1
|
Movahed M, Louzada RA, Blandino-Rosano M. Enhanced dynorphin expression and secretion in pancreatic beta-cells under hyperglycemic conditions. Mol Metab 2025; 92:102088. [PMID: 39736444 PMCID: PMC11846442 DOI: 10.1016/j.molmet.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE Dynorphin, an endogenous opioid peptide predominantly expressed in the central nervous system and involved in stress response, pain, and addiction, has intrigued researchers due to its expression in pancreatic β-cells. In this study, we aimed to characterize dynorphin expression in mouse and human islets and explore the mechanisms regulating its expression. METHODS We used primary mouse and human islets with unbiased published datasets to examine how glucose and other nutrients regulate dynorphin expression and secretion in islets. RESULTS The prodynorphin gene is significantly upregulated in β-cells under hyperglycemic conditions. In vitro studies revealed that increased glucose concentrations correlate with increased dynorphin expression, indicating a critical interplay involving Ca2+, CamKII, and CREB pathways in β-cells. Perifusion studies allowed us to measure the dynamic secretion of dynorphin in response to glucose from mouse and human islets for the first time. Furthermore, we confirmed that increased dynorphin content within the β-cells directly correlates with enhanced dynorphin secretion. Finally, our findings demonstrate a synergistic effect of palmitate in conjunction with high glucose, further amplifying dynorphin levels and secretion in pancreatic islets. CONCLUSIONS This study demonstrates that the opioid peptide prodynorphin is expressed in mouse and human β-cells. Prodynorphin levels are regulated in parallel with insulin in response to glucose, palmitate, and amino acids. Our findings elucidate the signaling pathways involved, with CamKII playing a key role in regulating prodynorphin levels in β-cells. Finally, our findings are the first to demonstrate active dynorphin secretion from mouse and human islets in response to glucose.
Collapse
Affiliation(s)
- Miranda Movahed
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ruy A Louzada
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
2
|
Margolis EB, Moulton MG, Lambeth PS, O'Meara MJ. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023; 225:109376. [PMID: 36516892 PMCID: PMC10548835 DOI: 10.1016/j.neuropharm.2022.109376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.
Collapse
Affiliation(s)
- Elyssa B Margolis
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
| | - Madelyn G Moulton
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Philip S Lambeth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Nass SR, Ohene-Nyako M, Hahn YK, Knapp PE, Hauser KF. Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Front Neurosci 2022; 16:804774. [PMID: 35600626 PMCID: PMC9115100 DOI: 10.3389/fnins.2022.804774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Opioid use disorder (OUD) is a critical problem that contributes to the spread of HIV and may intrinsically worsen neuroHIV. Despite the advent of combined antiretroviral therapies (cART), about half of persons infected with HIV (PWH) experience cognitive and emotional deficits that can be exacerbated by opioid abuse. HIV-1 Tat is expressed in the central nervous system (CNS) of PWH on cART and is thought to contribute to neuroHIV. The amygdala regulates emotion and memories associated with fear and stress and is important in addiction behavior. Notwithstanding its importance in emotional saliency, the effects of HIV and opioids in the amygdala are underexplored. To assess Tat- and morphine-induced neuropathology within the amygdala, male Tat transgenic mice were exposed to Tat for 8 weeks and administered saline and/or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of Tat exposure. Eight weeks of Tat exposure decreased the acoustic startle response and the dendritic spine density in the basolateral amygdala, but not the central nucleus of the amygdala. In contrast, repeated exposure to morphine alone, but not Tat, increased the acoustic startle response and whole amygdalar levels of amyloid-β (Aβ) monomers and oligomers and tau phosphorylation at Ser396, but not neurofilament light chain levels. Co-exposure to Tat and morphine decreased habituation and prepulse inhibition to the acoustic startle response and potentiated the morphine-induced increase in Aβ monomers. Together, our findings indicate that sustained Tat and morphine exposure differentially promote synaptodendritic degeneration within the amygdala and alter sensorimotor processing.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Kurt F. Hauser,
| |
Collapse
|
4
|
Mattar P, Uribe-Cerda S, Pezoa C, Guarnieri T, Kotz CM, Teske JA, Morselli E, Perez-Leighton C. Brain site-specific regulation of hedonic intake by orexin and DYN peptides: role of the PVN and obesity. Nutr Neurosci 2022; 25:1105-1114. [PMID: 33151127 DOI: 10.1080/1028415x.2020.1840049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The orexin peptides promote hedonic intake and other reward behaviors through different brain sites. The opioid dynorphin peptides are co-released with orexin peptides but block their effects on reward in the ventral tegmental area (VTA). We previously showed that in the paraventricular hypothalamic nucleus (PVN), dynorphin and not orexin peptides enhance hedonic intake, suggesting they have brain-site-specific effects. Obesity alters the expression of orexin and dynorphin receptors, but whether their expression across different brain sites is important to hedonic intake is unclear. We hypothesized that hedonic intake is regulated by orexin and dynorphin peptides in PVN and that hedonic intake in obesity correlates with expression of their receptors. Here we show that in mice, injection of DYN-A1-13 (an opioid dynorphin peptide) in the PVN enhanced hedonic intake, whereas in the VTA, injection of OXA (orexin-A, an orexin peptide) enhanced hedonic intake. In PVN, OXA blunted the increase in hedonic intake caused by DYN-A1-13. In PVN, injection of norBNI (opioid receptor antagonist) reduced hedonic intake but a subsequent OXA injection failed to increase hedonic intake, suggesting that OXA activity in PVN is not influenced by endogenous opioid activity. In the PVN, DYN-A1-13 increased the intake of the less-preferred food in a two-food choice task. In obese mice fed a cafeteria diet, orexin 1 receptor mRNA across brain sites involved in hedonic intake correlated with fat preference but not caloric intake. Together, these data support that orexin and dynorphin peptides regulate hedonic intake in an opposing manner with brain-site-specific effects.
Collapse
Key Words
- CeA, central amygdala
- DH, dorsal hypothalamus
- DYN, dynorphin
- KOR, kappa opioid receptor
- LH, lateral hypothalamus
- NAc, nucleus accumbens
- OFC, orbitofrontal cortex
- OR, opioid receptor
- OX1R, orexin 1 receptor
- OX2R, orexin 2 receptor
- OXA, 1orexin-A
- Orexin
- PVN, paraventricular hypothalamic nucleus
- PVT, paraventricular thalamic nucleus
- VH, ventral hypothalamus
- VTA, ventral tegmental area
- cafeteria diet
- dynorphin
- fat
- feeding behavior
- food choice
- hedonic intake
- hypocretin
- hypothalamus
- norBNI, nor-binaltorphimine
- obesity
- opioid receptors
- orexin 1 receptor
Collapse
Affiliation(s)
- P Mattar
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - S Uribe-Cerda
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Pezoa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - T Guarnieri
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C M Kotz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - J A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - E Morselli
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C Perez-Leighton
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Aldrich JV, McLaughlin JP. Peptide Kappa Opioid Receptor Ligands and Their Potential for Drug Development. Handb Exp Pharmacol 2022; 271:197-220. [PMID: 34463847 DOI: 10.1007/164_2021_519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ligands for kappa opioid receptors (KOR) have potential uses as non-addictive analgesics and for the treatment of pruritus, mood disorders, and substance abuse. These areas continue to have major unmet medical needs. Significant advances have been made in recent years in the preclinical development of novel opioid peptides, notably ones with structural features that inherently impart stability to proteases. Following a brief discussion of the potential therapeutic applications of KOR agonists and antagonists, this review focuses on two series of novel opioid peptides, all-D-amino acid tetrapeptides as peripherally selective KOR agonists for the treatment of pain and pruritus without centrally mediated side effects, and macrocyclic tetrapeptides based on CJ-15,208 that can exhibit different opioid profiles with potential applications such as analgesics and treatments for substance abuse.
Collapse
Affiliation(s)
- Jane V Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Torres MDT, Melo MCR, Flowers L, Crescenzi O, Notomista E, de la Fuente-Nunez C. Mining for encrypted peptide antibiotics in the human proteome. Nat Biomed Eng 2022; 6:67-75. [PMID: 34737399 DOI: 10.1038/s41551-021-00801-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The emergence of drug-resistant bacteria calls for the discovery of new antibiotics. Yet, for decades, traditional discovery strategies have not yielded new classes of antimicrobial. Here, by mining the human proteome via an algorithm that relies on the sequence length, net charge, average hydrophobicity and other physicochemical properties of antimicrobial peptides, we report the identification of 2,603 encrypted peptide antibiotics that are encoded in proteins with biological function unrelated to the immune system. We show that the encrypted peptides kill pathogenic bacteria by targeting their membrane, modulate gut and skin commensals, do not readily select for bacterial resistance, and possess anti-infective activity in skin abscess and thigh infection mouse models. We also show, in vitro and in the two mouse models of infection, that encrypted antibiotic peptides from the same biogeographical area display synergistic antimicrobial activity. Our algorithmic strategy allows for the rapid mining of proteomic data and opens up new routes for the discovery of candidate antibiotics.
