1
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
2
|
Kaur T, Sidana P, Kaur N, Choubey V, Kaasik A. Unraveling neuroprotection in Parkinson's disease: Nrf2-Keap1 pathway's vital role amidst pathogenic pathways. Inflammopharmacology 2024; 32:2801-2820. [PMID: 39136812 DOI: 10.1007/s10787-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/01/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease (PD) is an age-related chronic neurological condition characterized by progressive degeneration of dopaminergic neurons and the presence of Lewy bodies, primarily composed of alpha-synuclein and ubiquitin. The pathophysiology of PD encompasses alpha-synuclein aggregation, oxidative stress, neuroinflammation, mitochondrial dysfunction, and impaired autophagy and ubiquitin-proteasome systems. Among these, the Keap1-Nrf2 pathway is a key regulator of antioxidant defense mechanisms. Nrf2 has emerged as a crucial factor in managing oxidative stress and inflammation, and it also influences ubiquitination through p62 expression. Keap1 negatively regulates Nrf2 by targeting it for degradation via the ubiquitin-proteasome system. Disruption of the Nrf2-Keap1 pathway in PD affects cellular responses to oxidative stress and inflammation, thereby playing a critical role in disease progression. In addition, the role of neuroinflammation in PD has gained significant attention, highlighting the interplay between immune responses and neurodegeneration. This review discusses the various mechanisms responsible for neuronal degeneration in PD, with a special emphasis on the neuroprotective role of the Nrf2-Keap1 pathway. Furthermore, it explores the implications of inflammopharmacology in modulating these pathways to provide therapeutic insights for PD.
Collapse
Affiliation(s)
- Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| | - Palak Sidana
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
3
|
Rose KN, Zorlu M, Fassini A, Lee H, Cai W, Xue X, Lin S, Kivisakk P, Schwarzschild MA, Chen X, Gomperts SN. Neuroprotection of low dose carbon monoxide in Parkinson's disease models commensurate with the reduced risk of Parkinson's among smokers. NPJ Parkinsons Dis 2024; 10:152. [PMID: 39174550 PMCID: PMC11341721 DOI: 10.1038/s41531-024-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Paradoxically, cigarette smoking is associated with a reduced risk of Parkinson's Disease (PD). This led us to hypothesize that carbon monoxide (CO) levels, which are constitutively but modestly elevated in smokers, might contribute to neuroprotection. Using rodent models of PD based on α-synuclein (αSyn) accumulation and oxidative stress, we show that low-dose CO mitigates neurodegeneration and reduces αSyn pathology. Oral CO administration activated signaling cascades mediated by heme oxygenase-1 (HO-1), which have been implicated in limiting oxidative stress, and in promoting αSyn degradation, thereby conferring neuroprotection. Consistent with the neuroprotective effect of smoking, HO-1 levels in cerebrospinal fluid were higher in human smokers compared to nonsmokers. Moreover, in PD brain samples, HO-1 levels were higher in neurons without αSyn pathology. Thus, CO in rodent PD models reduces pathology and increases oxidative stress responses, phenocopying possible protective effects of smoking evident in PD patients. These data highlight the potential for low-dose CO-modulated pathways to slow symptom onset and limit pathology in PD patients.
Collapse
Affiliation(s)
- K N Rose
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - M Zorlu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - A Fassini
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - H Lee
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - W Cai
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - X Xue
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - S Lin
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - P Kivisakk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - M A Schwarzschild
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - X Chen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - S N Gomperts
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Bhatt V, Shukla H, Tiwari AK. Parkinson's Disease and Mitotherapy-Based Approaches towards α-Synucleinopathies. J Integr Neurosci 2024; 23:109. [PMID: 38940084 DOI: 10.31083/j.jin2306109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 06/29/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain and the formation of intracellular protein aggregates known as Lewy bodies, of which a major component is the protein α-synuclein. Several studies have suggested that mitochondria play a central role in the pathogenesis of PD, encompassing both familial and sporadic forms of the disease. Mitochondrial dysfunction is attributed to bioenergetic impairment, increased oxidative stress, damage to mitochondrial DNA, and alteration in mitochondrial morphology. These alterations may contribute to improper functioning of the central nervous system and ultimately lead to neurodegeneration. The perturbation of mitochondrial function makes it a potential target, worthy of exploration for neuroprotective therapies and to improve mitochondrial health in PD. Thus, in the current review, we provide an update on mitochondria-based therapeutic approaches toward α-synucleinopathies in PD.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| | - Halak Shukla
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Rose KN, Zorlu M, Xue X, Fassini A, Cai W, Lin S, Webb P, Schwarzschild MA, Chen X, Gomperts SN. Neuroprotection of low dose carbon monoxide in Parkinson's disease models commensurate with the reduced risk of Parkinson's among smokers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.27.542565. [PMID: 37398030 PMCID: PMC10312428 DOI: 10.1101/2023.05.27.542565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Paradoxically, cigarette smoking is associated with a reduced risk of Parkinson's disease (PD). This led us to hypothesize that carbon monoxide (CO) levels, which are constitutively but modestly elevated in smokers, might contribute to neuroprotection. Using rodent models of PD based on α-synuclein (αSyn) accumulation and oxidative stress, we show that low-dose CO mitigates neurodegeneration and reduces αSyn pathology. Oral CO administration activated signaling cascades mediated by heme oxygenase-1 (HO-1), which have been implicated in limiting oxidative stress, and in promoting αSyn degradation, thereby conferring neuroprotection. Consistent with a neuroprotective effect of smoking, HO-1 levels in cerebrospinal fluid were higher in human smokers compared to nonsmokers. Moreover, in PD brain samples, HO-1 levels were higher in neurons without αSyn pathology. Thus, CO in rodent PD models reduces pathology and increases oxidative stress responses, phenocopying possible protective effects of smoking evident in PD patients. These data highlight the potential for low-dose CO modulated pathways to slow symptom onset and limit pathology in PD patients.
Collapse
|
6
|
Morrone Parfitt G, Coccia E, Goldman C, Whitney K, Reyes R, Sarrafha L, Nam KH, Sohail S, Jones DR, Crary JF, Ordureau A, Blanchard J, Ahfeldt T. Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson's disease model. Nat Commun 2024; 15:447. [PMID: 38200091 PMCID: PMC10781970 DOI: 10.1038/s41467-024-44732-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Accumulation of advanced glycation end products (AGEs) on biopolymers accompanies cellular aging and drives poorly understood disease processes. Here, we studied how AGEs contribute to development of early onset Parkinson's Disease (PD) caused by loss-of-function of DJ1, a protein deglycase. In induced pluripotent stem cell (iPSC)-derived midbrain organoid models deficient for DJ1 activity, we find that lysosomal proteolysis is impaired, causing AGEs to accumulate, α-synuclein (α-syn) phosphorylation to increase, and proteins to aggregate. We demonstrated these processes are at least partly driven by astrocytes, as DJ1 loss reduces their capacity to provide metabolic support and triggers acquisition of a pro-inflammatory phenotype. Consistently, in co-cultures, we find that DJ1-expressing astrocytes are able to reverse the proteolysis deficits of DJ1 knockout midbrain neurons. In conclusion, astrocytes' capacity to clear toxic damaged proteins is critical to preserve neuronal function and their dysfunction contributes to the neurodegeneration observed in a DJ1 loss-of-function PD model.
Collapse
Affiliation(s)
- Gustavo Morrone Parfitt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| | - Elena Coccia
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Camille Goldman
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular, and Cell-Based Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo Reyes
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Lily Sarrafha
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soha Sohail
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY, USA
| | - John F Crary
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular, and Cell-Based Medicine at Mount Sinai, New York, NY, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel Blanchard
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA.
