1
|
Abdulmalek S, Connole LM, O'Sullivan NC, Beyna M, Pangalos MN, von Schack D, Ring RH, Murphy KJ. Midkine is upregulated in the hippocampus following both spatial and olfactory reward association learning and enhances memory. J Neurochem 2024; 168:2832-2847. [PMID: 39361112 DOI: 10.1111/jnc.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 10/06/2024]
Abstract
Hippocampal neuronal plasticity is a fundamental process underpinning learning and memory formation and requiring elaborate molecular mechanisms that result in the dynamic remodelling of synaptic connectivity. The neurotrophic properties of midkine (Mdk) have been implicated in the development and repair of the nervous system, while Mdk knockout resulted in deficits in the formation of certain types of memory. The role of Mdk in the process of memory-associated neuronal plasticity, however, remains poorly understood. We investigated the learning-induced regulation of Mdk in spatial navigation and association learning using the water maze and the odour reward association learning paradigms, characterising a temporal profile of Mdk protein expression post-learning. Both learning events revealed similar patterns of upregulation of expression of the protein in the rat hippocampal dentate gyrus, which were rapid and transient. Moreover, administration of recombinant Mdk during the endogenous Mdk upregulation following learning enhanced memory in the water maze task revealing a pro-cognitive action of Mdk. We further show that, within the adult hippocampus, Mdk mRNA is predominantly expressed in granular and pyramidal neurons and that hippocampal neuronal Mdk expression is regulated by the canonical plasticity-associated neurotransmitter glutamate. Finally, we confirm that the positive action of Mdk on neurite outgrowth previously noted in cortical and cerebellar neurons extends to hippocampal neurons. Together, our findings suggest a role for Mdk in glutamate-mediated hippocampal neuronal plasticity important for long-term memory consolidation.
Collapse
Affiliation(s)
- Sarah Abdulmalek
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Laura M Connole
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh C O'Sullivan
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Mercedes Beyna
- Inflammation Research Unit, Pfizer Worldwide Research & Development, Cambridge, Massachusetts, USA
| | | | - David von Schack
- Inflammation Research Unit, Pfizer Worldwide Research & Development, Cambridge, Massachusetts, USA
| | | | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Saito N, Itakura M, Sasaoka T. D1 Receptor Mediated Dopaminergic Neurotransmission Facilitates Remote Memory of Contextual Fear Conditioning. Front Behav Neurosci 2022; 16:751053. [PMID: 35309682 PMCID: PMC8925912 DOI: 10.3389/fnbeh.2022.751053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurotransmission via dopamine D1 receptors (D1Rs) is considered to play an important role not only in reward-based learning but also in aversive learning. The contextual and auditory cued fear conditioning tests involve the processing of classical fear conditioning and evaluates aversive learning memory. It is possible to evaluate aversive learning memory in two different types of neural transmission circuits. In addition, when evaluating the role of dopaminergic neurotransmission via D1R, to avoid the effects in D1R-mediated neural circuitry alterations during development, it is important to examine using mice who D1R expression in the mature stage is suppressed. Herein, we investigated the role of dopaminergic neurotransmission via D1Rs in aversive memory formation in contextual and auditory cued fear conditioning tests using D1R knockdown (KD) mice, in which the expression of D1Rs could be conditionally and reversibly controlled with doxycycline (Dox) treatment. For aversive memory, we examined memory formation using recent memory 1 day after conditioning, and remote memory 4 weeks after conditioning. Furthermore, immunostaining of the brain tissues of D1RKD mice was performed after aversive footshock stimulation to investigate the distribution of activated c-Fos, an immediate-early gene, in the hippocampus (CA1, CA3, dentate gyrus), striatum, amygdala, and prefrontal cortex during aversive memory formation. After aversive footshock stimulation, immunoblotting was performed using hippocampal, striatal, and amygdalar samples from D1RKD mice to investigate the increase in the amount of c-Fos and phosphorylated SNAP-25 at Ser187 residue. When D1R expression was suppressed using Dox, behavioral experiments revealed impaired contextual fear learning in remote aversion memory following footshock stimulation. Furthermore, expression analysis showed a slight increase in the post-stimulation amount of c-Fos in the hippocampus and striatum, and a significant increase in the amount of phosphorylated SNAP-25 in the hippocampus, striatum, and prefrontal cortex before and after stimulation. These findings indicate that deficiency in D1R-mediated dopaminergic neurotransmission is an important factor in impairing contextual fear memory formation for remote memory.
Collapse
Affiliation(s)
- Nae Saito
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Molecular and Cellular Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
- *Correspondence: Toshikuni Sasaoka,
| |
Collapse
|
3
|
Cuchillo-Ibañez I, Lennol MP, Escamilla S, Mata-Balaguer T, Valverde-Vozmediano L, Lopez-Font I, Ferrer I, Sáez-Valero J. The apolipoprotein receptor LRP3 compromises APP levels. Alzheimers Res Ther 2021; 13:181. [PMID: 34727970 PMCID: PMC8565065 DOI: 10.1186/s13195-021-00921-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Members of the low-density lipoprotein (LDL) receptor family are involved in endocytosis and in transducing signals, but also in amyloid precursor protein (APP) processing and β-amyloid secretion. ApoER2/LRP8 is a member of this family with key roles in synaptic plasticity in the adult brain. ApoER2 is cleaved after the binding of its ligand, the reelin protein, generating an intracellular domain (ApoER2-ICD) that modulates reelin gene transcription itself. We have analyzed whether ApoER2-ICD is able to regulate the expression of other LDL receptors, and we focused on LRP3, the most unknown member of this family. We analyzed LRP3 expression in middle-aged individuals (MA) and in cases with Alzheimer's disease (AD)-related pathology, and the relation of LRP3 with APP. METHODS The effects of full-length ApoER2 and ApoER2-ICD overexpression on protein levels, in the presence of recombinant reelin or Aβ42 peptide, were evaluated by microarray, qRT-PCRs, and western blots in SH-SY5Y cells. LRP3 expression was analyzed in human frontal cortex extracts from MA subjects (mean age 51.8±4.8 years) and AD-related pathology subjects [Braak neurofibrillary tangle stages I-II, 68.4±8.8 years; III-IV, 80.4 ± 8.8 years; V-VI, 76.5±9.7 years] by qRT-PCRs and western blot; LRP3 interaction with other proteins was assessed by immunoprecipitation. In CHO cells overexpressing LRP3, protein levels of full-length APP and fragments were evaluated by western blots. Chloroquine was employed to block the lysosomal/autophagy function. RESULTS We have identified that ApoER2 overexpression increases LRP3 expression, also after reelin stimulation of ApoER2 signaling. The same occurred following ApoER2-ICD overexpression. In extracts from subjects with AD-related pathology, the levels of LRP3 mRNA and protein were lower than those in MA subjects. Interestingly, LRP3 transfection in CHO-PS70 cells induced a decrease of full-length APP levels and APP-CTF, particularly in the membrane fraction. In cell supernatants, levels of APP fragments from the amyloidogenic (sAPPα) or non-amyloidogenic (sAPPβ) pathways, as well as Aβ peptides, were drastically reduced with respect to mock-transfected cells. The inhibitor of lysosomal/autophagy function, chloroquine, significantly increased full-length APP, APP-CTF, and sAPPα levels. CONCLUSIONS ApoER2/reelin signaling regulates LRP3 expression, whose levels are affected in AD; LRP3 is involved in the regulation of APP levels.
