1
|
Sarkar S, Porel P, Kosey S, Aran KR. Unraveling the role of CGRP in neurological diseases: a comprehensive exploration to pathological mechanisms and therapeutic implications. Mol Biol Rep 2025; 52:436. [PMID: 40299101 DOI: 10.1007/s11033-025-10542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Spinal muscular atrophy (SMA) are neurodegenerative diseases (NDDs) characterized by progressive neuronal degeneration. Recent studies provide compelling information regarding the contribution of Calcitonin Gene-Related Peptide (CGRP), a potent neuropeptide, in regulating neuroinflammation, vasodilation, and neuronal survival in these disorders. This review systematically delves into the multidimensional aspects of CGRP as both a neuroprotective agent and a neurotoxic factor in NDDs. The neuroprotective effects of CGRP include suppression of inflammation, regulation of intracellular signaling pathways, and promotion of neuronal growth and survival. However, under pathological conditions, its overexpression or dysregulation is associated with oxidative stress, excitotoxicity, and neuronal death. The therapeutic use of CGRP and its receptor antagonists in migraine provides substantial evidence for CGRP's therapeutic potential, which can be further explored for the management of NDDs. However, since the bidirectional nature of CGRP effects is evident, it is crucial to gain an accurate insight into its mechanisms to target only the neuropeptide's beneficial effects while completely avoiding the undesired consequences. Further studies should focus on understanding the context-dependent activity of CGRP in the hope of designing targeted therapy for NDDs, which could gradually transform the current pharmacological management of NDDs.
Collapse
Affiliation(s)
- Sampriti Sarkar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
3
|
Xing MJ, Moulin TA, Suresh T, Gira JP, Sheybani A, Van Stavern GP. Migraine is a risk factor for pseudophakic positive dysphotopsia following monofocal lens implantation. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:e719-e726. [PMID: 38503405 DOI: 10.1016/j.jcjo.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/13/2023] [Accepted: 02/25/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To identify neuroadaptation-related risk factors for persistent positive dysphotopsia (>6 months) following monofocal lens implantation. DESIGN Retrospective cohort study. PARTICIPANTS Patients of an academic institution and a private practice in Saint Louis, Missouri. Inclusion criteria were adults with cataract extraction between January 2010 and April 2021 with monofocal intraocular lens implantation. Exclusion criteria included dementia, <20/40 acuity, visual pathway damage, visual field loss, and significant pathology causing photopsia. METHODS Participants were surveyed via telephone. RESULTS There were 385 participants (385 eyes), of whom 66 had persistent dysphotopsia (58 positive), 298 had none, and 21 had nonpersistent dysphotopsia. Among the 58 who had positive persistent dysphotopsia, mean Pseudophakic Dysphotopsia Questionnaire 6 (PDQ-6) score was 14.11 (SD, 8.46). There were no significant differences in sex or race. Migraine prevalence was greater among those with dysphotopsia (21.2%) than among those without (11.4%; p = 0.054). History of migraine was associated with an increase in PDQ-6 score of 2.76 points (p = 0.006). Six people in each group had Visual Aura Rating Scale (VARS) scores greater than zero. Mean VARS score was 0.48 for those with dysphotopsia and 0.14 for those without (p = 0.03). History of migraine or increased VARS score, younger age, and female sex were associated with lower satisfaction. CONCLUSION History of migraine was associated with increased dysphotopsia severity and decreased patient satisfaction. Although further study with a larger sample size is warranted, these preliminary results highlight the potential of simple questions to individualize lens choice, reduce the risk of dysphotopsia, and improve patient satisfaction.
Collapse
Affiliation(s)
- Maggie J Xing
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Thiago A Moulin
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Tara Suresh
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | | | - Arsham Sheybani
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Gregory P Van Stavern
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
4
|
Zheng Y, Jin J, Wei C, Huang C. Association of dietary vitamin C consumption with severe headache or migraine among adults: a cross-sectional study of NHANES 1999-2004. Front Nutr 2024; 11:1412031. [PMID: 38962437 PMCID: PMC11221565 DOI: 10.3389/fnut.2024.1412031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background An antioxidant-rich diet has been shown to protect against migraines in previous research. However, little has been discovered regarding the association between migraines and vitamin C (an essential dietary antioxidant). This study assessed the dietary vitamin C intake among adult migraineurs in the United States to determine if there is a correlation between migraine incidence and vitamin C consumption in adults. Methods This cross-sectional research encompassed adults who participated in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004, providing detailed information on their dietary vitamin C intake as well as their history of severe headaches or migraines. The study used weighted multivariable and logistic regression analyses to find an independent connection between vitamin C consumption and severe headache or migraine. Tests of interactions and subgroup analysis were conducted. Results Among the 13,445 individuals in the sample, 20.42% had a severe headache or migraine. In fully adjusted models, dietary vitamin C consumption was substantially linked negatively with severe headache or migraine (odds ratio [OR] = 0.94, 95% confidence interval [CI] = 0.91-0.98, p = 0.0007). Compared to quartile 1, quartile 4 had 22% fewer odds of having a severe headache or migraine (OR = 0.78, 95% CI = 0.69-0.89, p = 0.0002). Subgroup analyses showed a significant difference between vitamin C intake and severe headaches or migraines by gender (p for interaction < 0.01). Conclusion Reduced risk of severe headaches or migraines may be associated with increased consumption of vitamin C.
Collapse
Affiliation(s)
| | | | | | - Chunyuan Huang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Antonopoulos SR, Scharnhorst M, Nalley N, Durham PL. Method for cryopreservation of trigeminal ganglion for establishing primary cultures of neurons and glia. J Neurosci Methods 2024; 402:110034. [PMID: 38072069 PMCID: PMC12034302 DOI: 10.1016/j.jneumeth.2023.110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Primary neuronal cultures are used to elucidate cellular and molecular mechanisms involved in disease pathology and modulation by pharmaceuticals and nutraceuticals, and to identify novel therapeutic targets. However, preparation of primary neuronal cultures from rodent embryos is labor-intensive, and it can be difficult to produce high-quality consistent cultures. To overcome these issues, cryopreservation can be used to obtain standardized, high-quality stocks of neuronal cultures. NEW METHOD In this study, we present a simplified cryopreservation method for rodent primary trigeminal ganglion neurons and glia from Sprague-Dawley neonates, using a 90:10 (v/v) fetal bovine serum/dimethyl sulfoxide cell freezing medium. RESULTS Cryopreserved trigeminal ganglion cells stored for up to one year in liquid nitrogen exhibited similar neuronal and glial cell morphology to fresh cultures and retained high cell viability. Proteins implicated in inflammation and pain signaling were expressed in agreement with the reported subcellular localization. Additionally, both neurons and glial cells exhibited an increase in intracellular calcium levels in response to a depolarizing stimulus. Cryopreserved cells were also transiently transfected with reporter genes. COMPARISON WITH EXISTING METHODS Our method is simple, does not require special reagents or equipment, will save time and money, increase flexibility in study design, and produce consistent cultures. CONCLUSIONS This method for the preparation and cryopreservation of trigeminal ganglia results in primary cultures of neurons and glia similar in viability and morphology to fresh preparations that could be utilized for biochemical, cellular, and molecular studies, increase reproducibility, and save laboratory resources.
Collapse
Affiliation(s)
- Sophia R Antonopoulos
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Mikayla Scharnhorst
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Nicole Nalley
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA
| | - Paul L Durham
- Missouri State University, Jordan Valley Innovation Center/Department of Biology, Springfield, MO 65806, USA.
| |
Collapse
|
6
|
Vila-Pueyo M, Gliga O, Gallardo VJ, Pozo-Rosich P. The Role of Glial Cells in Different Phases of Migraine: Lessons from Preclinical Studies. Int J Mol Sci 2023; 24:12553. [PMID: 37628733 PMCID: PMC10454125 DOI: 10.3390/ijms241612553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a complex and debilitating neurological disease that affects 15% of the population worldwide. It is defined by the presence of recurrent severe attacks of disabling headache accompanied by other debilitating neurological symptoms. Important advancements have linked the trigeminovascular system and the neuropeptide calcitonin gene-related peptide to migraine pathophysiology, but the mechanisms underlying its pathogenesis and chronification remain unknown. Glial cells are essential for the correct development and functioning of the nervous system and, due to its implication in neurological diseases, have been hypothesised to have a role in migraine. Here we provide a narrative review of the role of glia in different phases of migraine through the analysis of preclinical studies. Current evidence shows that astrocytes and microglia are involved in the initiation and propagation of cortical spreading depolarization, the neurophysiological correlate of migraine aura. Furthermore, satellite glial cells within the trigeminal ganglia are implicated in the initiation and maintenance of orofacial pain, suggesting a role in the headache phase of migraine. Moreover, microglia in the trigeminocervical complex are involved in central sensitization, suggesting a role in chronic migraine. Taken altogether, glial cells have emerged as key players in migraine pathogenesis and chronification and future therapeutic strategies could be focused on targeting them to reduce the burden of migraine.
Collapse
Affiliation(s)
- Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Otilia Gliga
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Víctor José Gallardo
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 119-129 Passeig de la Vall d’Hebron, 08035 Barcelona, Spain
- Headache Unit, Neurology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Zhang S, Azubuine J, Schmeer C. A systematic literature review on the role of glial cells in the pathomechanisms of migraine. Front Mol Neurosci 2023; 16:1219574. [PMID: 37456527 PMCID: PMC10347403 DOI: 10.3389/fnmol.2023.1219574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Background The pathomechanisms underlying migraine are intricate and remain largely unclear. Initially regarded as a neuronal disorder, migraine research primarily concentrated on understanding the pathophysiological changes within neurons. However, recent advances have revealed the significant involvement of neuroinflammation and the neuro-glio-vascular interplay in migraine pathogenesis. Methods A systematic search was conducted in PubMed, Scopus, and Web of Science databases from their inception until November 2022. The retrieved results underwent a screening process based on title and abstract, and the full texts of the remaining papers were thoroughly assessed for eligibility. Only studies that met the predetermined inclusion criteria were included in the review. Results Fifty-nine studies, consisting of 6 human studies and 53 animal studies, met the inclusion criteria. Among the 6 human studies, 2 focused on genetic analyses, while the remaining studies employed functional imaging, serum analyses and clinical trials. Regarding the 53 animal studies investigating glial cells in migraine, 19 of them explored the role of satellite glial cells and/or Schwann cells in the trigeminal ganglion and/or trigeminal nerve. Additionally, 17 studies highlighted the significance of microglia and/or astrocytes in the trigeminal nucleus caudalis, particularly in relation to central sensitization during migraine chronification. Furthermore, 17 studies examined the involvement of astrocytes and/or microglia in the cortex. Conclusion Glial cells, including astrocytes, microglia, satellite glial cells and Schwann cells in the central and peripheral nervous system, participate both in the development as well as chronic progression of migraine in disease-associated regions such as the trigeminovascular system, trigeminal nucleus caudalis and cortex, among other brain regions.