- Recursion Pharmaceuticals, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Alwehaidah MS, Alsabbagh M, Al-Kafaji G. Comprehensive analysis of mitochondrial DNA variants, mitochondrial DNA copy number and oxidative damage in psoriatic arthritis. Biomed Rep 2023; 19:85. [PMID: 37881602 PMCID: PMC10594069 DOI: 10.3892/br.2023.1667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Growing evidence suggests that abnormalities in mitochondrial DNA (mtDNA) are involved in the pathogenesis of various inflammatory and immuno-mediated diseases. The present study analysed the entire mitochondrial genome by next-generation sequencing (NGS) in 23 patients with psoriatic arthritis (PsA) and 20 healthy controls to identify PsA-related variants. Changes in mtDNA copy number (mtDNAcn) were also evaluated by quantitative polymerase chain reaction (qPCR) and mtDNA oxidative damage was measured using an 8-hydroxy-2'-deoxyguanosine assay. NGS analysis revealed a total of 435 variants including 187 in patients with PsA only and 122 in controls only. Additionally, 126 common variants were found, of which 2 variants differed significantly in their frequencies among patients and controls (P<0.05), and may be associated with susceptibility to PsA. A total of 33 missense variants in mtDNA-encoded genes for complexes I, III, IV and V were identified only in patients with PsA. Of them, 25 variants were predicted to be deleterious by affecting the functions and structures of encoded proteins, and 13 variants were predicted to affect protein's stability. mtDNAcn analysis revealed decreased mtDNA content in patients with PsA compared with controls (P=0.0001) but the decrease in mtDNAcn was not correlated with patients' age or inflammatory biomarkers (P>0.05). Moreover, a higher level of oxidative damage was observed in patients with PsA compared with controls (P=0.03). The results of the present comprehensive analysis of mtDNA in PsA revealed that certain mtDNA variants may be implicated in the predisposition/pathogenesis of PsA, highlighting the importance of NGS in the identification of mtDNA variants in PsA. The current results also demonstrated that decreased mtDNAcn in PsA may be a consequence of increased oxidative stress. These data provide valuable insights into the contribution of mtDNA defects to the pathogenesis of PsA. Additional studies in larger cohorts are needed to elucidate the role of mtDNA defects in PsA.
Collapse
Affiliation(s)
- Materah Salem Alwehaidah
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, City of Kuwait 31470, State of Kuwait
| | - Manhel Alsabbagh
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| |
Collapse
|
8
|
Cressatti M, Schipper HM. Dysregulation of a Heme Oxygenase-Synuclein Axis in Parkinson Disease. NEUROSCI 2022; 3:284-299. [PMID: 39483365 PMCID: PMC11523740 DOI: 10.3390/neurosci3020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 11/03/2024] Open
Abstract
α-Synuclein is a key driver of the pathogenesis of Parkinson disease (PD). Heme oxygenase-1 (HO-1), a stress protein that catalyzes the conversion of heme to biliverdin, carbon monoxide and free ferrous iron, is elevated in PD-affected neural tissues and promotes iron deposition and mitochondrial dysfunction in models of the disease, pathways also impacted by α-synuclein. Elevated expression of human HO-1 in astrocytes of GFAP.HMOX1 transgenic mice between 8.5 and 19 months of age elicits a parkinsonian phenotype characterized by nigrostriatal hypodopaminergia, locomotor incoordination and overproduction of neurotoxic native S129-phospho-α-synuclein. Two microRNAs (miRNA) known to regulate α-synuclein, miR-153 and miR-223, are significantly decreased in the basal ganglia of GFAP.HMOX1 mice. Serum concentrations of both miRNAs progressively decline in wild-type (WT) and GFAP.HMOX1 mice between 11 and 18 months of age. Moreover, circulating levels of miR-153 and miR-223 are significantly lower, and erythrocyte α-synuclein concentrations are increased, in GFAP.HMOX1 mice relative to WT values. MiR-153 and miR-223 are similarly decreased in the saliva of PD patients compared to healthy controls. Upregulation of glial HO-1 may promote parkinsonism by suppressing miR-153 and miR-223, which, in turn, enhance production of neurotoxic α-synuclein. The aim of the current review is to explore the link between HO-1, α-synuclein and PD, evaluating evidence derived from our laboratory and others. HO-1, miR-153 and miR-223 and α-synuclein may serve as potential biomarkers and targets for disease-modifying therapy in idiopathic PD.
Collapse
Affiliation(s)
- Marisa Cressatti
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3T1E2, Canada;
- Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Neurology & Neurosurgery, McGill University, 3999 Cote Sainte-Catherine Road, Montreal, QC H3T1E2, Canada
| | - Hyman M Schipper
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3T1E2, Canada;
- Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Neurology & Neurosurgery, McGill University, 3999 Cote Sainte-Catherine Road, Montreal, QC H3T1E2, Canada
| |
Collapse
|
9
|
Wu YH, Hsieh HL. Roles of Heme Oxygenase-1 in Neuroinflammation and Brain Disorders. Antioxidants (Basel) 2022; 11:antiox11050923. [PMID: 35624787 PMCID: PMC9137505 DOI: 10.3390/antiox11050923] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
The heme oxygenase (HO) system is believed to be a crucial mechanism for the nervous system under stress conditions. HO degrades heme to carbon monoxide, iron, and biliverdin. These heme degradation products are involved in modulating cellular redox homeostasis. The first identified isoform of the HO system, HO-1, is an inducible protein that is highly expressed in peripheral organs and barely detectable in the brain under normal conditions, whereas HO-2 is a constitutive protein that is highly expressed in the brain. Several lines of evidence indicate that HO-1 dysregulation is associated with brain inflammation and neurodegeneration, including Parkinson’s and Alzheimer’s diseases. In this review, we summarize the essential roles that the HO system plays in ensuring brain health and the molecular mechanism through which HO-1 dysfunction leads to neurodegenerative diseases and disruption of nervous system homeostasis. We also provide a summary of the herbal medicines involved in the regulation of HO-1 expression and explore the current situation regarding herbal remedies and brain disorders.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
- Department of Nursing, Division of Basic Medical Sciences, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-211-8999 (ext. 5421)
| |
Collapse
|
10
|
Li H, Liu B, Lian L, Zhou J, Xiang S, Zhai Y, Chen Y, Ma X, Wu W, Hou L. High dose expression of heme oxigenase-1 induces retinal degeneration through ER stress-related DDIT3. Mol Neurodegener 2021; 16:16. [PMID: 33691741 PMCID: PMC7944639 DOI: 10.1186/s13024-021-00437-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Oxidative stress is a common cause of neurodegeneration and plays a central role in retinal degenerative diseases. Heme oxygenase-1 (HMOX1) is a redox-regulated enzyme that is induced in neurodegenerative diseases and acts against oxidative stress but can also promote cell death, a phenomenon that is still unexplained in molecular terms. Here, we test whether HMOX1 has opposing effects during retinal degeneration and investigate the molecular mechanisms behind its pro-apoptotic role. METHODS Basal and induced levels of HMOX1 in retinas are examined during light-induced retinal degeneration in mice. Light damage-independent HMOX1 induction at two different expression levels is achieved by intraocular injection of different doses of an adeno-associated virus vector expressing HMOX1. Activation of Müller glial cells, retinal morphology and photoreceptor cell death are examined using hematoxylin-eosin staining, TUNEL assays, immunostaining and retinal function are evaluated with electroretinograms. Downstream gene expression of HMOX1 is analyzed by RNA-seq, qPCR examination and western blotting. The role of one of these genes, the pro-apoptotic DNA damage inducible transcript 3 (Ddit3), is analyzed in a line of knockout mice. RESULTS Light-induced retinal degeneration leads to photoreceptor degeneration and concomitant HMOX1 induction. HMOX1 expression at low levels before light exposure prevents photoreceptor degeneration but expression at high levels directly induces photoreceptor degeneration even without light stress. Photoreceptor degeneration following high level expression of HMOX1 is associated with a mislocalization of rhodopsin in photoreceptors and an increase in the expression of DDIT3. Genetic deletion of Ddit3 in knockout mice prevents photoreceptor cell degeneration normally resulting from high level HMOX1 expression. CONCLUSION The results reveal that the expression levels determine whether HMOX1 is protective or deleterious in the retina. Furthermore, in contrast to the protective low dose of HMOX1, the deleterious high dose is associated with induction of DDIT3 and endoplasmic reticulum stress as manifested, for instance, in rhodopsin mislocalization. Hence, future applications of HMOX1 or its regulated targets in gene therapy approaches should carefully consider expression levels in order to avoid potentially devastating effects.
