygen Species Scavenging, Enzyme Regulation, and Metal Chelation Mechanisms in E. coliand Human Cells. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1083.ch005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hsiao C. Wang
- Chemistry Department, Clemson University, Clemson, South Carolina 29634-0973
| | - Julia L. Brumaghim
- Chemistry Department, Clemson University, Clemson, South Carolina 29634-0973
| |
Collapse
|
40
|
Schubert S, Gerlach F, Stoltenburg-Didinger G, Burmester T, Hankeln T, Boettcher W, Wehsack A, Hübler M, Berger F, Abdul-Khaliq H. Cerebral expression of neuroglobin and cytoglobin after deep hypothermic circulatory arrest in neonatal piglets. Brain Res 2010; 1356:1-10. [DOI: 10.1016/j.brainres.2010.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 06/29/2010] [Accepted: 08/03/2010] [Indexed: 12/26/2022]
|
41
|
Antao ST, Duong TTH, Aran R, Witting PK. Neuroglobin overexpression in cultured human neuronal cells protects against hydrogen peroxide insult via activating phosphoinositide-3 kinase and opening the mitochondrial K(ATP) channel. Antioxid Redox Signal 2010; 13:769-81. [PMID: 20367258 DOI: 10.1089/ars.2009.2977] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cultured neurons tolerate low H(2)O(2) concentrations (< or =50 microM) through the activity of constitutive antioxidant response elements (ARE). At H(2)O(2) levels (> or =100 microM), neurons increase expression of the gene encoding for inducible hemoxygenase-1 while superoxide dismutase-2 and catalase remain unchanged. Despite this adaptive response, the endogenous antioxidant systems are overwhelmed, leading to decreased viability. Elevating the neuronal cell content of human neuroglobin (Ngb) prior to insult with 100 or 200 microM H(2)O(2) enhanced cell viability and this resulted in a significant decrease in oxidative stress and an increase in the intracellular ATP concentration, whereas in parental cells exposed to the same H(2)O(2)-insult, oxidative stress and ATP increased and decreased, respectively. The mechanism for this increase in ATP involves sustained activation of the mito-K(ATP) channel and an increase in phosphoinositide-3 kinase (PI3K)-mediated phosphorylation of Akt. Pharmacological inhibitors directed toward PI3K (wortmannin and LY294002), or the mito-K(ATP) channel (glybenclamide) inhibited the H(2)O(2)-mediated increase in ATP in cells overexpressing human Ngb and consequently cell viability decreased. Neuroglobin's ability to bolster the intracellular pool of ATP in response to added H(2)O(2) is central to the preservation of cytoskeletal integrity and cell viability.
Collapse
Affiliation(s)
- Shane T Antao
- Redox Biology Group, Discipline of Pathology, Bosch Institute, Faculty of Medicine, The University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
42
|
Folacin C60 derivative exerts a protective activity against oxidative stress-induced apoptosis in rat pheochromocytoma cells. Bioorg Med Chem Lett 2010; 20:4159-62. [DOI: 10.1016/j.bmcl.2010.05.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 11/19/2022]
|
43
|
Hu L, Sun Y, Hu J. Catalpol inhibits apoptosis in hydrogen peroxide-induced endothelium by activating the PI3K/Akt signaling pathway and modulating expression of Bcl-2 and Bax. Eur J Pharmacol 2009; 628:155-63. [PMID: 19962976 DOI: 10.1016/j.ejphar.2009.11.046] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 11/13/2009] [Accepted: 11/23/2009] [Indexed: 01/19/2023]
Abstract