Collapse
|
8
|
Suttle A, Wang P, Dias FC, Zhang Q, Luo Y, Simmons L, Bortsov A, Tchivileva IE, Nackley AG, Chen Y. Sensory Neuron-TRPV4 Modulates Temporomandibular Disorder Pain Via CGRP in Mice. THE JOURNAL OF PAIN 2023; 24:782-795. [PMID: 36509176 PMCID: PMC10164682 DOI: 10.1016/j.jpain.2022.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Temporomandibular disorder (TMD) pain that involves inflammation and injury in the temporomandibular joint (TMJ) and/or masticatory muscle is the most common form of orofacial pain. We recently found that transient receptor potential vanilloid-4 (TRPV4) in trigeminal ganglion (TG) neurons is upregulated after TMJ inflammation, and TRPV4 coexpresses with calcitonin gene-related peptide (CGRP) in TMJ-innervating TG neurons. Here, we extended these findings to determine the specific contribution of TRPV4 in TG neurons to TMD pain, and examine whether sensory neuron-TRPV4 modulates TMD pain via CGRP. In mouse models of TMJ inflammation or masseter muscle injury, sensory neuron-Trpv4 conditional knockout (cKO) mice displayed reduced pain. Coexpression of TRPV4 and CGRP in TMJ- or masseter muscle-innervating TG neurons was increased after TMJ inflammation and masseter muscle injury, respectively. Activation of TRPV4-expressing TG neurons triggered secretion of CGRP, which was associated with increased levels of CGRP in peri-TMJ tissues, masseter muscle, spinal trigeminal nucleus, and plasma in both models. Local injection of CGRP into the TMJ or masseter muscle evoked acute pain in naïve mice, while blockade of CGRP receptor attenuated pain in mouse models of TMD. These results suggest that TRPV4 in TG neurons contributes to TMD pain by potentiating CGRP secretion. PERSPECTIVE: This study demonstrates that activation of TRPV4 in TG sensory neurons drives pain by potentiating the release of pain mediator CGRP in mouse models of TMJ inflammation and masseter muscle injury. Targeting TRPV4 and CGRP may be of clinical potential in alleviating TMD pain.
Collapse
Affiliation(s)
- Abbie Suttle
- Department of Neurology, Duke University, Durham, North Carolina
| | - Peng Wang
- Department of Neurology, Duke University, Durham, North Carolina
| | - Fabiana C Dias
- Department of Neurology, Duke University, Durham, North Carolina
| | - Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, North Carolina
| | - Yuhui Luo
- Department of Neurology, Duke University, Durham, North Carolina
| | - Lauren Simmons
- Department of Neurology, Duke University, Durham, North Carolina
| | - Andrey Bortsov
- Department of Endodontics, Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, North Carolina
| | - Inna E Tchivileva
- Center for Pain Research and Innovation, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrea G Nackley
- Department of Endodontics, Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Yong Chen
- Department of Neurology, Duke University, Durham, North Carolina; Department of Endodontics, Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, North Carolina; Department of Pathology, Duke University, Durham, North Carolina.
| |
Collapse
|
9
|
Demartini C, Francavilla M, Zanaboni AM, Facchetti S, De Icco R, Martinelli D, Allena M, Greco R, Tassorelli C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int J Mol Sci 2023; 24:ijms24065334. [PMID: 36982428 PMCID: PMC10049673 DOI: 10.3390/ijms24065334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, numerous efforts have been made to identify reliable biomarkers useful in migraine diagnosis and progression or associated with the response to a specific treatment. The purpose of this review is to summarize the alleged diagnostic and therapeutic migraine biomarkers found in biofluids and to discuss their role in the pathogenesis of the disease. We included the most informative data from clinical or preclinical studies, with a particular emphasis on calcitonin gene-related peptide (CGRP), cytokines, endocannabinoids, and other biomolecules, the majority of which are related to the inflammatory aspects and mechanisms of migraine, as well as other actors that play a role in the disease. The potential issues affecting biomarker analysis are also discussed, such as how to deal with bias and confounding data. CGRP and other biological factors associated with the trigeminovascular system may offer intriguing and novel precision medicine opportunities, although the biological stability of the samples used, as well as the effects of the confounding role of age, gender, diet, and metabolic factors should be considered.
Collapse
Affiliation(s)
- Chiara Demartini
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Miriam Francavilla
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Anna Maria Zanaboni
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Sara Facchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Roberto De Icco
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Daniele Martinelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Marta Allena
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-(0382)-380255
| | - Cristina Tassorelli
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
10
|
Antonopoulos SR, Durham PL. Grape seed extract suppresses calcitonin gene-related peptide secretion and upregulates expression of GAD 65/67 and GABAB receptor in primary trigeminal ganglion cultures. IBRO Neurosci Rep 2022; 13:187-197. [PMID: 36093283 PMCID: PMC9449751 DOI: 10.1016/j.ibneur.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
The trigeminal ganglion is implicated in the underlying pathology of migraine and temporomandibular joint disorders (TMD), which are orofacial pain conditions involving peripheral and central sensitization. The neuropeptide calcitonin gene-related peptide (CGRP) is synthesized in some trigeminal ganglion neurons, and its release promotes inflammation, peripheral and central sensitization, and pain signaling. Recent studies in preclinical migraine and TMD models provide evidence that dietary supplementation with grape seed extract (GSE) inhibits trigeminal pain signaling. The goal of this study was to investigate the cellular mechanisms by which GSE modulates primary trigeminal ganglion cultures. The effect of GSE on CGRP secretion was determined by radioimmunoassay. To determine if GSE effects involved modulation of CGRP or the GABAergic system, expression of CGRP, GAD 65 and 67, GABAA receptor, and GABAB1 and GABAB2 receptor subunits were investigated by immunocytochemistry. GSE significantly inhibited basal CGRP secretion but did not alter neuronal CGRP expression. GAD 65 and 67 expression levels in neurons were significantly increased in response to GSE. While GSE did not cause a change in the neuronal expression of GABAA, GSE significantly increased GABAB1 expression in neurons, satellite glial cells, and Schwann cells. GABAB2 expression was significantly elevated in satellite glia and Schwann cells. These findings support the notion that GSE inhibition of basal CGRP secretion involves increased neuronal GAD 65 and 67 and GABAB receptor expression. GSE repression of CGRP release coupled with increased GABAB1 and GABAB2 glial cell expression would be neuroprotective by suppressing neuronal and glial excitability in the trigeminal ganglion. Grape seed extract inhibited basal CGRP release from cultured trigeminal neurons Neuronal expression of GAD 65/67 and GABAB1 was stimulated by grape seed extract Grape seed extract also increased GABAB1 in satellite glial cells and Schwann cells Glial expression of G protein-coupled GABAB2 was enhanced by grape seed extract Grape seed extract promotes neuroprotective cellular changes in trigeminal ganglion
Collapse
|
11
|
Wang Q, Ma T, Lu Z, Liu M, Wang L, Zhao S, Zhao Y. Xiongzhi Dilong decoction interferes with calcitonin gene-related peptide (CGRP)-induced migraine in rats through the CGRP/iNOS pathway. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
12
|
Hamann T, Rimmele F, Jürgens TP. [CGRP antibodies in migraine prophylaxis : The new standard in migraine treatment?]. Schmerz 2022; 36:59-72. [PMID: 35041064 DOI: 10.1007/s00482-021-00613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2021] [Indexed: 11/25/2022]
Abstract
Migraine is associated with a high individual level of suffering. Therefore, an effective preventive treatment is highly important. The spectrum of classical prophylactic drugs has now been expanded to include monoclonal antibodies against calcitonin gene-related peptide (CGRP) and its receptor. These antibodies have shown reliable efficacy compared to placebo and a rapid onset of action with a low rate of side effects and negligible interactions in pivotal studies. Recently, the efficacy of the antibody was shown in many studies even on drug-refractory migraine and migraine associated with medication overuse. Comprehensive head to head comparisons with previously established drugs and among the antibodies are not yet available; however, initial studies suggest better tolerability and efficacy compared to conventional drugs and other antibodies. The role of antibodies in established treatment cascades still needs to be clarified.
Collapse
Affiliation(s)
- Till Hamann
- Klinik und Poliklinik für Neurologie, Kopfschmerzzentrum Nord-Ost, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland.
| | - Florian Rimmele
- Klinik und Poliklinik für Neurologie, Kopfschmerzzentrum Nord-Ost, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland
| | - Tim Patrick Jürgens
- Klinik und Poliklinik für Neurologie, Kopfschmerzzentrum Nord-Ost, Universitätsmedizin Rostock, Gehlsheimer Straße 20, 18147, Rostock, Deutschland.,Neurologisches Zentrum, Klinik für Neurologie, KMG Klinikum Güstrow, Güstrow, Deutschland
| |
Collapse
|
13
|
Edvinsson JCA, Haanes KA, Edvinsson L. Neuropeptides and the Nodes of Ranvier in Cranial Headaches. Front Physiol 2022; 12:820037. [PMID: 35095575 PMCID: PMC8791651 DOI: 10.3389/fphys.2021.820037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
The trigeminovascular system (TGV) comprise of the trigeminal ganglion with neurons and satellite glial cells, with sensory unmyelinated C-fibers and myelinated Aδ-fibers picking up information from different parts of the head and sending signals to the brainstem and the central nervous system. In this review we discuss aspects of signaling at the distal parts of the sensory fibers, the extrasynaptic signaling between C-fibers and Aδ-fibers, and the contact between the trigeminal fibers at the nerve root entry zone where they transit into the CNS. We also address the possible role of the neuropeptides calcitonin gene-related peptide (CGRP), the neurokinin family and pituitary adenylyl cyclase-activating polypeptide 38 (PACAP-38), all found in the TGV system together with their respective receptors. Elucidation of the expression and localization of neuropeptides and their receptors in the TGV system may provide novel ways to understand their roles in migraine pathophysiology and suggest novel ways for treatment of migraine patients.