Collapse
Affiliation(s)
- Huirong Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Bo Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Lili Lian
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Jiajia Zhou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Shengjin Xiang
- Eye Hospital of Wenzhou Medical University, Wenzhou, 325003 China
| | - Yifan Zhai
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Yu Chen
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| | - Wencan Wu
- Eye Hospital of Wenzhou Medical University, Wenzhou, 325003 China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, and State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Navarro A, García M, Rodrigues AS, Garcia PV, Camarinho R, Segovia Y. Reactive astrogliosis in the dentate gyrus of mice exposed to active volcanic environments. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:213-226. [PMID: 33283687 DOI: 10.1080/15287394.2020.1850381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Air pollution has been associated with neuroinflammatory processes and is considered a risk factor for the development of neurodegenerative diseases. Volcanic environments are considered a natural source of air pollution. However, the effects of natural source air pollution on the central nervous system (CNS) have not been reported, despite the fact that up to 10% of the world's population lives near a historically active volcano. In order to assess the response of the CNS to such exposure, our study was conducted in the island of Sao Miguel (Azores, Portugal) in two different areas: Furnas, which is volcanically active one, and compared to Rabo de Peixe, a reference site without manifestations of active volcanism using Mus musculus as a bioindicator species. To evaluate the state of the astroglial population in the dentate gyrus in both samples, the number of astrocytes was determined using immunofluorescence methods (anti-GFAP and anti-GS). In addition, the astrocytic branches in that hippocampal area were examined. Our results showed an increase in GFAP+ astrocytes and a reduction in GS+ astrocytes in Furnas-exposed mice compared to animals from Rabo de Peixe. In addition, astrocytes in the dentate gyrus of chronically exposed animals exhibited longer branches compared to those residing at the reference site. Thus, reactive astrogliosis and astrocyte dysfunction are found in mice living in an active volcanic environment.
Collapse
Affiliation(s)
- A Navarro
- Department of Biotechnology, University of Alicante , Alicante, Spain
| | - M García
- Department of Biotechnology, University of Alicante , Alicante, Spain
| | - A S Rodrigues
- Faculty of Sciences and Technology, University of the Azores , Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores , Ponta Delgada, Portugal
| | - P V Garcia
- Faculty of Sciences and Technology, University of the Azores , Ponta Delgada, Portugal
- cE3c, Centre for Ecology, Evolution and Environmental Changes, and Azorean Biodiversity Group, University of the Azores , Ponta Delgada, Portugal
| | - R Camarinho
- Faculty of Sciences and Technology, University of the Azores , Ponta Delgada, Portugal
- IVAR, Research Institute for Volcanology and Risk Assessment, University of the Azores , Ponta Delgada, Portugal
| | - Y Segovia
- Department of Biotechnology, University of Alicante , Alicante, Spain
| |
Collapse
|
12
|
Sun W, Zheng J, Ma J, Wang Z, Shi X, Li M, Huang S, Hu S, Zhao Z, Li D. Increased Plasma Heme Oxygenase-1 Levels in Patients With Early-Stage Parkinson's Disease. Front Aging Neurosci 2021; 13:621508. [PMID: 33643023 PMCID: PMC7906968 DOI: 10.3389/fnagi.2021.621508] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Introduction: Heme oxygenase-1 (HO-1) is a 32 kDa stress-response protein implicated in the pathogenesis of Parkinson’s disease (PD). Biliverdin is derived from heme through a reaction mediated by HO-1 and protects cells from oxidative stress. However, iron and carbon monoxide produced by the catabolism of HO-1 exert detrimental effects on patients with PD. The purpose of this study was to determine whether plasma HO-1 levels represent a biomarker of PD and to further explore the underlying mechanism of increased HO-1 levels by applying voxel-based morphometry (VBM).Methods: We measured plasma HO-1 levels using an enzyme-linked immunosorbent assay (ELISA) in 156 subjects, including 81 patients with early- and advanced-stage PD and 75 subjects without PD. The analyses were adjusted to control for confounders such as age, sex, and medication. We analyzed T1-weighted magnetic resonance imaging (MRI) data from 74 patients with PD using VBM to elucidate the association between altered brain volumes and HO-1 levels. Then, we compared performance on MMSE sub-items between PD patients with low and high levels of HO-1 using Mann-Whitney U tests.Results: Plasma HO-1 levels were significantly elevated in PD patients, predominantly those with early-stage PD, compared with controls (p < 0.05). The optimal cutoff value for patients with early PD was 2.245 ng/ml HO-1 [area under the curve (AUC) = 0.654]. Plasma HO-1 levels were unaffected by sex, age, and medications (p > 0.05). The right hippocampal volume was decreased in the subset of PD patients with high HO-1 levels (p < 0.05). A weak correlation was observed between right hippocampal volume and plasma HO-1 levels (r = −0.273, p = 0.018). There was no difference in total MMSE scores between the low- and high-HO-1 groups (p > 0.05), but the high-HO-1 group had higher language scores than the low-HO-1 group (p < 0.05).Conclusions: Plasma HO-1 levels may be a promising biomarker of early PD. Moreover, a high plasma concentration of the HO-1 protein is associated with a reduction in right hippocampal volume.