Collapse
Affiliation(s)
- Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo C R Melo
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Laurice Flowers
- Departments of Dermatology and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Functional Characterization of Spinocerebellar Ataxia Associated Dynorphin A Mutant Peptides. Biomedicines 2021; 9:biomedicines9121882. [PMID: 34944698 PMCID: PMC8698333 DOI: 10.3390/biomedicines9121882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
Mutations in the prodynorphin gene (PDYN) are associated with the development of spinocerebellar ataxia type 23 (SCA23). Pathogenic missense mutations are localized predominantly in the PDYN region coding for the dynorphin A (DynA) neuropeptide and lead to persistently elevated mutant peptide levels with neurotoxic properties. The main DynA target in the central nervous system is the kappa opioid receptor (KOR), a member of the G-protein coupled receptor family, which can elicit signaling cascades mediated by G-protein dissociation as well as β-arrestin recruitment. To date, a thorough analysis of the functional profile for the pathogenic SCA23 DynA mutants at KOR is still missing. To elucidate the role of DynA mutants, we used a combination of assays to investigate the differential activation of G-protein subunits and β-arrestin. In addition, we applied molecular modelling techniques to provide a rationale for the underlying mechanism. Our results demonstrate that DynA mutations, associated with a severe ataxic phenotype, decrease potency of KOR activation, both for G-protein dissociation as well as β-arrestin recruitment. Molecular modelling suggests that this loss of function is due to disruption of critical interactions between DynA and the receptor. In conclusion, this study advances our understanding of KOR signal transduction upon DynA wild type or mutant peptide binding.
Collapse
|
8
|
Paul AK, Smith CM, Rahmatullah M, Nissapatorn V, Wilairatana P, Spetea M, Gueven N, Dietis N. Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. Pharmaceuticals (Basel) 2021; 14:1091. [PMID: 34832873 PMCID: PMC8620360 DOI: 10.3390/ph14111091] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
Opioids are widely used as therapeutic agents against moderate to severe acute and chronic pain. Still, these classes of analgesic drugs have many potential limitations as they induce analgesic tolerance, addiction and numerous behavioural adverse effects that often result in patient non-compliance. As opium and opioids have been traditionally used as painkillers, the exact mechanisms of their adverse reactions over repeated use are multifactorial and not fully understood. Older adults suffer from cancer and non-cancer chronic pain more than younger adults, due to the physiological changes related to ageing and their reduced metabolic capabilities and thus show an increased number of adverse reactions to opioid drugs. All clinically used opioids are μ-opioid receptor agonists, and the major adverse effects are directly or potentially connected to this receptor. Multifunctional opioid ligands or peripherally restricted opioids may elicit fewer adverse effects, as shown in preclinical studies, but these results need reproducibility from further extensive clinical trials. The current review aims to overview various mechanisms involved in the adverse effects induced by opioids, to provide a better understanding of the underlying pathophysiology and, ultimately, to help develop an effective therapeutic strategy to better manage pain.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Craig M. Smith
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhanmondi, Dhaka 1207, Bangladesh;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80–82, 6020 Innsbruck, Austria;
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Nikolas Dietis
- Medical School, University of Cyprus, Nicosia 1678, Cyprus;
| |
Collapse
|
9
|
Palmer CB, Meyrath M, Canals M, Kostenis E, Chevigné A, Szpakowska M. Atypical opioid receptors: unconventional biology and therapeutic opportunities. Pharmacol Ther 2021; 233:108014. [PMID: 34624426 DOI: 10.1016/j.pharmthera.2021.108014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Endogenous opioid peptides and prescription opioid drugs modulate pain, anxiety and stress by activating four opioid receptors, namely μ (mu, MOP), δ (delta, DOP), κ (kappa, KOP) and the nociceptin/orphanin FQ receptor (NOP). Interestingly, several other receptors are also activated by endogenous opioid peptides and influence opioid-driven signaling and biology. However, they do not meet the criteria to be recognized as classical opioid receptors, as they are phylogenetically distant from them and are insensitive to classical non-selective opioid receptor antagonists (e.g. naloxone). Nevertheless, accumulating reports suggest that these receptors may be interesting alternative targets, especially for the development of safer analgesics. Five of these opioid peptide-binding receptors belong to the family of G protein-coupled receptors (GPCRs)-two are members of the Mas-related G protein-coupled receptor X family (MrgX1, MrgX2), two of the bradykinin receptor family (B1, B2), and one is an atypical chemokine receptor (ACKR3). Additionally, the ion channel N-methyl-d-aspartate receptors (NMDARs) are also activated by opioid peptides. In this review, we recapitulate the implication of these alternative receptors in opioid-related disorders and discuss their unconventional biology, with members displaying signaling to scavenging properties. We provide an overview of their established and emerging roles and pharmacology in the context of pain management, as well as their clinical relevance as alternative targets to overcome the hurdles of chronic opioid use. Given the involvement of these receptors in a wide variety of functions, including inflammation, chemotaxis, anaphylaxis or synaptic transmission and plasticity, we also discuss the challenges associated with the modulation of both their canonical and opioid-driven signaling.
Collapse
Affiliation(s)
- Christie B Palmer
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, UK
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
10
|
Leisle L, Margreiter M, Ortega-Ramírez A, Cleuvers E, Bachmann M, Rossetti G, Gründer S. Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket. J Med Chem 2021; 64:13299-13311. [PMID: 34461722 DOI: 10.1021/acs.jmedchem.1c00447] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. One such modulator is the opioid neuropeptide big dynorphin (Big Dyn) which binds to ASIC1a and enhances its activity during prolonged acidosis. The molecular determinants and dynamics of this interaction remain unclear, however. Here, we present a molecular interaction model showing a dynorphin peptide inserting deep into the acidic pocket of ASIC1a. We confirmed experimentally that the interaction is predominantly driven by electrostatic forces, and using noncanonical amino acids as photo-cross-linkers, we identified 16 residues in ASIC1a contributing to Big Dyn binding. Covalently tethering Big Dyn to its ASIC1a binding site dramatically decreased the proton sensitivity of channel activation, suggesting that Big Dyn stabilizes a resting conformation of ASIC1a and dissociates from its binding site during channel opening.
Collapse
Affiliation(s)
- Lilia Leisle
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Margreiter
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Elinor Cleuvers
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Michèle Bachmann
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| | - Giulia Rossetti
- Computational Biomedicine-Institute for Advanced Simulation/Institute of Neuroscience and Medicine, Forschungszentrum Jülich, 52425 Jülich, Germany.,Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany.,Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
11
|
Lukoyanov N, Watanabe H, Carvalho LS, Kononenko O, Sarkisyan D, Zhang M, Andersen MS, Lukoyanova EA, Galatenko V, Tonevitsky A, Bazov I, Iakovleva T, Schouenborg J, Bakalkin G. Left-right side-specific endocrine signaling complements neural pathways to mediate acute asymmetric effects of brain injury. eLife 2021; 10:e65247. [PMID: 34372969 PMCID: PMC8354641 DOI: 10.7554/elife.65247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Brain injuries can interrupt descending neural pathways that convey motor commands from the cortex to spinal motoneurons. Here, we demonstrate that a unilateral injury of the hindlimb sensorimotor cortex of rats with completely transected thoracic spinal cord produces hindlimb postural asymmetry with contralateral flexion and asymmetric hindlimb withdrawal reflexes within 3 hr, as well as asymmetry in gene expression patterns in the lumbar spinal cord. The injury-induced postural effects were abolished by hypophysectomy and were mimicked by transfusion of serum from animals with brain injury. Administration of the pituitary neurohormones β-endorphin or Arg-vasopressin-induced side-specific hindlimb responses in naive animals, while antagonists of the opioid and vasopressin receptors blocked hindlimb postural asymmetry in rats with brain injury. Thus, in addition to the well-established involvement of motor pathways descending from the brain to spinal circuits, the side-specific humoral signaling may also add to postural and reflex asymmetries seen after brain injury.