Collapse
Affiliation(s)
- Jacob C. A. Edvinsson
- Department of Clinical Experimental Research, Rigshospitalet-Glostrup, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian A. Haanes
- Department of Clinical Experimental Research, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Rigshospitalet-Glostrup, Copenhagen, Denmark
- Department of Internal Medicine, Lund University, Lund, Sweden
- *Correspondence: Lars Edvinsson,
| |
Collapse
|
14
|
Yang LWY, Mehta JS, Liu YC. Corneal neuromediator profiles following laser refractive surgery. Neural Regen Res 2021; 16:2177-2183. [PMID: 33818490 PMCID: PMC8354117 DOI: 10.4103/1673-5374.308666] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
Laser refractive surgery is one of the most commonly performed procedures worldwide. In laser refractive surgery, Femtosecond Laser in Situ Keratomileusis and Refractive Lenticule Extraction have emerged as promising alternatives to microkeratome Laser in Situ Keratomileusis and Photorefractive Keratectomy. Following laser refractive surgery, the corneal nerves, epithelial and stromal cells release neuromediators, including neurotrophins, neuropeptides and neurotransmitters. Notably, nerve growth factor, substance P, calcitonin gene-related peptide and various cytokines are important mediators of neurogenic inflammation and corneal nerve regeneration. Alterations in neuromediator profiles and ocular surface parameters following laser refractive surgery are attributed to the surgical techniques and the severity of tissue insult induced. In this review, we will discuss the (1) Functions of neuromediators and their physiological and clinical significance; (2) Changes in the neuromediators following various laser refractive surgeries; (3) Correlation between neuromediators, ocular surface health and corneal nerve status; and (4) Future directions, including the use of neuromediators as potential biomarkers for ocular surface health following laser refractive surgery, and as adjuncts to aid in corneal regeneration after laser refractive surgery.
Collapse
Affiliation(s)
- Lily Wei Yun Yang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
15
|
Diel RJ, Mehra D, Kardon R, Buse DC, Moulton E, Galor A. Photophobia: shared pathophysiology underlying dry eye disease, migraine and traumatic brain injury leading to central neuroplasticity of the trigeminothalamic pathway. Br J Ophthalmol 2021; 105:751-760. [PMID: 32703784 PMCID: PMC8022288 DOI: 10.1136/bjophthalmol-2020-316417] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/26/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Photophobia is a potentially debilitating symptom often found in dry eye disease (DE), migraine and traumatic brain injury (TBI). METHODS We conducted a review of the literature via a PubMed search of English language articles with a focus on how photophobia may relate to a shared pathophysiology across DE, migraine and TBI. RESULTS DE, migraine and TBI are common conditions in the general population, are often comorbid, and share photophobia as a symptom. Across the three conditions, neural dysregulation of peripheral and central nervous system components is implicated in photophobia in various animal models and in humans. Enhanced activity of the neuropeptide calcitonin gene-related peptide (CGRP) is closely linked to photophobia. Current therapies for photophobia include glasses which shield the eyes from specific wavelengths, botulinum toxin, and inhibition of CGRP and its receptor. Many individuals have persistent photophobia despite the use of these therapies, and thus, development of new therapies is needed. CONCLUSIONS The presence of photophobia in DE, migraine and TBI suggests shared trigeminothalamic pathophysiologic mechanisms, as explained by central neuroplasticity and hypersensitivity mediated by neuropeptide CGRP. Treatment strategies which target neural pathways (ie, oral neuromodulators, transcutaneous nerve stimulation) should be considered in patients with persistent photophobia, specifically in individuals with DE whose symptoms are not controlled with traditional therapies.
Collapse
Affiliation(s)
- Ryan J Diel
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
| | - Divy Mehra
- Ophthalmology, VA Medical Center Miami, Miami, Florida, USA
- Ophthalmology, University of Miami Bascom Palmer Eye Institute, Miami, Florida, USA
| | - Randy Kardon
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, USA
| | - Dawn C Buse
- Albert Einstein College of Medicine Department of Neurology, Bronx, New York, USA
| | - Eric Moulton
- Department of Anesthesiology, Center for Pain and the Brain; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anat Galor
- Ophthalmology, VA Medical Center Miami, Miami, Florida, USA
- Ophthalmology, University of Miami Bascom Palmer Eye Institute, Miami, Florida, USA
| |
Collapse
|
16
|
Liang H, Hu H, Shan D, Lyu J, Yan X, Wang Y, Jian F, Li X, Lai W, Long H. CGRP Modulates Orofacial Pain through Mediating Neuron-Glia Crosstalk. J Dent Res 2020; 100:98-105. [PMID: 32853530 DOI: 10.1177/0022034520950296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) plays a crucial role in the modulation of orofacial pain, and we hypothesized that CGRP mediated a neuron-glia crosstalk in orofacial pain. The objective of this study was to elucidate the mechanisms whereby CGRP mediated trigeminal neuron-glia crosstalk in modulating orofacial pain. Orofacial pain was elicited by ligating closed-coil springs between incisors and molars. Trigeminal neurons and satellite glial cells (SGCs) were cultured for mechanistic exploration. Gene and protein expression were determined through immunostaining, polymerase chain reaction, and Western blot. Orofacial pain was evaluated through the rat grimace scale. Our results revealed that the expressions of CGRP were elevated in both trigeminal neurons and SGCs following the induction of orofacial pain. Intraganglionic administration of CGRP and olcegepant exacerbated and alleviated orofacial pain, respectively. The knockdown of CGRP through viral vector-mediated RNA interference was able to downregulate CGRP expressions in both neurons and SGCs and to alleviate orofacial pain. CGRP upregulated the expression of inducible nitric oxide synthase through the p38 signaling pathway in cultured SGCs. In turn, L-arginine (nitric oxide donor) was able to enhance orofacial pain by upregulating CGRP expressions in vivo. In cultured trigeminal neurons, L-arginine upregulated the expression of CGRP, and this effect was diminished by cilnidipine (N-type calcium channel blocker) while not by mibefradil (L-type calcium channel blocker). In conclusion, CGRP modulated orofacial pain through upregulating the expression of nitric oxide through the p38 signaling pathway in SGCs, and the resulting nitric oxide in turn stimulated CGRP expression through N-type calcium channel in neurons, building a CGRP-mediated positive-feedback neuron-glia crosstalk.
Collapse
Affiliation(s)
- H Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Key Laboratory of Oral Diseases of Gansu Province, Northwest Minzu University; Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, China
| | - H Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - D Shan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J Lyu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Yan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - F Jian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - W Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - H Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Role of CGRP in Neuroimmune Interaction via NF-κB Signaling Genes in Glial Cells of Trigeminal Ganglia. Int J Mol Sci 2020; 21:ijms21176005. [PMID: 32825453 PMCID: PMC7503816 DOI: 10.3390/ijms21176005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
Activation of the trigeminal system causes the release of various neuropeptides, cytokines, and other immune mediators. Calcitonin gene-related peptide (CGRP), which is a potent algogenic mediator, is expressed in the peripheral sensory neurons of trigeminal ganglion (TG). It affects the inflammatory responses and pain sensitivity by modulating the activity of glial cells. The primary aim of this study was to use array analysis to investigate the effect of CGRP on the glial cells of TG in regulating nuclear factor kappa B (NF-κB) signaling genes and to further check if CGRP in the TG can affect neuron-glia activation in the spinal trigeminal nucleus caudalis. The glial cells of TG were stimulated with CGRP or Minocycline (Min) + CGRP. The effect on various genes involved in NF-κB signaling pathway was analyzed compared to no treatment control condition using a PCR array analysis. CGRP, Min + CGRP or saline was directly injected inside the TG and the effect on gene expression of Egr1, Myd88 and Akt1 and protein expression of cleaved Caspase3 (cleav Casp3) in the TG, and c-Fos and glial fibrillary acidic protein (GFAP) in the spinal section containing trigeminal nucleus caudalis was analyzed. Results showed that CGRP stimulation resulted in the modulation of several genes involved in the interleukin 1 signaling pathway and some genes of the tumor necrosis factor pathway. Minocycline pre-treatment resulted in the modulation of several genes in the glial cells, including anti-inflammatory genes, and neuronal activation markers. A mild increase in cleav Casp3 expression in TG and c-Fos and GFAP in the spinal trigeminal nucleus of CGRP injected animals was observed. These data provide evidence that glial cells can participate in neuroimmune interaction due to CGRP in the TG via NF-κB signaling pathway.
Collapse
|
18
|
ChIP-seq Profiling Identifies Histone Deacetylase 2 Targeting Genes Involved in Immune and Inflammatory Regulation Induced by Calcitonin Gene-Related Peptide in Microglial Cells. J Immunol Res 2020; 2020:4384696. [PMID: 32832570 PMCID: PMC7424498 DOI: 10.1155/2020/4384696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a mediator of microglial activation at the transcriptional level. The involvement of the epigenetic mechanism in this process is largely undefined. Histone deacetylase (HDAC)1/2 are considered important epigenetic regulators of gene expression in activated microglia. In this study, we examined the effect of CGRP on HDAC2-mediated gene transcription in microglial cells through the chromatin immunoprecipitation sequencing (ChIP-seq) method. Immunofluorescence analysis showed that mouse microglial cells (BV2) expressed CGRP receptor components. Treatment of microglia with CGRP increased HDAC2 protein expression. ChIP-seq data indicated that CGRP remarkably altered promoter enrichments of HDAC2 in microglial cells. We identified 1271 gene promoters, whose HDAC2 enrichments are significantly altered in microglia after CGRP treatment, including 1181 upregulating genes and 90 downregulating genes. Bioinformatics analyses showed that HDAC2-enriched genes were mainly associated with immune- and inflammation-related pathways, such as nitric oxide synthase (NOS) biosynthetic process, retinoic acid-inducible gene- (RIG-) like receptor signaling pathway, and nuclear factor kappa B (NF-κB) signaling pathway. The expression of these key pathways (NOS, RIG-I, and NF-κB) were further verified by Western blot. Taken together, our findings suggest that genes with differential HDAC2 enrichments induced by CGRP function in diverse cellular pathways and many are involved in immune and inflammatory responses.