Collapse
Affiliation(s)
- Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| | - Matthew P Lennol
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sergio Escamilla
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Trinidad Mata-Balaguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lucía Valverde-Vozmediano
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Isidro Ferrer
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Neuropatología, Hospital Universitario de Bellvitge, Universidad de Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche-CSIC, Sant Joan d'Alacant, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
4
|
Buurstede JC, van Weert LTCM, Colucci P, Gentenaar M, Viho EMG, Koorneef LL, Schoonderwoerd RA, Lanooij SD, Moustakas I, Balog J, Mei H, Kielbasa SM, Campolongo P, Roozendaal B, Meijer OC. Hippocampal glucocorticoid target genes associated with enhancement of memory consolidation. Eur J Neurosci 2021; 55:2666-2683. [PMID: 33840130 PMCID: PMC9292385 DOI: 10.1111/ejn.15226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022]
Abstract
Glucocorticoids enhance memory consolidation of emotionally arousing events via largely unknown molecular mechanisms. This glucocorticoid effect on the consolidation process also requires central noradrenergic neurotransmission. The intracellular pathways of these two stress mediators converge on two transcription factors: the glucocorticoid receptor (GR) and phosphorylated cAMP response element‐binding protein (pCREB). We therefore investigated, in male rats, whether glucocorticoid effects on memory are associated with genomic interactions between the GR and pCREB in the hippocampus. In a two‐by‐two design, object exploration training or no training was combined with post‐training administration of a memory‐enhancing dose of corticosterone or vehicle. Genomic effects were studied by chromatin immunoprecipitation followed by sequencing (ChIP‐seq) of GR and pCREB 45 min after training and transcriptome analysis after 3 hr. Corticosterone administration induced differential GR DNA‐binding and regulation of target genes within the hippocampus, largely independent of training. Training alone did not result in long‐term memory nor did it affect GR or pCREB DNA‐binding and gene expression. No strong evidence was found for an interaction between GR and pCREB. Combination of the GR DNA‐binding and transcriptome data identified a set of novel, likely direct, GR target genes that are candidate mediators of corticosterone effects on memory consolidation. Cell‐specific expression of the identified target genes using single‐cell expression data suggests that the effects of corticosterone reflect in part non‐neuronal cells. Together, our data identified new GR targets associated with memory consolidation that reflect effects in both neuronal and non‐neuronal cells.
Collapse
Affiliation(s)
- Jacobus C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa T C M van Weert
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paola Colucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Max Gentenaar
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eva M G Viho
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin A Schoonderwoerd
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne D Lanooij
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Szymon M Kielbasa
- Department of Medical Statistics and Bioinformatics, Bioinformatics Center of Expertise, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Watts M, Williams G, Lu J, Nithianantharajah J, Claudianos C. MicroRNA-210 Regulates Dendritic Morphology and Behavioural Flexibility in Mice. Mol Neurobiol 2021; 58:1330-1344. [PMID: 33165828 DOI: 10.1007/s12035-020-02197-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023]
Abstract
MicroRNAs are known to be critical regulators of neuronal plasticity. The highly conserved, hypoxia-regulated microRNA-210 (miR-210) has been shown to be associated with long-term memory in invertebrates and dysregulated in neurodevelopmental and neurodegenerative disease models. However, the role of miR-210 in mammalian neuronal function and cognitive behaviour remains unexplored. Here we generated Nestin-cre-driven miR-210 neuronal knockout mice to characterise miR-210 regulation and function using in vitro and in vivo methods. We identified miR-210 localisation throughout neuronal somas and dendritic processes and increased levels of mature miR-210 in response to neural activity in vitro. Loss of miR-210 in neurons resulted in higher oxidative phosphorylation and ROS production following hypoxia and increased dendritic arbour density in hippocampal cultures. Additionally, miR-210 knockout mice displayed altered behavioural flexibility in rodent touchscreen tests, particularly during early reversal learning suggesting processes underlying updating of information and feedback were impacted. Our findings support a conserved, activity-dependent role for miR-210 in neuroplasticity and cognitive function.
Collapse
Affiliation(s)
- Michelle Watts
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gabrielle Williams
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jing Lu
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience & Mental Health, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Centre for Mental Health Research, The Australian National University, Canberra, ACT, 0200, Australia.
| |
Collapse
|
6
|
Huan Y, Wei J, Zhou J, Liu M, Yang J, Gao Y. Label-Free Liquid Chromatography-Mass Spectrometry Proteomic Analysis of the Urinary Proteome for Measuring the Escitalopram Treatment Response From Major Depressive Disorder. Front Psychiatry 2021; 12:700149. [PMID: 34658947 PMCID: PMC8514635 DOI: 10.3389/fpsyt.2021.700149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental disorder that can cause substantial impairments in quality of life. Clinical treatment is usually built on a trial-and-error method, which lasts ~12 weeks to evaluate whether the treatment is efficient, thereby leading to some inefficient treatment measures. Therefore, we intended to identify early candidate urine biomarkers to predict efficient treatment response in MDD patients. In this study, urine samples were collected twice from 19 respondent and 10 non-respondent MDD patients receiving 0-, 2-, and 12-week treatments with escitalopram. Differential urinary proteins were subsequently analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Our two pilot tests suggested that the urine proteome reflects changes associated with major depressive disorder at the early stage of treatment measures. On week 2, 20 differential proteins were identified in the response group compared with week 0, with 14 of these proteins being associated with the mechanisms of MDD. In the non-response group, 60 differential proteins were identified at week 2, with 28 of these proteins being associated with the mechanisms of MDD. In addition, differential urinary proteins at week 2 between the response and non-response groups can be clearly distinguished by using orthogonal projection on latent structure-discriminant analysis (OPLS-DA). Our small pilot tests indicated that the urine proteome can reflect early effects of escitalopram therapy between the response and non-response groups since at week 2, which may provide potential early candidate urine biomarkers to predict efficient treatment measures in MDD patients.
Collapse
Affiliation(s)
- Yuhang Huan
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| | - Jing Wei
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Min Liu
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Merino JJ, Muñetón-Gomez V, Muñetón-Gómez C, Pérez-Izquierdo MÁ, Loscertales M, Toledano Gasca A. Hippocampal CCR5/RANTES Elevations in a Rodent Model of Post-Traumatic Stress Disorder: Maraviroc (a CCR5 Antagonist) Increases Corticosterone Levels and Enhances Fear Memory Consolidation. Biomolecules 2020; 10:E212. [PMID: 32024104 PMCID: PMC7072246 DOI: 10.3390/biom10020212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Contextual fear conditioning (CFC) is a rodent model that induces a high and long-lasting level of conditioning associated with traumatic memory formation; this behavioral paradigm resembles many characteristics of posttraumatic stress disorder (PSTD). Chemokines (chemotactic cytokines) play a known role in neuronal migration and neurodegeneration but their role in cognition is not totally elucidated. AIM We ascertain whether CCR5/RANTES beta chemokines (hippocampus/prefrontal cortex) could play a role in fear memory consolidation (CFC paradigm). We also evaluated whether chronic stress restraint (21 days of restraint, 6-h/day) could regulate levels of these beta chemokines in CFC-trained rats; fear memory retention was determined taking the level of freezing (context and tone) by the animals as an index of fear memory consolidation 24 h after CFC training session; these chemokines (CCR5/RANTES) and IL-6 levels were measured in the hippocampus and prefrontal cortex of chronically stressed rats, 24 h after CFC post-training, and compared with undisturbed CFC-trained rats (Experiment 1). In Experiment 2, rats received 1 mA of footshock during the CFC training session and fear memory consolidation was evaluated at 12 and 24 h after CFC training sessions. We evaluated whether RANTES levels could be differentially regulated at 12 and 24 h after CFC training; in Experiment 3, maraviroc was administered to rats (i.m: 100 mg/Kg, a CCR5 antagonist) before CFC training. These rats were not subjected to chronic stress restraint. We evaluated whether CCR5 blockade before CFC training could increase corticosterone, RANTES, or IL-6 levels and affects fear memory consolidation in the rats 24-h post-testing compared with vehicle CFC-trained rats. RESULTS Elevations of CCR5/RANTES chemokine levels in the hippocampus could have contributed to fear memory consolidation (24 h post-training) and chronic stress restraint did not affect these chemokines in the hippocampus; there were no significant differences in CCR5/RANTES levels between stressed and control rats in the prefrontal cortex (Experiment 1). In Experiment 2, hippocampal CCR5/RANTES levels increased and enhanced fear memory consolidation was observed 12 and 24 h after CFC training sessions with 1 mA of footshock. Increased corticosterone and CCR5/RANTES levels, as well as a higher freezing percentage to the context, were found at 24 h CFC post-testing in maraviroc-treated rats as compared to vehicle-treated animals (experiment-3). Conversely, IL-6 is not affected by maraviroc treatment in CFC training. CONCLUSION Our findings suggest a role for a hippocampal CCR5/RANTES axis in contextual fear memory consolidation; in fact, RANTES levels increased at 12 and 24 h after CFC training. When CCR5 was blocked by maraviroc before CFC training, RANTES (hippocampus), corticosterone levels, and fear memory consolidation were greater than in vehicle CFC-trained rats 24 h after the CFC session.