Collapse
Affiliation(s)
- Nikolay Lukoyanov
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e CelularPortoPortugal
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Liliana S Carvalho
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e CelularPortoPortugal
| | - Olga Kononenko
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Mengliang Zhang
- Neuronano Research Center, Department of Experimental Medical Science, Lund UniversityLundSweden
- Department of Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | | | - Elena A Lukoyanova
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e CelularPortoPortugal
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Alex Tonevitsky
- Faculty of Biology and Biotechnology, National Research University Higher School of EconomicsMoscowRussian Federation
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RASMoscowRussian Federation
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Tatiana Iakovleva
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Lund UniversityLundSweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala UniversityUppsalaSweden
| |
Collapse
|
12
|
Watanabe H, Nosova O, Sarkisyan D, Storm Andersen M, Carvalho L, Galatenko V, Bazov I, Lukoyanov N, Maia GH, Hallberg M, Zhang M, Schouenborg J, Bakalkin G. Left-Right Side-Specific Neuropeptide Mechanism Mediates Contralateral Responses to a Unilateral Brain Injury. eNeuro 2021; 8:ENEURO.0548-20.2021. [PMID: 33903183 PMCID: PMC8152370 DOI: 10.1523/eneuro.0548-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Neuropeptides are implicated in control of lateralized processes in the brain. A unilateral brain injury (UBI) causes the contralesional sensorimotor deficits. To examine whether opioid neuropeptides mediate UBI induced asymmetric processes we compared effects of opioid antagonists on the contralesional and ipsilesional hindlimb responses to the left-sided and right-sided injury in rats. UBI induced hindlimb postural asymmetry (HL-PA) with the contralesional hindlimb flexion, and activated contralesional withdrawal reflex of extensor digitorum longus (EDL) evoked by electrical stimulation and recorded with EMG technique. No effects on the interossei (Int) and peroneaus longus (PL) were evident. The general opioid antagonist naloxone blocked postural effects, did not change EDL asymmetry while uncovered cryptic asymmetry in the PL and Int reflexes induced by UBI. Thus, the spinal opioid system may either mediate or counteract the injury effects. Strikingly, effects of selective opioid antagonists were the injury side-specific. The μ-antagonist β-funaltrexamine (FNA) and κ-antagonist nor-binaltorphimine (BNI) reduced postural asymmetry after the right but not left UBI. In contrast, the δ-antagonist naltrindole (NTI) inhibited HL-PA after the left but not right-side brain injury. The opioid gene expression and opioid peptides were lateralized in the lumbar spinal cord, and coordination between expression of the opioid and neuroplasticity-related genes was impaired by UBI that together may underlie the side-specific effects of the antagonists. We suggest that mirror-symmetric neural circuits that mediate effects of left and right brain injury on the contralesional hindlimbs are differentially controlled by the lateralized opioid system.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden, 751 24
| | - Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden, 751 24
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden, 751 24
| | | | - Liliana Carvalho
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Porto, Portugal, 4200-135
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden, 751 24
| | - Nikolay Lukoyanov
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Porto, Portugal, 4200-135
- Medibrain, Vila do Conde, Porto, Portugal, 4480-807
- Brain Research Institute, Porto, Portugal, 4200-135
| | - Gisela H Maia
- Medibrain, Vila do Conde, Porto, Portugal, 4480-807
- Brain Research Institute, Porto, Portugal, 4200-135
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Porto, Portugal, 4200-135
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden, 751 24
| | - Mengliang Zhang
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark, 5230
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden, 223 81
| | - Jens Schouenborg
- Neuronano Research Center, Department of Experimental Medical Science, Lund University, Lund, Sweden, 223 81
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden, 751 24
| |
Collapse
|
13
|
Abstract
Opioids, such as morphine and fentanyl, are widely used for the treatment of severe pain; however, prolonged treatment with these drugs leads to the development of tolerance and can lead to opioid use disorder. The "Opioid Epidemic" has generated a drive for a deeper understanding of the fundamental signaling mechanisms of opioid receptors. It is generally thought that the three types of opioid receptors (μ, δ, κ) are activated by endogenous peptides derived from three different precursors: Proopiomelanocortin, proenkephalin, and prodynorphin. Posttranslational processing of these precursors generates >20 peptides with opioid receptor activity, leading to a long-standing question of the significance of this repertoire of peptides. Here, we address some aspects of this question using a technical tour de force approach to systematically evaluate ligand binding and signaling properties ([35S]GTPγS binding and β-arrestin recruitment) of 22 peptides at each of the three opioid receptors. We show that nearly all tested peptides are able to activate the three opioid receptors, and many of them exhibit agonist-directed receptor signaling (functional selectivity). Our data also challenge the dogma that shorter forms of β-endorphin do not exhibit receptor activity; we show that they exhibit robust signaling in cultured cells and in an acute brain slice preparation. Collectively, this information lays the groundwork for improved understanding of the endogenous opioid system that will help in developing more effective treatments for pain and addiction.
Collapse
|
14
|
Agostinho AS, Mietzsch M, Zangrandi L, Kmiec I, Mutti A, Kraus L, Fidzinski P, Schneider UC, Holtkamp M, Heilbronn R, Schwarzer C. Dynorphin-based "release on demand" gene therapy for drug-resistant temporal lobe epilepsy. EMBO Mol Med 2019; 11:e9963. [PMID: 31486590 PMCID: PMC6783645 DOI: 10.15252/emmm.201809963] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 11/13/2022] Open
Abstract
Focal epilepsy represents one of the most common chronic CNS diseases. The high incidence of drug resistance, devastating comorbidities, and insufficient responsiveness to surgery pose unmet medical challenges. In the quest of novel, disease-modifying treatment strategies of neuropeptides represent promising candidates. Here, we provide the "proof of concept" that gene therapy by adeno-associated virus (AAV) vector transduction of preprodynorphin into the epileptogenic focus of well-accepted mouse and rat models for temporal lobe epilepsy leads to suppression of seizures over months. The debilitating long-term decline of spatial learning and memory is prevented. In human hippocampal slices obtained from epilepsy surgery, dynorphins suppressed seizure-like activity, suggestive of a high potential for clinical translation. AAV-delivered preprodynorphin expression is focally and neuronally restricted and release is dependent on high-frequency stimulation, as it occurs at the onset of seizures. The novel format of "release on demand" dynorphin delivery is viewed as a key to prevent habituation and to minimize the risk of adverse effects, leading to long-term suppression of seizures and of their devastating sequel.
Collapse
Affiliation(s)
| | - Mario Mietzsch
- Institute of VirologyCampus Benjamin Franklin, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Luca Zangrandi
- Department of PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Iwona Kmiec
- Department of PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Anna Mutti
- Department of PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Larissa Kraus
- Department of NeurologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health, Epilepsy‐Center Berlin‐BrandenburgBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| | - Pawel Fidzinski
- Department of NeurologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health, Epilepsy‐Center Berlin‐BrandenburgBerlinGermany
| | - Ulf C Schneider
- Department of NeurosurgeryCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Martin Holtkamp
- Department of NeurologyCharité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of Health, Epilepsy‐Center Berlin‐BrandenburgBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| | - Regine Heilbronn
- Institute of VirologyCampus Benjamin Franklin, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| | | |
Collapse
|
15
|
Dynorphin/kappa-opioid receptor control of dopamine dynamics: Implications for negative affective states and psychiatric disorders. Brain Res 2019; 1713:91-101. [DOI: 10.1016/j.brainres.2018.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/12/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
|
16
|
Ferré G, Czaplicki G, Demange P, Milon A. Structure and dynamics of dynorphin peptide and its receptor. VITAMINS AND HORMONES 2019; 111:17-47. [DOI: 10.1016/bs.vh.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Joshi AA, Murray TF, Aldrich JV. Alanine scan of the opioid peptide dynorphin B amide. Biopolymers 2018; 108. [PMID: 28464209 DOI: 10.1002/bip.23026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/06/2022]
Abstract
To date structure-activity relationship (SAR) studies of the dynorphins (Dyn), endogenous peptides for kappa opioid receptors (KOR), have focused almost exclusively on Dyn A with minimal studies on Dyn B. While both Dyn A and Dyn B have identical N-terminal sequences, their C-terminal sequences differ, which could result in differences in pharmacological activity. We performed an alanine scan of the non-glycine residues up through residue 11 of Dyn B amide to explore the roles of these side chains in the activity of Dyn B. The analogs were synthesized by fluorenylmethyloxycarbonyl (Fmoc)-based solid phase peptide synthesis and evaluated for their opioid receptor affinities and opioid potency and efficacy at KOR. Similar to Dyn A the N-terminal Tyr1 and Phe4 residues of Dyn B amide are critical for opioid receptor affinity and KOR agonist potency. The basic residues Arg6 and Arg7 contribute to the KOR affinity and agonist potency of Dyn B amide, while Lys10 contributes to the opioid receptor affinity, but not KOR agonist potency, of this peptide. Comparison to the Ala analogs of Dyn A (1-13) suggests that the basic residues in the C-terminus of both peptides contribute to KOR binding, but differences in their relative positions may contribute to the different pharmacological profiles of Dyn A and Dyn B. The other unique C-terminal residues in Dyn B amide also appear to influence the relative affinity of this peptide for KOR versus mu and delta opioid receptors. This SAR information may be applied in the design of new Dyn B analogs that could be useful pharmacological tools.
Collapse
Affiliation(s)
- Anand A Joshi
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, 66045
| | - Thomas F Murray
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska, 68102
| | - Jane V Aldrich
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, 66045.,Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, 32610
| |
Collapse
|
18
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Karpyak VM, Yakovleva T, Bakalkin G. Downregulation of the neuronal opioid gene expression concomitantly with neuronal decline in dorsolateral prefrontal cortex of human alcoholics. Transl Psychiatry 2018; 8:122. [PMID: 29925858 PMCID: PMC6010434 DOI: 10.1038/s41398-017-0075-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/02/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Daniil Sarkisyan
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Olga Kononenko
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Hiroyuki Watanabe
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Victor M. Karpyak
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Tatiana Yakovleva
- 0000 0004 1936 9457grid.8993.bDivision of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
19
|
Sui P, Watanabe H, Artemenko K, Sun W, Bakalkin G, Andersson M, Bergquist J. Neuropeptide imaging in rat spinal cord with MALDI-TOF MS: Method development for the application in pain-related disease studies. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:105-115. [PMID: 28657437 DOI: 10.1177/1469066717703272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spinal cord as a connection between brain and peripheral nervous system is an essential material for studying neural transmission, especially in pain-related research. This study was the first to investigate pain-related neuropeptide distribution in rat spinal cord using a matrix-assisted laser desorption ionization-time of flight imaging mass spectrometry (MALDI TOF MS) approach. The imaging workflow was evaluated and showed that MALDI TOF MS provides efficient resolution and robustness for neuropeptide imaging in rat spinal cord tissue. The imaging result showed that in naive rat spinal cord the molecular distribution of haeme, phosphatidylcholine, substance P and thymosin beta 4 were well in line with histological features. Three groups of pain-related neuropeptides, which are cleaved from prodynorphin, proenkephalin and protachykinin-1 proteins were detected. All these neuropeptides were found predominantly localized in the dorsal spinal cord and each group had unique distribution pattern. This study set the stage for future MALDI TOF MS application to elucidate signalling mechanism of pain-related diseases in small animal models.
