1
|
Thiamine deficiency in rats affects thiamine metabolism possibly through the formation of oxidized thiamine pyrophosphate. Biochim Biophys Acta Gen Subj 2021; 1865:129980. [PMID: 34390792 DOI: 10.1016/j.bbagen.2021.129980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Thiamine deficiency (TD) has a number of features in common with the neurodegenerative diseases development and close relationship between TD and oxidative stress (OS) has been repeatedly reported in the literature. The aim of this study is to understand how alimentary TD, accompanied by OS, affects the expression and level of two thiamine metabolism proteins in rat brain, namely, thiamine transporter 1 (THTR1) and thiamine pyrophosphokinase (TPK1), and what factors are responsible for the observed changes. METHODS The effects of OS caused by TD on the THTR1and TPK1 expression in rat cortex, cerebellum and hippocampus were examined. The levels of active and oxidized forms of ThDP (enzymatically measured) in the blood and brain, ROS and SH-groups in the brain were also analyzed. RESULTS TD increased the expression of THTR1 and protein level in all studied regions. In contrast, expression of TPK1 was depressed. TD-induced OS led to the accumulation of ThDP oxidized inactive form (ThDPox) in the blood and brain. In vitro reduction of ThDPox by dithiothreitol regenerates active ThDP suggesting that ThDPox is in disulfide form. A single high-dose thiamine administration to TD animals had no effect on THTR1 expression, partly raised TPK1 mRNA and protein levels, but is unable to normalize TPK1 enzyme activity. Brain and blood ThDP levels were increased in these conditions, but ThDPox was not decreased. GENERAL SIGNIFICANCE It is likely, that the accumulation of ThDPox in tissue could be seen as a potential marker of neurocellular dysfunction and thiamine metabolic state.
Collapse
|
2
|
Mangali S, Bhat A, Dasari D, Sriram D, Dhar A. Inhibition of double stranded RNA dependent protein kinase (PKR) abrogates isoproterenol induced myocardial ischemia in vitro in cultured cardiomyocytes and in vivo in wistar rats. Eur J Pharmacol 2021; 906:174223. [PMID: 34081906 DOI: 10.1016/j.ejphar.2021.174223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022]
Abstract
Protein kinase R (PKR) plays a main role in inflammation, insulin resistance, and glucose balance. It is activated by various stress signals and is key mediators of diabetes and associated complications. In the present study, we investigated the effect of PKR inhibition on myocardial dysfunction, inflammatory, cell death and interrelated signalling pathways in isoproterenol induced myocardial ischemia in vivo in wistar rats and in vitro in cultured cardiomyocytes. H9C2 rat cardiomyocytes were treated with 10 μM Isoproterenol (ISO). For in vivo studies, rats were divided into 4 groups: control, ischemic group (ISO), preventive group, curative group and each group consist of 8 rats. Myocardial Ischemia (MI) was induced with two subsequent doses of ISO (100 mg/kg, s.c.). The rats were treated with PKR inhibitor, C16 (166.5 μg/kg, i.p.) for 14 days. Heart rate, systolic, diastolic and mean arterial pressures were measured by non-invasive BP apparatus. Cardiac biomarkers were measured by commercial kits. Ischemic Zone, Morphological abnormalities and fibrosis of heart was detected by TTC, haematoxylin & eosin staining, Masson's and Sirius red staining respectively. Protein expression was done by western blotting and immune histochemistry. mRNA expression was done by RT-PCR. MI was characterized by declined myocardial performance along with elevation of cardiac biomarkers and associated with increased expression of PKR, oxidative-nitrosative stress, activated various inflammatory pathways (nuclear factor kappa light chain enhancer of activated B cells -NF-κB); Mitogen-activated protein kinases-MAPK; c-Jun N-terminal kinase-JNK), increased expression of inflammatory markers (Tumour necrosis factor alpha-TNF-α), markers of fibrosis (Alpha smooth muscle actin -α-SMA; Transforming growth factor beta-TGF-β), enhanced cell death (Ischemic zone) and increased expression of extracellular regulated-kinases (ERK-1/2) and advanced glycation end products (AGE's). Interestingly, inhibition of PKR attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrosative stress, inflammation, cell death, and inter-related signalling pathways. Our findings report that inhibition of PKR improves the ischemic mediated inflammation, apoptosis, cardiac hypertrophy and fibrosis in MI induced rats. Hence, inhibition of PKR might be one of intervention therapy for the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Sureshbabu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, India
| | - Deepika Dasari
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
3
|
Cell Type-Specific Transcriptomics Reveals that Mutant Huntingtin Leads to Mitochondrial RNA Release and Neuronal Innate Immune Activation. Neuron 2020; 107:891-908.e8. [PMID: 32681824 DOI: 10.1016/j.neuron.2020.06.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
The mechanisms by which mutant huntingtin (mHTT) leads to neuronal cell death in Huntington's disease (HD) are not fully understood. To gain new molecular insights, we used single nuclear RNA sequencing (snRNA-seq) and translating ribosome affinity purification (TRAP) to conduct transcriptomic analyses of caudate/putamen (striatal) cell type-specific gene expression changes in human HD and mouse models of HD. In striatal spiny projection neurons, the most vulnerable cell type in HD, we observe a release of mitochondrial RNA (mtRNA) (a potent mitochondrial-derived innate immunogen) and a concomitant upregulation of innate immune signaling in spiny projection neurons. Further, we observe that the released mtRNAs can directly bind to the innate immune sensor protein kinase R (PKR). We highlight the importance of studying cell type-specific gene expression dysregulation in HD pathogenesis and reveal that the activation of innate immune signaling in the most vulnerable HD neurons provides a novel framework to understand the basis of mHTT toxicity and raises new therapeutic opportunities.
Collapse
|
4
|
Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K. PKR: A Kinase to Remember. Front Mol Neurosci 2019; 11:480. [PMID: 30686999 PMCID: PMC6333748 DOI: 10.3389/fnmol.2018.00480] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Aging is a major risk factor for many diseases including metabolic syndrome, cancer, inflammation, and neurodegeneration. Identifying mechanistic common denominators underlying the impact of aging is essential for our fundamental understanding of age-related diseases and the possibility to propose new ways to fight them. One can define aging biochemically as prolonged metabolic stress, the innate cellular and molecular programs responding to it, and the new stable or unstable state of equilibrium between the two. A candidate to play a role in the process is protein kinase R (PKR), first identified as a cellular protector against viral infection and today known as a major regulator of central cellular processes including mRNA translation, transcriptional control, regulation of apoptosis, and cell proliferation. Prolonged imbalance in PKR activation is both affected by biochemical and metabolic parameters and affects them in turn to create a feedforward loop. Here, we portray the central role of PKR in transferring metabolic information and regulating cellular function with a focus on cancer, inflammation, and brain function. Later, we integrate information from open data sources and discuss current knowledge and gaps in the literature about the signaling cascades upstream and downstream of PKR in different cell types and function. Finally, we summarize current major points and biological means to manipulate PKR expression and/or activation and propose PKR as a therapeutic target to shift age/metabolic-dependent undesired steady states.