Collapse
Affiliation(s)
- José Joaquín Merino
- Dpto. Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M). c/ Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Vilma Muñetón-Gomez
- Universidad de La Salle Center, Facultad de Ciencias Agropecuarias, Av. Carrera 7. # 179-03 (sede norte), Bogotá, Colombia; (V.M.-G.); (C.M.-G.)
| | - César Muñetón-Gómez
- Universidad de La Salle Center, Facultad de Ciencias Agropecuarias, Av. Carrera 7. # 179-03 (sede norte), Bogotá, Colombia; (V.M.-G.); (C.M.-G.)
| | | | - María Loscertales
- Harvard Medical School, MGH, Massachussets General Hospital, 185 Cambridge St, Boston, MA 02114, USA;
| | - Adolfo Toledano Gasca
- Department of Neuroanatomy, Instituto Cajal (CSIC), c/ Dr. Arce, 28.002 Madrid, Spain;
| |
Collapse
|
8
|
Wang S, Zhang J, Pan T. APOE ε4 is associated with higher levels of CSF SNAP-25 in prodromal Alzheimer's disease. Neurosci Lett 2018; 685:109-113. [PMID: 30144541 DOI: 10.1016/j.neulet.2018.08.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/12/2023]
Abstract
The underlying mechanism of apolipoprotein E ε4 (APOE ε4) in the pathogenesis of Alzheimer's disease (AD) remains elusive. We hypothesize that synaptic function is differentially affected by APOE isoforms. Levels of CSF SNAP-25 were compared between APOE ε4 carriers and noncarriers in 55 participants with normal cognition, 75 patients with mild cognitive impairment (MCI), and 16 patients with mild AD dementia. We investigated relationships between SNAP-25 levels and age, gender, education, CSF Aβ42, and tau protein. We found that levels of SNAP-25 in CSF were substantially greater in APOE ε4 carriers compared to noncarriers with MCI. There was no significant difference in SNAP-25 levels between APOE ε4 carriers and noncarriers with normal cognition or AD. CSF SNAP-25 levels were associated with MMSE and CSF Aβ and tau levels. In summary, APOE ε4 may affect CSF SNAP levels in MCI patients, suggesting an important role of APOE ε4 in synaptic dysfunction leading to AD.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China
| | - Jie Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Tengwei Pan
- Department of Neurology, Taizhou Hospital, Wenzhou Medical University, Zhejiang, China.
| | | |
Collapse
|
9
|
Watts ME, Pocock R, Claudianos C. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease. Front Mol Neurosci 2018; 11:216. [PMID: 29988368 PMCID: PMC6023993 DOI: 10.3389/fnmol.2018.00216] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Dynamic metabolic changes occurring in neurons are critically important in directing brain plasticity and cognitive function. In other tissue types, disruptions to metabolism and the resultant changes in cellular oxidative state, such as increased reactive oxygen species (ROS) or induction of hypoxia, are associated with cellular stress. In the brain however, where drastic metabolic shifts occur to support physiological processes, subsequent changes to cellular oxidative state and induction of transcriptional sensors of oxidative stress likely play a significant role in regulating physiological neuronal function. Understanding the role of metabolism and metabolically-regulated genes in neuronal function will be critical in elucidating how cognitive functions are disrupted in pathological conditions where neuronal metabolism is affected. Here, we discuss known mechanisms regulating neuronal metabolism as well as the role of hypoxia and oxidative stress during normal and disrupted neuronal function. We also summarize recent studies implicating a role for metabolism in regulating neuronal plasticity as an emerging neuroscience paradigm.
Collapse
Affiliation(s)
- Michelle E Watts
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia.,Centre for Mental Health Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
10
|
Kerfoot EC, Williams CL. Contributions of the Nucleus Accumbens Shell in Mediating the Enhancement in Memory Following Noradrenergic Activation of Either the Amygdala or Hippocampus. Front Pharmacol 2018; 9:47. [PMID: 29472857 PMCID: PMC5810250 DOI: 10.3389/fphar.2018.00047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022] Open
Abstract
The nucleus accumbens shell is a site of converging inputs during memory processing for emotional events. The accumbens receives input from the nucleus of the solitary tract (NTS) regarding changes in peripheral autonomic functioning following emotional arousal. The shell also receives input from the amygdala and hippocampus regarding affective and contextual attributes of new learning experiences. The successful encoding of affect or context is facilitated by activating noradrenergic systems in either the amygdala or hippocampus. Recent findings indicate that memory enhancement produced by activating NTS neurons, is attenuated by suppressing accumbens functioning after learning. This finding illustrates the significance of the shell in integrating information from the periphery to modulate memory for arousing events. However, it is not known if the accumbens shell plays an equally important role in consolidating information that is initially processed in the amygdala and hippocampus. The present study determined if the convergence of inputs from these limbic regions within the nucleus accumbens contributes to successful encoding of emotional events into memory. Male Sprague-Dawley rats received bilateral cannula implants 2 mm above the accumbens shell and a second bilateral implant 2 mm above either the amygdala or hippocampus. The subjects were trained for 6 days to drink from a water spout. On day 7, a 0.35 mA footshock was initiated as the rat approached the spout and was terminated once the rat escaped into a white compartment. Subjects were then given intra-amygdala or hippocampal infusions of PBS or a dose of norepinephrine (0.2 μg) previously shown to enhance memory. Later, all subjects were given intra-accumbens infusion of muscimol to functionally inactivate the shell. Muscimol inactivation of the accumbens shell was delayed to allow sufficient time for norepinephrine to activate intracellular cascades that lead to long-term synaptic modifications involved in forming new memories. Results show that memory improvement produced by infusing norepinephrine in either the amygdala or hippocampus is attenuated by interrupting neuronal activity in the shell 1 or 7 7 h following amygdala or hippocampus activation. These findings suggest that the accumbens shell plays an integral role modulating information initially processed by the amygdala and hippocampus following exposure to emotionally arousing events. Additionally, results demonstrate that the accumbens is involved in the long-term consolidation processes lasting over 7 h.