Collapse
|
19
|
Yao G, Man YH, Li AR, Guo Y, Dai Y, Wang P, Zhou YF. NO up-regulates migraine-related CGRP via activation of an Akt/GSK-3β/NF-κB signaling cascade in trigeminal ganglion neurons. Aging (Albany NY) 2020; 12:6370-6384. [PMID: 32276265 PMCID: PMC7185139 DOI: 10.18632/aging.103031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023]
Abstract
The release of the neuropeptide CGRP from the trigeminal ganglion neurons (TGNs) plays a central role in migraine. Whereas CGRP can activate NO release from ganglionic glial cells, NO in turn enhances CGRP release. However, it remains unclear how NO promotes CGRP release. Here, we report that the NO donor SNAP triggered CGRP release from cultured primary TGNs. This event was associated with GSK-3β activation and Akt inactivation. Immunofluorescent staining revealed that GSK-3β primarily located in neurons. Furthermore, GSK-3β inhibition resulted in a marked reduction in expression of CGRP as well as other migraine-related factors, including substance P, cholecystokinin, and prostaglandin E2. Last, exposure to SNAP also activated NF-κB, while NF-κB inhibition prevented the induction of CGRP by SNAP. Interestingly, this event was blocked by GSK-3β inhibition, in association with inhibition of NF-κB/p65 expression and nuclear translocation. Together, these findings argue that NO could stimulate TGNs to release of CGRP as well as other migraine-related factors, likely by activating GSK-3β, providing a novel mechanism underlying a potential feed-forward loop between NO and CGRP in migraine. They also raise a possibility that GSK-3β might act to trigger migraine through activation of NF-κB, suggesting a link between neuroinflammation and migraine.
Collapse
Affiliation(s)
- Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Yu-Hong Man
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - An-Ran Li
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Guo
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology - Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi-Fa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
20
|
Lee J, Ohara K, Shinoda M, Hayashi Y, Kubo A, Sugawara S, Asano S, Soma K, Kanno K, Ando M, Koyama R, Kimura Y, Sakanashi K, Iinuma T, Iwata K. Involvement of Satellite Cell Activation via Nitric Oxide Signaling in Ectopic Orofacial Hypersensitivity. Int J Mol Sci 2020; 21:ijms21041252. [PMID: 32070010 PMCID: PMC7072927 DOI: 10.3390/ijms21041252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 12/03/2022] Open
Abstract
The mechanical head-withdrawal threshold (MHWT) was significantly reduced following inferior alveolar nerve transection (IANX) in rats. Nitrate and nitrite synthesis was dramatically increased in the trigeminal ganglion (TG) at 6 h after the IANX. The relative number of neuronal nitric oxide synthase (nNOS)-immunoreactive (IR) cells was significantly higher in IANX rats compared to sham-operated and N-propyl-L-arginine (NPLA)-treated IANX rats. On day 3 after NPLA administration, the MHWT recovered considerably in IANX rats. Following L-arginine injection into the TG, the MHWT was significantly reduced within 15 min, and the mean number of TG cells encircled by glial fibrillary acidic protein (GFAP)-IR cells was substantially higher. The relative number of nNOS-IR cells encircled by GFAP-IR cells was significantly increased in IANX rats. In contrast, after NPLA injection into the TG, the relative number of GFAP-IR cells was considerably reduced in IANX rats. Fluorocitrate administration into the TG significantly reduced the number of GFAP-IR cells and prevented the MHWT reduction in IANX rats. The present findings suggest that following IANX, satellite glial cells are activated via nitric oxide (NO) signaling from TG neurons. The spreading satellite glial cell activation within the TG results in mechanical hypersensitivity of face regions not directly associated with the trigeminal nerve injury.
Collapse
Affiliation(s)
- Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan;
- Correspondence: (J.L.); (K.I.); Tel.: +81-3-3219-8122 (J.L.); +81-3-3219-8122 (K.I.); Fax: +81-3-3219-8341 (J.L.); +81-3-3219-8341 (K.I.)
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (K.O.); (K.K.)
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Sayaka Asano
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
- Department of Oral Diagnosis, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Kumi Soma
- Department of Pediatric Dentistry, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan;
| | - Kohei Kanno
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (K.O.); (K.K.)
| | - Masatoshi Ando
- Department of Oral Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.A.); (R.K.); (Y.K.)
| | - Ryo Koyama
- Department of Oral Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.A.); (R.K.); (Y.K.)
| | - Yuki Kimura
- Department of Oral Surgery, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.A.); (R.K.); (Y.K.)
| | - Kousuke Sakanashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan;
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; (M.S.); (Y.H.); (A.K.); (S.S.); (S.A.); (K.S.)
- Correspondence: (J.L.); (K.I.); Tel.: +81-3-3219-8122 (J.L.); +81-3-3219-8122 (K.I.); Fax: +81-3-3219-8341 (J.L.); +81-3-3219-8341 (K.I.)
| |
Collapse
|
21
|
Shinoda M, Kubo A, Hayashi Y, Iwata K. Peripheral and Central Mechanisms of Persistent Orofacial Pain. Front Neurosci 2019; 13:1227. [PMID: 31798407 PMCID: PMC6863776 DOI: 10.3389/fnins.2019.01227] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022] Open
Abstract
Neuroplastic changes in the neuronal networks involving the trigeminal ganglion (TG), trigeminal spinal subnucleus caudalis (Vc), and upper cervical spinal cord (C1/C2) are considered the mechanisms underlying the ectopic orofacial hypersensitivity associated with trigeminal nerve injury or orofacial inflammation. It has been reported that peripheral nerve injury causes injury discharges in the TG neurons, and a barrage of action potentials is generated in TG neurons and conveyed to the Vc and C1/C2 after trigeminal nerve injury. Long after trigeminal nerve injury, various molecules are produced in the TG neurons, and these molecules are released from the soma of TG neurons and are transported to the central and peripheral terminals of TG neurons. These changes within the TG cause neuroplastic changes in TG neurons and they become sensitized. The neuronal activity of TG neurons is further accelerated, and Vc and C1/C2 neurons are also sensitized. In addition to this cascade, non-neuronal glial cells are also involved in the enhancement of the neuronal activity of TG, Vc, and C1/C2 neurons. Satellite glial cells and macrophages are activated in the TG after trigeminal nerve injury and orofacial inflammation. Microglial cells and astrocytes are also activated in the Vc and C1/C2 regions. It is considered that functional interaction between non-neuronal cells and neurons in the TG, Vc, and C1/C2 regions is a key mechanism involved in the enhancement of neuronal excitability after nerve injury or inflammation. In this article, the detailed mechanisms underlying ectopic orofacial hyperalgesia associated with trigeminal nerve injury and orofacial inflammation are addressed.
Collapse
Affiliation(s)
- Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
22
|
Lionetto L, Curto M, Cisale GY, Capi M, Cipolla F, Guglielmetti M, Martelletti P. Fremanezumab for the preventive treatment of migraine in adults. Expert Rev Clin Pharmacol 2019; 12:741-748. [PMID: 31220963 DOI: 10.1080/17512433.2019.1635452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: The Calcitonin Gene-Related Peptide (CGRP) has been implicated in migraine pathophysiology due to its role in neurogenic inflammation and transmission of trigeminovascular nociceptive signal. New molecules targeting CGRP and its receptor have been developed as migraine-specific preventative treatments. Fremanezumab (or TEV-48,125, LBR-101), a human monoclonal antibody against CGRP, has been recently approved for clinical use by FDA and EMA. Areas covered: This paper briefly discusses the calcitonin family of neurotransmitters and resultant activation pathways and in-depth the chemical properties, pharmacodynamics, pharmacokinetics, clinical efficacy and safety of Fremanezumab for the prophylactic treatment of migraine. Expert opinion: Fremanezumab, a migraine-specific drug, is effective and safe as a prophylactic treatment of chronic and episodic migraine. As a monoclonal antibody, it was not associated to liver toxicity and is not expected to interact with other drugs. The long half-life might improve patients' compliance. Long-term effects of CGRP block in cardiovascular, grastrointestinal and bone functions should be evaluated in ongoing trials, since CGRP is involved in multiple biological activities in the human body. Nevertheless, targeting CGRP itself allows the receptor binding with other ligands involved in several physiological functions. Thus, the long-term treatment with Fremanezumab is expected to be associated with a lower risk of severe adverse effects.
Collapse
Affiliation(s)
- Luana Lionetto
- a Mass Spectrometry Laboratory Unit, Sant'Andrea University Hospital , Rome , Italy
| | - Martina Curto
- b Department of Human Neurosciences, Sapienza University of Rome , Rome , Italy.,c International Mood & Psychotic Disorders Research Consortium, Mailman Research Center , Belmont , MA , USA.,d Department of Mental Health , Colleferro (RM) , Italy
| | - Giusy Ylenia Cisale
- e Department of Physiology and Pharmacology, Sapienza University , Rome , Italy
| | - Matilde Capi
- a Mass Spectrometry Laboratory Unit, Sant'Andrea University Hospital , Rome , Italy
| | - Fabiola Cipolla
- f Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Martina Guglielmetti
- g Department of Medical, Surgical and Experimental Sciences, University of Sassari , Sassari , Italy.,h Regional Referral Headache Center, Sant'Andrea University Hospital , Rome , Italy
| | - Paolo Martelletti
- f Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome , Italy.,h Regional Referral Headache Center, Sant'Andrea University Hospital , Rome , Italy
| |
Collapse
|
23
|
Abstract
Migraine is a strongly disabling disease characterized by a unilateral throbbing headache lasting for up to 72 h for each individual attack. There have been many theories on the pathophysiology of migraine throughout the years. Currently, the neurovascular theory dominates, suggesting clear involvement of the trigeminovascular system. The most recent data show that a migraine attack most likely originates in the hypothalamus and activates the trigeminal nucleus caudalis (TNC). Although the mechanisms are unknown, activation of the TNC leads to peripheral release of calcitonin gene-related protein (CGRP), most likely from C-fibers. During the past year monoclonal antibodies against CGRP or the CGRP receptor have emerged as the most promising targets for migraine therapy, and at the same time established the strong involvement of CGRP in the pathophysiology of migraine. The viewpoint presented here focuses further on the activation of the CGRP receptor on the sensory Aδ-fiber, leading to the sensation of pain. The CGRP receptor activates adenylate cyclase, which leads to an increase in cyclic adenosine monophosphate (cAMP). We hypothesize that cAMP activates the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, triggering an action potential sensed as pain. The mechanisms behind migraine pain on a molecular level, particularly their importance to cAMP, provide clues to potential new anti-migraine targets. In this article we focus on the development of targets related to the CGRP system, and further include novel targets such as the pituitary adenylate cyclase-activating peptide (PACAP) system, the serotonin 5-HT1F receptor, purinergic receptors, HCN channels, adenosine triphosphate-sensitive potassium channels (KATP), and the glutaminergic system.