Collapse
Affiliation(s)
- Shunit Gal-Ben-Ari
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Iliana Barrera
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Marcelo Ehrlich
- Laboratory of Intracellular Trafficking and Signaling, School of Molecular Cell Biology & Biotechnology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kobi Rosenblum
- Laboratory of Molecular and Cellular Mechanisms Underlying Learning and Memory, Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
5
|
Mangali S, Bhat A, Udumula MP, Dhar I, Sriram D, Dhar A. Inhibition of protein kinase R protects against palmitic acid-induced inflammation, oxidative stress, and apoptosis through the JNK/NF-kB/NLRP3 pathway in cultured H9C2 cardiomyocytes. J Cell Biochem 2018; 120:3651-3663. [PMID: 30259999 DOI: 10.1002/jcb.27643] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Double-stranded RNA-dependent protein kinase (PKR) is a critical regulator of apoptosis, oxidative stress, and inflammation under hyperlipidemic and insulin resistance conditions. Saturated free fatty acids, such as palmitic acid (PA), are known inducers of apoptosis in numerous cell types. However, the underlying molecular mechanism is not fully understood. The aim of the present study was to examine the effect of PA on cultured rat H9C2 cardiac myocytes cells and to investigate the PKR mediated harmful effects of PA in vitro in cultured cardiomyocytes. EXPERIMENTAL APPROACH PKR expression was determined by immunofluorescence and immunoblotting. Oxidative stress and apoptosis were determined by flow cytometry and assay kits. The expression of different gene markers of apoptosis, oxidative stress, and inflammation were measured by Western blot analysis and reverse transcription polymerase chain reaction. KEY RESULTS PKR expression, reactive oxygen species levels as well as apoptosis were increased in PA-treated cultured H9C2 cardiomyocytes. The harmful effects of PA were attenuated by a selective PKR inhibitor, C16. Moreover, we observed that upregulation of c-Jun N-terminal kinase (JNK), nuclear factor-kB (NF-kB) and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) pathways is associated with increased expression of interleukin 6 and tumor necrosis factor-α in PA-treated cardiomyocytes and attenuation by a selective PKR inhibitor. CONCLUSION AND IMPLICATIONS Our study reports, for the first time, that PKR-mediated harmful effects of PA in cultured cardiomyocytes via activation of JNK, NF-kB, and NLRP3 pathways. Inhibition of PKR is one of the possible mechanistic approaches to inhibit inflammation, oxidative stress, and apoptosis in lipotoxicity-induced cardiomyocyte damage.
Collapse
Affiliation(s)
- Sureshbabu Mangali
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Mary Priyanka Udumula
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Indu Dhar
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Zhang K, Wang H, Xu M, Frank JA, Luo J. Role of MCP-1 and CCR2 in ethanol-induced neuroinflammation and neurodegeneration in the developing brain. J Neuroinflammation 2018; 15:197. [PMID: 29976212 PMCID: PMC6034273 DOI: 10.1186/s12974-018-1241-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023] Open
Abstract
Background Neuroinflammation and microglial activation have been implicated in both alcohol use disorders (AUD) and fetal alcohol spectrum disorders (FASD). Chemokine monocyte chemoattractant protein 1 (MCP-1) and its receptor C-C chemokine receptor type 2 (CCR2) are critical mediators of neuroinflammation and microglial activation. FASD is the leading cause of mental retardation, and one of the most devastating outcomes of FASD is the loss of neurons in the central nervous system (CNS). The underlying molecular mechanisms, however, remain unclear. We hypothesize that MCP-1/CCR2 signaling mediates ethanol-induced neuroinflammation and microglial activation, which exacerbates neurodegeneration in the developing brain. Methods C57BL/6 mice and mice deficient of MCP-1 (MCP-1−/−) and CCR2 (CCR2−/−) were exposed to ethanol on postnatal day 4 (PD4). Neuroinflammation, and microglial activation, and neurodegeneration in the brain were evaluated by immunohistochemistry and immunoblotting. A neuronal and microglial co-culture system was used to evaluate the role of microglia and MCP-1/CCR2 signaling in ethanol-induced neurodegeneration. Specific inhibitors were employed to delineate the involved signaling pathways. Results Ethanol-induced microglial activation, neuroinflammation, and a drastic increase in the mRNA and protein levels of MCP-1. Treatment of Bindarit (MCP-1 synthesis inhibitor) and RS504393 (CCR2 antagonist) significantly reduced ethanol-induced microglia activation/neuroinflammation, and neuroapoptosis in the developing brain. MCP-1−/− and CCR2−/− mice were more resistant to ethanol-induced neuroapoptosis. Moreover, ethanol plus MCP-1 caused more neuronal death in a neuron/microglia co-culture system than neuronal culture alone, and Bindarit and RS504393 attenuated ethanol-induced neuronal death in the co-culture system. Ethanol activated TLR4 and GSK3β, two key mediators of microglial activation in the brain and cultured microglial cells (SIM-A9). Blocking MCP-1/CCR2 signaling attenuated ethanol-induced activation of TLR4 and GSK3β. Conclusion MCP-1/CCR2 signaling played an important role in ethanol-induced microglial activation/neuroinflammation and neurodegeneration in the developing brain. The effects may be mediated by the interaction among MCP-1/CCR2 signaling, TLR4, and GSK3β.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Haiping Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 132 Health Sciences Research Building, 1095 Veterans Drive, Lexington, KY, 40536, USA.
| |
Collapse
|
7
|
Minocycline protects developing brain against ethanol-induced damage. Neuropharmacology 2017; 129:84-99. [PMID: 29146504 DOI: 10.1016/j.neuropharm.2017.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/20/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during the pregnancy and is the leading cause of mental retardation. Ethanol exposure during the development results in the loss of neurons in the developing brain, which may underlie many neurobehavioral deficits associated with FASD. It is important to understand the mechanisms underlying ethanol-induced neuronal loss and develop appropriate therapeutic strategies. One of the potential mechanisms involves neuroimmune activation. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that ethanol induced a wide-spread neuroapoptosis, microglial activation, and neuroinflammation in C57BL/6 mice. Minocycline is an antibiotic that inhibits microglial activation and alleviates neuroinflammation. We tested the hypothesis that minocycline may protect neurons ethanol-induced neuron death by inhibiting microglial activation and neuroinflammation. We showed that minocycline significantly inhibited ethanol-induced caspase-3 activation, microglial activation, and the expression of pro-inflammatory cytokines. In contrast, minocycline reversed ethanol inhibition of anti-inflammatory cytokines. Minocycline blocked ethanol-induced activation of GSK3β, a key mediator of neuroinflammation and microglial activation in the developing brain. Consistent with the in vivo observations, minocycline inhibited ethanol-induced the expression of pro-inflammatory cytokines and activation of GSK3β in a microglia cell line (SIM-9). GSK3β inhibitor eliminated ethanol activation of pro-inflammatory cytokines in SIM-9 cells. Co-cultures of cortical neurons and SIM-9 microglia cells sensitized neurons to alcohol-induced neuronal death. Minocycline protected neurons against ethanol-induced neuronal death in neurons/microglia co-cultures. Together, these results suggest that minocycline may ameliorate ethanol neurotoxicity in the developing by alleviating GSK3β-mediated neuroinflammation.
Collapse
|
8
|
Cannabinoid Receptor Type 1 Agonist ACEA Protects Neurons from Death and Attenuates Endoplasmic Reticulum Stress-Related Apoptotic Pathway Signaling. Neurotox Res 2017; 33:846-855. [PMID: 29134561 DOI: 10.1007/s12640-017-9839-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/02/2023]
Abstract
Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.
Collapse
|
9
|
Qin Y, Xu Z, Wang Y, Li X, Cao H, Zheng SJ. VP2 of Infectious Bursal Disease Virus Induces Apoptosis via Triggering Oral Cancer Overexpressed 1 (ORAOV1) Protein Degradation. Front Microbiol 2017; 8:1351. [PMID: 28769911 PMCID: PMC5515827 DOI: 10.3389/fmicb.2017.01351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/04/2017] [Indexed: 01/30/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious and immunosuppressive avian disease caused by IBD virus (IBDV). Cell apoptosis triggered by IBDV contributes to the dysfunction of immune system in host. VP2 of IBDV is known to induce cell death but the underlying mechanism remains unclear. Here we demonstrate that VP2 interacts with the oral cancer overexpressed 1 (ORAOV1), a potential oncoprotein. Infection by IBDV or ectopic expression of VP2 causes a reduction of cellular ORAOV1 and induction of apoptosis, so does knockdown of ORAOV1. In contrast, over-expression of ORAOV1 leads to the inhibition of VP2- or IBDV-induced apoptosis, accompanied with the decreased viral release (p < 0.05). Thus, VP2-induced apoptosis during IBDV infection is mediated by interacting with and reducing ORAOV1, a protein that appears to act as an antiapoptotic molecule and restricts viral release early during IBDV infection.