Collapse
Affiliation(s)
- Erin C Kerfoot
- Division of Neuroscience and Behavior, Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Cedric L Williams
- Division of Neuroscience and Behavior, Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
11
|
Barry DN, Commins S. Temporal dynamics of immediate early gene expression during cellular consolidation of spatial memory. Behav Brain Res 2017; 327:44-53. [DOI: 10.1016/j.bbr.2017.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 01/05/2023]
|
12
|
Hertler B, Buitrago M, Luft A, Hosp J. Temporal course of gene expression during motor memory formation in primary motor cortex of rats. Neurobiol Learn Mem 2016; 136:105-115. [DOI: 10.1016/j.nlm.2016.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/19/2016] [Accepted: 09/25/2016] [Indexed: 12/01/2022]
|
13
|
Aravamudan B, Thompson MA, Pabelick CM, Prakash YS. Mechanisms of BDNF regulation in asthmatic airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2016; 311:L270-9. [PMID: 27317689 DOI: 10.1152/ajplung.00414.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/09/2016] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin produced by airway smooth muscle (ASM), enhances inflammation effects on airway contractility, supporting the idea that locally produced growth factors influence airway diseases such as asthma. We endeavored to dissect intrinsic mechanisms regulating endogenous, as well as inflammation (TNF-α)-induced BDNF secretion in ASM of nonasthmatic vs. asthmatic humans. We focused on specific Ca(2+) regulation- and inflammation-related signaling cascades and quantified BDNF secretion. We find that TNF-α enhances BDNF release by ASM cells, via several mechanisms relevant to asthma, including transient receptor potential channels TRPC3 and TRPC6 (but not TRPC1), ERK 1/2, PI3K, PLC, and PKC cascades, Rho kinase, and transcription factors cAMP response element binding protein and nuclear factor of activated T cells. Basal BDNF expression and secretion are elevated in asthmatic ASM and increase further with TNF-α exposure, involving many of these regulatory mechanisms. We conclude that airway BDNF secretion is regulated at multiple levels, providing a basis for autocrine effects of BDNF under conditions of inflammation and disease, with potential downstream influences on contractility and remodeling.
Collapse
Affiliation(s)
| | | | - Christina M Pabelick
- Departments of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Departments of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Borovok N, Nesher E, Levin Y, Reichenstein M, Pinhasov A, Michaelevski I. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation. Mol Cell Proteomics 2015; 15:523-41. [PMID: 26598641 DOI: 10.1074/mcp.m115.051318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams.
Collapse
Affiliation(s)
- Natalia Borovok
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Elimelech Nesher
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Yishai Levin
- ¶de Botton Institute for Protein Profiling, The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Reichenstein
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Albert Pinhasov
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Izhak Michaelevski
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel; ‖Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
15
|
Beheshti S, Shahrokhi S. Blocking the ghrelin receptor type 1a in the rat brain impairs memory encoding. Neuropeptides 2015; 52:97-102. [PMID: 26072187 DOI: 10.1016/j.npep.2015.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/17/2022]
Abstract
Studies have shown that intracerebral administration of ghrelin hormone affects learning and memory in different experimental models of learning. However, the effect of antagonism of ghrelin receptor type 1a (GHS-R1a) on different stages of learning has not been investigated. In this study the effect of intracerebroventricular (i.c.v) injection of a GHS-R1a selective antagonist (d-Lys-3-GHRP-6) was examined on acquisition and consolidation of learning in the passive avoidance task. In total, 72 male Wistar rats weighing 230-280g were randomly distributed into 9 groups of 8 each. Animals underwent stereotaxic surgery and cannulated in their right ventricle. One week after surgery, the rats received different doses of d-Lys-3-GHRP-6 (0.2, 2, 20 and 80nM/5μl; i.c.v) 10min before, or (2, 20 and 80nM/5μl; i.c.v) immediately after training. The control groups received solvent of the drug. Twenty four hours later in the test day, memory retrieval was assessed. Pre-training injection of d-Lys-3-GHRP-6 decreased step-through latency (STL) and increased number of step-throughs into the dark compartment (NST) in a dose-dependent manner, but failed to be statistically significant. It also increased time spent in the dark compartment (TDC), significantly and in a dose-dependent manner. Post-training injection of d-Lys-3-GHRP-6 decreased step-through latency and increased time spent in the dark compartment and number of step-throughs into the dark compartment, significantly and in a dose-dependent manner. The results indicate that antagonism of the GHS-R1a in the rat brain impairs memory encoding on both acquisition and consolidation stages. Further studies are required to elucidate the main brain regions affected by the antagonist.
Collapse
Affiliation(s)
- Siamak Beheshti
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Shahrzad Shahrokhi
- Division of Animal Sciences, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
16
|
Hippocampal dynamics of synaptic NF-kappa B during inhibitory avoidance long-term memory consolidation in mice. Neuroscience 2015; 291:70-80. [DOI: 10.1016/j.neuroscience.2015.01.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 11/22/2022]
|
17
|
Lorivel T, Gandin C, Veyssière J, Lazdunski M, Heurteaux C. Positive effects of the traditional Chinese medicine MLC901 in cognitive tasks. J Neurosci Res 2015; 93:1648-63. [PMID: 25821139 PMCID: PMC6681465 DOI: 10.1002/jnr.23591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/29/2015] [Accepted: 03/05/2015] [Indexed: 12/22/2022]
Abstract
MLC901 (NurAiDII) is used as a treatment for stroke patients. It has been shown that MLC901 improves motor and cognitive recovery in ischemic and traumatic brain‐injured rodents. The present study seeks to delineate cognitive effects induced by MLC901 in normal, noninjured mice. To this end, the behaviors of vehicle‐ and MLC901‐treated C57BL/6 mice in hippocampus‐dependent (passive avoidance, Morris water maze) and hippocampus‐independent (novel object recognition) cognitive tasks are compared. The potential influence of the compound on the anxiety level and nycthemeral rhythm of mice is also assessed. In addition, the long‐term effects of MLC901 on hippocampal neurogenesis are measured. The results clearly demonstrate that MLC901 promotes extinction in passive avoidance and reversal learning in the Morris water maze and improves the performance of mice in novel object recognition. In parallel, this study shows the long‐term proneurogenesis effects of MLC901 that result in the increase in the number of mature neurons in the hippocampus. If these observations can be extended to humans, then MLC901 could represent a promising therapeutic strategy. © 2015 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- T Lorivel
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - C Gandin
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - J Veyssière
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - M Lazdunski
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| | - C Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS UMR7275), Université de Nice Sophia Antipolis, Valbonne, France
| |
Collapse
|
18
|
Lin YC, Balakrishnan CN, Clayton DF. Functional genomic analysis and neuroanatomical localization of miR-2954, a song-responsive sex-linked microRNA in the zebra finch. Front Neurosci 2014; 8:409. [PMID: 25565940 PMCID: PMC4267206 DOI: 10.3389/fnins.2014.00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/23/2014] [Indexed: 01/12/2023] Open
Abstract
Natural experience can cause complex changes in gene expression in brain centers for cognition and perception, but the mechanisms that link perceptual experience and neurogenomic regulation are not understood. MicroRNAs (miRNAs or miRs) have the potential to regulate large gene expression networks, and a previous study showed that a natural perceptual stimulus (hearing the sound of birdsong in zebra finches) triggers rapid changes in expression of several miRs in the auditory forebrain. Here we evaluate the functional potential of one of these, miR-2954, which has been found so far only in birds and is encoded on the Z sex chromosome. Using fluorescence in situ hybridization and immunohistochemistry, we show that miR-2954 is present in subsets of cells in the sexually dimorphic brain regions involved in song production and perception, with notable enrichment in cell nuclei. We then probe its regulatory function by inhibiting its expression in a zebra finch cell line (G266) and measuring effects on endogenous gene expression using Illumina RNA sequencing (RNA-seq). Approximately 1000 different mRNAs change in expression by 1.5-fold or more (adjusted p < 0.01), with increases in some but not all of the targets that had been predicted by Targetscan. The population of RNAs that increase after miR-2954 inhibition is notably enriched for ones involved in the MAP Kinase (MAPK) pathway, whereas the decreasing population is dominated by genes involved in ribosomes and mitochondrial function. Since song stimulation itself triggers a decrease in miR-2954 expression followed by a delayed decrease in genes encoding ribosomal and mitochondrial functions, we suggest that miR-2954 may mediate some of the neurogenomic effects of song habituation.