Collapse
|
24
|
Liu F, Zhang YY, Song N, Lin J, Liu MK, Huang CL, Zhou C, Wang H, Wang M, Shen JF. GABA B receptor activation attenuates inflammatory orofacial pain by modulating interleukin-1β in satellite glial cells: Role of NF-κB and MAPK signaling pathways. Brain Res Bull 2019; 149:240-250. [PMID: 31034945 DOI: 10.1016/j.brainresbull.2019.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/26/2019] [Accepted: 04/22/2019] [Indexed: 02/05/2023]
Abstract
Orofacial inflammation could activate satellite glial cells (SGCs) in the trigeminal ganglion (TG) to produce interleukin 1β (IL-1β) which plays crucial roles in the development of inflammatory pain. Recent studies have shown that gamma-amino butyric acid-B (GABAB) receptor could modulate the expression of inflammatory cytokines in microglia and astrocytes in the spinal cord. The objective of this study was to investigate whether GABAB receptors in TG SGCs attenuate inflammatory facial pain via mediating IL-1β following inflammation and its mechanisms. Complete Freund's adjuvant (CFA) was injected into the whisker pad of rats to induce inflammation in vivo. Lipopolysaccharide (LPS) was added to culture medium to activate SGCs in vitro. Behavioral measures showed that microinjection of baclofen (a selective GABAB receptor agonist) into the TG ameliorated the mechanical allodynia of CFA-treated rats. Interestingly, baclofen pretreatment inhibited SGC activation and IL-1β production, however, preserved the decreased expression of GABAB receptors in SGCs activated by CFA in vivo and LPS in vitro. In addition, baclofen suppressed the increased expression of p-NF- κ B p65, p-I κ Bα, and p-p38 MAPK, while reversed the decreased production of I κ Bα, and further enhanced the increased expression of p-ERK(1/2) in LPS-treated SGCs in vitro. Finally, those effects of baclofen were abolished by saclofen (a specific GABAB receptor antagonist) co-administration. Altogether, these results demonstrated for the first time that activation of GABAB receptor might inhibit IL-1β production by suppressing NF- κ B and p38 MAPK signaling pathway activation and restore GABAB receptor expression in SGCs to attenuate inflammatory facial pain.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Ning Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Meng-Ke Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
25
|
Preparation and In Vivo Expression of CS-PEI/pCGRP Complex for Promoting Fracture Healing. INT J POLYM SCI 2019. [DOI: 10.1155/2019/9432194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background/Objective. CGRP is a calcitonin gene-related peptide that is capable of promoting bone development and bone regeneration. Chitosan is a nontoxic and degradable biomaterial. However, the gene transfection efficiency of chitosan is low, whereas PEI (polyethyleneimine) has higher capability of transfection efficiency. In this paper, PEI was covalently linked to chitosan, and the rat CGRP plasmid was encapsulated in a CS-PEI complex to construct CS-PEI/pCGRP nanoparticles. The characterization and biological effects of CS-PEI/pCGRP nanoparticles were investigated in vivo. Methods. CS-PEI/pCGRP nanoparticles were prepared by a complex coacervation method. The PEI distribution degree on chitosan was measured with a dialysis method and 1H-NMR analysis. The particle size and zeta potential of CS-PEI/pCGRP nanoparticles were detected by dynamic light scattering. The binding of CS-PEI to pCGRP was detected by gel retardation assay. The transfection effect was evaluated by RT-qPCR. A rat femoral fracture model was established and treated with PBS, pCGRP, CS-PEI, and CS-PEI/pCGRP to detect the expression of CGRP and downstream genes in early healing of fractures by RT-qPCR, western blot, and immunohistochemistry (IHC). Results. The particle size and zeta potential of CS-PEI/pCGRP nanoparticles were stable when the mass ratio of CS-PEI and pCGRP was higher than 5 : 1, the ratio which could also effectively protect pCGRP from DNase I degradation. CS-PEI/pCGRP could obviously increase CGRP expression in rat bone marrow stromal cells. In vivo fracture healing experiments demonstrated that CGRP could be delivered to the body via the CS-PEI and expressed in situ after a 3-week treatment. Moreover, CS-PEI/pCGRP significantly enhanced the mRNA and protein levels of downstream RUNX2 and ALP. Conclusion. CS-PEI/pCGRP nanoparticles were an effective nonviral gene transfection system that could upregulate CGRP expression in vivo and accelerate the expression of key biomarkers for early healing of fractures.
Collapse
|
26
|
Abstract
Calcitonin gene-related peptide (CGRP) is a promiscuous peptide, similar to many other members of the calcitonin family of peptides. The potential of CGRP to act on many different receptors with differing affinities and efficacies makes deciphering the signalling from the CGRP receptor a challenging task for researchers.Although it is not a typical G protein-coupled receptor (GPCR), in that it is composed not just of a GPCR, the CGRP receptor activates many of the same signalling pathways common for other GPCRs. This includes the family of G proteins and a variety of protein kinases and transcription factors. It is now also clear that in addition to the initiation of cell-surface signalling, GPCRs, including the CGRP receptor, also activate distinct signalling pathways as the receptor is trafficking along the endocytic conduit.Given CGRP's characteristic of activating multiple GPCRs, we will first consider the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) as the CGRP receptor. We will discuss the discovery of the CGRP receptor components, the molecular mechanisms controlling its internalization and post-endocytic trafficking (recycling and degradation) and the diverse signalling cascades that are elicited by this receptor in model cell lines. We will then discuss CGRP-mediated signalling pathways in primary cells pertinent to migraine including neurons, glial cells and vascular smooth muscle cells.Investigation of all the CGRP- and CGRP receptor-mediated signalling cascades is vital if we are to fully understand CGRP's role in migraine and will no doubt unearth new targets for the treatment of migraine and other CGRP-driven diseases.
Collapse
|
27
|
Dong Y, Han LL, Xu ZX. Suppressed microRNA-96 inhibits iNOS expression and dopaminergic neuron apoptosis through inactivating the MAPK signaling pathway by targeting CACNG5 in mice with Parkinson's disease. Mol Med 2018; 24:61. [PMID: 30486773 PMCID: PMC6263543 DOI: 10.1186/s10020-018-0059-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background There have been a number of reports implicating the association of microRNAs (miRs) and the MAPK signaling pathway with the dopaminergic neuron, which is involved in the development of Parkinson’s disease (PD). The present study was conducted with aims of exploring the role of miR-96 in the activation of iNOS and apoptosis of dopaminergic neuron through the MAPK signaling pathway in mice with PD. Methods The miR and the differentially expressed gene in PD were screened out and the relationship between them was verified. A mouse model of PD induced by MPTP and was then constructed and treated with miR-96 mimic/inhibitor and CACNG5 overexpression plasmid to extract nigral dopaminergic neuron for the purpose of detecting the effect of miR-96 on PD. The TH and iNOS positive neuronal cells, the apoptotic neuronal cells by TUNEL staining, and expression of miR-96, CACNG5, iNOS, p38MAPK, p-p38MAPK, c-Fos, Bax, and Bcl-2 in substantia nigra dopaminergic neuronal tissues were evaluated. Results The results obtained from the aforementioned procedure were then verified by cell culture of the SH-SY5Y cells, followed by treatment with miR-96 mimic/inhibitor, CACNG5 overexpression plasmid and the inhibitor of the MAPK signaling pathway. CACNG5 was confirmed as a target gene of miR-96. The inhibition of miR-96 resulted in a substantial increase in nigral cells, TH positive cells and expression of CACNG5 and Bcl-2 in nigral dopaminergic neuronal tissues, and a decrease in iNOS positive cells, apoptotic neuronal cells, and expression of iNOS, p38MAPK, p-p38MAPK, c-Fos, and Bax. Conclusion The above results implicated that the downregulation of miR-96 inhibits the activation of iNOS and apoptosis of dopaminergic neuron through the blockade of the MAPK signaling pathway by promoting CACNG5 in mice with PD.
Collapse
Affiliation(s)
- Yue Dong
- Department of Neurology , China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Erdao District, Changchun, 130012, Jilin Province, People's Republic of China
| | - Li-Li Han
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, 061000, People's Republic of China
| | - Zhong-Xin Xu
- Department of Neurology , China-Japan Union Hospital, Jilin University, No. 126, Xiantai Street, Erdao District, Changchun, 130012, Jilin Province, People's Republic of China.
| |
Collapse
|
28
|
Fan W, Zhu X, He Y, Zhu M, Wu Z, Huang F, He H. The role of satellite glial cells in orofacial pain. J Neurosci Res 2018; 97:393-401. [PMID: 30450738 DOI: 10.1002/jnr.24341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/29/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022]
Abstract
Some chronic pain conditions in the orofacial region are common, the mechanisms underlying which are unresolved. Satellite glial cells (SGCs) are the glial cells of the peripheral nervous system. In the sensory ganglia, each neuronal body is surrounded by SGCs forming distinct functional units. The unique structural organization enables SGCs to communicate with each other and with their enwrapped neurons via a variety of ways. There is a growing body of evidence that SGCs can influence the level of neuronal excitability and are involved in the development and/or maintenance of pain. The aim of this review was to summarize the latest advances made about the implication of SGCs in orofacial pain. It may offer new targets for the development of orofacial pain treatment.
Collapse
Affiliation(s)
- Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China.,Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yifan He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Mengzhu Zhu
- Department of Rheumatology, Chinese Medicine Hospital in Linyi City, Shandong, China
| | - Zhi Wu
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Chatchaisak D, Connor M, Srikiatkhachorn A, Chetsawang B. The potentiating effect of calcitonin gene-related peptide on transient receptor potential vanilloid-1 activity and the electrophysiological responses of rat trigeminal neurons to nociceptive stimuli. J Physiol Sci 2018; 68:261-268. [PMID: 28205139 PMCID: PMC10717096 DOI: 10.1007/s12576-017-0529-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Growing evidence suggests that calcitonin gene-related peptide (CGRP) participates in trigeminal nociceptive responses. However, the role of CGRP in sensitization or desensitization of nociceptive transduction remains poorly understood. In this study, we sought to further investigate the CGRP-induced up-regulation of transient receptor potential vanilloid-1 (TRPV1) and the responses of trigeminal neurons to nociceptive stimuli. Rat trigeminal ganglion (TG) organ cultures and isolated trigeminal neurons were incubated with CGRP. An increase in TRPV1 levels was observed in CGRP-incubated TG organ cultures. CGRP potentiated capsaicin-induced increase in phosphorylated CaMKII levels in the TG organ cultures. The incubation of the trigeminal neurons with CGRP significantly increased the inward currents in response to capsaicin challenge, and this effect was inhibited by co-incubation with the CGRP receptor antagonist, BIBN4068BS or the inhibitor of protein kinase A, H-89. These findings reveal that CGRP acting on trigeminal neurons may play a significant role in facilitating cellular events that contribute to the peripheral sensitization of the TG in nociceptive transmission.