Collapse
Affiliation(s)
- Ping Sui
- 1 Analytical Chemistry, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Hiroyuki Watanabe
- 2 Molecular Neuropsychopharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Konstantin Artemenko
- 1 Analytical Chemistry, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Wei Sun
- 2 Molecular Neuropsychopharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Georgy Bakalkin
- 2 Molecular Neuropsychopharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Malin Andersson
- 3 Drug Safety and Toxicology, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- 1 Analytical Chemistry, Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Morgan M, Heffernan A, Benhabib F, Wagner S, Hewavitharana AK, Shaw PN, Cabot PJ. The efficacy of Dynorphin fragments at the κ, μ and δ opioid receptor in transfected HEK cells and in an animal model of unilateral peripheral inflammation. Peptides 2017; 89:9-16. [PMID: 28049031 DOI: 10.1016/j.peptides.2016.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 11/16/2022]
Abstract
Dynorphin 1-17 is an endogenous peptide that is released at sites of inflammation by leukocytes, binding preferentially to κ-opioid receptors (KOP) to mediate nociception. We have previously shown that dynorphin 1-17 is rapidly biotransformed to smaller peptide fragments in inflamed tissue homogenate. This study aimed to determine the efficacy and potency of selected dynorphin fragments produced in an inflamed environment at the KOP, μ and δ-opioid receptors (MOP and DOP respectively) and in a model of inflammatory pain. Functional activity of Dynorphin 1-17 and fragments (1-6, 1-7 and 1-9) were screened over a range of concentrations against forskolin stimulated human embryonic kidney 293 (HEK) cells stably transfected with one of KOP, MOP or DOP. The analgesic activity of dynorphin 1-7 in a unilateral model of inflammatory pain was subsequently tested. Rats received unilateral intraplantar injections of Freund's Complete Adjuvant to induce inflammation. After six days rats received either dynorphin 1-7, 1-17 or the selective KOP agonist U50488H and mechanical allodynia determined. Dynorphin 1-7 and 1-9 displayed the greatest activity across all receptor subtypes, while dynorphin 1-7, 1-9 and 1-17 displaying a potent activation of both KOP and DOP evidenced by cAMP inihibition. Administration of dynorphin 1-7 and U50488H, but not dynorphin 1-17 resulted in a significant increase in paw pressure threshold at an equimolar dose suggesting the small peptide dynorphin 1-7 mediates analgesia. These results show that dynorphin fragments produced in an inflamed tissue homogenate have changed activity at the opioid receptors and that dynorphin 1-7 mediates analgesia.
Collapse
Affiliation(s)
- M Morgan
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - A Heffernan
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - F Benhabib
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - S Wagner
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia.
| | - A K Hewavitharana
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - P N Shaw
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - P J Cabot
- School of Pharmacy, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
21
|
Kononenko O, Bazov I, Watanabe H, Gerashchenko G, Dyachok O, Verbeek DS, Alkass K, Druid H, Andersson M, Mulder J, Svenningsen ÅF, Rajkowska G, Stockmeier CA, Krishtal O, Yakovleva T, Bakalkin G. Opioid precursor protein isoform is targeted to the cell nuclei in the human brain. Biochim Biophys Acta Gen Subj 2016; 1861:246-255. [PMID: 27838394 DOI: 10.1016/j.bbagen.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissue-specific neuropeptide expression and produce novel protein isoforms. We here searched for novel PDYN mRNA and their protein product in the human brain. METHODS Novel PDYN transcripts were identified using nested PCR amplification of oligo(dT) selected full-length capped mRNA. Gene expression was analyzed by qRT-PCR, PDYN protein by western blotting and confocal imaging, dynorphin peptides by radioimmunoassay. Neuronal nuclei were isolated using fluorescence-activated nuclei sorting (FANS) from postmortem human striatal tissue. Immunofluorescence staining and confocal microscopy was performed for human caudate nucleus. RESULTS Two novel human PDYN mRNA splicing variants were identified. Expression of one of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of signal peptide (SP). ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted to the cell nuclei in a model cellular system. The endogenous PDYN protein was identified in the cell nuclei in human striatum by western blotting of isolated neuronal nuclei, and by confocal imaging. CONCLUSIONS AND GENERAL SIGNIFICANCE High levels of alternatively spliced ∆SP-PDYN mRNA and nuclear localization of PDYN protein suggests a nuclear function for this isoform of the opioid peptide precursor in human striatum.
Collapse
Affiliation(s)
- Olga Kononenko
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden; State Key Lab for Molecular Biology, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Igor Bazov
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden.
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Ganna Gerashchenko
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden; Department of Functional Genomics, Institute Molecular Biology, Kiev 03680, Ukraine
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, 751 23, Sweden
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen 30001, Netherlands
| | - Kanar Alkass
- Department of Forensic Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Henrik Druid
- Department of Forensic Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Malin Andersson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Karolinska Institute, Stockholm 171 77, Sweden
| | - Åsa Fex Svenningsen
- Institute of Molecular Medicine-Neurobiology Research, University of Southern Denmark, Odense 5000, Denmark
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 2500, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson 2500, USA
| | - Oleg Krishtal
- State Key Lab for Molecular Biology, Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Tatiana Yakovleva
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
22
|
Prodynorphin gene promoter polymorphism and temporal lobe epilepsy: A meta-analysis. ACTA ACUST UNITED AC 2015; 35:635-639. [PMID: 26489614 DOI: 10.1007/s11596-015-1482-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/15/2015] [Indexed: 10/22/2022]
Abstract
Previous studies have reported the association of prodynorphin (PDYN) promoter polymorphism with temporal lobe epilepsy (TLE) susceptibility, but the results remain inconclusive. To further precisely evaluate this association, we performed a meta-analysis. Published studies of TLE and PDYN polymorphism up to February 2015 were identified. Subgroup analysis by TLE subtype was performed. Moreover, sensitivity, heterogeneity, and publication bias were also analyzed. Seven case-control studies were finally included in this meta-analysis with 875 TLE cases and 1426 controls. We did not find synthetic evidence of association between PDYN promoter polymorphism and TLE susceptibility (OR=1.184, 95% CI: 0.873-1.606, P=0.277). Similar results were also obtained in non-familial-risk TLE subgroup. However, in the familial-risk TLE subgroup analysis, a significant association was observed (OR=1.739, 95% CI: 1.154-2.619, P=0.008). In summary, this meta-analysis suggests that PDYN gene promoter polymorphism might contribute to familial-risk TLE.
Collapse
|
23
|
Smeets CJLM, Jezierska J, Watanabe H, Duarri A, Fokkens MR, Meijer M, Zhou Q, Yakovleva T, Boddeke E, den Dunnen W, van Deursen J, Bakalkin G, Kampinga HH, van de Sluis B, Verbeek DS. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23. Brain 2015; 138:2537-52. [PMID: 26169942 DOI: 10.1093/brain/awv195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/27/2015] [Indexed: 12/30/2022] Open
Abstract
Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, α-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling and addiction. Dynorphin A is likely a mutational hotspot for spinocerebellar ataxia type 23 mutations, and in vitro data suggested that dynorphin A mutations lead to persistently elevated mutant peptide levels that are cytotoxic and may thus play a crucial role in the pathogenesis of spinocerebellar ataxia type 23. To further test this and study spinocerebellar ataxia type 23 in more detail, we generated a mouse carrying the spinocerebellar ataxia type 23 mutation R212W in PDYN. Analysis of peptide levels using a radioimmunoassay shows that these PDYN(R212W) mice display markedly elevated levels of mutant dynorphin A, which are associated with climber fibre retraction and Purkinje cell loss, visualized with immunohistochemical stainings. The PDYN(R212W) mice reproduced many of the clinical features of spinocerebellar ataxia type 23, with gait deficits starting at 3 months of age revealed by footprint pattern analysis, and progressive loss of motor coordination and balance at the age of 12 months demonstrated by declining performances on the accelerating Rotarod. The pathologically elevated mutant dynorphin A levels in the cerebellum coincided with transcriptionally dysregulated ionotropic and metabotropic glutamate receptors and glutamate transporters, and altered neuronal excitability. In conclusion, the PDYN(R212W) mouse is the first animal model of spinocerebellar ataxia type 23 and our work indicates that the elevated mutant dynorphin A peptide levels are likely responsible for the initiation and progression of the disease, affecting glutamatergic signalling, neuronal excitability, and motor performance. Our novel mouse model defines a critical role for opioid neuropeptides in spinocerebellar ataxia, and suggests that restoring the elevated mutant neuropeptide levels can be explored as a therapeutic intervention.