Catalpol, an iridoid glucoside found in the root of Rehmannia glutinosa Libosch, has been demonstrated to reduce apoptosis in neuronal cell lines. Recent data suggests that catalpol also exerts anti-apoptotic effects on other cell types. The aim of the present study was to investigate whether catalpol protects against hydrogen peroxide (H(2)O(2)) induced apoptosis in human umbilical vein endothelial cells (HUVECs). Apoptotic cells were detected by terminal deoxyribonucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling, Annexin V-fluorescein isothiocyanate binding assay and by assessment of caspase-3 activity. The level of intracellular reactive oxygen species was quantified by 2', 7'-dichlorofluorescein diacetate assay. Expression of Akt, Bad, Bcl-2 and Bax mRNA and protein was determined by real-time semiquantitative reverse transcription-polymerase chain reaction and Western blotting. Apoptosis in HUVECs was associated with increased Bax, decreased Bcl-2 activity and inactivated phosphorylation of Akt and Bad after 24h of H(2)O(2) exposure. Pre-treatment of HUVECs with catalpol significantly reduced H(2)O(2)-induced intracellular reactive oxygen species release. Catalpol not only increased the expression of Bcl-2, while decreasing Bax expression, but also induced Akt activation and Bad phosphorylation, and ultimately reduced H(2)O(2)-induced apoptosis. The protective effects of catalpol were partially inhibited by the phosphatidylinositol 3-kinase (PI3K) antagonist wortmannin or 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). Taken together, these results suggest that pre-treatment of HUVECs with catalpol can block H(2)O(2)-induced apoptosis, and that the underlying mechanism involves reactive oxygen species scavenging, activation of the PI3K/Akt-Bad signaling pathway and increased Bcl-2 and decreased Bax expression.
Collapse
Affiliation(s)
- Lingai Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | | | | |
Collapse
|
44
|
Nitric oxide stimulates myoglobin gene and protein expression in vascular smooth muscle. Biochem J 2009; 423:169-77. [PMID: 19650765 DOI: 10.1042/bj20090716] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mb (myoglobin) is a haemoprotein present in cardiac, skeletal and smooth muscle and is primarily responsible for the storage and 'facilitated transfer' of molecular oxygen from the cell membrane to mitochondria. Also, Mb plays a role in regulating *NO (nitric oxide) homoeostasis through (i) binding *NO (Mb-NO complex); (ii) oxidation of *NO to nitrate; and (iii) formation of vasoactive S-nitroso-Mb [Rayner, B.S., Wu, B.-J., Raftery, M., Stocker, R. and Witting, P.K. (2005) J. Biol. Chem. 280, 9985-9993]. Pathological *NO concentrations affect mitochondrial function and decrease cell viability through inducing apoptosis. Treatment of cultured rat VSMCs (vascular smooth muscle cells) with cumulative doses (0.1, 1 or 10 microM) of *NO from the donors diethylamineNONOate or spermineNONOate (N-[2-aminoethyl]-N-[2-hydroxy-3-nitrosohydrazine]-1,2-ethelenediamine) yielded a time-dependent increase in Mb gene expression. Concomitant transcriptional activation increased the concentration of Mb within cultured rat or primary human VSMCs as judged by Western blot analysis and indirect immunofluorescence microscopy. Cell viability did not decrease in these cells at the *NO doses tested. Importantly, sub-culturing isolated rat aortic segments for 7 days in the presence of L-arginine at 37 degrees C stimulated *NO production with a parallel increase in Mb in the underlying VSMCs. Overall, exposure of VSMCs (either in cell culture or intact vessels) to pathological *NO promotes an up-regulation of the Mb gene and protein, suggesting a feedback relationship between *NO and Mb that regulates the concentration of the potent cell signalling molecule in the vessel wall, similar to the role haemoglobin plays in the vessel lumen.
Collapse
|
45
|
Huang YN, Wu CH, Lin TC, Wang JY. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity. Toxicol Appl Pharmacol 2009; 240:315-26. [PMID: 19576919 DOI: 10.1016/j.taap.2009.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/20/2009] [Accepted: 06/25/2009] [Indexed: 01/29/2023]
Abstract
The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death and glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.