Collapse
Affiliation(s)
- Yao Qin
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Zhichao Xu
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural UniversityBeijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, China Agricultural UniversityBeijing, China.,College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| |
Collapse
|
10
|
Udumula MP, Babu MS, Bhat A, Dhar I, Sriram D, Dhar A. High glucose impairs insulin signaling via activation of PKR pathway in L6 muscle cells. Biochem Biophys Res Commun 2017; 486:645-651. [PMID: 28322789 DOI: 10.1016/j.bbrc.2017.03.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
|
11
|
Mechanisms Responsible for the High Sensitivity of Neural Cells to Vitamin B1 Deficiency. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9620-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Kalra J, Dhar A. Double-stranded RNA-dependent protein kinase signalling and paradigms of cardiometabolic syndrome. Fundam Clin Pharmacol 2017; 31:265-279. [PMID: 27992964 DOI: 10.1111/fcp.12261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jaspreet Kalra
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani, Hyderabad Campus; Jawahar Nagar Shameerpet, Hyderabad Andhra Pradesh 500078 India
| | - Arti Dhar
- Department of Pharmacy; Birla Institute of Technology and Sciences Pilani, Hyderabad Campus; Jawahar Nagar Shameerpet, Hyderabad Andhra Pradesh 500078 India
| |
Collapse
|
13
|
Wang X, Xu M, Frank JA, Ke ZJ, Luo J. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells. Toxicol Appl Pharmacol 2017; 320:26-31. [PMID: 28193519 DOI: 10.1016/j.taap.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 02/06/2023]
Abstract
Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Jacqueline A Frank
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Zun-Ji Ke
- Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203
| | - Jia Luo
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, Shanghai, China 201203.
| |
Collapse
|
14
|
Udumula MP, Medapi B, Dhar I, Bhat A, Desai K, Sriram D, Dhar A. The Small Molecule Indirubin-3'-Oxime Inhibits Protein Kinase R: Antiapoptotic and Antioxidant Effect in Rat Cardiac Myocytes. Pharmacology 2015; 97:25-30. [PMID: 26571010 DOI: 10.1159/000441727] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/12/2015] [Indexed: 11/19/2022]
Abstract
Double-stranded, RNA-dependent protein kinase R (PKR) is a serine/threonine protein kinase activated by various stress signals. It plays an important role in inflammation, insulin sensitivity and glucose homeostasis. Increased PKR activity has been observed in obese humans as well as in obese diabetic mice. Indirubin-3'-oxime (I3O) is an effective inhibitor of cyclin-dependent kinases and glycogen synthase kinase 3-beta. However, the effects of I3O on PKR activity/expression in cultured rat cardiomyocytes have not been reported. We investigated whether I3O attenuates the effects of high glucose on PKR, oxidative stress and apoptotic gene markers. Quantitative PCR and western blotting were used to measure protein and mRNA, respectively. High glucose treatment caused significant increase in the PKR protein/mRNA expression, which was attenuated by co-treatment with I3O. High glucose-treated, cultured cardiomyocytes developed a significant increase in mRNA expression for c-Jun-N-terminal kinase, caspase-3 and NF-ĸB, which were all attenuated by pretreatment with I3O. There was also a significant increase in reactive oxygen species generation in high glucose-treated, cultured cardiomyocytes, which was attenuated by pretreatment with I3O. In conclusion, I3O may have a preventive role against the deleterious effects of high glucose in the heart.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhang B, Bailey WM, Braun KJ, Gensel JC. Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury. Exp Neurol 2015; 273:83-91. [PMID: 26263843 DOI: 10.1016/j.expneurol.2015.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/14/2022]
Abstract
Macrophages with different activation states are present after spinal cord injury (SCI). M1 macrophages purportedly promote secondary injury processes while M2 cells support axon growth. The average age at the time of SCI has increased in recent decades, however, little is known about how different physiological factors contribute to macrophage activation states after SCI. Here we investigate the effect of age on IL-10, a key indicator of M2 macrophage activation. Following mild-moderate SCI in 4 and 14 month old (MO) mice we detected significantly reduced IL-10 expression with age in the injured spinal cord. Specifically, CD86/IL-10 positive macrophages, also known as M2b or regulatory macrophages, were reduced in 14 vs. 4 MO SCI animals. This age-dependent shift in macrophage phenotype was associated with impaired functional recovery and enhanced tissue damage in 14-month-old SCI mice. In vitro, M2b macrophages release anti-inflammatory cytokines without causing neurotoxicity, suggesting that imbalances in the M2b response in 14-month-old mice may be contributing to secondary injury processes. Our data indicate that age is an important factor that regulates SCI inflammation and recovery even to mild-moderate injury. Further, alterations in macrophage activation states may contribute to recovery and we have identified the M2b phenotype as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - William M Bailey
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - Kaitlyn J Braun
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
16
|
Yong Y, Meng Y, Ding H, Fan Z, Tang Y, Zhou C, Luo J, Ke ZJ. PACT/RAX regulates the migration of cerebellar granule neurons in the developing cerebellum. Sci Rep 2015; 5:7961. [PMID: 25609658 PMCID: PMC4302322 DOI: 10.1038/srep07961] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/29/2014] [Indexed: 01/03/2023] Open
Abstract
PACT and its murine ortholog RAX were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase PKR. Recent studies indicated that RAX played a role in embryogenesis and neuronal development. In this study, we investigated the expression of RAX during the postnatal development of the mouse cerebellum and its role in the migration of cerebellar granule neurons (CGNs). High expression of RAX was observed in the cerebellum from postnatal day (PD) 4 to PD9, a period when the CGNs migrate from the external granule layer (EGL) to the internal granule layer (IGL). The migration of the EGL progenitor cells in vivo was inhibited by RAX knockdown on PD4. This finding was confirmed by in vitro studies showing that RAX knockdown impaired the migration of CGNs in cerebellar microexplants. PACT/RAX-regulated migration required its third motif and was independent of PKR. PACT/RAX interacted with focal adhesion kinase (FAK) and PACT/RAX knockdown disturbed the FAK phosphorylation in CGNs. These findings demonstrated a novel function of PACT/RAX in the regulation of neuronal migration.
Collapse
Affiliation(s)
- Yue Yong
- 1] Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China [2] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Ya Meng
- 1] Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China [2] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanqing Ding
- Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhiqin Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifen Tang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenghua Zhou
- 1] Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China [2] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Luo
- Department of Pharmacology and Nutritonal Sciences, University of Kentucky College of Medicine, Lexington, Kentucky 40536, U.S.A
| | - Zun-Ji Ke
- 1] Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China [2] Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
17
|
Mouton-Liger F, Rebillat AS, Gourmaud S, Paquet C, Leguen A, Dumurgier J, Bernadelli P, Taupin V, Pradier L, Rooney T, Hugon J. PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model. Cell Death Dis 2015; 6:e1594. [PMID: 25590804 PMCID: PMC4669750 DOI: 10.1038/cddis.2014.552] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/22/2022]
Abstract
Brain thiamine homeostasis has an important role in energy metabolism and displays reduced activity in Alzheimer's disease (AD). Thiamine deficiency (TD) induces regionally specific neuronal death in the animal and human brains associated with a mild chronic impairment of oxidative metabolism. These features make the TD model amenable to investigate the cellular mechanisms of neurodegeneration. Once activated by various cellular stresses, including oxidative stress, PKR acts as a pro-apoptotic kinase and negatively controls the protein translation leading to an increase of BACE1 translation. In this study, we used a mouse TD model to assess the involvement of PKR in neuronal death and the molecular mechanisms of AD. Our results showed that the TD model activates the PKR-eIF2α pathway, increases the BACE1 expression levels of Aβ in specific thalamus nuclei and induces motor deficits and neurodegeneration. These effects are reversed by PKR downregulation (using a specific inhibitor or in PKR knockout mice).