Collapse
Affiliation(s)
- Cleo J L M Smeets
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Justyna Jezierska
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hiroyuki Watanabe
- 2 Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anna Duarri
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michiel R Fokkens
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michel Meijer
- 3 Department of Medical Physiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Qin Zhou
- 2 Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Tania Yakovleva
- 2 Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erik Boddeke
- 3 Department of Medical Physiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wilfred den Dunnen
- 4 Department of Pathology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jan van Deursen
- 5 Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Georgy Bakalkin
- 3 Department of Medical Physiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Harm H Kampinga
- 6 Department of Cell Biology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- 7 Department of Paediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- 1 Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Zhou L, Stahl EL, Lovell KM, Frankowski KJ, Prisinzano TE, Aubé J, Bohn LM. Characterization of kappa opioid receptor mediated, dynorphin-stimulated [35S]GTPγS binding in mouse striatum for the evaluation of selective KOR ligands in an endogenous setting. Neuropharmacology 2015; 99:131-41. [PMID: 26160155 DOI: 10.1016/j.neuropharm.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/07/2015] [Accepted: 07/03/2015] [Indexed: 11/29/2022]
Abstract
Differential modulation of kappa opioid receptor (KOR) signaling has been a proposed strategy for developing therapies for drug addiction and depression by either activating or blocking this receptor. Hence, there have been significant efforts to generate ligands with diverse pharmacological properties including partial agonists, antagonists, allosteric modulators as well as ligands that selectively activate some pathways while not engaging others (biased agonists). It is becoming increasingly evident that G protein coupled receptor signaling events are context dependent and that what may occur in cell based assays may not be fully indicative of signaling events that occur in the naturally occurring environment. As new ligands are developed, it is important to assess their signaling capacity in relevant endogenous systems in comparison to the performance of endogenous agonists. Since KOR is considered the cognate receptor for dynorphin peptides we have evaluated the selectivity profiles of dynorphin peptides in wild-type (WT), KOR knockout (KOR-KO), and mu opioid receptor knockout (MOR-KO) mice using [35S]GTPγS binding assay in striatal membrane preparations. We find that while the small molecule KOR agonist U69,593, is very selective for KOR, dynorphin peptides promiscuously stimulate G protein signaling in striatum. Furthermore, our studies demonstrate that norBNI and 5'GNTI are highly nonselective antagonists as they maintain full potency and efficacy against dynorphin signaling in the absence of KOR. Characterization of a new KOR antagonist, which may be more selective than NorBNI and 5'GNTI, is presented using this approach.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Edward L Stahl
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kimberly M Lovell
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kevin J Frankowski
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Jeffrey Aubé
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
25
|
Sarkisyan D, Hussain MZ, Watanabe H, Kononenko O, Bazov I, Zhou X, Yamskova O, Krishtal O, Karpyak VM, Yakovleva T, Bakalkin G. Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics. Front Cell Neurosci 2015; 9:187. [PMID: 26029055 PMCID: PMC4428131 DOI: 10.3389/fncel.2015.00187] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 04/28/2015] [Indexed: 01/18/2023] Open
Abstract
The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN) and proenkephalin (PENK) mRNAs (by qRT-PCR), and dynorphins and enkephalins (by radioimmunoassay) in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics.
Collapse
Affiliation(s)
- Daniil Sarkisyan
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | | | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden ; Department for Cellular Membranology, Bogomoletz Institute of Physiology Kyiv, Ukraine
| | - Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Xingwu Zhou
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Olga Yamskova
- Department of Functional Pharmacology, Institute for Neuroscience, Uppsala University Uppsala, Sweden
| | - Oleg Krishtal
- Department for Cellular Membranology, Bogomoletz Institute of Physiology Kyiv, Ukraine
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic Rochester, MN, USA
| | - Tatiana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| |
Collapse
|
26
|
Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction. Cell Death Dis 2015; 6:e1683. [PMID: 25766322 PMCID: PMC4385918 DOI: 10.1038/cddis.2015.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Abstract
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.
Collapse
|
27
|
Cohen A, Whitfield TW, Kreifeldt M, Koebel P, Kieffer BL, Contet C, George O, Koob GF. Virus-mediated shRNA knockdown of prodynorphin in the rat nucleus accumbens attenuates depression-like behavior and cocaine locomotor sensitization. PLoS One 2014; 9:e97216. [PMID: 24816773 PMCID: PMC4016270 DOI: 10.1371/journal.pone.0097216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/16/2014] [Indexed: 01/10/2023] Open
Abstract
Dynorphins, endogenous opioid peptides that arise from the precursor protein prodynorphin (Pdyn), are hypothesized to be involved in the regulation of mood states and the neuroplasticity associated with addiction. The current study tested the hypothesis that dynorphin in the nucleus accumbens (NAcc) mediates such effects. More specifically, we examined whether knockdown of Pdyn within the NAcc in rats would alter the expression of depressive-like and anxiety-like behavior, as well as cocaine locomotor sensitization. Wistar rats were injected with adeno-associated viral (AAV) vectors encoding either a Pdyn-specific short hairpin RNA (AAV-shPdyn) or a scrambled shRNA (AAV-shScr) as control. Four weeks later, rats were tested for anxiety-like behavior in the elevated plus maze test and depressive-like behavior in the forced swim test (FST). Finally, rats received one daily injection of saline or cocaine (20 mg/kg, i.p.), followed by assessment of locomotion for 4 consecutive days. Following 3 days of abstinence, the rats completed 2 additional daily cocaine/saline locomotor trials. Pdyn knockdown in the NAcc led to a significant reduction in depressive-like behavior in the FST, but had no effect on anxiety-like behavior in the elevated plus maze. Pdyn knockdown did not alter baseline locomotor behavior, the locomotor response to acute cocaine, or the initial sensitization of the locomotor response to cocaine over the first 4 cocaine treatment days. However, following 3 days abstinence the locomotor response to the cocaine challenge returned to their original levels in the AAV-shPdyn rats while remaining heightened in the AAV-shScr rats. These results suggest that dynorphin in a very specific area of the nucleus accumbens contributes to depressive-like states and may be involved in neuroadaptations in the NAcc that contribute to the development of cocaine addiction as a persistent and lasting condition.
Collapse
Affiliation(s)
- Ami Cohen
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| | - Timothy W. Whitfield
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Kreifeldt
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pascale Koebel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Brigitte L. Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational Medicine and Neurogenetic Programme, UdS Université de Strasbourg, INSERM U964, CNRS UMR7104, Illkirch, France
| | - Candice Contet
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
28
|
Abnormal structure-specific peptide transmission and processing in a primate model of Parkinson's disease and l-DOPA-induced dyskinesia. Neurobiol Dis 2014; 62:307-12. [DOI: 10.1016/j.nbd.2013.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 11/17/2022] Open
|
29
|
Kivell BM, Ewald AWM, Prisinzano TE. Salvinorin A analogs and other κ-opioid receptor compounds as treatments for cocaine abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:481-511. [PMID: 24484985 DOI: 10.1016/b978-0-12-420118-7.00012-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute activation of kappa-opioid receptors produces anti-addictive effects by regulating dopamine levels in the brain. Unfortunately, classic kappa-opioid agonists have undesired side effects such as sedation, aversion, and depression, which restrict their clinical use. Salvinorin A (Sal A), a novel kappa-opioid receptor agonist extracted from the plant Salvia divinorum, has been identified as a potential therapy for drug abuse and addiction. Here, we review the preclinical effects of Sal A in comparison with traditional kappa-opioid agonists and several new analogs. Sal A retains the anti-addictive properties of traditional kappa-opioid receptor agonists with several improvements including reduced side effects. However, the rapid metabolism of Sal A makes it undesirable for clinical development. In an effort to improve the pharmacokinetics and tolerability of this compound, kappa-opioid receptor agonists based on the structure of Sal A have been synthesized. While work in this field is still in progress, several analogs with improved pharmacokinetic profiles have been shown to have anti-addictive effects. While in its infancy, it is clear that these compounds hold promise for the future development of anti-addictive therapeutics.
Collapse
Affiliation(s)
- Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Amy W M Ewald
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas, USA.
| |
Collapse
|
30
|
Watanabe H, Fitting S, Hussain MZ, Kononenko O, Iatsyshyna A, Yoshitake T, Kehr J, Alkass K, Druid H, Wadensten H, Andren PE, Nylander I, Wedell DH, Krishtal O, Hauser KF, Nyberg F, Karpyak VM, Yakovleva T, Bakalkin G. Asymmetry of the endogenous opioid system in the human anterior cingulate: a putative molecular basis for lateralization of emotions and pain. ACTA ACUST UNITED AC 2013; 25:97-108. [PMID: 23960211 DOI: 10.1093/cercor/bht204] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lateralization of the processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria, and pain, the μ-, δ-, and κ-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing. Opioid mRNAs and peptides and 5 "classical" neurotransmitters were analyzed in postmortem tissues from 20 human subjects. Leu-enkephalin-Arg (LER) and Met-enkephalin-Arg-Phe, preferential δ-/μ- and κ-/μ-opioid agonists, demonstrated marked lateralization to the left and right ACC, respectively. Dynorphin B (Dyn B) strongly correlated with LER in the left, but not in the right ACC suggesting different mechanisms of the conversion of this κ-opioid agonist to δ-/μ-opioid ligand in the 2 hemispheres; in the right ACC, Dyn B may be cleaved by PACE4, a proprotein convertase regulating left-right asymmetry formation. These findings suggest that region-specific lateralization of neuronal networks expressing opioid peptides underlies in part lateralization of higher functions, including positive and negative emotions and pain in the human brain.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences
| | | | - Muhammad Z Hussain
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences Key State Laboratory, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Anna Iatsyshyna
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences Department of Human Genetics, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
| | - Takashi Yoshitake
- Pharmacological Neurochemistry, Department of Physiology and Pharmacology
| | - Jan Kehr
- Pharmacological Neurochemistry, Department of Physiology and Pharmacology
| | - Kanar Alkass
- Forensic Medicine, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Druid
- Forensic Medicine, Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Wadensten
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Per E Andren
- Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ingrid Nylander
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences
| | - Douglas H Wedell
- Department of Psychology, University of South Carolina, Columbia, USA and
| | - Oleg Krishtal
- Key State Laboratory, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Fred Nyberg
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences
| | - Victor M Karpyak
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Tatjana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences
| |
Collapse
|
31
|
Sirohi S, Bakalkin G, Walker BM. Alcohol-induced plasticity in the dynorphin/kappa-opioid receptor system. Front Mol Neurosci 2012; 5:95. [PMID: 23060746 PMCID: PMC3459013 DOI: 10.3389/fnmol.2012.00095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/29/2012] [Indexed: 01/02/2023] Open
Abstract
Alcoholism is a chronic relapsing disorder characterized by continued alcohol use despite numerous adverse consequences. Alcohol has been shown to interact with numerous neurotransmitter systems to exert its pharmacological effects. The endogenous opioid system (EOS) has been strongly implicated in the positive and negative reinforcing effects of alcohol. Traditionally recognized as dysphoric/anhedonic in nature, the dynorphin/kappa-opioid receptor (DYN/KOR) system has recently received considerable attention due to evidence suggesting that an upregulated DYN/KOR system may be a critical contributor to the complex factors that result in escalated alcohol consumption once dependent. The present review will discuss alcohol-induced plasticity in the DYN/KOR system and how these neuroadaptations could contribute to excessive alcohol seeking and consumption.