Collapse
Affiliation(s)
- Ya-Ni Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, ROC
| | | | | | | |
Collapse
|
46
|
Schubert D, Soucek T, Blouw B. The induction of HIF-1 reduces astrocyte activation by amyloid beta peptide. Eur J Neurosci 2009; 29:1323-34. [PMID: 19519624 DOI: 10.1111/j.1460-9568.2009.06712.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Reduced glucose metabolism and astrocyte activation in selective areas of the brain are pathological features of Alzheimer's disease (AD). The underlying mechanisms of low energy metabolism and a molecular basis for preventing astrocyte activation are not, however, known. Here we show that amyloid beta peptide (Abeta)-dependent astrocyte activation leads to a long-term decrease in hypoxia-inducible factor (HIF)-1alpha expression and a reduction in the rate of glycolysis. Glial activation and the glycolytic changes are reversed by the maintenance of HIF-1alpha levels with conditions that prevent the proteolysis of HIF-1alpha. Abeta increases the long-term production of reactive oxygen species (ROS) through the activation of nicotinamide adenine dinucleotide phosphate oxidase and reduces the amount of HIF-1alpha via the activation of the proteasome. ROS are not required for glial activation, but are required for the reduction in glycolysis. These data suggest a significant role for HIF-1alpha-mediated transcription in maintaining the metabolic integrity of the AD brain and identify the probable cause of the observed lower energy metabolism in afflicted areas. They may also explain the therapeutic success of metal chelators in animal models of AD.
Collapse
Affiliation(s)
- David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
47
|
Duong TTH, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH. Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia re-oxygenation injury. J Neurochem 2009; 108:1143-54. [PMID: 19154338 DOI: 10.1111/j.1471-4159.2008.05846.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. We have cloned a human neuroglobin (Nb) construct and over-expressed this protein in cultured human neuronal cells to assess whether Nb ameliorates the cellular response to experimental hypoxia-reoxygenation (H/R) injury. Parental cells transfected with a blank (pDEST40) vector responded to H/R injury with a significant decrease in cellular ATP at 5 and 24 h after insult. This was coupled with increases in the cytosolic Ca(2+), and the transition metals iron (Fe), copper (Cu), and zinc (Zn) within the cell body, as monitored simultaneously using X-ray fluorescence microprobe imaging. Parental cell viability decreased over the same time period with a approximately 4 to 5-fold increase in cell death (maximum approximately 25%) matched by an increase in caspase 3/7 activation (peaking at a 15-fold increase after 24 h) and condensation of beta-actin along axonal processes. Over-expression of Nb inhibited ATP loss and except for significant decreases in the sulfur (S), chlorine (Cl), potassium (K) and Ca(2+) contents, maintained cellular ion homeostasis after H/R insult. This resulted in increased cell viability, significantly diminished caspase activation and maintenance of the beta-actin cytoskeletal structure and receptor-mediated endocytosis. These data indicate that bolstering the cellular content of Nb inhibits neuronal cell dysfunction promoted by H/R insult through multiple protective actions including: (i) maintenance of cellular bioenergetics; (ii) inhibition of Ca(2+) influx; (iii) a reduction in cellular uptake of Fe, Cu and Zn at the expense of S, Cl and K; and (iv) an enhancement of cell viability through inhibiting necrosis and apoptosis.