Collapse
Affiliation(s)
- Duangthip Chatchaisak
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand
| | - Mark Connor
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Anan Srikiatkhachorn
- International Medical College, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Banthit Chetsawang
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom, 73170, Thailand.
| |
Collapse
|
30
|
CGRP as the target of new migraine therapies — successful translation from bench to clinic. Nat Rev Neurol 2018; 14:338-350. [DOI: 10.1038/s41582-018-0003-1] [Citation(s) in RCA: 434] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
- 4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
32
|
Artemin transiently increases iNOS expression in primary cultured trigeminal ganglion neurons. Neurosci Lett 2017; 660:34-38. [DOI: 10.1016/j.neulet.2017.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
|
33
|
Sugawara S, Okada S, Katagiri A, Saito H, Suzuki T, Komiya H, Kanno K, Ohara K, Iinuma T, Toyofuku A, Iwata K. Interaction between calcitonin gene-related peptide-immunoreactive neurons and satellite cells via P2Y 12 R in the trigeminal ganglion is involved in neuropathic tongue pain in rats. Eur J Oral Sci 2017; 125:444-452. [PMID: 29023985 DOI: 10.1111/eos.12382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The P2Y12 receptor expressed in satellite cells of the trigeminal ganglion is thought to contribute to neuropathic pain. The functional interaction between neurons and satellite cells via P2Y12 receptors and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) underlying neuropathic pain in the tongue was evaluated in this study. Expression of P2Y12 receptor was enhanced in pERK1/2-immunoreactive cells encircling trigeminal ganglion neurons after lingual nerve crush. The administration to lingual nerve crush rats of a selective P2Y12 receptor antagonist, MRS2395, attenuated tongue hypersensitivity to mechanical and heat stimulation and suppressed the increase in the relative numbers of calcitonin gene-related peptide (CGRP)-immunoreactive neurons and neurons encircled by pERK1/2-immunoreactive cells. Administration of the P2Y1,12,13 receptor agonist, 2-(methylthio)adenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), to naïve rats induced neuropathic pain in the tongue, as in lingual nerve crush rats. Co-administration of 2-MeSADP + MRS2395 to naïve rats did not result in hypersensitivity of the tongue. The relative number of CGRP-immunoreactive neurons increased following this co-administration, but to a lesser degree than observed in 2-MeSADP-administrated naïve rats, and the relative number of neurons encircled by pERK1/2-immunoreactive cells did not change. These results suggest that the interaction between activated satellite cells and CGRP-immunoreactive neurons via P2Y12 receptors contributes to neuropathic pain in the tongue associated with lingual nerve injury.
Collapse
Affiliation(s)
- Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Shinji Okada
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Hiroto Saito
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Tatsuro Suzuki
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Department of Periodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Hiroki Komiya
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kohei Kanno
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Akira Toyofuku
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
34
|
Mikuzuki L, Saito H, Katagiri A, Okada S, Sugawara S, Kubo A, Ohara K, Lee J, Toyofuku A, Iwata K. Phenotypic change in trigeminal ganglion neurons associated with satellite cell activation via extracellular signal-regulated kinase phosphorylation is involved in lingual neuropathic pain. Eur J Neurosci 2017; 46:2190-2202. [PMID: 28834578 DOI: 10.1111/ejn.13667] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/22/2022]
Abstract
Iatrogenic trigeminal nerve injuries remain a common and complex clinical problem. Satellite glial cell (SGC) activation, associated phosphorylation of extracellular signal-regulated kinase (ERK), and neuropeptide expression in the trigeminal ganglion (TG) are known to be involved in trigeminal neuropathic pain related to trigeminal nerve injury. However, the involvement of these molecules in orofacial neuropathic pain mechanisms is still unknown. Phosphorylation of ERK1/2 in lingual nerve crush (LNC) rats was observed in SGCs. To evaluate the role of neuron-SGC interactions under neuropathic pain, calcitonin gene-related peptide (CGRP)-immunoreactive (IR), phosphorylated ERK1/2 (pERK1/2)-IR and glial fibrillary acidic protein (GFAP)-IR cells in the TG were studied in LNC rats. The number of CGRP-IR neurons and neurons encircled with pERK1/2-IR SGCs was significantly larger in LNC rats compared with sham rats. The percentage of large-sized CGRP-IR neurons was significantly higher in LNC rats. The number of CGRP-IR neurons, neurons encircled with pERK1/2-IR SGCs, and neurons encircled with GFAP-IR SGCs was decreased following CGRP receptor blocker CGRP8-37 or mitogen-activated protein kinase/ERK kinase 1 inhibitor PD98059 administration into the TG after LNC. Reduced thresholds to mechanical and heat stimulation to the tongue in LNC rats were also significantly recovered following CGRP8-37 or PD98059 administration. The present findings suggest that CGRP released from TG neurons activates SGCs through ERK1/2 phosphorylation and TG neuronal activity is enhanced, resulting in the tongue hypersensitivity associated with lingual nerve injury. The phenotypic switching of large myelinated TG neurons expressing CGRP may account for the pathogenesis of tongue neuropathic pain.
Collapse
Affiliation(s)
- Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Hiroto Saito
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Shinji Okada
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Akira Toyofuku
- Department of Psychosomatic Dentistry, Tokyo Medical and Dental University (TMDU) Graduate School, Bunkyo-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
35
|
Xiong W, Huang L, Shen Y, Guan S, He L, Tong Z, Tan M, Liu L, Gao Y. Effects of lncRNA uc.48+ siRNA on the release of CGRP in the spinal cords of rats with diabetic neuropathic pain. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9960-9969. [PMID: 31966886 PMCID: PMC6965966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 06/10/2023]
Abstract
Long noncoding RNA (lncRNA) and factors influencing lncRNA expression are related to the nervous system diseases. The aims of the project are to study the effect of lncRNA uc.48+ siRNA on calcitonin gene related peptide (CGRP) release in the spinal cords (SCs) of diabetic neuropathic pain (DNP) rats to identify its possible mechanism and to provide new experimental evidence for the prevention and treatment of DNP. Male Sprague-Dawley rats were used to create a DNP rat model by feeding the rats a high-fat and fructose diet in addition to an intraperitoneal injection of streptozocin. Fasting blood glucose (FBG), mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured to select the DNP rats. The DNP rats were randomly divided into the following 4 groups: (1) a normal control group (Control), (2) a DNP rats treated with saline group (DNP), (3) a DNP rats treated with uc.48+ siRNA group (DNP + uc.48+ siRNA) and (4) a DNP rats treated with scrambled siRNA group (DNP + scramble siRNA). After intrathecal injection of uc.48+ small interfering RNA, the MWT and TWL of the DNP group significantly decreased compared to the Control group, but after the injection of uc.48+ small interfering RNA, the MWT and TWL of the DNP rats significantly increased (P<0.01, ANOVA test). The application of the methods of qPCR and WB produced results that revealed that the expressions of lncRNA uc.48+, CGRP, IL-1β and TNF-α in the SCs of the DNP group were much higher than those in the Control group (P<0.01, ANOVA test), but the expressions of these molecules in the DNP + uc.48+ siRNA group significantly decreased compared with the DNP group (P<0.01, ANOVA test). The phosphorylations of p38 and ERK1/2 in the DNP group were significantly enhanced compared with the Control group, whereas uc.48+ siRNA significantly reduced the increased phosphorylations of p38 and ERK1/2 pathway in the SCs of the DNP rats (P<0.01, ANOVA test). ELISA results revealed that uc.48+ siRNA significantly decreased the high levels of IL-1β and TNF-α in the sera of the DNP rats (P<0.01, ANOVA test). Therefore, lncRNA uc.48+ may play an important role in the transmission of DNP by promoting the release of CGRP in the SC. Small interfering lncRNA uc.48+ might alleviate the hyperalgesia and allodynia of DNP rats by suppressing the release of CGRP in the SCs of DNP rats, which might inhibit the phosphorylations of p38 and ERK1/2 and suppress the release of IL-1β and TNF-α in the SCs of DNP rats.
Collapse
Affiliation(s)
- Wei Xiong
- Affiliated Stomatological Hospital of Nanchang UniversityNanchang, Jiangxi, P. R. China
- Jiangxi Provincial Key Laboratory of Oral BiomedicineNanchang, Jiangxi, P. R. China
| | - Liping Huang
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Yulin Shen
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Shu Guan
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Lingkun He
- Affiliated Stomatological Hospital of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Zhoujie Tong
- Queen Mary College of Grade 2013, Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Mengxia Tan
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Lijuan Liu
- Affiliated Stomatological Hospital of Nanchang UniversityNanchang, Jiangxi, P. R. China
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang UniversityNanchang, Jiangxi, P. R. China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and DiseaseNanchang, Jiangxi, P. R. China
| |
Collapse
|
36
|
Role of β-1,3-galactosyltransferase 2 in trigeminal neuronal sensitization induced by peripheral inflammation. Neuroscience 2017; 349:17-26. [DOI: 10.1016/j.neuroscience.2017.02.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/16/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
|
37
|
Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization. Curr Pain Headache Rep 2017; 20:48. [PMID: 27334137 DOI: 10.1007/s11916-016-0578-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is implicated in the underlying pathology of migraine by promoting the development of a sensitized state of primary and secondary nociceptive neurons. The ability of CGRP to initiate and maintain peripheral and central sensitization is mediated by modulation of neuronal, glial, and immune cells in the trigeminal nociceptive signaling pathway. There is accumulating evidence to support a key role of CGRP in promoting cross excitation within the trigeminal ganglion that may help to explain the high co-morbidity of migraine with rhinosinusitis and temporomandibular joint disorder. In addition, there is emerging evidence that CGRP facilitates and sustains a hyperresponsive neuronal state in migraineurs mediated by reported risk factors such as stress and anxiety. In this review, the significant role of CGRP as a modulator of the trigeminal system will be discussed to provide a better understanding of the underlying pathology associated with the migraine phenotype.