Collapse
Affiliation(s)
- F Mouton-Liger
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France
| | | | - S Gourmaud
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France
| | - C Paquet
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France [3] Clinical and Research Memory Center, Paris Nord Ile de France Saint Louis Lariboisière Fernand Hospital, AP-HP, University of Paris Diderot, Paris, France
| | - A Leguen
- Inserm UMR-S942, Paris 75010, France
| | - J Dumurgier
- 1] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France [2] Clinical and Research Memory Center, Paris Nord Ile de France Saint Louis Lariboisière Fernand Hospital, AP-HP, University of Paris Diderot, Paris, France
| | - P Bernadelli
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - V Taupin
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - L Pradier
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - T Rooney
- Sanofi-Aventis Therapeutic Strategy Unit Aging, Chilly-Mazarin, France
| | - J Hugon
- 1] Inserm UMR-S942, Paris 75010, France [2] Department of Histology, Pathology and Biochemistry, Saint Louis Lariboisière Fernand Hospital, Service AP-HP, University of Paris Diderot, Paris, France [3] Clinical and Research Memory Center, Paris Nord Ile de France Saint Louis Lariboisière Fernand Hospital, AP-HP, University of Paris Diderot, Paris, France
| |
Collapse
|
18
|
Wang H, Xu X, Fassett J, Kwak D, Liu X, Hu X, Falls TJ, Bell JC, Li H, Bitterman P, Bache RJ, Chen Y. Double-stranded RNA-dependent protein kinase deficiency protects the heart from systolic overload-induced congestive heart failure. Circulation 2014; 129:1397-406. [PMID: 24463368 DOI: 10.1161/circulationaha.113.002209] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Double-stranded RNA-dependent protein kinase (PKR) is a eukaryotic initiation factor 2α kinase that inhibits mRNA translation under stress conditions. PKR also mediates inflammatory and apoptotic signaling independently of translational regulation. Congestive heart failure is associated with cardiomyocyte hypertrophy, inflammation, and apoptosis, but the role of PKR in left ventricular hypertrophy and the development of congestive heart failure has not been examined. METHODS AND RESULTS We observed increased myocardial PKR expression and translocation of PKR into the nucleus in humans and mice with congestive heart failure. To determine the impact of PKR on the development of congestive heart failure, PKR knockout and wild-type mice were exposed to pressure overload produced by transverse aortic constriction. Although heart size increased similarly in wild-type and PKR knockout mice after transverse aortic constriction, PKR knockout mice exhibited very little pulmonary congestion, well-preserved left ventricular ejection fraction and contractility, and significantly less myocardial fibrosis compared with wild-type mice. Bone marrow-derived cells from wild-type mice did not abolish the cardiac protective effect observed in PKR knockout mice, whereas bone marrow-derived cells from PKR knockout mice had no cardiac protective effect in wild-type mice. Mechanistically, PKR knockout attenuated transverse aortic constriction-induced tumor necrosis factor-α expression and leukocyte infiltration and lowered cardiac expression of proapoptotic factors (Bax and caspase-3), so that PKR knockout hearts were more resistant to transverse aortic constriction-induced cardiomyocyte apoptosis. PKR depletion in isolated cardiomyocytes also conferred protection against tumor necrosis factor-α- or lipopolysaccharide-induced apoptosis. CONCLUSION PKR is a maladaptive factor upregulated in hemodynamic overload that contributes to myocardial inflammation, cardiomyocyte apoptosis, and the development of congestive heart failure.
Collapse
Affiliation(s)
- Huan Wang
- Cardiovascular Division and Lillehei Heart Institute (H.W., X.X., J.F., D.K., X.L., X.H., R.J.B., Y.C.) and Pulmonary Division (P.B.), University of Minnesota Medical School, Minneapolis; Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L.); Institute of Molecular Medicine, Peking University, Beijing, China (X.H.); Ottawa Hospital Research Institute, Ottawa, ON, Canada (T.J.F., J.C.B.); and Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China (H.L.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu LQ, Fan ZQ, Tang YF, Ke ZJ. The resveratrol attenuates ethanol-induced hepatocyte apoptosis via inhibiting ER-related caspase-12 activation and PDE activity in vitro. Alcohol Clin Exp Res 2013; 38:683-93. [PMID: 24224909 DOI: 10.1111/acer.12311] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress plays a key role in cell apoptosis pathways. Caspase-12, a proapoptotic gene induced by ER stress, is also the key molecule in ER-related apoptosis. The purpose of this study is to evaluate the protective activity and possible mechanism of resveratrol (ResV) against ethanol (EtOH)-induced apoptosis in human hepatocyte Chang cell line. METHODS The human hepatocyte Chang cell line was used to test the hypothesis that ResV may alleviate the liver cell apoptosis induced by EtOH. ER stress-inducible proteins and silent mating type information regulation 2 homolog 1 (SIRT1) were assayed by Western blot. Cell viability was studied by MTT assay and apoptosis was measured by Annexin-V and propidium iodide assay. Caspase-12 activation was examined by immunofluorescence staining. Alcohol dehydrogenase-2 (ADH-2) and aldehyde dehydrogenase-2 (ALDH-2) were measured by polymerase chain reaction amplified product length polymorphism. Phosphodiesterase (PDE) activity was assayed in cell lysates using a cyclic nucleotide PDE assay. RESULTS EtOH exposure significantly increased the expression of ER stress markers and activated signaling pathways associated with ER stress. These include GRP78, p-IRE1α, p-eIF2α, p-PERK, ATF4 as well as cleaved caspase-3/12, CHOP/GADD153, and Bax in human hepatocyte Chang cell line. The expression of these proteins were significantly down-regulated by ResV (10 μM) in a SIRT1-dependent manner. ResV can inhibit EtOH-, tunicamycin-, thapsigargin-induced caspase-12 activation. ADH-2 and ALDH-2 activities are lower in this cell line. PDE activity increased by EtOH was inhibited by ResV (10 μM). CONCLUSIONS The results indicate that (i) EtOH-induced activation of caspase-12 could be one of the underlying mechanisms of hepatocyte apoptosis; (ii) EtOH-induced cell apoptosis was alleviated via ResV (10 μM) by inhibiting ER stress and caspase-12 activation in a SIRT1-dependent manner; and (iii) SIRT1 activated indirectly by ResV (10 μM) attenuates EtOH-induced hepatocyte apoptosis partly through inhibiting PDE activity.
Collapse
Affiliation(s)
- L Q Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
20
|
Luo J. Mechanisms of ethanol-induced death of cerebellar granule cells. THE CEREBELLUM 2012; 11:145-54. [PMID: 20927663 DOI: 10.1007/s12311-010-0219-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maternal ethanol exposure during pregnancy may cause fetal alcohol spectrum disorders (FASD). FASD is the leading cause of mental retardation. The most deleterious effect of fetal alcohol exposure is inducing neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. The cerebellum is one of the brain areas that are most susceptible to ethanol during development. Ethanol exposure causes a loss of both cerebellar Purkinje cells and granule cells. This review focuses on the toxic effect of ethanol on cerebellar granule cells (CGC) and the underlying mechanisms. Both in vitro and in vivo studies indicate that ethanol induces apoptotic death of CGC. The vulnerability of CGC to ethanol-induced death diminishes over time as neurons mature. Several mechanisms for ethanol-induced apoptosis of CGC have been suggested. These include inhibition of N-methyl-D-aspartate receptors, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, disturbance of potassium channel currents, thiamine deficiency, and disruption of translational regulation. Cultures of CGC provide an excellent system to investigate cellular/molecular mechanisms of ethanol-induced neurodegeneration and to evaluate interventional strategies. This review will also discuss the approaches leading to neuroprotection against ethanol-induced neuroapoptosis.