Collapse
Affiliation(s)
- Sunil Sirohi
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University Pullman, WA, USA
| | | | | |
Collapse
|
32
|
Hussain ZM, Fitting S, Watanabe H, Usynin I, Yakovleva T, Knapp PE, Scheff SW, Hauser KF, Bakalkin G. Lateralized response of dynorphin a peptide levels after traumatic brain injury. J Neurotrauma 2012; 29:1785-93. [PMID: 22468884 PMCID: PMC3360894 DOI: 10.1089/neu.2011.2286] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) induces a cascade of primary and secondary events resulting in impairment of neuronal networks that eventually determines clinical outcome. The dynorphins, endogenous opioid peptides, have been implicated in secondary injury and neurodegeneration in rodent and human brain. To gain insight into the role of dynorphins in the brain's response to trauma, we analyzed short-term (1-day) and long-term (7-day) changes in dynorphin A (Dyn A) levels in the frontal cortex, hippocampus, and striatum, induced by unilateral left-side or right-side cortical TBI in mice. The effects of TBI were significantly different from those of sham surgery (Sham), while the sham surgery also produced noticeable effects. Both sham and TBI induced short-term changes and long-term changes in all three regions. Two types of responses were generally observed. In the hippocampus, Dyn A levels were predominantly altered ipsilateral to the injury. In the striatum and frontal cortex, injury to the right (R) hemisphere affected Dyn A levels to a greater extent than that seen in the left (L) hemisphere. The R-TBI but not L-TBI produced Dyn A changes in the striatum and frontal cortex at 7 days after injury. Effects of the R-side injury were similar in the two hemispheres. In naive animals, Dyn A was symmetrically distributed between the two hemispheres. Thus, trauma may reveal a lateralization in the mechanism mediating the response of Dyn A-expressing neuronal networks in the brain. These networks may differentially mediate effects of left and right brain injury on lateralized brain functions.
Collapse
Affiliation(s)
- Zubair Muhammad Hussain
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sylvia Fitting
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Hiroyuki Watanabe
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ivan Usynin
- Institute of Biochemistry, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Tatjana Yakovleva
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Stephen W. Scheff
- Spinal Cord and Brain Injury Research Center and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Georgy Bakalkin
- The Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Walker BM, Valdez GR, McLaughlin JP, Bakalkin G. Targeting dynorphin/kappa opioid receptor systems to treat alcohol abuse and dependence. Alcohol 2012; 46:359-70. [PMID: 22459870 DOI: 10.1016/j.alcohol.2011.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 10/28/2022]
Abstract
This review represents the focus of a symposium that was presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference in Volterra, Italy on May 3-6, 2011 and organized/chaired by Dr. Brendan M. Walker. The primary goal of the symposium was to evaluate and disseminate contemporary findings regarding the emerging role of kappa-opioid receptors (KORs) and their endogenous ligands dynorphins (DYNs) in the regulation of escalated alcohol consumption, negative affect and cognitive dysfunction associated with alcohol dependence, as well as DYN/KOR mediation of the effects of chronic stress on alcohol reward and seeking behaviors. Dr. Glenn Valdez described a role for KORs in the anxiogenic effects of alcohol withdrawal. Dr. Jay McLaughlin focused on the role of KORs in repeated stress-induced potentiation of alcohol reward and increased alcohol consumption. Dr. Brendan Walker presented data characterizing the effects of KOR antagonism within the extended amygdala on withdrawal-induced escalation of alcohol self-administration in dependent animals. Dr. Georgy Bakalkin concluded with data indicative of altered DYNs and KORs in the prefrontal cortex of alcohol dependent humans that could underlie diminished cognitive performance. Collectively, the data presented within this symposium identified the multifaceted contribution of KORs to the characteristics of acute and chronic alcohol-induced behavioral dysregulation and provided a foundation for the development of pharmacotherapeutic strategies to treat certain aspects of alcohol use disorders.
Collapse
|
34
|
Opioid system and Alzheimer's disease. Neuromolecular Med 2012; 14:91-111. [PMID: 22527793 DOI: 10.1007/s12017-012-8180-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/04/2012] [Indexed: 12/15/2022]
Abstract
The opioid system may be involved in the pathogenesis of AD, including cognitive impairment, hyperphosphorylated tau, Aβ production, and neuroinflammation. Opioid receptors influence the regulation of neurotransmitters such as acetylcholine, norepinephrine, GABA, glutamate, and serotonin which have been implicated in the pathogenesis of AD. Opioid system has a close relation with Aβ generation since dysfunction of opioid receptors retards the endocytosis and degradation of BACE1 and γ-secretase and upregulates BACE1 and γ-secretase, and subsequently, the production of Aβ. Conversely, activation of opioid receptors increases the endocytosis of BACE1 and γ-secretase and downregulates BACE1 and γ-secretase, limiting the production of Aβ. The dysfunction of opioid system (opioid receptors and opioid peptides) may contribute to hyperphosphorylation of tau and neuroinflammation, and accounts for the degeneration of cholinergic neurons and cognitive impairment. Thus, the opioid system is potentially related to AD pathology and may be a very attractive drug target for novel pharmacotherapies of AD.
Collapse
|
35
|
Ljungdahl A, Hanrieder J, Fälth M, Bergquist J, Andersson M. Imaging mass spectrometry reveals elevated nigral levels of dynorphin neuropeptides in L-DOPA-induced dyskinesia in rat model of Parkinson's disease. PLoS One 2011; 6:e25653. [PMID: 21984936 PMCID: PMC3184165 DOI: 10.1371/journal.pone.0025653] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022] Open
Abstract
L-DOPA-induced dyskinesia is a troublesome complication of L-DOPA pharmacotherapy of Parkinson's disease and has been associated with disturbed brain opioid transmission. However, so far the results of clinical and preclinical studies on the effects of opioids agonists and antagonists have been contradictory at best. Prodynorphin mRNA levels correlate well with the severity of dyskinesia in animal models of Parkinson's disease; however the identities of the actual neuroactive opioid effectors in their target basal ganglia output structures have not yet been determined. For the first time MALDI-TOF imaging mass spectrometry (IMS) was used for unbiased assessment and topographical elucidation of prodynorphin-derived peptides in the substantia nigra of a unilateral rat model of Parkinson's disease and L-DOPA induced dyskinesia. Nigral levels of dynorphin B and alpha-neoendorphin strongly correlated with the severity of dyskinesia. Even if dynorphin peptide levels were elevated in both the medial and lateral part of the substantia nigra, MALDI IMS analysis revealed that the most prominent changes were localized to the lateral part of the substantia nigra. MALDI IMS is advantageous compared with traditional molecular methods, such as radioimmunoassay, in that neither the molecular identity analyzed, nor the specific localization needs to be predetermined. Indeed, MALDI IMS revealed that the bioconverted metabolite leu-enkephalin-arg also correlated positively with severity of dyskinesia. Multiplexing DynB and leu-enkephalin-arg ion images revealed small (0.25 by 0.5 mm) nigral subregions with complementing ion intensities, indicating localized peptide release followed by bioconversion. The nigral dynorphins associated with L-DOPA-induced dyskinesia were not those with high affinity to kappa opioid receptors, but consisted of shorter peptides, mainly dynorphin B and alpha-neoendorphin that are known to bind and activate mu and delta opioid receptors. This suggests that mu and/or delta subtype-selective opioid receptor antagonists may be clinically relevant for reducing L-DOPA-induced dyskinesia in Parkinson's disease.