Collapse
|
38
|
Long H, Wang Y, Jian F, Liao LN, Yang X, Lai WL. Current advances in orthodontic pain. Int J Oral Sci 2016; 8:67-75. [PMID: 27341389 PMCID: PMC4932774 DOI: 10.1038/ijos.2016.24] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 02/05/2023] Open
Abstract
Orthodontic pain is an inflammatory pain that is initiated by orthodontic force-induced vascular occlusion followed by a cascade of inflammatory responses, including vascular changes, the recruitment of inflammatory and immune cells, and the release of neurogenic and pro-inflammatory mediators. Ultimately, endogenous analgesic mechanisms check the inflammatory response and the sensation of pain subsides. The orthodontic pain signal, once received by periodontal sensory endings, reaches the sensory cortex for pain perception through three-order neurons: the trigeminal neuron at the trigeminal ganglia, the trigeminal nucleus caudalis at the medulla oblongata and the ventroposterior nucleus at the thalamus. Many brain areas participate in the emotion, cognition and memory of orthodontic pain, including the insular cortex, amygdala, hippocampus, locus coeruleus and hypothalamus. A built-in analgesic neural pathway—periaqueductal grey and dorsal raphe—has an important role in alleviating orthodontic pain. Currently, several treatment modalities have been applied for the relief of orthodontic pain, including pharmacological, mechanical and behavioural approaches and low-level laser therapy. The effectiveness of nonsteroidal anti-inflammatory drugs for pain relief has been validated, but its effects on tooth movement are controversial. However, more studies are needed to verify the effectiveness of other modalities. Furthermore, gene therapy is a novel, viable and promising modality for alleviating orthodontic pain in the future.
Collapse
Affiliation(s)
- Hu Long
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Wang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Jian
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li-Na Liao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Li Lai
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Hawkins JL, Durham PL. Prolonged Jaw Opening Promotes Nociception and Enhanced Cytokine Expression. J Oral Facial Pain Headache 2016; 30:34-41. [PMID: 26817031 PMCID: PMC5894825 DOI: 10.11607/ofph.1557] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS To test the hypothesis that prolonged jaw opening, as can occur during routine dental procedures, increases nociceptive sensitivity of the masseter muscle and increases cytokine expression. METHODS Sprague-Dawley rats were used to investigate behavioral and cellular changes in response to prolonged jaw opening. A surgical retractor was placed around the maxillary and mandibular incisors, and the jaw was held at near maximal opening for 20 minutes. Head-withdrawal responses to mechanical stimuli applied to the facial skin overlying the left and right masseter muscles were determined following jaw opening. Cytokine levels in the upper cervical spinal cord containing the caudal part of the spinal trigeminal nucleus were evaluated using protein antibody microarrays (n = 3). Statistical analysis was performed using a nonparametric Mann-Whitney U test. RESULTS Prolonged jaw opening significantly increased nocifensive head withdrawal to mechanical stimuli at 2 hours, and days 3 and 7 postinduction (P < .05). The increase in nociceptive response resolved after 14 days. Sustained jaw opening also stimulated differential cytokine expression in the trigeminal ganglion and upper cervical spinal cord that persisted 14 days postprocedure (P < .05). CONCLUSION These findings provide evidence that near maximal jaw opening can lead to activation and prolonged sensitization of trigeminal neurons that results in nociceptive behavior evoked by stimulation of the masseter muscle, a physiologic event often associated with temporomandibular disorders (TMD). Results from this study may provide a plausible explanation for why some patients develop TMD after routine dental procedures that involve prolonged jaw opening.
Collapse
|
40
|
Karkhaneh A, Ansari M, Emamgholipour S, Rafiee MH. The effect of 17β-estradiol on gene expression of calcitonin gene-related peptide and some pro-inflammatory mediators in peripheral blood mononuclear cells from patients with pure menstrual migraine. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:894-901. [PMID: 26526225 PMCID: PMC4620189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The neuropeptide calcitonin gene-related peptide (CGRP) has long been postulated to play an integral role in the pathophysiology of migraine. Earlier studies showed that CGRP can stimulate the synthesis and release of nitric oxide (NO) and cytokines from trigeminal ganglion glial cells. The purpose of this study was to determine the effect of 17β-estradiol in regulation of CGRP expression, inducible nitric oxide synthase (iNOS) activity, and NO and interleukin-1beta (IL-1β) release in cultured peripheral blood mononuclear cells (PBMCs) from patients with pure menstrual migraine and healthy individuals. MATERIALS AND METHODS This study was performed on twelve patients with pure menstrual migraine and twelve age-and sex-matched healthy individuals. PBMCs treated with 17β-estradiol for 24 hr at physiological and pharmacological doses. Gene expression was evaluated by real time-PCR. CGRP and IL-1β proteins in culture supernatant were determined by ELISA method. Activity of iNOS in PBMCs and total nitrite in the culture supernatant were measured by colorimetric assays. RESULTS Treatment with 17β-estradiol had a biphasic effect on expression of CGRP. We found that 17β-estradiol treatment at pharmacological dose significantly increases mRNA expression of CGRP in both groups (P<0.001), whereas at physiological dose it could significantly decrease CGRP mRNA expression (P<0.001), CGRP protein levels, IL-1β release, NO production and iNOS activity only in patient groups (P<0.05). CONCLUSION Collectively, it appears that 17β-estradiol can exert protective effect on decrease of inflammation in migraine via decrease in levels of CGRP, IL-1β and iNOS activity; however, more studies are necessary in this regard.
Collapse
Affiliation(s)
- Azam Karkhaneh
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Reference Laboratory, Iranian Social Security Organization, Tehran, Iran
| | - Mohammad Ansari
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Ansari. Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Solaleh Emamgholipour
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
41
|
Edvinsson J, Warfvinge K, Edvinsson L. Modulation of inflammatory mediators in the trigeminal ganglion by botulinum neurotoxin type A: an organ culture study. J Headache Pain 2015; 16:555. [PMID: 26245187 PMCID: PMC4526514 DOI: 10.1186/s10194-015-0555-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/11/2015] [Indexed: 12/25/2022] Open
Abstract
Background Onabotulinumtoxin type A (BoNT-A) has been found to reduce pain in chronic migraine. The aim of the present study was to ask if BoNT-A can interact directly on sensory mechanisms in the trigeminal ganglion (TG) using an organ culture method. Methods To induce inflammation, rat TGs were incubated for 24 hrs with either the mitogen MEK1/2 inhibitor U0126, BoNT-A or NaCl. After this the TGs were prepared for immunohistochemistry. Sections of the TG were then incubated with primary antibodies against CGRP (neuronal transmitter), iNOS (inflammatory marker), IL-1β (Interleukin 1β), SNAP-25 (synaptic vesicle docking protein) or SV2-A (Botulinum toxin receptor element). Results We report that CGRP, iNOS, IL-1β, SNAP-25 and SV2-A were observed in fresh TG with a differential distribution. Interestingly, NaCl organ culture of the TG resulted in enhanced expression of CGRP and SNAP-25 in neurons and iNOS in SGCs. Co-incubation with U0126 or BoNT-A retained the increased expression of SNAP-25, while it decreased the IL-1β immunoreactivity in neurons. The iNOS expression in SGCs returned to levels observed in fresh specimens. Moreover, we observed no alteration SV2-A expression in SGCs. Thus, the overall picture is that both U0126 and BoNT-A have the ability to modify the expression of certain molecules in the TG. Conclusion We hypothesize that chronic migraine might be associated with some degree of inflammation in the TG that could involve both neurons and SGCs. It is clinically well recognized that treatment with corticosteroids will reduce the symptoms of chronic migraine; however this remedy is associated with long-term side effects. Understanding the mechanisms involved in the expressional alterations may suggest novel ways to modify the changes and indicate novel therapeutics. The results of the present work illustrate one way by which BoNT-A may modify these expressional alterations.
Collapse
|
42
|
Dux M, Will C, Vogler B, Filipovic MR, Messlinger K. Meningeal blood flow is controlled by H2 S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br J Pharmacol 2015; 173:431-45. [PMID: 25884403 DOI: 10.1111/bph.13164] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/17/2015] [Accepted: 04/10/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Meningeal blood flow is controlled by CGRP released from trigeminal afferents and NO mainly produced in arterial endothelium. The vasodilator effect of NO may be due to the NO-derived compound, nitroxyl (HNO), generated through reaction with endogenous H2 S. We investigated the involvement of HNO in CGRP release and meningeal blood flow. EXPERIMENTAL APPROACH Blood flow in exposed dura mater of rats was recorded by laser Doppler flowmetry. CGRP release from the dura mater in the hemisected rat head was quantified using an elisa. NO and H2 S were localized histochemically with specific sensors. KEY RESULTS Topical administration of the NO donor diethylamine-NONOate increased meningeal blood flow by 30%. Pretreatment with oxamic acid, an inhibitor of H2 S synthesis, reduced this effect. Administration of Na2 S increased blood flow by 20%, an effect abolished by the CGRP receptor antagonist CGRP8-37 or the TRPA1 channel antagonist HC030031 and reduced when endogenous NO synthesis was blocked. Na2 S dose-dependently increased CGRP release two- to threefold. Co-administration of diethylamine-NONOate facilitated CGRP release, while inhibition of endogenous NO or H2 S synthesis lowered basal CGRP release. NO and H2 S were mainly localized in arterial vessels, HNO additionally in nerve fibre bundles. HNO staining was lost after treatment with L-NMMA and oxamic acid. CONCLUSIONS AND IMPLICATIONS NO and H2 S cooperatively increased meningeal blood flow by forming HNO, which activated TRPA1 cation channels in trigeminal fibres, inducing CGRP release. This HNO-TRPA1-CGRP signalling pathway may be relevant to the pathophysiology of headaches.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Szeged, Hungary
| | - Christine Will
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Birgit Vogler
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
43
|
Michot B, Kayser V, Hamon M, Bourgoin S. CGRP receptor blockade by MK-8825 alleviates allodynia in infraorbital nerve-ligated rats. Eur J Pain 2014; 19:281-90. [PMID: 25370954 DOI: 10.1002/ejp.616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Previous data showed that, in rats, anti-migraine drugs (triptans, olcegepant) significantly reduced mechanical allodynia induced by infraorbital nerve (ION) ligation but not that evoked by sciatic nerve (SN) ligation. Whether this also occurs with MK-8825, a novel anti-migraine drug also acting through CGRP receptor blockade (but chemically unrelated to olcegepant) was tested in the present study, which also investigated possible anti-neuroinflammatory effects of this drug. METHODS Adult male Sprague-Dawley rats underwent unilateral chronic constriction injury (CCI) to either the ION or the SN, and mechanical allodynia was assessed 2 weeks later within the ipsilateral vibrissae territory or hindpaw, respectively. Transcripts of neuroinflammatory markers were quantified by real-time quantitative RT-PCR in ipsilateral trigeminal ganglion and spinal trigeminal nucleus in CCI-ION rats. RESULTS Acute as well as repeated (for 4 days) administration of MK-8825 (30-100 mg/kg, i.p.) significantly reduced CCI-ION-induced mechanical allodynia but was ineffective in CCI-SN rats. CCI-ION was associated with marked up-regulation of neuronal and glial inflammatory markers (ATF3, IL6, iNOS, COX2) in ipsilateral trigeminal ganglion but not spinal trigeminal nucleus. MK-8825-induced inhibition of iNOS mRNA up-regulation probably underlay its anti-allodynic effect because pharmacological blockade of iNOS by AMT (6 mg/kg, s.c.) mimicked this effect. CONCLUSIONS These data further support the idea that CGRP receptor blockade might be a valuable approach to alleviate trigeminal, but not spinal, neuropathic pain through, at least partly, an inhibitory effect on neuropathic pain-associated increase in NO production in trigeminal ganglion.