Collapse
Affiliation(s)
- Jia Luo
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
21
|
Wang X, Mandal AK, Saito H, Pulliam JF, Lee EY, Ke ZJ, Lu J, Ding S, Li L, Shelton BJ, Tucker T, Evers BM, Zhang Z, Shi X. Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway. Toxicol Appl Pharmacol 2012; 262:11-21. [PMID: 22552367 DOI: 10.1016/j.taap.2012.04.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 12/19/2022]
Abstract
Exposure to carcinogenic metals, such as trivalent arsenic [As(III)] and hexavalent chromium [Cr(VI)], through drinking water is a major global public health problem and is associated with various cancers. However, the mechanism of their carcinogenicity remains unclear. In this study, we used azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse colitis-associated colorectal cancer model to investigate their tumorigenesis. Our results demonstrate that exposure to As(III) or Cr(VI), alone or in combination, together with AOM/DSS pretreatment has a promotion effect, increasing the colorectal tumor incidence, multiplicity, size, and grade, as well as cell inflammatory response. Two-dimensional differential gel electrophoresis coupled with mass spectrometry revealed that As(III) or Cr(VI) treatment alone significantly changed the density of proteins. The expression of β-catenin and phospho-GSK was increased by treatment of carcinogenic metals alone. Concomitantly, the expression of NADPH oxidase1 (NOX1) and the level of 8-OHdG were also increased by treatment of carcinogenic metals alone. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, were decreased. Similarly, in an in vitro system, exposure of CRL-1807 to carcinogenic metals increased reactive oxygen species (ROS) generation, the expression of β-catenin, phospho-GSK, and NOX1. Inhibition of ROS generation by addition of SOD or catalase inhibited β-catenin expression and activity. Our study provides a new animal model to study the carcinogenicity of As(III) and Cr(VI) and suggests that As(III) and Cr(VI) promote colorectal cancer tumorigenesis, at least partly, through ROS-mediated Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xin Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhu PJ, Huang W, Kalikulov D, Yoo JW, Placzek AN, Stoica L, Zhou H, Bell JC, Friedlander MJ, Krnjević K, Noebels JL, Costa-Mattioli M. Suppression of PKR promotes network excitability and enhanced cognition by interferon-γ-mediated disinhibition. Cell 2012; 147:1384-96. [PMID: 22153080 DOI: 10.1016/j.cell.2011.11.029] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/06/2011] [Accepted: 11/02/2011] [Indexed: 01/20/2023]
Abstract
The double-stranded RNA-activated protein kinase (PKR) was originally identified as a sensor of virus infection, but its function in the brain remains unknown. Here, we report that the lack of PKR enhances learning and memory in several behavioral tasks while increasing network excitability. In addition, loss of PKR increases the late phase of long-lasting synaptic potentiation (L-LTP) in hippocampal slices. These effects are caused by an interferon-γ (IFN-γ)-mediated selective reduction in GABAergic synaptic action. Together, our results reveal that PKR finely tunes the network activity that must be maintained while storing a given episode during learning. Because PKR activity is altered in several neurological disorders, this kinase presents a promising new target for the treatment of cognitive dysfunction. As a first step in this direction, we show that a selective PKR inhibitor replicates the Pkr(-/-) phenotype in WT mice, enhancing long-term memory storage and L-LTP.
Collapse
Affiliation(s)
- Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mouton-Liger F, Paquet C, Dumurgier J, Bouras C, Pradier L, Gray F, Hugon J. Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochim Biophys Acta Mol Basis Dis 2012; 1822:885-96. [PMID: 22306812 DOI: 10.1016/j.bbadis.2012.01.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 12/14/2022]
Abstract
Beta-site APP cleaving enzyme 1 (BACE1) is the rate limiting enzyme for accumulation of amyloid β (Aβ)-peptide in the brain in Alzheimer's disease (AD). Oxidative stress (OS) that leads to metabolic dysfunction and apoptosis of neurons in AD enhances BACE1 expression and activity. The activation of c-jun N-terminal kinase (JNK) pathway was proposed to explain the BACE1 mRNA increase under OS. However, little is known about the translational control of BACE1 in OS. Recently, a post-transcriptional increase of BACE1 level controlled by phosphorylation of eIF2α (eukaryotic translation initiation factor-2α) have been described after energy deprivation. PKR (double-stranded RNA dependant protein kinase) is a pro-apoptotic kinase that phosphorylates eIF2α and modulates JNK activation in various cellular stresses. We investigated the relations between PKR, eIF2α and BACE1 in AD brains in APP/PS1 knock-in mice and in hydrogen peroxide-induced OS in human neuroblastoma (SH-SY5Y) cell cultures. Immunoblotting results showed that activated PKR (pPKR) and activated eIF2α (peIF2α) and BACE1 levels are increased in AD cortices and BACE1 correlate with phosphorylated eIF2α levels. BACE1 protein levels are increased in response to OS in SH-SY5Y cells and specific inhibitions of PKR-eIF2α attenuate BACE1 protein levels in this model. Our findings provide a new translational regulation of BACE1, under the control of PKR in OS, where eIF2α phosphorylation regulates BACE1 protein expression.
Collapse
Affiliation(s)
- François Mouton-Liger
- Service d'Histologie et de Biologie du Vieillissement, APHP, Groupe Hospitalier Lariboisière Fernand-Widal Saint-Louis, Université Paris VII, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Paquet C, Mouton-Liger F, Meurs EF, Mazot P, Bouras C, Pradier L, Gray F, Hugon J. The PKR activator PACT is induced by Aβ: involvement in Alzheimer's disease. Brain Pathol 2011; 22:219-29. [PMID: 21790829 DOI: 10.1111/j.1750-3639.2011.00520.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques made of Aβ peptide, neurofibrillary tangles containing hyperphosphorylated tau protein and neuronal loss. The pro-apoptotic kinase PKR can be activated by Aβ and can phosphorylate tau protein via GSK3β kinase activation. The activated form of PKR (pPKR) accumulates in affected neurons and could participate in neuronal degeneration in AD. The mechanism of abnormal PKR activation in AD is not elucidated but could be linked to the PKR activator PACT. PACT stainings, and levels were assessed in the brains of AD patients and in APP/PS1 knock-in transgenic mice and in cell cultures exposed to stresses. We showed that PACT and pPKR colocalizations are enhanced in AD brains. Their levels are increased and correlated in AD and APP/PS1 knock-in mice brains. In human neuroblastoma cells exposed to Aβ, tunicamycin or H2O2, PACT and pPKR concentrations are increased. PACT then PKR inhibitions indicate that PACT is upstream of PKR activation. Our findings demonstrate that PACT levels are enhanced in AD brains and could partly be caused by the action of Aβ. In addition, PACT participates in PKR activation. The PACT-PKR pathway represents a potential link between Aβ accumulation, PKR activation and tau phosphorylation.
Collapse
Affiliation(s)
- Claire Paquet
- Centre Mémoire de Ressources et de Recherche Paris Nord Ile de France.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen Y, Lin X, Liu Y, Xie D, Fang J, Le Y, Ke Z, Zhai Q, Wang H, Guo F, Wang F, Liu Y. Research advances at the Institute for Nutritional Sciences at Shanghai, China. Adv Nutr 2011; 2:428-39. [PMID: 22332084 PMCID: PMC3183593 DOI: 10.3945/an.111.000703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nutrition-related health issues have emerged as a major threat to public health since the rebirth of the economy in China starting in the 1980s. To meet this challenge, the Chinese Academy of Sciences established the Institute for Nutritional Sciences (INS) at Shanghai, China ≈ 8 y ago. The mission of the INS is to apply modern technologies and concepts in nutritional research to understand the molecular mechanism and provide means of intervention in the combat against nutrition-related diseases, including type 2 diabetes, metabolic syndrome, obesity, cardiovascular diseases, and many types of cancers. Through diligent and orchestrated efforts by INS scientists, graduate students, and research staff in the past few years, the INS has become the leading institution in China in the areas of basic nutritional research and metabolic regulation. Scientists at the INS have made important progress in many areas, including the characterization of genetic and nutritional properties of the Chinese population, metabolic control associated with nutrient sensing, molecular mechanisms underlying glucose and lipid metabolism, regulation of metabolism by adipokines and inflammatory pathways, disease intervention using functional foods or extracts of Chinese herbs, and many biological studies related to carcinogenesis. The INS will continue its efforts in understanding the optimal nutritional needs for Chinese people and the molecular causes associated with metabolic diseases, thus paving the way for effective and individualized intervention in the future. This review highlights the major research endeavors undertaken by INS scientists in recent years.