Collapse
Affiliation(s)
- Wenhua Sun
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China
| | - Zhidong Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoxue Shi
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingjian Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China
| | - Shen Huang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shiyu Hu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China
| | - Zhenxiang Zhao
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China
| | - Dongsheng Li
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China.,Department of Neurology, People's Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
13
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
El-Ghaiesh SH, Bahr HI, Ibrahiem AT, Ghorab D, Alomar SY, Farag NE, Zaitone SA. Metformin Protects From Rotenone-Induced Nigrostriatal Neuronal Death in Adult Mice by Activating AMPK-FOXO3 Signaling and Mitigation of Angiogenesis. Front Mol Neurosci 2020; 13:84. [PMID: 32625061 PMCID: PMC7314970 DOI: 10.3389/fnmol.2020.00084] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that affects substantia nigra dopamine neurons. Many studies have documented the role of oxidative stress and angiogenesis in the pathogenesis of PD. Metformin (MTF) is an antidiabetic medication and AMP-activated protein kinase (AMPK) regulator that has shown antioxidant and antiangiogenic properties in many disorders. The aim of this study is to investigate the neuroprotective effect of MTF in a mouse model of rotenone-prompted PD with a highlight on its influence on the AMPK/forkhead box transcription factor O3 (FOXO3) pathway and striatal angiogenesis. In the running study, PD was induced in mice using repeated doses of rotenone and concomitantly treated with MTF 100 or 200 mg/kg/day for 18 days. Rotarod and pole tests were used to examine the animals’ motor functionality. After that, animals were sacrificed, and brains were isolated and processed for immunohistochemical investigations or biochemical analyses. Oxidant stress and angiogenic markers were measured, including reduced glutathione, malondialdehyde, the nuclear factor erythroid 2–related factor 2 (Nrf2), hemoxygenase-1, thioredoxin, AMPK, FOXO3, and vascular endothelial growth factor (VEGF). Results indicated that MTF improved animals’ motor function, improved striatal glutathione, Nrf2, hemoxygenase-1, and thioredoxin. Furthermore, MTF upregulated AMPK-FOXO3 proteins and reduced VEGF and cleaved caspase 3. MTF also increased the number of tyrosine hydroxylase (TH)–stained neurons in the substantia nigra neurons and in striatal neuronal terminals. This study is the first to highlight that the neuroprotective role of MTF is mediated through activation of AMPK-FOXO3 signaling and inhibition of the proangiogenic factor, VEGF. Further studies are warranted to confirm this mechanism in other models of PD and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sabah H El-Ghaiesh
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda I Bahr
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Ghorab
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Suliman Y Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Noha E Farag
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Physiology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
15
|
Park JH, Burgess JD, Faroqi AH, DeMeo NN, Fiesel FC, Springer W, Delenclos M, McLean PJ. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol Neurodegener 2020; 15:5. [PMID: 31931835 PMCID: PMC6956494 DOI: 10.1186/s13024-019-0349-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Misfolding and aggregation of the presynaptic protein alpha-synuclein (αsyn) is a hallmark of Parkinson's disease (PD) and related synucleinopathies. Although predominantly localized in the cytosol, a body of evidence has shown that αsyn localizes to mitochondria and contributes to the disruption of key mitochondrial processes. Mitochondrial dysfunction is central to the progression of PD and mutations in mitochondrial-associated proteins are found in familial cases of PD. The sirtuins are highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent enzymes that play a broad role in cellular metabolism and aging. Interestingly, mitochondrial sirtuin 3 (SIRT3) plays a major role in maintaining mitochondrial function and preventing oxidative stress, and is downregulated in aging and age-associated diseases such as neurodegenerative disorders. Herein, we hypothesize that αsyn is associated with decreased SIRT3 levels contributing to impaired mitochondrial dynamics and biogenesis in PD. METHODS The level of mitochondrial SIRT3 was assessed in cells expressing oligomeric αsyn within the cytosolic and mitochondrial-enriched fractions. Mitochondrial integrity, respiration, and health were examined using several markers of mitochondrial dynamics and stress response and by measuring the rate of oxygen consumption (OCR). Our findings were validated in a rodent model of PD as well as in human post-mortem Lewy body disease (LBD) brain tissue. RESULTS Here, we demonstrate that αsyn associates with mitochondria and induces a decrease in mitochondrial SIRT3 levels and mitochondrial biogenesis. We show that SIRT3 downregulation is accompanied by decreased phosphorylation of AMPK and cAMP-response element binding protein (CREB), as well as increased phosphorylation of dynamin-related protein 1 (DRP1), indicative of impaired mitochondrial dynamics. OCR was significantly decreased suggesting a mitochondria respiratory deficit. Interestingly treatment with AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) restores SIRT3 expression, improves mitochondrial function, and decreases αsyn oligomer formation in a SIRT3-dependent manner. CONCLUSIONS Together, our findings suggest that pharmacologically increasing SIRT3 levels can counteract αsyn-induced mitochondrial dysfunction by reducing αsyn oligomers and normalizing mitochondrial bioenergetics. These data support a protective role for SIRT3 in PD-associated pathways and contribute significant mechanistic insight into the interplay of SIRT3 and αsyn.
Collapse
Affiliation(s)
- Jae-Hyeon Park
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jeremy D. Burgess
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Ayman H. Faroqi
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Natasha N. DeMeo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
16
|
Zhou J, Smirnov A, Dietler G, Sekatskii SK. Gap-Plasmon-Enhanced High-Spatial-Resolution Imaging by Photothermal-Induced Resonance in the Visible Range. NANO LETTERS 2019; 19:8278-8286. [PMID: 31650844 DOI: 10.1021/acs.nanolett.9b03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemical characterization at the nanoscale is of significant importance for many applications in physics, analytical chemistry, material science, and biology. Despite the intensive studies in the infrared range, high-spatial-resolution and high-sensitivity imaging for compositional identification in the visible range is rarely exploited. In this work, we present a gap-plasmon-enhanced imaging approach based on photothermal-induced resonance (PTIR) for nanoscale chemical identification. With this approach, we experimentally obtained a high spatial resolution of ∼5 nm for rhodamine nanohill characterization and achieved monolayer sensitivity for mapping the single-layer chlorophyll-a islands with the thickness of only 1.9 nm. We also successfully characterized amyloid fibrils stained with methylene blue dye, indicating that this methodology can be also utilized for identification of the radiation-insensitive macromolecules. We believe that our proposed high-performance visible PTIR system can be used to broaden the applications of nanoscale chemical identification ranging from nanomaterial to life science areas.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Anton Smirnov
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Sergey K Sekatskii
- Laboratory of Physics of Living Matter , IPHYS, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
17
|
Trichloroethylene and its metabolite TaClo lead to degeneration of substantia nigra dopaminergic neurones: Effects in wild type and human A30P mutant α-synuclein mice. Neurosci Lett 2019; 711:134437. [PMID: 31422098 PMCID: PMC6892271 DOI: 10.1016/j.neulet.2019.134437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is characterised pathologically by degeneration of the dopaminergic (DA) neurones of the substantia nigra pars compacta (SNpc) and the presence of α-synuclein containing Lewy body inclusions. Trichloroethylene (TCE) has been suggested as a potential environmental chemical that may contribute to the development of PD, via conversion to the neurotoxin, 1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo). We investigated the effect of an 8 week exposure to TCE or TaClo on wild type and, as an experimental model of PD, A30P mutant α-synuclein overexpressing mice using a combination of behaviour and pathology. TCE or TaClo exposure caused significant DA neuronal loss within the SNpc in both wild type and transgenic mice. Cell numbers were lower in A30P animals than wild type, however, no additive effect of TCE or TaClo exposure and A30P overexpression was found. TCE or TaClo did not appear to lead to acceleration of motor or cognitive deficits in either wild type or A30P mutant mice, potentially because of the modest reductions of DA neuronal number in the SNpc. Our results do however suggest that TCE exposure could be a possible factor in development of PD like changes following exposure.