Collapse
|
48
|
Lin Y, Fang L, Xue XH, Murong SX, Wang N, Wu ZY. Association between Ngb polymorphisms and ischemic stroke in the Southern Chinese Han population. BMC MEDICAL GENETICS 2008; 9:110. [PMID: 19087291 PMCID: PMC2639551 DOI: 10.1186/1471-2350-9-110] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 12/16/2008] [Indexed: 01/13/2023]
Abstract
Background Neuroglobin (Ngb), one of novel members of the globin superfamily, is expressed predominantly in brain neurons, and appears to modulate hypoxic-ischemic insults. The mechanisms underlying Ngb-mediated neuronal protection are still unclear. For it is one of the candidate protective factors for ischemic stroke, we conducted a case-control study to clarify the association of Ngb polymorphisms with ischemic stroke in the Southern Chinese Han population. Methods 355 cases and 158 controls were recruited. With brain imaging, cases were subdivided into large-artery atherosclerosis (LVD) and small-vessel occlusion (SVD) stroke. PCR amplified all the four exons of Ngb and flanking intron sequence for each exon. Genotyping for Ngb was achieved by direct sequencing and mismatched PCR-RFLP. Polymorphisms were studied both individually and as haplotypes in each group and subgroup which subdivided according to gender or age. Results Two intronic polymorphisms 89+104 c>t and 322-110 (6a)>5a were identified. The allele frequency of 89+104 t was decreased in stroke cases. The protective effect seems to be more pronounced in subgroups of female patients and age > 60 years. Also, we have confirmed decreased LDL-C level and reduced hypertension and hypercholesterolemia in 89+104 t allele carriers. In contrast, the 322-110 (6a)>5a genotype distribution was similar between cases and controls. However, the haplotype 89+104 c>t/322-110 (6a)>5a was related with LVD and SVD stroke. The haplotype c-5a was more frequent in both LVD and SVD groups while t-6a was more frequent in controls. Conclusion Ngb polymorphism 89+104 t had protective effects on LVD and SVD in the Southern Chinese Han population. A "hitchhiking" effect was observed for the 89+104 t/322-110 (6a) genotype combination especially for LVD.
Collapse
Affiliation(s)
- Yi Lin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, PR China.
| | | | | | | | | | | |
Collapse
|
49
|
Emara M, Salloum N, Allalunis-Turner J. Expression and hypoxic up-regulation of neuroglobin in human glioblastoma cells. Mol Oncol 2008; 3:45-53. [PMID: 19383366 DOI: 10.1016/j.molonc.2008.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/24/2008] [Accepted: 11/27/2008] [Indexed: 10/21/2022] Open
Abstract
Neuroglobin is a recently identified globin molecule that is expressed predominantly in the vertebrate brain. Neuroglobin expression increases in oxygen-deprived neurons, suggesting it protects neurons from ischemic cell death. We report that neuroglobin transcript and protein are expressed in human glioblastoma cells, and that this expression increases in hypoxia in vitro. We also show that neuroglobin is up-regulated in hypoxic microregions of glioblastoma tumor xenografts. Our finding of hypoxic up-regulation of neuroglobin in human glioblastoma cells may provide insight into how tumor cells adapt to and survive in hypoxic microenvironments.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | | | | |
Collapse
|
50
|
Guo SY, Yang GP, Jiang DJ, Wang F, Song T, Tan XH, Sun ZQ. Protection of capsaicin against hypoxia–reoxygenation-induced apoptosis of rat hippocampal neurons. Can J Physiol Pharmacol 2008; 86:785-92. [PMID: 19011674 DOI: 10.1139/y08-083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study was to investigate the effect of capsaicin on hypoxia–reoxygenation (H/R)-induced apoptosis in primary rat hippocampal neurons. Three hours of hypoxia (1% O2) and subsequent reoxygenation for 24 h significantly increased the apoptotic death of hippocampal neurons, as evidenced by increases in both TUNEL-positive cell number and caspase-3 activity. Pretreatment with capsaicin (3–30 µmol/L) or the caspase-3-specific inhibitor acetyl-DEVD-CHO (100 µmol/L) markedly attenuated H/R-induced apoptosis in hippocampal neurons. Capsaicin also markedly induced the phosphorylation of Akt. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (10 µmol/L) prevented any capsaicin-induced survival effect in hippocampal neurons. Intracellular levels of reactive oxygen species (ROS), which were greatly increased after H/R, were significantly inhibited by capsaicin, pyrrolidine dithiocarbamate (PDTC) (50 µmol/L), and LY294002. Taken together, these data suggest that capsaicin protects against H/R-induced apoptosis of hippocampal neurons via the PI3K/Akt-mediated signaling pathway, which is related to the inhibition of oxidative stress and caspase-3 activation.
Collapse
Affiliation(s)
- Shi-Yin Guo
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guo-Ping Yang
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - De-Jian Jiang
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Feng Wang
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Tao Song
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xing-He Tan
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhen-Qiu Sun
- School of Public Health, Central South University, Xiang-Ya Road 110, Changsha 410078, China
- Faculty of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|