Collapse
Affiliation(s)
- Yan Chen
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang X, Son YO, Chang Q, Sun L, Hitron JA, Budhraja A, Zhang Z, Ke Z, Chen F, Luo J, Shi X. NADPH oxidase activation is required in reactive oxygen species generation and cell transformation induced by hexavalent chromium. Toxicol Sci 2011; 123:399-410. [PMID: 21742780 DOI: 10.1093/toxsci/kfr180] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Although overproduction of reactive oxygen species (ROS) has been suggested to play a major role in its carcinogenicity, the mechanisms of Cr(VI)-induced ROS production remain unclear. In this study, we investigated the role of NADPH oxidase (NOX), one of the major sources of cellular ROS, in Cr(VI)-induced oxidative stress and carcinogenesis. We found that short-term exposure to Cr(VI) (2μM) resulted in a rapid increase in ROS generation in Beas-2B cells, and concomitantly increased NOX activity and expression of NOX members (NOX1-3 and NOX5) and subunits (p22(phox), p47(phox), p40(phox), and p67(phox)). Cr(VI) also induced phosphorylation of p47(phox) and membrane translocation of p47(phox) and p67(phox), further confirming NOX activation. Knockdown of p47(phox) with a short hairpin RNA attenuated the ROS production induced by Cr(VI). Chronic exposure (up to 3 months) to low doses of Cr(VI) (0.125, 0.25, and 0.5μM) also promoted ROS generation and the expression of NOX subunits, such as p47(phox) and p67(phox), but inhibited the expression of main antioxidant enzymes, such as superoxidase dismutase (SOD) and glutathione peroxidase (GPx). Chronic Cr(VI) exposure resulted in transformation of Beas-2B cells, increasing cell proliferation, anchorage independent growth in soft agar, and forming aggressive tumors in nude mice. Stable knockdown of p47(phox) or overexpression of SOD1, SOD2, or catalase (CAT) eliminated Cr(VI)-induced malignant transformation. Our results suggest that NOX plays an important role in Cr(VI)-induced ROS generation and carcinogenesis.
Collapse
Affiliation(s)
- Xin Wang
- Graduate Center for Toxicology, 1095 V.A. Drive, 306 Health Sciences Research Building, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Couturier J, Paccalin M, Morel M, Terro F, Milin S, Pontcharraud R, Fauconneau B, Page G. Prevention of the β-amyloid peptide-induced inflammatory process by inhibition of double-stranded RNA-dependent protein kinase in primary murine mixed co-cultures. J Neuroinflammation 2011; 8:72. [PMID: 21699726 PMCID: PMC3131234 DOI: 10.1186/1742-2094-8-72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 06/23/2011] [Indexed: 12/28/2022] Open
Abstract
Background Inflammation may be involved in the pathogenesis of Alzheimer's disease (AD). There has been little success with anti-inflammatory drugs in AD, while the promise of anti-inflammatory treatment is more evident in experimental models. A new anti-inflammatory strategy requires a better understanding of molecular mechanisms. Among the plethora of signaling pathways activated by β-amyloid (Aβ) peptides, the nuclear factor-kappa B (NF-κB) pathway could be an interesting target. In virus-infected cells, double-stranded RNA-dependent protein kinase (PKR) controls the NF-κB signaling pathway. It is well-known that PKR is activated in AD. This led us to study the effect of a specific inhibitor of PKR on the Aβ42-induced inflammatory response in primary mixed murine co-cultures, allowing interactions between neurons, astrocytes and microglia. Methods Primary mixed murine co-cultures were prepared in three steps: a primary culture of astrocytes and microglia for 14 days, then a primary culture of neurons and astrocytes which were cultured with microglia purified from the first culture. Before exposure to Aβ neurotoxicity (72 h), co-cultures were treated with compound C16, a specific inhibitor of PKR. Levels of tumor necrosis factor-α (TNFα), interleukin (IL)-1β, and IL-6 were assessed by ELISA. Levels of PT451-PKR and activation of IκB, NF-κB and caspase-3 were assessed by western blotting. Apoptosis was also followed using annexin V-FITC immunostaining kit. Subcellular distribution of PT451-PKR was assessed by confocal immunofluorescence and morphological structure of cells by scanning electron microscopy. Data were analysed using one-way ANOVA followed by a Newman-Keuls' post hoc test Results In these co-cultures, PKR inhibition prevented Aβ42-induced activation of IκB and NF-κB, strongly decreased production and release of tumor necrosis factor (TNFα) and interleukin (IL)-1β, and limited apoptosis. Conclusion In spite of the complexity of the innate immune response, PKR inhibition could be an interesting anti-inflammatory strategy in AD.
Collapse
Affiliation(s)
- J Couturier
- Research Group on Brain Aging, GReViC EA 3808, 6 rue de la Milétrie BP 199, 86034 Poitiers Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ke Z, Liu Y, Wang X, Fan Z, Chen G, Xu M, Bower KA, Frank JA, Ou X, Shi X, Luo J. Cyanidin-3-glucoside ameliorates ethanol neurotoxicity in the developing brain. J Neurosci Res 2011; 89:1676-84. [PMID: 21671257 DOI: 10.1002/jnr.22689] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 12/31/2022]
Abstract
Ethanol exposure induces neurodegeneration in the developing central nervous system (CNS). Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during pregnancy and are the most common nonhereditary cause of mental retardation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Multiple mechanisms have been proposed for ethanol-induced neurodegeneration, and oxidative stress is one of the most important mechanisms. Recent evidence indicates that glycogen synthase kinase 3β (GSK3β) is a potential mediator of ethanol-mediated neuronal death. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. Our previous study suggested that C3G inhibited GSK3β activity in neurons. Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that C3G can ameliorate ethanol-induced neuronal death in the developing brain. Intraperitoneal injection of C3G reduced ethanol-meditated caspase-3 activation, neurodegeneration, and microglial activation in the cerebral cortex of 7-day-old mice. C3G blocked ethanol-mediated GSK3β activation by inducing phosphorylation at serine 9 while reducing the phosphorylation at tyrosine 216. C3G also inhibited ethanol-stimulated expression of malondialdehyde (MDA) and p47phox, indicating that C3G alleviated ethanol-induced oxidative stress. These results provide important insight into the therapeutic potential of C3G.
Collapse
Affiliation(s)
- Zunji Ke
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ke Z, Wang X, Liu Y, Fan Z, Chen G, Xu M, Bower KA, Frank JA, Li M, Fang S, Shi X, Luo J. Ethanol induces endoplasmic reticulum stress in the developing brain. Alcohol Clin Exp Res 2011; 35:1574-83. [PMID: 21599712 DOI: 10.1111/j.1530-0277.2011.01503.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Ethanol exposure during brain development causes profound damages to the central nervous system (CNS). The underlying cellular/molecular mechanisms remain unclear. The endoplasmic reticulum (ER) is involved in posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress, which is characterized by translational attenuation, synthesis of ER chaperone proteins, and activation of transcription factors. Sustained ER stress ultimately leads to cell death. ER stress is implicated in various neurodegenerative processes. METHODS Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that ethanol induces ER stress in the developing brain. Seven-day-old C57BL/6 mice were acutely exposed to ethanol by subcutaneous injection and the expression of ER stress-inducible proteins (ERSIPs) and signaling pathways associated with ER stress were examined. RESULTS Ethanol exposure significantly increased the expression of ERSIPs and activated signaling pathways associated with ER stress; these include ATF6, CHOP/GADD153, GRP78, and mesencephalic astrocyte-derived neurotrophic factor as well as the phosphorylation of IRE1α, eIF2α, PERK, and PKR. The ethanol-induced increase in ERSIPs occurred within 4 hours of ethanol injection, and levels of some ERSIPs remained elevated after 24 hours of ethanol exposure. Ethanol-induced increase in phosphorylated eIF2α, caspase-12, and CHOP was distributed in neurons of specific areas of the cerebral cortex, hippocampus, and thalamus. CONCLUSIONS Our finding indicates that ethanol induces ER stress in immature neurons, providing novel insight into ethanol's detrimental effect on the developing CNS.