Collapse
|
18
|
Cytosolic Trapping of a Mitochondrial Heat Shock Protein Is an Early Pathological Event in Synucleinopathies. Cell Rep 2019; 28:65-77.e6. [DOI: 10.1016/j.celrep.2019.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/19/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022] Open
|
19
|
Cressatti M, Song W, Turk AZ, Garabed LR, Benchaya JA, Galindez C, Liberman A, Schipper HM. Glial HMOX1 expression promotes central and peripheral α-synuclein dysregulation and pathogenicity in parkinsonian mice. Glia 2019; 67:1730-1744. [PMID: 31180611 DOI: 10.1002/glia.23645] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/04/2023]
Abstract
α-Synuclein is a key player in the pathogenesis of Parkinson disease (PD). Expression of human heme oxygenase-1 (HO-1) in astrocytes of GFAP.HMOX1 transgenic (TG) mice between 8.5 and 19 months of age results in a parkinsonian phenotype characterized by neural oxidative stress, nigrostriatal hypodopaminergia associated with locomotor incoordination, and overproduction of α-synuclein. We identified two microRNAs (miR-), miR-153 and miR-223, that negatively regulate α-synuclein in the basal ganglia of male and female GFAP.HMOX1 mice. Serum concentrations of both miRNAs progressively declined in the wild-type (WT) and GFAP.HMOX1 mice between 11 and 19 months of age. Moreover, at each time point surveyed, circulating levels of miR-153 were significantly lower in the TG animals compared to WT controls, while α-synuclein protein concentrations were elevated in erythrocytes of the GFAP.HMOX1 mice at 19 months of age relative to WT values. Primary WT neurons co-cultured with GFAP.HMOX1 astrocytes exhibited enhanced protein oxidation, mitophagy and apoptosis, aberrant expression of genes regulating the dopaminergic phenotype, and an imbalance in gene expression profiles governing mitochondrial fission and fusion. Many, but not all, of these neuronal abnormalities were abrogated by small interfering RNA (siRNA) knockdown of α-synuclein, implicating α-synuclein as a potent, albeit partial, mediator of HO-1's neurodystrophic effects in these parkinsonian mice. Overexpression of HO-1 in stressed astroglia has previously been documented in the substantia nigra of idiopathic PD and may promote α-synuclein production and toxicity by downmodulating miR-153 and/or miR-223 both within the CNS and in peripheral tissues.
Collapse
Affiliation(s)
- Marisa Cressatti
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Wei Song
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ariana Z Turk
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Laurianne R Garabed
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Joshua A Benchaya
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carmela Galindez
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adrienne Liberman
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hyman M Schipper
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Neurology & Neurosurgery, McGill University, Montreal, Quebec, Canada.,Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Howson PA, Johnston TH, Ravenscroft P, Hill MP, Su J, Brotchie JM, Koprich JB. Beneficial Effects of Trehalose on Striatal Dopaminergic Deficits in Rodent and Primate Models of Synucleinopathy in Parkinson's Disease. J Pharmacol Exp Ther 2019; 369:364-374. [PMID: 30918068 DOI: 10.1124/jpet.118.255695] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/18/2019] [Indexed: 12/26/2022] Open
Abstract
Disease modification in Parkinson's disease (PD) is an unmet medical need. In the current study, we evaluated trehalose, a safe and well-tolerated disaccharide that has previously demonstrated efficacy in rodent models of neurodegenerative diseases, including PD. In a rat model of PD, based on delivery of adeno-associated virus serotype 1/2 containing the mutated human A53T α-synuclein gene (AAV1/2-hourA53T-aSyn) to the substantia nigra (SN), we showed that rats administered trehalose (2.67 g/kg per day, by mouth) for 6 weeks had less forelimb asymmetry (93% reduction) and higher striatal dopamine (54% increase) compared with rats receiving vehicle. In a pharmacokinetic study, we determined that efficacy was associated with plasma C max of 8900 ng/ml and area under the curve from time 0 to infinity (AUC0-inf) of 11,136 hour⋅ng/ml. We then showed, in macaques, that oral administration of trehalose (2.67 g/kg per day) produced plasma exposures of similar magnitude, with plasma C max of 10,918 ng/ml and AUC0-inf of 27,445 hour⋅ng/ml. In a macaque model of PD, also based on delivery of AAV1/2-hourA53T-aSyn to the SN, trehalose (2.67 g/kg per day, by mouth), administered for 142 days, produced higher striatal dopamine (by 39%) and dopamine transporter levels (by 50%), compared with macaques receiving vehicle. In neither model did trehalose treatment prevent loss of tyrosine hydroxylase (TH) positive (TH+ve) cells in the SN or alter α-synuclein levels in the striatum. These studies demonstrated that trehalose reduces striatal dopaminergic deficits in a rodent and macaque model of synucleinopathy in PD. Furthermore, we have determined the pharmacokinetic parameters associated with efficacy, and thus defined exposures to target in future clinical trials.
Collapse
Affiliation(s)
- Patrick A Howson
- Atuka Inc., Toronto, Ontario, Canada (T.H.J., P.R., M.P.H., J.S., J.M.B., J.B.K.); Junaxo Inc., Toronto, Ontario, Canada (P.A.H.); and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada (P.A.H., T.H.J., P.R., M.P.H., J.M.B., J.B.K.)
| | - Tom H Johnston
- Atuka Inc., Toronto, Ontario, Canada (T.H.J., P.R., M.P.H., J.S., J.M.B., J.B.K.); Junaxo Inc., Toronto, Ontario, Canada (P.A.H.); and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada (P.A.H., T.H.J., P.R., M.P.H., J.M.B., J.B.K.)
| | - Paula Ravenscroft
- Atuka Inc., Toronto, Ontario, Canada (T.H.J., P.R., M.P.H., J.S., J.M.B., J.B.K.); Junaxo Inc., Toronto, Ontario, Canada (P.A.H.); and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada (P.A.H., T.H.J., P.R., M.P.H., J.M.B., J.B.K.)
| | - Michael P Hill
- Atuka Inc., Toronto, Ontario, Canada (T.H.J., P.R., M.P.H., J.S., J.M.B., J.B.K.); Junaxo Inc., Toronto, Ontario, Canada (P.A.H.); and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada (P.A.H., T.H.J., P.R., M.P.H., J.M.B., J.B.K.)
| | - Jin Su
- Atuka Inc., Toronto, Ontario, Canada (T.H.J., P.R., M.P.H., J.S., J.M.B., J.B.K.); Junaxo Inc., Toronto, Ontario, Canada (P.A.H.); and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada (P.A.H., T.H.J., P.R., M.P.H., J.M.B., J.B.K.)
| | - Jonathan M Brotchie
- Atuka Inc., Toronto, Ontario, Canada (T.H.J., P.R., M.P.H., J.S., J.M.B., J.B.K.); Junaxo Inc., Toronto, Ontario, Canada (P.A.H.); and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada (P.A.H., T.H.J., P.R., M.P.H., J.M.B., J.B.K.)
| | - James B Koprich
- Atuka Inc., Toronto, Ontario, Canada (T.H.J., P.R., M.P.H., J.S., J.M.B., J.B.K.); Junaxo Inc., Toronto, Ontario, Canada (P.A.H.); and Krembil Research Institute, University Health Network, Toronto, Ontario, Canada (P.A.H., T.H.J., P.R., M.P.H., J.M.B., J.B.K.)
| |
Collapse
|
21
|
The sinister face of heme oxygenase-1 in brain aging and disease. Prog Neurobiol 2019; 172:40-70. [DOI: 10.1016/j.pneurobio.2018.06.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 06/30/2018] [Indexed: 11/23/2022]
|
22
|
Qu L, Xu H, Jia W, Jiang H, Xie J. Rosmarinic acid protects against MPTP-induced toxicity and inhibits iron-induced α-synuclein aggregation. Neuropharmacology 2019; 144:291-300. [PMID: 30342981 DOI: 10.1016/j.neuropharm.2018.09.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022]
Abstract
Rosmarinic acid (RA) is a naturally occurring polyphenolic compound. In this study, we demonstrated that RA could protect against the degeneration of the nigrostriatal dopaminergic system in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease (PD). In addition, RA could inhibit MPTP-induced decrease of superoxide dismutase (SOD) and tyrosine hydroxylase (TH) and increase in nigral iron content. Further studies elucidated the effects of RA on iron-induced neurotoxicity and the possible underlying mechanisms in the SK-N-SH cells. Results showed that iron could induce a decrease in the mitochondrial transmembrane potential and result in α-synuclein aggregation in the SK-N-SH cells, which could be restored by RA pretreatment. Further results showed RA pretreatment could inhibit iron-induced α-synuclein aggregation by up-regulating hemeoxygenase-1 (HO-1). In addition, iron could increase the mRNA levels of α-synuclein via iron responsive element/iron regulatory protein (IRE/IRP) system. RA pretreatment could decrease the mRNA levels of α-synuclein by decreasing the protein levels of IRP1. These results indicated that RA protected against iron-induced α-synuclein aggregation by up-regulating HO-1 and inhibiting α-synuclein expression.