Collapse
Affiliation(s)
- Ya-Chi Lin
- Genomics of Neural and Behavioral Plasticity Theme, Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA ; Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, IL, USA
| | | | - David F Clayton
- Genomics of Neural and Behavioral Plasticity Theme, Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA ; Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, IL, USA ; Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| |
Collapse
|
19
|
Sheridan GK, Moeendarbary E, Pickering M, O'Connor JJ, Murphy KJ. Theta-burst stimulation of hippocampal slices induces network-level calcium oscillations and activates analogous gene transcription to spatial learning. PLoS One 2014; 9:e100546. [PMID: 24950243 PMCID: PMC4065069 DOI: 10.1371/journal.pone.0100546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/28/2014] [Indexed: 01/24/2023] Open
Abstract
Over four decades ago, it was discovered that high-frequency stimulation of the dentate gyrus induces long-term potentiation (LTP) of synaptic transmission. LTP is believed to underlie how we process and code external stimuli before converting it to salient information that we store as 'memories'. It has been shown that rats performing spatial learning tasks display theta-frequency (3–12 Hz) hippocampal neural activity. Moreover, administering theta-burst stimulation (TBS) to hippocampal slices can induce LTP. TBS triggers a sustained rise in intracellular calcium [Ca2+]i in neurons leading to new protein synthesis important for LTP maintenance. In this study, we measured TBS-induced [Ca2+]i oscillations in thousands of cells at increasing distances from the source of stimulation. Following TBS, a calcium wave propagates radially with an average speed of 5.2 µm/s and triggers multiple and regular [Ca2+]i oscillations in the hippocampus. Interestingly, the number and frequency of [Ca2+]i fluctuations post-TBS increased with respect to distance from the electrode. During the post-tetanic phase, 18% of cells exhibited 3 peaks in [Ca2+]i with a frequency of 17 mHz, whereas 2.3% of cells distributed further from the electrode displayed 8 [Ca2+]i oscillations at 33 mHz. We suggest that these observed [Ca2+]i oscillations could lead to activation of transcription factors involved in synaptic plasticity. In particular, the transcription factor, NF-κB, has been implicated in memory formation and is up-regulated after LTP induction. We measured increased activation of NF-κB 30 min post-TBS in CA1 pyramidal cells and also observed similar temporal up-regulation of NF-κB levels in CA1 neurons following water maze training in rats. Therefore, TBS of hippocampal slice cultures in vitro can mimic the cell type-specific up-regulations in activated NF-κB following spatial learning in vivo. This indicates that TBS may induce similar transcriptional changes to spatial learning and that TBS-triggered [Ca2+]i oscillations could activate memory-associated gene expression.
Collapse
Affiliation(s)
- Graham K. Sheridan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | | | - Mark Pickering
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - John J. O'Connor
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Keith J. Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
The neuronal activity-driven transcriptome. Mol Neurobiol 2014; 51:1071-88. [PMID: 24935719 DOI: 10.1007/s12035-014-8772-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/01/2014] [Indexed: 10/25/2022]
Abstract
Activity-driven transcription is a key event associated with long-lasting forms of neuronal plasticity. Despite the efforts to investigate the regulatory mechanisms that control this complex process and the important advances in the knowledge of the function of many activity-induced genes in neurons, as well as the specific contribution of activity-regulated transcription factors, our understanding of how activity-driven transcription operates at the systems biology level is still very limited. This review focuses on the research of neuronal activity-driven transcription from an "omics" perspective. We will discuss the different high-throughput approaches undertaken to characterize the gene programs downstream of specific activity-regulated transcription factors, including CREB, SRF, MeCP2, Fos, Npas4, and others, and the interplay between epigenetic and transcriptional mechanisms underlying neuronal plasticity changes. Although basic questions remain unanswered and important challenges still lie ahead, the refinement of genome-wide techniques for investigating the neuronal transcriptome and epigenome promises great advances.
Collapse
|
21
|
Salles A, Romano A, Freudenthal R. Synaptic NF-kappa B pathway in neuronal plasticity and memory. ACTA ACUST UNITED AC 2014; 108:256-62. [PMID: 24854662 DOI: 10.1016/j.jphysparis.2014.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/14/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
Several transcription factors are present at the synapse, and among these are the Rel-NF-kappa B pathway components. NF-kappa B is a constitutive transcription factor, with a strong presence in the brain of which a considerable part is located in the neuropiles. This localization of the transcription factor, plus evidence pointing to different functions, is what gave place to two general hypotheses for synaptic NF-kappa B: (a) The transcription factor plays a role in the synapse to nucleus communication, and it is retrogradely transported from polarized localizations to regulate gene expression; (b) The transcription factor modulates the synaptic function locally. Evidence indicates that both mechanisms can operate simultaneously; here we will present different possibilities of these hypotheses that are supported by an increasing amount of data. We pay special attention to the local role of the transcription factor at the synapse, and based in the described evidence from different animal models, we propose several processes in which the transcription factor may change the synaptic strength.
Collapse
Affiliation(s)
- Angeles Salles
- Laboratorio de Neurobiología de la Memoria, FBMC, FCEyN, UBA, IFIBYNE, CONICET, 2°piso, pabellón II, Intendente Güiraldez 2160, Ciudad Universitaria, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Arturo Romano
- Laboratorio de Neurobiología de la Memoria, FBMC, FCEyN, UBA, IFIBYNE, CONICET, 2°piso, pabellón II, Intendente Güiraldez 2160, Ciudad Universitaria, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ramiro Freudenthal
- Laboratorio de Neurobiología de la Memoria, FBMC, FCEyN, UBA, IFIBYNE, CONICET, 2°piso, pabellón II, Intendente Güiraldez 2160, Ciudad Universitaria, CP 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
22
|
Roles for NF-κB and gene targets of NF-κB in synaptic plasticity, memory, and navigation. Mol Neurobiol 2013; 49:757-70. [PMID: 24122352 DOI: 10.1007/s12035-013-8555-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/19/2013] [Indexed: 01/04/2023]
Abstract
Although traditionally associated with immune function, the transcription factor nuclear factor kappa B (NF-κB) has garnered much attention in recent years as an important regulator of memory. Specifically, research has found that NF-κB, localized in both neurons and glia, is activated during the induction of long-term potentiation (LTP), a paradigm of synaptic plasticity and correlate of memory. Further, experimental manipulation of NF-κB activation or its blockade results in altered memory and spatial navigation abilities. Genetic knockout of specific NF-κB subunits in mice results in memory alterations. Collectively, such data suggest that NF-κB may be a requirement for memory, although the direction of the response (i.e., memory enhancement or deficit) is inconsistent. A limited number of gene targets of NF-κB have been recently identified in neurons, including neurotrophic factors, calcium-regulating proteins, other transcription factors, and molecules associated with neuronal outgrowth and remodeling. In turn, several key molecules are activators of NF-κB, including protein kinase C and [Ca(++)]i. Thus, NF-κB signaling is complex and under the regulation of numerous proteins involved in activity-dependent synaptic plasticity. The purpose of this review is to highlight the literature detailing a role for NF-κB in synaptic plasticity, memory, and spatial navigation. Secondly, this review will synthesize the research evaluating gene targets of NF-κB in synaptic plasticity and memory. Although there is ample evidence to suggest a critical role for NF-κB in memory, our understanding of its gene targets in neurons is limited and only beginning to be appreciated.