Collapse
Affiliation(s)
- Zunji Ke
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lithium fails to protect dopaminergic neurons in the 6-OHDA model of Parkinson's disease. Neurochem Res 2011; 36:367-74. [PMID: 21203835 DOI: 10.1007/s11064-010-0368-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2010] [Indexed: 12/12/2022]
Abstract
Lithium has been used for the treatment of bipolar mood disorder and is shown to have neuroprotective properties. Since lithium inhibits the activity of glycogen synthase kinase 3 (GSK3) which is implicated in various human diseases, particularly neurodegenerative diseases, the therapeutic potential of lithium receives great attention. Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by the pathological loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Intranigral injection of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) causes selective and progressive degeneration of dopaminergic neurons in SNpc, and is a commonly used animal model of PD. The current study was designated to determine whether lithium is effective in alleviating 6-OHDA-induced neurodegeneration in the SNpc of rats. We demonstrated that chronic subcutaneous administration of lithium inhibited GSK3 activity in the SNpc, which was evident by an increase in phosphorylation of GSK3β at serine 9, cyclin D1 expression, and a decrease in tau phosphorylation. 6-OHDA did not affect GSK3 activity in the SNpc. Moreover, lithium was unable to alleviate 6-OHDA-induced degeneration of SNpc dopaminergic neurons. The results suggest that GSK3 is minimally involved in the neurodegeneration in the rat 6-OHDA model of PD.
Collapse
|
31
|
Lee S, Yang G, Yong Y, Liu Y, Zhao L, Xu J, Zhang X, Wan Y, Feng C, Fan Z, Liu Y, Luo J, Ke ZJ. ADAR2-dependent RNA editing of GluR2 is involved in thiamine deficiency-induced alteration of calcium dynamics. Mol Neurodegener 2010; 5:54. [PMID: 21110885 PMCID: PMC3006372 DOI: 10.1186/1750-1326-5-54] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/27/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Thiamine (vitamin B1) deficiency (TD) causes mild impairment of oxidative metabolism and region-selective neuronal loss in the central nervous system (CNS). TD in animals has been used to model aging-associated neurodegeneration in the brain. The mechanisms of TD-induced neuron death are complex, and it is likely multiple mechanisms interplay and contribute to the action of TD. In this study, we demonstrated that TD significantly increased intracellular calcium concentrations [Ca2+]i in cultured cortical neurons. RESULTS TD drastically potentiated AMPA-triggered calcium influx and inhibited pre-mRNA editing of GluR2, a Ca2+-permeable subtype of AMPA receptors. The Ca2+ permeability of GluR2 is regulated by RNA editing at the Q/R site. Edited GluR2 (R) subunits form Ca2+-impermeable channels, whereas unedited GluR2 (Q) channels are permeable to Ca2+ flow. TD inhibited Q/R editing of GluR2 and increased the ratio of unedited GluR2. The Q/R editing of GluR2 is mediated by adenosine deaminase acting on RNA 2 (ADAR2). TD selectively decreased ADAR2 expression and its self-editing ability without affecting ADAR1 in cultured neurons and in the brain tissue. Over-expression of ADAR2 reduced AMPA-mediated rise of [Ca2+]i and protected cortical neurons against TD-induced cytotoxicity, whereas down-regulation of ADAR2 increased AMPA-elicited Ca2+ influx and exacerbated TD-induced death of cortical neurons. CONCLUSIONS Our findings suggest that TD-induced neuronal damage may be mediated by the modulation of ADAR2-dependent RNA Editing of GluR2.
Collapse
Affiliation(s)
- Shuchen Lee
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guang Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yue Yong
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liyun Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- Department of Anesthesiology, Gongli Hospital, Pudong, Shanghai, China
| | - Xiaomin Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanjie Wan
- Department of Anesthesiology, Gongli Hospital, Pudong, Shanghai, China
| | - Chun Feng
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiqin Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Luo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Internal Medicine, University of Kentucky College of Medicine, 130 Bosomworth Health Science Research Building, 1095 Veterans Drive, Lexington, Kentucky 40536, USA
| | - Zun-Ji Ke
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
32
|
Yang G, Meng Y, Li W, Yong Y, Fan Z, Ding H, Wei Y, Luo J, Ke ZJ. Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 2010; 21:279-97. [PMID: 21029241 DOI: 10.1111/j.1750-3639.2010.00445.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Chemokines are implicated in the neuroinflammation of several chronic neurodegenerative disorders. However, the precise role of chemokines in neurodegeneration is unknown. Thiamine deficiency (TD) causes abnormal oxidative metabolism in the brain as well as a well-defined microglia activation and neurodegeneration in the submedial thalamus nucleus (SmTN), which are common features of neurodegenerative diseases. We evaluated the role of chemokines in neurodegeneration and the underlying mechanism in a TD model. Among the chemokines examined, TD selectively induced neuronal expression of monocyte chemoattractant protein-1 (MCP-1) in the SmTN prior to microglia activation and neurodegeneration. The conditioned medium collected from TD-induced neurons caused microglia activation. With a neuron/microglia co-culture system, we showed that MCP-1-induced neurotoxicity required the presence of microglia, and exogenous MCP-1 was able to activate microglia and stimulated microglia to produce cytokines. A MCP-1 neutralizing antibody inhibited MCP-1-induced microglia activation and neuronal death in culture and in the thalamus. MCP-1 knockout mice were resistant to TD-induced neuronal death in SmTN. TD selectively induced the accumulation of reactive oxygen species in neurons, and antioxidants blocked TD-induced MCP-1 expression. Together, our results indicated an induction of neuronal MCP-1 during mild impairment of oxidative metabolism caused by microglia recruitment/activation, which exacerbated neurodegeneration.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang X, Meng D, Chang Q, Pan J, Zhang Z, Chen G, Ke Z, Luo J, Shi X. Arsenic inhibits neurite outgrowth by inhibiting the LKB1-AMPK signaling pathway. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:627-34. [PMID: 20439172 PMCID: PMC2866677 DOI: 10.1289/ehp.0901510] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/22/2009] [Indexed: 05/25/2023]
Abstract
BACKGROUND Arsenic (As) is an environmental pollutant that induces numerous pathological effects, including neurodevelopmental disorders. OBJECTIVES AND METHODS We evaluated the role of the LKB1-AMPK pathway in As-induced developmental neurotoxicity using Neuro-2a (N2a) neuroblastoma cells as a model of developing neurons. RESULTS The addition of low concentrations of As (<or= 5 microM) during differentiation caused an inhibitory effect on the neurite outgrowth in N2a cells in the absence of cell death. Activation of adenosine monophosphate-activated kinase (AMPK) induced by retinoic acid in differentiating cells was blocked by As. Pretreatment with the AMPK-specific activator 5-aminoimidazole-4-carboxamide riboside or overexpression of a constitutively active AMPK-alpha1 plasmid reversed As-induced inhibition of neurite outgrowth. The activation of LKB1 (serine/threonine kinase 11), a major AMPK kinase, was also suppressed by As by inhibiting both the phosphorylation and the translocation of LKB1 from nucleus to cytoplasm. Antioxidants, such as N-acetyl cysteine and superoxide dismutase, but not catalase, protected against As-induced inactivation of the LKB1-AMPK pathway and reversed the inhibitory effect of As on neurite outgrowth. CONCLUSIONS Reduced neurite outgrowth induced by As results from deficient activation of AMPK as a consequence of a lack of activation of LKB1. Oxidative stress induced by As, especially excessive superoxide, plays a critical role in blocking the LKB1-AMPK pathway. Our studies provide insight into the mechanisms underlying As-induced developmental neurotoxicity, which is important for designing a new strategy for protecting children against this neurotoxic substance.