Collapse
Affiliation(s)
- Le Qu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Wenting Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China; Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China; Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
23
|
Heme Oxygenase 1 in the Nervous System: Does It Favor Neuronal Cell Survival or Induce Neurodegeneration? Int J Mol Sci 2018; 19:ijms19082260. [PMID: 30071692 PMCID: PMC6121636 DOI: 10.3390/ijms19082260] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023] Open
Abstract
Heme oxygenase 1 (HO-1) up-regulation is recognized as a pivotal mechanism of cell adaptation to stress. Under control of different transcription factors but with a prominent role played by Nrf2, HO-1 induction is crucial also in nervous system response to damage. However, several lines of evidence have highlighted that HO-1 expression is associated to neuronal damage and neurodegeneration especially in Alzheimer’s and Parkinson’s diseases. In this review, we summarize the current literature regarding the role of HO-1 in nervous system pointing out different molecular mechanisms possibly responsible for HO-1 up-regulation in nervous system homeostasis and neurodegeneration.
Collapse
|
24
|
Parkinsonian features in aging GFAP.HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment. Neurobiol Aging 2017; 58:163-179. [DOI: 10.1016/j.neurobiolaging.2017.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/05/2017] [Accepted: 06/20/2017] [Indexed: 11/21/2022]
|
25
|
Cloete R, Akurugu WA, Werely CJ, van Helden PD, Christoffels A. Structural and functional effects of nucleotide variation on the human TB drug metabolizing enzyme arylamine N-acetyltransferase 1. J Mol Graph Model 2017. [PMID: 28628859 DOI: 10.1016/j.jmgm.2017.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human arylamine N-acetyltransferase 1 (NAT1) enzyme plays a vital role in determining the duration of action of amine-containing drugs such as para-aminobenzoic acid (PABA) by influencing the balance between detoxification and metabolic activation of these drugs. Recently, four novel single nucleotide polymorphisms (SNPs) were identified within a South African mixed ancestry population. Modeling the effects of these SNPs within the structural protein was done to assess possible structure and function changes in the enzyme. The use of molecular dynamics simulations and stability predictions indicated less thermodynamically stable protein structures containing E264K and V231G, while the N245I change showed a stabilizing effect. Coincidently the N245I change displayed a similar free energy landscape profile to the known R64W amino acid substitution (slow acetylator), while the R242M displayed a similar profile to the published variant, I263V (proposed fast acetylator), and the wild type protein structure. Similarly, principal component analysis indicated that two amino acid substitutions (E264K and V231G) occupied less conformational clusters of folded states as compared to the WT and were found to be destabilizing (may affect protein function). However, two of the four novel SNPs that result in amino acid changes: (V231G and N245I) were predicted by both SIFT and POLYPHEN-2 algorithms to affect NAT1 protein function, while two other SNPs that result in R242M and E264K substitutions showed contradictory results based on SIFT and POLYPHEN-2 analysis. In conclusion, the structural methods were able to verify that two non-synonymous substitutions (E264K and V231G) can destabilize the protein structure, and are in agreement with mCSM predictions, and should therefore be experimentally tested for NAT1 activity. These findings could inform a strategy of incorporating genotypic data (i.e., functional SNP alleles) with phenotypic information (slow or fast acetylator) to better prescribe effective treatment using drugs metabolized by NAT1.
Collapse
Affiliation(s)
- Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa.
| | - Wisdom A Akurugu
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa.
| | - Cedric J Werely
- SAMRC Centre for Molecular and Cellular Biology, and DST-NRF Centre of Excellence for Biomedical TB Research. Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa.
| | - Paul D van Helden
- SAMRC Centre for Molecular and Cellular Biology, and DST-NRF Centre of Excellence for Biomedical TB Research. Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town 8000, South Africa.
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
26
|
Wang Y, Qin X, Paudel HK. Amyloid β peptide promotes lysosomal degradation of clusterin via sortilin in hippocampal primary neurons. Neurobiol Dis 2017; 103:78-88. [PMID: 28396259 DOI: 10.1016/j.nbd.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
Progressive accumulation of amyloid-β peptide (Aβ) in the brain is implicated as the central event in the development of Alzheimer's disease (AD). It is thought that extracellular Aβ triggers toxic signals leading to neurodegeneration. The events downstream of Aβ however are not entirely clear. Clusterin (Apo J) is one of the major risk factors for sporadic form of AD. Clusterin binds to Aβ and prevents Aβ aggregation. In addition, clusterin promotes Aβ degradation and accelerates Aβ clearance from the brain. Clusterin thus protects neurons from Aβ and loss of clusterin level in the brain is implicated as promoting AD pathology. In this study, we found that the level of clusterin protein but not mRNA is reduced in the brains of 3xTg-AD mice. When rat hippocampal primary neurons were treated with Aβ1-42, level of clusterin protein but not mRNA was downregulated. Aβ1-42-induced downregulation of clusterin was blocked by lysosome inhibitors bafilomycin A1 and ammonium chloride. In neurons, Aβ1-42 induced expression of sortilin, a lysosomal sorting protein that targets proteins to lysosome for degradation. In BE(2) M17 human neuroblastoma cells, clusterin bound to sortilin and when sortilin expression was silenced, Aβ1-42-induced clusterin downregulation was almost completely blocked. Our data demonstrate that in neurons, Aβ1-42 promotes lysosomal degradation of clusterin by inducing expression of sortilin and provide a novel mechanism by which Aβ promotes AD pathogenesis.
Collapse
Affiliation(s)
- Yunling Wang
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H4H 1R3, Canada
| | - Xike Qin
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H4H 1R3, Canada
| | - Hemant K Paudel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H4H 1R3, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H4H 1R3, Canada.
| |
Collapse
|
27
|
Dahmene M, Bérard M, Oueslati A. Dissecting the Molecular Pathway Involved in PLK2 Kinase-mediated α-Synuclein-selective Autophagic Degradation. J Biol Chem 2017; 292:3919-3928. [PMID: 28154193 DOI: 10.1074/jbc.m116.759373] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/27/2017] [Indexed: 12/19/2022] Open
Abstract
Increasing lines of evidence support the causal link between α-synuclein (α-syn) accumulation in the brain and Parkinson's disease (PD) pathogenesis. Therefore, lowering α-syn protein levels may represent a viable therapeutic strategy for the treatment of PD and related disorders. We recently described a novel selective α-syn degradation pathway, catalyzed by the activity of the Polo-like kinase 2 (PLK2), capable of reducing α-syn protein expression and suppressing its toxicity in vivo However, the exact molecular mechanisms underlying this degradation route remain elusive. In the present study we report that among PLK family members, PLK3 is also able to catalyze α-syn phosphorylation and degradation in living cells. Using pharmacological and genetic approaches, we confirmed the implication of the macroautophagy on PLK2-mediated α-syn turnover, and our observations suggest a concomitant co-degradation of these two proteins. Moreover, we showed that the N-terminal region of α-syn is important for PLK2-mediated α-syn phosphorylation and degradation and is implicated in the physical interaction between the two proteins. We also demonstrated that PLK2 polyubiquitination is important for PLK2·α-syn protein complex degradation, and we hypothesize that this post-translational modification may act as a signal for the selective recognition by the macroautophagy machinery. Finally, we observed that the PD-linked mutation E46K enhances PLK2-mediated α-syn degradation, suggesting that this mutated form is a bona fide substrate of this degradation pathway. In conclusion, our study provides a detailed description of the new degradation route of α-syn and offers new opportunities for the development of therapeutic strategies aiming to reduce α-syn protein accumulation and toxicity.