Collapse
|
23
|
Fantin M, van der Kooij MA, Grosse J, Krummenacher C, Sandi C. A key role for nectin-1 in the ventral hippocampus in contextual fear memory. PLoS One 2013; 8:e56897. [PMID: 23418609 PMCID: PMC3572046 DOI: 10.1371/journal.pone.0056897] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/15/2013] [Indexed: 01/25/2023] Open
Abstract
Nectins are cell adhesion molecules that are widely expressed in the brain. Nectin expression shows a dynamic spatiotemporal regulation, playing a role in neural migratory processes during development. Nectin-1 and nectin-3 and their heterophilic trans-interactions are important for the proper formation of synapses. In the hippocampus, nectin-1 and nectin-3 localize at puncta adherentia junctions and may play a role in synaptic plasticity, a mechanism essential for memory and learning. We evaluated the potential involvement of nectin-1 and nectin-3 in memory consolidation using an emotional learning paradigm. Rats trained for contextual fear conditioning showed transient nectin-1—but not nectin-3—protein upregulation in synapse-enriched hippocampal fractions at about 2 h posttraining. The upregulation of nectin-1 was found exclusively in the ventral hippocampus and was apparent in the synaptoneurosomal fraction. This upregulation was induced by contextual fear conditioning but not by exposure to context or shock alone. When an antibody against nectin-1, R165, was infused in the ventral-hippocampus immediately after training, contextual fear memory was impaired. However, treatment with the antibody in the dorsal hippocampus had no effect in contextual fear memory formation. Similarly, treatment with the antibody in the ventral hippocampus did not interfere with acoustic memory formation. Further control experiments indicated that the effects of ventral hippocampal infusion of the nectin-1 antibody in contextual fear memory cannot be ascribed to memory non-specific effects such as changes in anxiety-like behavior or locomotor behavior. Therefore, we conclude that nectin-1 recruitment to the perisynaptic environment in the ventral hippocampus plays an important role in the formation of contextual fear memories. Our results suggest that these mechanisms could be involved in the connection of emotional and contextual information processed in the amygdala and dorsal hippocampus, respectively, thus opening new venues for the development of treatments to psychopathological alterations linked to impaired contextualization of emotions.
Collapse
Affiliation(s)
- Martina Fantin
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Michael A. van der Kooij
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Jocelyn Grosse
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Claude Krummenacher
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Borlikova GG, Trejo M, Mably AJ, Mc Donald JM, Sala Frigerio C, Regan CM, Murphy KJ, Masliah E, Walsh DM. Alzheimer brain-derived amyloid β-protein impairs synaptic remodeling and memory consolidation. Neurobiol Aging 2012. [PMID: 23182244 DOI: 10.1016/j.neurobiolaging.2012.10.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aggregation of the amyloid β-protein (Aβ) is believed to play a central role in initiating the molecular cascade that culminates in Alzheimer-type dementia (AD), a disease which in its early stage is characterized by synaptic loss and impairment of episodic memory. Here we show that intracerebroventricular injection of Aβ-containing water-soluble extracts of AD brain inhibits consolidation of the memory of avoidance learning in the rat and that this effect is highly dependent on the interval between learning and administration. When injected at 1 hour post training extracts from 2 different AD brains significantly impaired recall tested at 48 hours. Ultrastructural examination of hippocampi from animals perfused after 48 hours revealed that Aβ-mediated impairment of avoidance memory was associated with lower density of synapses and altered synaptic structure in the dentate gyrus and CA1 fields. These behavioral and ultrastructural data suggest that human brain-derived Aβ impairs formation of long-term memory by compromising the structural plasticity essential for consolidation and that Aβ targets processes initiated very early in the consolidation pathway.
Collapse
Affiliation(s)
- Gilyana G Borlikova
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Republic of Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Monopoli MP, Raghnaill MN, Loscher JS, O'Sullivan NC, Pangalos MN, Ring RH, von Schack D, Dunn MJ, Regan CM, Pennington S, Murphy KJ. Temporal proteomic profile of memory consolidation in the rat hippocampal dentate gyrus. Proteomics 2011; 11:4189-201. [DOI: 10.1002/pmic.201100072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/21/2011] [Accepted: 08/04/2011] [Indexed: 11/06/2022]
|
26
|
Expression, phosphorylation, and glycosylation of CNS proteins in aversive operant conditioning associated memory in Lymnaea stagnalis. Neuroscience 2011; 186:94-109. [DOI: 10.1016/j.neuroscience.2011.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 11/18/2022]
|
27
|
A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis. J Neurosci 2011; 31:5414-25. [PMID: 21471377 DOI: 10.1523/jneurosci.2456-10.2011] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural plasticity of dendritic spines and synapses is a fundamental mechanism governing neuronal circuits and may form an enduring basis for information storage in the brain. We find that the p65 subunit of the nuclear factor-κB (NF-κB) transcription factor, which is required for learning and memory, controls excitatory synapse and dendritic spine formation and morphology in murine hippocampal neurons. Endogenous NF-κB activity is elevated by excitatory transmission during periods of rapid spine and synapse development. During in vitro synaptogenesis, NF-κB enhances dendritic spine and excitatory synapse density and loss of endogenous p65 decreases spine density and spine head volume. Cell-autonomous function of NF-κB within the postsynaptic neuron is sufficient to regulate the formation of both presynaptic and postsynaptic elements. During synapse development in vivo, loss of NF-κB similarly reduces spine density and also diminishes the amplitude of synaptic responses. In contrast, after developmental synaptogenesis has plateaued, endogenous NF-κB activity is low and p65 deficiency no longer attenuates basal spine density. Instead, NF-κB in mature neurons is activated by stimuli that induce demand for new synapses, including estrogen and short-term bicuculline, and is essential for upregulating spine density in response to these stimuli. p65 is enriched in dendritic spines making local protein-protein interactions possible; however, the effects of NF-κB on spine density require transcription and the NF-κB-dependent regulation of PSD-95, a critical postsynaptic component. Collectively, our data define a distinct role for NF-κB in imparting transcriptional regulation required for the induction of changes to, but not maintenance of, excitatory synapse and spine density.
Collapse
|
28
|
Paban V, Chambon C, Farioli F, Alescio-Lautier B. Gene regulation in the rat prefrontal cortex after learning with or without cholinergic insult. Neurobiol Learn Mem 2011; 95:441-52. [PMID: 21345373 DOI: 10.1016/j.nlm.2011.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/25/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
The prefrontal cortex is essential for a wide variety of higher functions, including attention and memory. Cholinergic neurons are thought to be of prime importance in the modulation of these processes. Degeneration of forebrain cholinergic neurons has been linked to several neurological disorders. The present study was designed to identify genes and networks in rat prefrontal cortex that are associated with learning and cholinergic-loss-memory deficit. Affymetrix microarray technology was used to screen gene expression changes in rats submitted or not to 192 IgG-saporin immunolesion of cholinergic basal forebrain and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes, which were organized in several clusters of highly correlated genes and would be involved in biological processes such as intracellular signaling process, transcription regulation, and filament organization and axon guidance. Memory loss following cortical cholinergic deafferentation was associated with significant expression of genes belonging to only one clearly delineated cluster and would be involved in biological processes related to cytoskeleton organization and proliferation, and glial and vascular remodeling, i.e., in processes associated with brain repair after injury.