Collapse
Affiliation(s)
- Anna Ljungdahl
- Department of Pharmaceutical Biosciences, Drug Safety and Toxicology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
36
|
Banerjee A, Strazza M, Wigdahl B, Pirrone V, Meucci O, Nonnemacher MR. Role of mu-opioids as cofactors in human immunodeficiency virus type 1 disease progression and neuropathogenesis. J Neurovirol 2011; 17:291-302. [PMID: 21735315 PMCID: PMC3757547 DOI: 10.1007/s13365-011-0037-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/01/2011] [Accepted: 05/09/2011] [Indexed: 12/19/2022]
Abstract
About one third of acquired immunodeficiency syndrome cases in the USA have been attributed to the use of injected addictive drugs, frequently involving opioids like heroin and morphine, establishing them as significant predisposing risk factors for contracting human immunodeficiency virus type 1 (HIV-1). Accumulating evidence from in vitro and in vivo experimental systems indicates that opioids act in concert with HIV-1 proteins to exacerbate dysregulation of neural and immune cell function and survival through diverse molecular mechanisms. In contrast, the impact of opioid exposure and withdrawal on the viral life cycle and HIV-1 disease progression itself is unclear, with conflicting reports emerging from the simian immunodeficiency virus and simian-human immunodeficiency virus infection models. However, these studies suggest a potential role of opioids in elevated viral production. Because human microglia, astrocytes, CD4+ T lymphocytes, and monocyte-derived macrophages express opioid receptors, it is likely that intracellular signaling events triggered by morphine facilitate enhancement of HIV-1 infection in these target cell populations. This review highlights the biochemical changes that accompany prolonged exposure to and withdrawal from morphine that synergize with HIV-1 proteins to disrupt normal cellular physiological functions especially within the central nervous system. More importantly, it collates evidence from epidemiological studies, animal models, and heterologous cell systems to propose a mechanistic link between such physiological adaptations and direct modulation of HIV-1 production. Understanding the opioid-HIV-1 interface at the molecular level is vitally important in designing better treatment strategies for HIV-1-infected patients who abuse opioids.
Collapse
Affiliation(s)
- Anupam Banerjee
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA
| | - Marianne Strazza
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA. Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th St., Philadelphia, PA 19102, USA
| |
Collapse
|
37
|
Hanrieder J, Ljungdahl A, Fälth M, Mammo SE, Bergquist J, Andersson M. L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. Mol Cell Proteomics 2011; 10:M111.009308. [PMID: 21737418 PMCID: PMC3205869 DOI: 10.1074/mcp.m111.009308] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Opioid peptides are involved in various pathophysiological processes, including algesia, epilepsy, and drug dependence. A strong association between L-DOPA-induced dyskinesia (LID) and elevated prodynorphin mRNA levels has been established in both patients and in animal models of Parkinson's disease, but to date the endogenous prodynorphin peptide products have not been determined. Here, matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) was used for characterization, localization, and relative quantification of striatal neuropeptides in a rat model of LID in Parkinson's disease. MALDI IMS has the unique advantage of high sensitivity and high molecular specificity, allowing comprehensive detection of multiple molecular species in a single tissue section. Indeed, several dynorphins and enkephalins could be detected in the present study, including dynorphin A(1-8), dynorphin B, α-neoendorphin, MetEnkRF, MetEnkRGL, PEnk (198-209, 219-229). IMS analysis revealed elevated levels of dynorphin B, α-neoendorphin, substance P, and PEnk (220-229) in the dorsolateral striatum of high-dyskinetic animals compared with low-dyskinetic and lesion-only control rats. Furthermore, the peak-intensities of the prodynorphin derived peptides, dynorphin B and α-neoendorphin, were strongly and positively correlated with LID severity. Interestingly, these LID associated dynorphin peptides are not those with high affinity to κ opioid receptors, but are known to bind and activate also μ- and Δ-opioid receptors. In addition, the peak intensities of a novel endogenous metabolite of α-neoendorphin lacking the N-terminal tyrosine correlated positively with dyskinesia severity. MALDI IMS of striatal sections from Pdyn knockout mice verified the identity of fully processed dynorphin peptides and the presence of endogenous des-tyrosine α-neoendorphin. Des-tyrosine dynorphins display reduced opioid receptor binding and this points to possible novel nonopioid receptor mediated changes in the striatum of dyskinetic rats. Because des-tyrosine dynorphins can only be detected by mass spectrometry, as no antibodies are available, these findings highlight the importance of MALDI IMS analysis for the study of molecular dynamics in neurological diseases.
Collapse
Affiliation(s)
- Jörg Hanrieder
- Department of Pharmaceutical Biosciences, Drug Safety and Toxicology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Smith FG, Qi W. Cardiorenal Effects of Kappa Opioid Peptides During Ontogeny. Pharmaceuticals (Basel) 2011. [PMCID: PMC4052547 DOI: 10.3390/ph4010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This review focuses on the physiological roles for kappa opioid receptors (KORs) in adult animals and humans, as well as in the developing newborn animal. Our recent findings have provided new information that under physiological conditions in conscious newborn animals, activation of KORs with the selective agonist, U-50488H, results in an aquaresis, as previously observed in adult animals and humans. In addition, we have shown in conscious lambs that KORs modulate systemic and renal haemodynamics as well as the arterial baroreflex control of heart rate, providing a previously unidentified role for KORs.
Collapse
|
39
|
Beaudry F. Stability comparison between sample preparation procedures for mass spectrometry-based targeted or shotgun peptidomic analysis. Anal Biochem 2010; 407:290-2. [DOI: 10.1016/j.ab.2010.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/30/2010] [Accepted: 08/12/2010] [Indexed: 12/16/2022]
|
40
|
Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I, Artemenko KA, Yakovleva T, Dooijes D, Van de Warrenburg BPC, Zubarev RA, Kremer B, Knapp PE, Hauser KF, Wijmenga C, Nyberg F, Sinke RJ, Verbeek DS. Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 2010; 87:593-603. [PMID: 21035104 DOI: 10.1016/j.ajhg.2010.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/30/2010] [Accepted: 10/05/2010] [Indexed: 11/28/2022] Open
Abstract
Spinocerebellar ataxias (SCAs) are dominantly inherited neurodegenerative disorders characterized by progressive cerebellar ataxia and dysarthria. We have identified missense mutations in prodynorphin (PDYN) that cause SCA23 in four Dutch families displaying progressive gait and limb ataxia. PDYN is the precursor protein for the opioid neuropeptides, α-neoendorphin, and dynorphins A and B (Dyn A and B). Dynorphins regulate pain processing and modulate the rewarding effects of addictive substances. Three mutations were located in Dyn A, a peptide with both opioid activities and nonopioid neurodegenerative actions. Two of these mutations resulted in excessive generation of Dyn A in a cellular model system. In addition, two of the mutant Dyn A peptides induced toxicity above that of wild-type Dyn A in cultured striatal neurons. The fourth mutation was located in the nonopioid PDYN domain and was associated with altered expression of components of the opioid and glutamate system, as evident from analysis of SCA23 autopsy tissue. Thus, alterations in Dyn A activities and/or impairment of secretory pathways by mutant PDYN may lead to glutamate neurotoxicity, which underlies Purkinje cell degeneration and ataxia. PDYN mutations are identified in a small subset of ataxia families, indicating that SCA23 is an infrequent SCA type (∼0.5%) in the Netherlands and suggesting further genetic SCA heterogeneity.
Collapse
Affiliation(s)
- Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 2009; 29:14371-80. [PMID: 19906984 DOI: 10.1523/jneurosci.2186-09.2009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) promotes neuronal damage during pathological acidosis. ASIC1a undergoes a process called steady-state desensitization in which incremental pH reductions desensitize the channel and prevent activation when the threshold for acid-dependent activation is reached. We find that dynorphin A and big dynorphin limit steady-state desensitization of ASIC1a and acid-activated currents in cortical neurons. Dynorphin potentiation of ASIC1a activity is independent of opioid or bradykinin receptor activation but is prevented in the presence of PcTx1, a peptide which is known to bind the extracellular domain of ASIC1a. This suggests that dynorphins interact directly with ASIC1a to enhance channel activity. Inducing steady-state desensitization prevents ASIC1a-mediated cell death during prolonged acidosis. This neuroprotection is abolished in the presence of dynorphins. Together, these results define ASIC1a as a new nonopioid target for dynorphin action and suggest that dynorphins enhance neuronal damage following ischemia by preventing steady-state desensitization of ASIC1a.
Collapse
|
42
|
Nociceptive behavior induced by the endogenous opioid peptides dynorphins in uninjured mice: evidence with intrathecal N-ethylmaleimide inhibiting dynorphin degradation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:191-205. [PMID: 19607971 DOI: 10.1016/s0074-7742(09)85015-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dynorphins, the endogenous opioid peptides derived from prodynorphin may participate not only in the inhibition, but also in facilitation of spinal nociceptive transmission. However, the mechanism of pronociceptive dynorphin actions, and the comparative potential of prodynorphin processing products to induce these actions were not fully elucidated. In our studies, we examined pronociceptive effects of prodynorphin fragments dynorphins A and B and big dynorphin consisting of dynorphins A and B, and focused on the mechanisms underlying these effects. Our principal finding was that big dynorphin was the most potent pronociceptive dynorphin; when administered intrathecally into mice at extremely low doses (1-10fmol), big dynorphin produced nociceptive behavior through the activation of the NMDA receptor ion-channel complex by acting on the polyamine recognition site. We next examined whether the endogenous dynorphins participate in the spinal nociceptive transmission using N-ethylmaleimide (NEM) that blocks dynorphin degradation by inhibiting cysteine proteases. Similar to big dynorphin and dynorphin A, NEM produced nociceptive behavior mediated through inhibition of the degradation of endogenous dynorphins, presumably big dynorphin that in turn activates the NMDA receptor ion-channel complex by acting on the polyamine recognition site. Our findings support the notion that endogenous dynorphins are critical neurochemical mediators of spinal nociceptive transmission in uninjured animals. This chapter will review above-described phenomena and their mechanism.