Collapse
Affiliation(s)
- Manel Dahmene
- From the CHU de Quebec Research Center, Axe Neuroscience and Department of Molecular Medicine, Laval University, Quebec, QC G1V4G2, Canada
| | - Morgan Bérard
- From the CHU de Quebec Research Center, Axe Neuroscience and Department of Molecular Medicine, Laval University, Quebec, QC G1V4G2, Canada
| | - Abid Oueslati
- From the CHU de Quebec Research Center, Axe Neuroscience and Department of Molecular Medicine, Laval University, Quebec, QC G1V4G2, Canada
| |
Collapse
|
28
|
Li T, Paudel HK. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells. PLoS One 2016; 11:e0160635. [PMID: 27548710 PMCID: PMC4993442 DOI: 10.1371/journal.pone.0160635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/22/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ.
Collapse
Affiliation(s)
- Tong Li
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Hemant K Paudel
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,The Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
29
|
Jiang H, Wang J, Rogers J, Xie J. Brain Iron Metabolism Dysfunction in Parkinson's Disease. Mol Neurobiol 2016; 54:3078-3101. [PMID: 27039308 DOI: 10.1007/s12035-016-9879-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
Dysfunction of iron metabolism, which includes its uptake, storage, and release, plays a key role in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease, and Huntington's disease. Understanding how iron accumulates in the substantia nigra (SN) and why it specifically targets dopaminergic (DAergic) neurons is particularly warranted for PD, as this knowledge may provide new therapeutic avenues for a more targeted neurotherapeutic strategy for this disease. In this review, we begin with a brief introduction describing brain iron metabolism and its regulation. We then provide a detailed description of how iron accumulates specifically in the SN and why DAergic neurons are especially vulnerable to iron in PD. Furthermore, we focus on the possible mechanisms involved in iron-induced cell death of DAergic neurons in the SN. Finally, we present evidence in support that iron chelation represents a plausable therapeutic strategy for PD.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China
| | - Jack Rogers
- Neurochemistry Laboratory, Division of Psychiatric Neurosciences and Genetics and Aging Research Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
30
|
Khotimah H, Ali M, Sumitro SB, Widodo MA. Decreasing α-synuclein aggregation by methanolic extract of Centella asiatica in zebrafish Parkinson's model. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
31
|
Boison D, Aronica E. Comorbidities in Neurology: Is adenosine the common link? Neuropharmacology 2015; 97:18-34. [PMID: 25979489 PMCID: PMC4537378 DOI: 10.1016/j.neuropharm.2015.04.031] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
Comorbidities in Neurology represent a major conceptual and therapeutic challenge. For example, temporal lobe epilepsy (TLE) is a syndrome comprised of epileptic seizures and comorbid symptoms including memory and psychiatric impairment, depression, and sleep dysfunction. Similarly, Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are accompanied by various degrees of memory dysfunction. Patients with AD have an increased likelihood for seizures, whereas all four conditions share certain aspects of psychosis, depression, and sleep dysfunction. This remarkable overlap suggests common pathophysiological mechanisms, which include synaptic dysfunction and synaptotoxicity, as well as glial activation and astrogliosis. Astrogliosis is linked to synapse function via the tripartite synapse, but astrocytes also control the availability of gliotransmitters and adenosine. Here we will specifically focus on the 'adenosine hypothesis of comorbidities' implying that astrocyte activation, via overexpression of adenosine kinase (ADK), induces a deficiency in the homeostatic tone of adenosine. We present evidence from patient-derived samples showing astrogliosis and overexpression of ADK as common pathological hallmark of epilepsy, AD, PD, and ALS. We discuss a transgenic 'comorbidity model', in which brain-wide overexpression of ADK and resulting adenosine deficiency produces a comorbid spectrum of seizures, altered dopaminergic function, attentional impairment, and deficits in cognitive domains and sleep regulation. We conclude that dysfunction of adenosine signaling is common in neurological conditions, that adenosine dysfunction can explain co-morbid phenotypes, and that therapeutic adenosine augmentation might be effective for the treatment of comorbid symptoms in multiple neurological conditions.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR 97232, USA.
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands; Stichting Epilepsie Instellingen (SEIN) Nederland, Heemstede, The Netherlands
| |
Collapse
|
32
|
Treatment with Trehalose Prevents Behavioral and Neurochemical Deficits Produced in an AAV α-Synuclein Rat Model of Parkinson's Disease. Mol Neurobiol 2015; 53:2258-68. [PMID: 25972237 DOI: 10.1007/s12035-015-9173-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/13/2015] [Indexed: 12/30/2022]
Abstract
The accumulation of misfolded α-synuclein in dopamine (DA) neurons is believed to be of major importance in the pathogenesis of Parkinson's disease (PD). Animal models of PD, based on viral-vector-mediated over-expression of α-synuclein, have been developed and show evidence of dopaminergic toxicity, providing us a good tool to investigate potential therapies to interfere with α-synuclein-mediated pathology. An efficient disease-modifying therapeutic molecule should be able to interfere with the neurotoxicity of α-synuclein aggregation. Our study highlighted the ability of an autophagy enhancer, trehalose (at concentrations of 5 and 2% in drinking water), to protect against A53T α-synuclein-mediated DA degeneration in an adeno-associated virus serotype 1/2 (AAV1/2)-based rat model of PD. Behavioral tests and neurochemical analysis demonstrated a significant attenuation in α-synuclein-mediated deficits in motor asymmetry and DA neurodegeneration including impaired DA neuronal survival and DA turnover, as well as α-synuclein accumulation and aggregation in the nigrostriatal system by commencing 5 and 2% trehalose at the same time as delivery of AAV. Trehalose (0.5%) was ineffective on the above behavioral and neurochemical deficits. Further investigation showed that trehalose enhanced autophagy in the striatum by increasing formation of LC3-II. This study supports the concept of using trehalose as a novel therapeutic strategy that might prevent/reverse α-synuclein aggregation for the treatment of PD.
Collapse
|
33
|
A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. Int J Mol Sci 2015; 16:5400-19. [PMID: 25761244 PMCID: PMC4394483 DOI: 10.3390/ijms16035400] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/28/2015] [Accepted: 02/22/2015] [Indexed: 12/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders.
Collapse
|
34
|
Queiroga CSF, Vercelli A, Vieira HLA. Carbon monoxide and the CNS: challenges and achievements. Br J Pharmacol 2015; 172:1533-45. [PMID: 24758548 PMCID: PMC4369262 DOI: 10.1111/bph.12729] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 01/12/2023] Open
Abstract
Haem oxygenase (HO) and its product carbon monoxide (CO) are associated with cytoprotection and maintenance of homeostasis in several different organs and tissues. This review focuses upon the role of exogenous and endogenous CO (via HO activity and expression) in various CNS pathologies, based upon data from experimental models, as well as from some clinical data on human patients. The pathophysiological conditions reviewed are cerebral ischaemia, chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases), multiple sclerosis and pain. Among these pathophysiological conditions, a variety of cellular mechanisms and processes are considered, namely cytoprotection, cell death, inflammation, cell metabolism, cellular redox responses and vasomodulation, as well as the different targeted neural cells. Finally, novel potential methods and strategies for delivering exogenous CO as a drug are discussed, particularly approaches based upon CO-releasing molecules, their limitations and challenges. The diagnostic and prognostic value of HO expression in clinical use for brain pathologies is also addressed.