Collapse
Affiliation(s)
- Véronique Paban
- Université d'Aix-Marseille I, Laboratoire de Neurosciences Intégratives et Adaptatives, UMR/CNRS 6149, 3 Place Victor Hugo, 13331 Marseille Cedex 03, France.
| | | | | | | |
Collapse
|
29
|
Chengzhi C, Yan T, Shuqun C, Xuejun J, Youbin Q, Yinyin X, Qian T, Baijie T. New candidate proteins for Benzo(a)pyrene-induced spatial learning and memory deficits. J Toxicol Sci 2011; 36:163-71. [DOI: 10.2131/jts.36.163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Chen Chengzhi
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Tang Yan
- Department of Occupational and Environmental Medicine, School of Public Health, Luzhou Medical College
| | - Cheng Shuqun
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Jiang Xuejun
- Department of Environmental Health, West China School of Public Health
| | - Qi Youbin
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Xia Yinyin
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Tang Qian
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| | - Tu Baijie
- Department of Occupational and Environmental Medicine, School of Public Health, Chongqing Medical University
| |
Collapse
|
30
|
Fustiñana MS, Ariel P, Federman N, Freudenthal R, Romano A. Characterization of the beta amyloid precursor protein-like gene in the central nervous system of the crab Chasmagnathus. Expression during memory consolidation. BMC Neurosci 2010; 11:109. [PMID: 20809979 PMCID: PMC2940927 DOI: 10.1186/1471-2202-11-109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/01/2010] [Indexed: 11/24/2022] Open
Abstract
Background Human β-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the β-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. Results Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl), showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels Conclusions cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.
Collapse
Affiliation(s)
- Maria Sol Fustiñana
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE, CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
31
|
Gene expression profile in rat hippocampus with and without memory deficit. Neurobiol Learn Mem 2010; 94:42-56. [PMID: 20359541 DOI: 10.1016/j.nlm.2010.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/08/2010] [Accepted: 03/25/2010] [Indexed: 01/22/2023]
Abstract
The cholinergic neuronal system, through its projections to the hippocampus, plays an important role in learning and memory. The aim of the study was to identify genes and networks in rat hippocampus with and without memory deficit. Genome-scale screening was used to analyze gene expression changes in rats submitted or not to intraparenchymal injection of 192 IgG-saporin and trained in spatial/object novelty tasks. Results showed learning processes were associated with significant expression of genes that could be grouped into several clusters of similar expression profiles and that are involved in biological functions, namely lipid metabolism, signal transduction, protein metabolism and modification, and transcription regulation. Memory loss following hippocampal cholinergic deafferentation was associated with significant expression of genes that did not show similar cluster organization. Only one cluster of genes could be identified; it included genes that would be involved in tissue remodeling. More important, most of the genes significantly altered in lesioned rats were down-regulated.
Collapse
|
32
|
McKee AG, Loscher JS, O'Sullivan NC, Chadderton N, Palfi A, Batti L, Sheridan GK, O'Shea S, Moran M, McCabe O, Fernández AB, Pangalos MN, O'Connor JJ, Regan CM, O'Connor WT, Humphries P, Farrar GJ, Murphy KJ. AAV-mediated chronic over-expression of SNAP-25 in adult rat dorsal hippocampus impairs memory-associated synaptic plasticity. J Neurochem 2009; 112:991-1004. [PMID: 20002519 DOI: 10.1111/j.1471-4159.2009.06516.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long-term memory is formed by alterations in glutamate-dependent excitatory synaptic transmission, which is in turn regulated by synaptosomal protein of 25 kDa (SNAP-25), a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex essential for exocytosis of neurotransmitter-filled synaptic vesicles. Both reduced and excessive SNAP-25 activity has been implicated in various disease states that involve cognitive dysfunctions such as attention deficit hyperactivity disorder, schizophrenia and Alzheimer's disease. Here, we over-express SNAP-25 in the adult rat dorsal hippocampus by infusion of a recombinant adeno-associated virus vector, to evaluate the consequence of late adolescent-adult dysfunction of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein in the absence of developmental disruption. We report a specific and significant increase in the levels of extracellular glutamate detectable by microdialysis and a reduction in paired-pulse facilitation in the hippocampus. In addition, SNAP-25 over-expression produced cognitive deficits, delaying acquisition of a spatial map in the water maze and impairing contextual fear conditioning, both tasks known to be dorsal hippocampal dependent. The high background transmission state and pre-synaptic dysfunction likely result in interference with requisite synapse selection during spatial and fear memory consolidation. Together these studies provide the first evidence that excess SNAP-25 activity, restricted to the adult period, is sufficient to mediate significant deficits in the memory formation process.
Collapse
Affiliation(s)
- Alex G McKee
- Applied Neurotherapeutics Research Group, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O'Sullivan NC, Croydon L, McGettigan PA, Pickering M, Murphy KJ. Hippocampal region-specific regulation of NF-kappaB may contribute to learning-associated synaptic reorganisation. Brain Res Bull 2009; 81:385-90. [PMID: 19909798 DOI: 10.1016/j.brainresbull.2009.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 02/08/2023]
Abstract
Activity of the transcription factor NF-kappaB is required for memory formation, but the identity and function of the genes it may regulate in this context remain obscure. Here, we comprehensively characterise NF-kappaB throughout the rat hippocampus following passive avoidance training and report significant subregion-specific increased activity across the dorsoventral axis 3h post-learning. Moreover, putative NF-kappaB binding motifs predominated in structural genes previously shown to regulate 3h following avoidance conditioning, the protein products of which may be involved in the subsequent synaptic remodelling required for consolidation. Finally, we assessed the influence of NF-kappaB-mediated transcription on neuritic structure and report that inhibition of NF-kappaB significantly decreases growth and branching of primary hippocampal neurons. These results suggest that NF-kappaB activity following hippocampal learning may contribute to consolidation-associated synaptic reorganisation.
Collapse
Affiliation(s)
- Niamh C O'Sullivan
- Applied Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
34
|
Foley AG, Prendergast A, Barry C, Scully D, Upton N, Medhurst AD, Regan CM. H3 receptor antagonism enhances NCAM PSA-mediated plasticity and improves memory consolidation in odor discrimination and delayed match-to-position paradigms. Neuropsychopharmacology 2009; 34:2585-600. [PMID: 19657331 DOI: 10.1038/npp.2009.89] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To further understand the procognitive actions of GSK189254, a histamine H(3) receptor antagonist, we determined its influence on the modulation of hippocampal neural cell adhesion molecule (NCAM) polysialylation (PSA) state, a necessary neuroplastic mechanism for learning and memory consolidation. A 4-day treatment with GSK189254 significantly increased basal expression of dentate polysialylated cells in rats with the maximal effect being observed at 0.03-0.3 mg/kg. At the optimal dose (0.3 mg/kg), GSK189254 enhanced water maze learning and the associated transient increase in NCAM-polysialylated cells. The increase in dentate polysialylated cell frequency induced by GSK189254 was not attributable to enhanced neurogenesis, although it did induce a small, but significant, increase in the survival of these newborn cells. GSK189254 (0.3 mg/kg) was without effect on polysialylated cell frequency in the entorhinal and perirhinal cortex, but significantly increased the diffuse PSA staining observed in the anterior, ventromedial, and dorsomedial aspects of the hypothalamus. Consistent with its ability to enhance the learning-associated, post-training increases in NCAM PSA state, GSK189254 (0.3 mg/kg) reversed the amnesia induced by scopolamine given in the 6-h post-training period after training in an odor discrimination paradigm. Moreover, GSK189254 significantly improved the performance accuracy of a delayed match-to-position paradigm, a task dependent on the prefrontal cortex and degree of cortical arousal, the latter may be related to enhanced NCAM PSA-associated plasticity in the hypothalamus. The procognitive actions of H3 antagonism combined with increased NCAM PSA expression may exert a disease-modifying action in conditions harboring fundamental deficits in NCAM-mediated neuroplasticity, such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Andrew G Foley
- Berand Neuropharmacology, NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
35
|
Discrete molecular states in the brain accompany changing responses to a vocal signal. Proc Natl Acad Sci U S A 2009; 106:11364-9. [PMID: 19541599 DOI: 10.1073/pnas.0812998106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
New experiences can trigger changes in gene expression in the brain. To understand this phenomenon better, we studied zebra finches hearing playbacks of birdsong. Earlier research had shown that initial playbacks of a novel song transiently increase the ZENK (ZIF-268, EGR1, NGFIA, KROX-24) mRNA in the auditory forebrain, but the response selectively habituates after repetition of the stimulus. Here, using DNA microarray analysis, we show that novel song exposure induces rapid changes in thousands of RNAs, with even more RNAs decreasing than increasing. Habituation training leads to the emergence of a different gene expression profile a day later, accompanied by loss of essentially all of the rapid "novel" molecular responses. The novel molecular profile is characterized by increases in genes involved in transcription and RNA processing and decreases in ion channels and putative noncoding RNAs. The "habituated" profile is dominated by changes in genes for mitochondrial proteins. A parallel proteomic analysis [2-dimensional difference gel electrophoresis (2D-DIGE) and sequencing by mass spectrometry] also detected changes in mitochondrial proteins, and direct enzyme assay demonstrated changes in both complexes I and IV in the habituated state. Thus a natural experience, in this case hearing the sound of birdsong, can lead to major shifts in energetics and macromolecular metabolism in higher centers in the brain.