Collapse
Affiliation(s)
- B Michot
- INSERM U894, CPN, Paris, France; Neuropsychopharmacology, Faculty of Medicine Pierre & Marie Curie, University Pierre et Marie Curie (UPMC), Paris, France
| | | | | | | |
Collapse
|
44
|
Ahlawat A, Rana A, Goyal N, Sharma S. Potential role of nitric oxide synthase isoforms in pathophysiology of neuropathic pain. Inflammopharmacology 2014; 22:269-78. [PMID: 25095760 DOI: 10.1007/s10787-014-0213-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022]
Abstract
Neuropathic pain triggers a cascade of events in the sensory neurons. It is the main complication of diabetes after cardiovascular disease. Nitric oxide (NO) produced from nitric oxide synthases (NOS) is an important signaling molecule which is crucial for many physiological processes such as synaptic plasticity, neuronal survival, vasodilation, vascular homeostasis, immune regulation. Overproduction of NO due to changes in NOS isoforms level involves pathological processes such as neurotoxicity, septic shock and neuropathic pain. All three isoforms of NOS as well as their end product, NO have modulatory effect on neuropathic pain. Overactivation of the N-Methyl-D-Aspartate receptor and peroxynitrite formation results in high levels of neuronal NOS (nNOS) and endothelial NOS (eNOS) which suggest that nNOS and eNOS are critical for pain hypersensitivity. Inducible NOS induced in glia by inflammation due to activation of Tumor Necrosis Factor α, Calcitonin Gene Regulating Peptide, Mitogen Activated Protein Kinases, Extracellular signal Regulated Kinase, c-Jun N-terminal kinases can induce neuronal death. This review focuses on different nitric oxide synthases and their role in pathophysiology of neuropathic pain considering NOS as an important therapeutic target.
Collapse
|
45
|
Laursen JC, Cairns BE, Kumar U, Somvanshi RK, Dong XD, Arendt-Nielsen L, Gazerani P. Nitric oxide release from trigeminal satellite glial cells is attenuated by glial modulators and glutamate. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2013; 5:228-238. [PMID: 24379907 PMCID: PMC3867700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/30/2013] [Indexed: 06/03/2023]
Abstract
Nitric oxide (NO) is suggested to play an important role in primary headaches. It has been proposed that release of NO from satellite glial cells (SGCs) of the trigeminal ganglion (TG) could contribute to the pathogenesis of these headaches. The principal aim of this study was to investigate if the phosphodiesterase inhibitor Ibudilast (Ibu) and 1α,25-dihydroxyvitamin D3 (Vit D3) could interfere with NO release from trigeminal SGCs. Since glutamate is released from activated TG neurons, the ability of glutamate to alter NO release from SGCs was also investigated. To study this, we isolated SGCs from the TG of adult male Sprague-Dawley rats, provoked NO release from SGCs with forskolin (FSK; 0.1, 1, 10 μM), and examined the effect of graded concentrations of Ibu (1, 10, 100 μM), Vit D3 (5, 50, 500 nM), and glutamate (10, 100, 1000 μM). Our results indicate that both Ibu and Vit D3 are capable of attenuating the FSK-mediated increased NO release from SGCs after 48 hours of incubation. Lower glutamate concentrations (10 and 100 μM) significantly decreased NO release not only under basal conditions after 24 and 48 hours, but also after SGCs were stimulated with FSK for 48 hours. In conclusion, NO release from SGCs harvested from the TG can be attenuated by glial modulators and glutamate. As NO is thought to increase TG neuron excitability, the findings suggest that targeting SGCs may provide a novel therapeutic approach for management of craniofacial pain conditions such as migraine in the future.
Collapse
Affiliation(s)
- Jens Christian Laursen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityFredrik Bajers Vej 7D3, Aalborg Ø, DK-9220, Denmark
| | - Brian Edwin Cairns
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityFredrik Bajers Vej 7D3, Aalborg Ø, DK-9220, Denmark
- Faculty of Pharmaceutical Sciences, The University of British Columbia2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Rishi Kumar Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Xu-Dong Dong
- Faculty of Pharmaceutical Sciences, The University of British Columbia2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
- College of Stomatology, Tianjin Medical UniversityTianjin 300071, China
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityFredrik Bajers Vej 7D3, Aalborg Ø, DK-9220, Denmark
| | - Parisa Gazerani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityFredrik Bajers Vej 7D3, Aalborg Ø, DK-9220, Denmark
| |
Collapse
|
46
|
Walker CS, Hay DL. CGRP in the trigeminovascular system: a role for CGRP, adrenomedullin and amylin receptors? Br J Pharmacol 2013; 170:1293-307. [PMID: 23425327 PMCID: PMC3838677 DOI: 10.1111/bph.12129] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/21/2013] [Accepted: 01/30/2013] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED The neuropeptide calcitonin gene-related peptide (CGRP) is reported to play an important role in migraine. It is expressed throughout the trigeminovascular system. Antagonists targeting the CGRP receptor have been developed and have shown efficacy in clinical trials for migraine. However, no CGRP antagonist is yet approved for treating this condition. The molecular composition of the CGRP receptor is unusual because it comprises two subunits; one is a GPCR, the calcitonin receptor-like receptor (CLR). This associates with receptor activity-modifying protein (RAMP) 1 to yield a functional receptor for CGRP. However, RAMP1 also associates with the calcitonin receptor, creating a receptor for the related peptide amylin but this also has high affinity for CGRP. Other combinations of CLR or the calcitonin receptor with RAMPs can also generate receptors that are responsive to CGRP. CGRP potentially modulates an array of signal transduction pathways downstream of activation of these receptors, in a cell type-dependent manner. The physiological significance of these signalling processes remains unclear but may be a potential avenue for refining drug design. This complexity has prompted us to review the signalling and expression of CGRP and related receptors in the trigeminovascular system. This reveals that more than one CGRP responsive receptor may be expressed in key parts of this system and that further work is required to determine their contribution to CGRP physiology and pathophysiology. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
Affiliation(s)
- C S Walker
- School of Biological Sciences, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
47
|
Abstract
Inferior alveolar nerve (IAN) injury induces persistent ectopic pain which spreads to a wide area in the orofacial region. Its exact mechanism remains unclear. We investigated the involvement of nitric oxide (NO) in relation to ectopic orofacial pain caused by IAN transection (IANX). We assessed the changes in mechanical sensitivity of the whisker pad skin following IANX, neuronal nitric oxide synthase (nNOS) expression in the trigeminal ganglion (TG), and the functional significance of NO in relation to the mechanical allodynia following intra-TG administration of a chemical precursor to NO and selective nNOS inhibitors. IANX induced mechanical allodynia, which was diminished by intra-TG administration of selective nNOS inhibitors. NO metabolites and nNOS immunoreactive neurons innervating the lower lip were also increased in the TG. Intra-TG administration of nNOS substrate induced the mechanical allodynia. The present findings suggest that NO released from TG neurons regulates the excitability of TG neurons innervating the whisker pad skin, and the enhancement of TG neuronal excitability may underlie ectopic mechanical allodynia.
Collapse
|
48
|
Gupta S, Nahas SJ, Peterlin BL. Chemical mediators of migraine: preclinical and clinical observations. Headache 2013; 51:1029-45. [PMID: 21631491 DOI: 10.1111/j.1526-4610.2011.01929.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Migraine is a neurovascular disorder, and although the pathophysiology of migraine has not been fully delineated, much has been learned in the past 50 years. This knowledge has been accompanied by significant advancements in the way migraine is viewed as a disease process and in the development therapeutic options. In this review, we will focus on 4 mediators (nitric oxide, histamine, serotonin, and calcitonin gene-related peptide) which have significantly advanced our understanding of migraine as a disease entity. For each mediator we begin by reviewing the preclinical data linking it to migraine pathophysiology, first focusing on the vascular mechanisms, then the neuronal mechanisms. The preclinical data are then followed by a review of the clinical data which support each mediator's role in migraine and highlights the pharmacological agents which target these mediators for migraine therapy.
Collapse
Affiliation(s)
- Saurabh Gupta
- Glostrup Research Institute, Glostrup Hospital, Faculty of Health Science, University of Copenhagen, Glostrup, Denmark.
| | | | | |
Collapse
|
49
|
Chatchaisak D, Srikiatkhachorn A, Grand SML, Govitrapong P, Chetsawang B. The role of calcitonin gene-related peptide on the increase in transient receptor potential vanilloid-1 levels in trigeminal ganglion and trigeminal nucleus caudalis activation of rat. J Chem Neuroanat 2013; 47:50-6. [DOI: 10.1016/j.jchemneu.2012.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/30/2022]
|
50
|
|