Collapse
Affiliation(s)
- Xin Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Meng
- Key Laboratory of Nutrition and Metabolism Institute, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Qingshan Chang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | - Jingju Pan
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| | - Gang Chen
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zunji Ke
- Key Laboratory of Nutrition and Metabolism Institute, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jia Luo
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
34
|
Liu Y, Chen G, Ma C, Bower KA, Xu M, Fan Z, Shi X, Ke ZJ, Luo J. Overexpression of glycogen synthase kinase 3beta sensitizes neuronal cells to ethanol toxicity. J Neurosci Res 2010; 87:2793-802. [PMID: 19382207 DOI: 10.1002/jnr.22098] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. The loss of neurons underlies many of the behavioral deficits observed in fetal alcohol spectrum disorders (FASD). The mechanisms of ethanol-induced neuronal loss, however, remain incompletely elucidated. We demonstrated that glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase, was involved in ethanol neurotoxicity. The activity of GSK3beta is negatively regulated by its phosphorylation at serine 9 (Ser9). Ethanol induced dephosphorylation of GSK3beta at Ser9 and the activation of Bax as well as caspase-3 in the developing mouse brain. These ethanol-induced alterations were ameliorated by the pretreatment of a GSK3beta inhibitor, lithium. To determine the role of GSK3beta in ethanol neurotoxicity, we overexpressed wild-type (WT), S9A mutant or dominant-negative (DN) mutant GSK3beta in a neuronal cell line (SK-N-MC). Ethanol only modestly reduced the viability of parental SK-N-MC cells but drastically induced caspase-3 activation and apoptosis in cells overexpressing WT or S9A GSK3beta, indicating that the high levels of GSK3beta or the active form of GSK3beta increased cellular sensitivity to ethanol. Contrarily, overexpression of DN GSK3beta conferred resistance to ethanol toxicity. Lithium and other specific GSK3beta inhibitors abolished the hypersensitivity to ethanol caused by WT or S9A overexpression. Bax, a proapoptotic protein, is a substrate of GSK3beta. Cells overexpressing WT or S9A GSK3beta were much more sensitive to ethanol-induced Bax activation than parental SK-N-MC cells. Our results indicate that GSK3beta may be a mediator of ethanol neurotoxicity, and its expression status in a cell may determine ethanol vulnerability.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Molecules involve in the self-protection of neurons against glucose–oxygen–serum deprivation (GOSD)-induced cell damage. Brain Res Bull 2009; 79:169-76. [DOI: 10.1016/j.brainresbull.2009.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/13/2009] [Accepted: 02/13/2009] [Indexed: 11/18/2022]
|
36
|
Neuronal phosphorylated RNA-dependent protein kinase in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 2009; 68:190-8. [PMID: 19151623 DOI: 10.1097/nen.0b013e318196cd7c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mechanisms of neuronal apoptosis in Creutzfeldt-Jakob disease (CJD) and their relationship to accumulated prion protein (PrP) are unclear. A recent cell culture study showed that intracytoplasmic PrP may induce phosphorylated RNA-dependent protein kinase (PKR(p))-mediated cell stress. The double-stranded RNA protein kinase PKR is a proapoptotic and stress kinase that accumulates in degenerating neurons in Alzheimer disease. To determine whether neuronal apoptosis in human CJD is associated with activation of the PKR(p) signaling pathway, we assessed in situ end labeling and immunocytochemistry for PrP, glial fibrillary acidic protein, CD68, activated caspase 3, and phosphorylated PKR (Thr451) in samples of frontal, occipital, and temporal cortex, striatum, and cerebellum from 6 patients with sporadic CJD and 5 controls. Neuronal immunostaining for activated PKR was found in all CJD cases. The most staining was in nuclei and, in contrast to findings in Alzheimer disease, cytoplasmic labeling was not detected. Both the number and distribution of PKR(p)-positive neurons correlated closely with the extent of neuronal apoptosis, spongiosis, astrocytosis, and microglial activation and with the phenotype and disease severity. There was no correlation with the type, topography, or amount of extracellular PrP deposits. These findings suggest that neuronal apoptosis in human CJD may result from PKR(p)-mediated cell stress and are consistent with recent studies supporting a pathogenic role for intracellular or transmembrane PrP.
Collapse
|
37
|
Ke ZJ, Wang X, Fan Z, Luo J. Ethanol promotes thiamine deficiency-induced neuronal death: involvement of double-stranded RNA-activated protein kinase. Alcohol Clin Exp Res 2009; 33:1097-103. [PMID: 19382901 DOI: 10.1111/j.1530-0277.2009.00931.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heavy alcohol consumption causes cerebellar degeneration, and the underlying mechanism is unclear. Chronic alcoholism is usually associated with thiamine deficiency (TD) which is known to induce selective neurodegeneration in the brain. However, the role of TD in alcohol-induced cerebellar degeneration remains to be elucidated. The double-stranded RNA-activated protein kinase (PKR) is a potent antiviral protein. Viral infection or binding to dsRNA causes PKR autophosphorylation and subsequent phosphorylation of the alpha-subunit of eukaryotic translation factor-2alpha, leading to inhibition of translation or apoptosis. PKR can also be activated by cellular stresses. METHODS In this study, we used an in vitro model, cultured cerebellar granule neurons (CGNs), to investigate the interaction between TD and ethanol and evaluate the contribution of their interaction to neuronal loss. TD was induced by treatment with amprolium in association with ethanol. Cell viability was determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide assay. PKR expression/phosphorylation and subcellular distribution was analyzed with immunoblotting and immunocytochemistry. RESULTS Thiamine deficiency caused death of CGNs but ethanol did not. However, TD plus ethanol induced a much greater cell loss than TD alone. TD-induced PKR phosphorylation and ethanol exposure significantly promoted TD-induced PKR phosphorylation as well as its nuclear translocation. A selective PKR inhibitor not only protected CGNs against TD toxicity, but also abolished ethanol potentiation of TD-induced loss of CGNs. CONCLUSIONS Ethanol promoted TD-induced PKR activation and neuronal death. PKR may be a convergent protein that mediates the interaction between TD and ethanol.
Collapse
Affiliation(s)
- Zun-Ji Ke
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | |
Collapse
|
38
|
Chen HM, Wang L, D'Mello SR. A chemical compound commonly used to inhibit PKR, {8-(imidazol-4-ylmethylene)-6H-azolidino[5,4-g] benzothiazol-7-one}, protects neurons by inhibiting cyclin-dependent kinase. Eur J Neurosci 2009; 28:2003-16. [PMID: 19046382 DOI: 10.1111/j.1460-9568.2008.06491.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of the double-stranded RNA-dependent protein kinase (PKR) has been implicated in the pathogenesis of several neurodegenerative diseases. We find that a compound widely used as a pharmacological inhibitor of this enzyme, referred to as PKR inhibitor (PKRi), {8-(imidazol-4-ylmethylene)-6H-azolidino[5,4-g]benzothiazol-7-one}, protects against the death of cultured cerebellar granule and cortical neurons. PKRi also prevents striatal neurodegeneration and improves behavioral outcomes in a chemically induced mouse model of Huntington's disease. Surprisingly, PKRi fails to block the phosphorylation of eIF2alpha, a downstream target of PKR, and does not reduce the autophosphorylation of PKR enzyme immunoprecipitated from neurons. Furthermore, neurons lacking PKR are fully protected from apoptosis by PKRi, demonstrating that neuroprotection by this compound is not mediated by PKR inhibition. Using in vitro kinase assays we investigated whether PKRi affects any other protein kinase. These analyses demonstrated that PKRi has no major inhibitory effect on pro-apoptotic kinases such as the c-Jun N-terminal kinases, the p38 MAP kinases and the death-associated protein kinases, or on other kinases including c-Raf, MEK1, MKK6 and MKK7. PKRi does, however, inhibit the activity of certain cyclin-dependent kinases (CDKs), including CDK1, CDK2 and CDK5 both in vitro and in low potassium-treated neurons. Consistent with its inhibitory action on mitotic CDKs, the treatment of HT-22 and HEK293T cell lines with PKRi sharply reduces the rate of cell cycle progression. Taken together with the established role of CDK activation in the promotion of neurodegeneration, our results suggest that PKRi exerts its neuroprotective action by inhibiting CDK.
Collapse
Affiliation(s)
- Hsin-Mei Chen
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083, USA
| | | | | |
Collapse
|
39
|
Chen YY, Chen G, Fan Z, Luo J, Ke ZJ. GSK3β and endoplasmic reticulum stress mediate rotenone-induced death of SK-N-MC neuroblastoma cells. Biochem Pharmacol 2008; 76:128-38. [DOI: 10.1016/j.bcp.2008.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 12/21/2022]
|