Collapse
|
36
|
Pechenino AS, Frick KM. The effects of acute 17beta-estradiol treatment on gene expression in the young female mouse hippocampus. Neurobiol Learn Mem 2009; 91:315-22. [PMID: 18938255 PMCID: PMC2674265 DOI: 10.1016/j.nlm.2008.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 09/30/2008] [Accepted: 09/30/2008] [Indexed: 01/22/2023]
Abstract
Previous studies have demonstrated that treatment with 17beta-estradiol (E(2)) improves both spatial and nonspatial memory in young female mice. Still unclear, however, are the molecular mechanisms underlying the beneficial effects of E(2) on memory. We have previously demonstrated that a single post-training intraperitoneal (i.p.) injection of 0.2 mg/kg E(2) can enhance hippocampal-dependent spatial and object memory consolidation (e.g., Gresack & Frick, 2006b). Therefore, in the present study, we performed a microarray analysis on the dorsal hippocampi of 4-month-old female mice injected i.p. with vehicle or 0.2 mg/kg E(2). Genes were considered differentially expressed following E(2) treatment if they showed a greater than 2-fold change in RNA expression levels compared to controls. Overall, out of a total of approximately 25,000 genes represented on the array, 204 genes showed altered mRNA expression levels upon E(2) treatment, with 111 up-regulated and 93 down-regulated. Of these, 17 of the up-regulated and 6 of the down-regulated genes are known to be involved in learning and memory. mRNA expression changes in 5 of the genes were confirmed by real-time quantitative PCR analysis, and protein changes in these same genes were confirmed by Western blot analysis: Hsp70, a heat shock protein known to be estrogen responsive; Igfbp2, an IGF-I binding protein; Actn4, an actin binding protein involved in protein trafficking; Tubb2a, the major component of microtubules; and Snap25, a synaptosome-specific protein required for neurotransmitter release. The types of genes altered indicate that E(2) may induce changes in the structural mechanics of cells within the dorsal hippocampus that could be conducive to promoting memory consolidation.
Collapse
Affiliation(s)
| | - Karyn M. Frick
- Department of Psychology, Yale University, New Haven, CT, 06520
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520
| |
Collapse
|
37
|
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008; 14:837-42. [PMID: 18568035 PMCID: PMC2772133 DOI: 10.1038/nm1782] [Citation(s) in RCA: 2909] [Impact Index Per Article: 171.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 05/15/2008] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease constitutes a rising threat to public health. Despite extensive research in cellular and animal models, identifying the pathogenic agent present in the human brain and showing that it confers key features of Alzheimer's disease has not been achieved. We extracted soluble amyloid-beta protein (Abeta) oligomers directly from the cerebral cortex of subjects with Alzheimer's disease. The oligomers potently inhibited long-term potentiation (LTP), enhanced long-term depression (LTD) and reduced dendritic spine density in normal rodent hippocampus. Soluble Abeta from Alzheimer's disease brain also disrupted the memory of a learned behavior in normal rats. These various effects were specifically attributable to Abeta dimers. Mechanistically, metabotropic glutamate receptors were required for the LTD enhancement, and N-methyl D-aspartate receptors were required for the spine loss. Co-administering antibodies to the Abeta N-terminus prevented the LTP and LTD deficits, whereas antibodies to the midregion or C-terminus were less effective. Insoluble amyloid plaque cores from Alzheimer's disease cortex did not impair LTP unless they were first solubilized to release Abeta dimers, suggesting that plaque cores are largely inactive but sequester Abeta dimers that are synaptotoxic. We conclude that soluble Abeta oligomers extracted from Alzheimer's disease brains potently impair synapse structure and function and that dimers are the smallest synaptotoxic species.
Collapse
Affiliation(s)
- Ganesh M Shankar
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The molecular cascades of long-term potentiation underlie memory consolidation of one-trial avoidance in the CA1 region of the dorsal hippocampus, but not in the basolateral amygdala or the neocortex. Neurotox Res 2008; 14:273-94. [DOI: 10.1007/bf03033816] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Alberini CM. The role of protein synthesis during the labile phases of memory: revisiting the skepticism. Neurobiol Learn Mem 2008; 89:234-46. [PMID: 17928243 PMCID: PMC2348569 DOI: 10.1016/j.nlm.2007.08.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 08/08/2007] [Indexed: 12/23/2022]
Abstract
Despite the fact that extensive evidence supports the view that phases of de novo protein synthesis are necessary for memory formation and maintenance, doubts are still raised. Skeptics generally argue that amnesia and the disruption of long-term synaptic plasticity are caused by "non-specific effects" of the reagents or approaches used to disrupt protein synthesis. This paper attempts to clarify some of these issues by reviewing, discussing and providing results addressing some of the major critiques that argue against the idea that de novo protein synthesis is necessary for the stabilization of long-term memory.
Collapse
Affiliation(s)
- Cristina M Alberini
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
40
|
Nagy V, Bozdagi O, Huntley GW. The extracellular protease matrix metalloproteinase-9 is activated by inhibitory avoidance learning and required for long-term memory. Learn Mem 2007; 14:655-64. [PMID: 17909100 PMCID: PMC2044557 DOI: 10.1101/lm.678307] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the kind that may underlie learning and memory. Here, we extend this idea by investigating the role and regulation of MMP-9 in an inhibitory avoidance (IA) learning and memory task. We demonstrate that following IA training, protein levels and proteolytic activity of MMP-9 become elevated in hippocampus by 6 h, peak at 12-24 h, then decline to baseline values by approximately 72 h. When MMP function is abrogated by intrahippocampal infusion of a potent gelatinase (MMP-2 and MMP-9) inhibitor 3.5 h following IA training, a time prior to the onset of training-induced elevation in levels, IA memory retention is significantly diminished when tested 1-3 d later. Animals impaired at 3 d exhibit robust IA memory when retrained, suggesting that such impairment is not likely attributed to toxic or other deleterious effects that permanently disrupt hippocampal function. In anesthetized adult rats, the effective distance over which synaptic plasticity is impaired by a single intrahippocampal infusion of the MMP inhibitor of the kind that blocks IA memory is approximately 1200 microm. Taken together, these data suggest that IA training induces a slowly emerging, but subsequently protracted period of MMP-mediated proteolysis critical for enabling long-lasting synaptic modification that underlies long-term memory consolidation.
Collapse
Affiliation(s)
- Vanja Nagy
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | - Ozlem Bozdagi
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | - George W. Huntley
- Fishberg Department of Neuroscience, The Mount Sinai School of Medicine, New York, New York 10029-6574, USA
- Corresponding author.E-mail ; fax (212) 659-5979
| |
Collapse
|