Collapse
|
43
|
Abstract
This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, United States.
| |
Collapse
|
44
|
Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L, Bakalkin G. Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 2007; 28:1700-8. [PMID: 16914231 DOI: 10.1016/j.neurobiolaging.2006.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 11/17/2022]
Abstract
The opioid peptides dynorphins may be involved in pathogenesis of Alzheimer disease (AD) by inducing neurodegeneration or cognitive impairment. To test this hypothesis, the dynorphin system was analyzed in postmortem samples from AD and control subjects, and subjects with Parkinson or cerebro-vascular diseases for comparison. Dynorphin A, dynorphin B and related neuropeptide nociceptin were determined in the Brodmann area 7 by radioimmunoassay. The precursor protein prodynorphin, processing convertase PC2 and the neuroendocrine pro7B2 and 7B2 proteins required for PC2 maturation were analyzed by Western blot. AD subjects displayed robustly elevated levels of dynorphin A and no differences in dynorphin B and nociceptin compared to controls. Subjects with Parkinson or cerebro-vascular diseases did not differ from controls with respect to any of the three peptides. PC2 levels were also increased, whereas, those of prodynorphin and pro7B2/7B2 were not changed in AD. Dynorphin A levels correlated with the neuritic plaque density. These results along with the known non-opioid ability of dynorphin A to induce neurodegeneration suggest a role for this neuropeptide in AD neuropathology.
Collapse
Affiliation(s)
- T Yakovleva
- Department of Clinical Neuroscience, CMM L8:01, Karolinska Institute and Hospital, SE-17176 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Adjan VV, Hauser KF, Bakalkin G, Yakovleva T, Gharibyan A, Scheff SW, Knapp PE. Caspase-3 activity is reduced after spinal cord injury in mice lacking dynorphin: differential effects on glia and neurons. Neuroscience 2007; 148:724-36. [PMID: 17698296 DOI: 10.1016/j.neuroscience.2007.05.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/16/2007] [Accepted: 05/24/2007] [Indexed: 12/12/2022]
Abstract
Dynorphins are endogenous opioid peptide products of the prodynorphin gene. An extensive literature suggests that dynorphins have deleterious effects on CNS injury outcome. We thus examined whether a deficiency of dynorphin would protect against tissue damage after spinal cord injury (SCI), and if individual cell types would be specifically affected. Wild-type and prodynorphin(-/-) mice received a moderate contusion injury at 10th thoracic vertebrae (T10). Caspase-3 activity at the injury site was significantly decreased in tissue homogenates from prodynorphin(-/-) mice after 4 h. We examined frozen sections at 4 h post-injury by immunostaining for active caspase-3. At 3-4 mm rostral or caudal to the injury, >90% of all neurons, astrocytes and oligodendrocytes expressed active caspase-3 in both wild-type and knockout mice. At 6-7 mm, there were fewer caspase-3(+) oligodendrocytes and astrocytes than at 3-4 mm. Importantly, caspase-3 activation was significantly lower in prodynorphin(-/-) oligodendrocytes and astrocytes, as compared with wild-type mice. In contrast, while caspase-3 expression in neurons also declined with further distance from the injury, there was no effect of genotype. Radioimmunoassay showed that dynorphin A(1-17) was regionally increased in wild-type injured versus sham-injured tissues, although levels of the prodynorphin processing product Arg(6)-Leu-enkephalin were unchanged. Our results indicate that dynorphin peptides affect the extent of post-injury caspase-3 activation, and that glia are especially sensitive to these effects. By promoting caspase-3 activation, dynorphin peptides likely increase the probability of glial apoptosis after SCI. While normally beneficial, our findings suggest that prodynorphin or its peptide products become maladaptive following SCI and contribute to secondary injury.
Collapse
Affiliation(s)
- V V Adjan
- Department of Anatomy and Neurobiology, 800 Rose Street, MS209, University of Kentucky, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Chen Y, Chen C, Liu-Chen LY. Dynorphin peptides differentially regulate the human kappa opioid receptor. Life Sci 2007; 80:1439-48. [PMID: 17316701 PMCID: PMC2696490 DOI: 10.1016/j.lfs.2007.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 01/01/2007] [Accepted: 01/06/2007] [Indexed: 10/23/2022]
Abstract
Dynorphins, endogenous peptides for the kappa opioid receptor, play important roles in many physiological and pathological functions. Here, we examined how prolonged treatment with three major prodynorphin peptides, dynorphin A (1-17) (Dyn A), dynorphin B (1-13) (Dyn B) and alpha-neoendorphin (alpha-Neo), regulated the human kappa opioid receptor (hKOR) stably expressed in Chinese hamster ovary (CHO) cells. Results from receptor binding and [(35)S]GTPgammaS binding assays showed that these peptides were potent full agonists of the hKOR with comparable receptor reserve and intrinsic efficacy to stimulate G proteins. A 4-h incubation with alpha-Neo at a concentration of approximately 600xEC(50) value (from [(35)S]GTPgammaS binding) resulted in receptor down-regulation to a much lower extent than the incubation with Dyn A and Dyn B at comparable concentrations ( approximately 10% vs. approximately 65%). Extending incubation period and increasing concentrations did not significantly affect the difference. The plateau level of alpha-Neo-mediated receptor internalization (30 min) was significantly less than those of Dyn A and Dyn B. Omission of the serum from the incubation medium or addition of peptidase inhibitors into the serum-containing medium enhanced alpha-Neo-, but not Dyn A- or Dyn B-, mediated receptor down-regulation and internalization; however, the degrees of alpha-Neo-induced adaptations were still significantly less than those of Dyn A and Dyn B. Thus, these endogenous peptides differentially regulate KOR after activating the receptor with similar receptor occupancy and intrinsic efficacy. Both stability in the presence of serum and intrinsic capacity to promote receptor adaptation play roles in the observed discrepancy among the dynorphin peptides.
Collapse
Affiliation(s)
- Yong Chen
- Department of Pharmacology and Center for Substance Abuse Research, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, U.S.A
| | | | | |
Collapse
|
47
|
Yakovleva T, Bazov I, Cebers G, Marinova Z, Hara Y, Ahmed A, Vlaskovska M, Johansson B, Hochgeschwender U, Singh IN, Bruce-Keller AJ, Hurd YL, Kaneko T, Terenius L, Ekström TJ, Hauser KF, Pickel VM, Bakalkin G. Prodynorphin storage and processing in axon terminals and dendrites. FASEB J 2006; 20:2124-6. [PMID: 16966485 DOI: 10.1096/fj.06-6174fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The classical view postulates that neuropeptide precursors in neurons are processed into mature neuropeptides in the somatic trans-Golgi network (TGN) and in secretory vesicles during axonal transport. Here we show that prodynorphin (PDYN), precursor to dynorphin opioid peptides, is predominantly located in axon terminals and dendrites in hippocampal and striatal neurons. The molar content of unprocessed PDYN was much greater than that of dynorphin peptides in axon terminals of PDYN-containing neurons projecting to the CA3 region of the hippocampus and in the striatal projections to the ventral tegmental area. Electron microscopy showed coexistence of PDYN and dynorphins in the same axon terminals with occasional codistribution in individual dense core vesicles. Thus, the precursor protein is apparently stored at presynaptic sites. In comparison with the hippocampus and striatum, PDYN and dynorphins were more equally distributed between neuronal somata and processes in the amygdala and cerebral cortex, suggesting regional differences in the regulation of trafficking and processing of the precursor protein. Potassium-induced depolarization activated PDYN processing and secretion of opioid peptides in neuronal cultures and in a model cell line. Regulation of PDYN storage and processing at synapses by neuronal activity or extracellular stimuli may provide a local mechanism for regulation of synaptic transmission.
Collapse
Affiliation(s)
- Tatiana Yakovleva
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hara Y, Yakovleva T, Bakalkin G, Pickel VM. Dopamine D1 receptors have subcellular distributions conducive to interactions with prodynorphin in the rat nucleus accumbens shell. Synapse 2006; 60:1-19. [PMID: 16575853 DOI: 10.1002/syn.20273] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation of dopamine (DA) D1 receptors (D1Rs) in the nucleus accumbens (Acb) markedly affects the levels of prodynorphin, the precursor of aversion-associated dynorphin peptides. The location of prodynorphin, specifically as related to the dopaminergic inputs and D1Rs in the Acb, is fundamental for establishing the physiologically relevant sites. To determine these sites, we examined the electron microscopic dual-immunolabeling of prodynorphin and D1R or tyrosine hydroxylase (TH), a marker of catecholamine terminals in the rat Acb shell. This subregion is targeted by mesolimbic dopaminergic inputs affecting reward-aversion responses and locomotor activity. Prodynorphin was prominently localized to large (100-200 nm) granular aggregates in somatodendritic and axonal profiles, some of which expressed dynorphin A/B. In somata and dendrites, prodynorphin was often found in punctate clusters in the cytoplasm. Of the total prodynorphin-labeled dendrites, approximately 63% expressed D1Rs, which were largely located on the plasma membranes. In comparison with dendrites, many more axon terminals contained prodynorphin, although only 15% of these terminals contained D1R-labeling. Prodynorphin terminals formed symmetric synapses with D1R-labeled or unlabeled dendrites, and also apposed TH-containing axon terminals. Our results provide ultrastructural evidence that in the Acb shell, the prodynorphin is available for cleavage to physiologically active peptides in both dendrites and terminals of neurons that express D1Rs. They also indicate that dynorphin peptides have distributions that would enable their participation in modulation of DA release or D1R-mediated postsynaptic responses in Acb shell neurons.
Collapse
Affiliation(s)
- Yuko Hara
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | |
Collapse
|