Collapse
Affiliation(s)
- Cláudia S F Queiroga
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de LisboaLisbon, Portugal
| | - Alessandro Vercelli
- Department of Neuroscience, Neuroscience Institute Cavalieri Ottolenghi (NICO), University of TurinTurin, Italy
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC), Faculdade de Ciências Médicas, Universidade Nova de LisboaLisbon, Portugal
- Instituto de Biologia Experimental e Tecnológica (IBET)Oeiras, Portugal
| |
Collapse
|
35
|
Golpich M, Rahmani B, Mohamed Ibrahim N, Dargahi L, Mohamed Z, Raymond AA, Ahmadiani A. Preconditioning as a potential strategy for the prevention of Parkinson's disease. Mol Neurobiol 2014; 51:313-30. [PMID: 24696268 DOI: 10.1007/s12035-014-8689-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/23/2014] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. A numerous of cellular processes including oxidative stress, mitochondrial dysfunction, and accumulation of α-synuclein aggregates are considered to contribute to the pathogenesis of Parkinson's disease. A further understanding of the cellular and molecular mechanisms involved in the pathophysiology of PD is crucial for developing effective diagnostic, preventative, and therapeutic strategies to cure this devastating disorder. Preconditioning (PC) is assumed as a natural adaptive process whereby a subthreshold stimulus can promote protection against a subsequent lethal stimulus in the brain as well as in other tissues that affords robust brain tolerance facing neurodegenerative insults. Multiple lines of evidence have demonstrated that preconditioning as a possible neuroprotective technique may reduce the neural deficits associated with neurodegenerative diseases such as PD. Throughout the last few decades, a lot of efforts have been made to discover the molecular determinants involved in preconditioning-induced protective responses; although, the accurate mechanisms underlying this "tolerance" phenomenon are not fully understood in PD. In this review, we will summarize pathophysiology and current therapeutic approaches in PD and discuss about preconditioning in PD as a potential neuroprotective strategy. Also the role of gene reprogramming and mitochondrial biogenesis involved in the preconditioning-mediated neuroprotective events will be highlighted. Preconditioning may represent a promising therapeutic weapon to combat neurodegeneration.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
36
|
Astroglial heme oxygenase-1 and the origin of corpora amylacea in aging and degenerating neural tissues. Exp Neurol 2014; 254:78-89. [PMID: 24440642 DOI: 10.1016/j.expneurol.2014.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corpora amylacea (CA) are glycoproteinaceous (predominantly glial and extracellular) inclusions that accumulate in normal aging brain and, to a greater extent, in Alzheimer disease (AD). Previous pharmacological evidence suggested that up-regulation of endogenous heme oxygenase-1 (HO-1) in astrocytes promotes transformation of normal mitochondria to CA-like inclusions. Here, we determined whether 1) HMOX1 transfection fosters the accumulation of CA-like inclusions in cultured rat astroglia; 2) the HMOX1 transgene promotes CA formation in the brains of aging GFAP.HMOX1 mice; and 3) brain mitochondrial damage and CA biogenesis are augmented in persons with mild cognitive impairment (MCI), a harbinger of AD. METHODS CA were ascertained in (i) neonatal rat astroglia transfected with flag-tagged human HO-1 cDNA, (ii) brain sections derived from 19month-old GFAP.HMOX1 and wild-type (WT) mice, and (iii) post-mortem hippocampal sections from individuals with mild (MCI) and no cognitive impairment (NCI) after staining with PAS or antisera against HO-1, ubiquitin (Ub), manganese superoxide dismutase (MnSOD), and α-synuclein or tyrosine hydroxylase (TH). RESULTS HMOX1 transfection induced cytoplasmic vacuolation and the accumulation of PAS+ inclusions in cultured astroglia. Numerous CA-like inclusions stained with PAS and immunoreactive for HO-1, Ub and MnSOD were observed in the brains of GFAP.HMOX1 mice, but were rarely encountered in age-matched, WT controls. Numbers of HO-1-positive CA were significantly increased in certain hippocampal strata of MCI subjects relative to NCI preparations. MnSOD and Ub proteins co-localized to CA in both the control and MCI specimens. CONCLUSIONS HO-1 promotes mitochondrial damage and CA biogenesis in astrocyte cultures and in the intact aging brain. CA formation is enhanced in the MCI hippocampus and thus occurs relatively early in the pathogenesis of AD. Glial HO-1 suppression may attenuate bioenergetic failure and slow disease progression in AD and other neurodegenerative conditions featuring accelerated accumulation of CA.
Collapse
|
37
|
Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons. PLoS One 2013; 8:e84615. [PMID: 24367683 PMCID: PMC3868614 DOI: 10.1371/journal.pone.0084615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/15/2013] [Indexed: 01/09/2023] Open
Abstract
β-amyloid peptide accumulation, tau hyperphosphorylation, and synapse loss are characteristic neuropathological symptoms of Alzheimer’s disease (AD). Tau hyperphosphorylation is suggested to inhibit the association of tau with microtubules, making microtubules unstable and causing neurodegeneration. The mechanism of tau phosphorylation in AD brain, therefore, is of considerable significance. Although PHF-tau is phosphorylated at over 40 Ser/Thr sites, Ser262 phosphorylation was shown to mediate β-amyloid neurotoxicity and formation of toxic tau lesions in the brain. In vitro, PKA is one of the kinases that phosphorylates tau at Ser262, but the mechanism by which it phosphorylates tau in AD brain is not very clear. 14-3-3ζ is associated with neurofibrillary tangles and is upregulated in AD brain. In this study, we show that 14-3-3ζ promotes tau phosphorylation at Ser262 by PKA in differentiating neurons. When overexpressed in rat hippocampal primary neurons, 14-3-3ζ causes an increase in Ser262 phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. More importantly, the level of pre-synaptic protein synaptophysin was significantly reduced. Downregulation of synaptophysin in 14-3-3ζ overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3ζ promotes proteosomal degradation of synaptophysin. When 14-3-3ζ overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser262 phosphorylation decreased and synaptophysin level was restored. Our data demonstrate that overexpression of 14-3-3ζ accelerates proteosomal turnover of synaptophysin by promoting the destabilization of microtubules. Synaptophysin is involved in synapse formation and neurotransmitter release. Our results suggest that 14-3-3ζ may cause synaptic pathology by reducing synaptophysin levels in the brains of patients suffering from AD.
Collapse
|
38
|
Bansal S, Biswas G, Avadhani NG. Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity. Redox Biol 2013; 2:273-83. [PMID: 24494190 PMCID: PMC3909819 DOI: 10.1016/j.redox.2013.07.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 11/13/2022] Open
Abstract
The inducible form of Heme Oxygenase-1 (HO-1), a major endoplasmic reticulum (ER) associated heme protein, is known to play important roles in protection against oxidative and chemical stress by degrading free heme released from degradation of heme proteins. In this study we show that induced expression of HO-1 by subjecting macrophage RAW-264.7 cells to chemical or physiological hypoxia resulted in significant translocation of HO-1 protein to mitochondria. Transient transfection of COS-7 cells with cloned cDNA also resulted in mitochondrial translocation of HO-1. Deletion of N-terminal ER targeting domain increased mitochondrial translocation under the transient transfection conditions. Mitochondrial localization of both intact HO-1 and N-terminal truncated HO-1 caused loss of heme aa-3 and cytochrome c oxidase (CcO) activity in COS-7 cells. The truncated protein, which localizes to mitochondria at higher levels, induced substantially steeper loss of CcO activity and reduced heme aa3 content. Furthermore, cells expressing mitochondria targeted HO-1 also induced higher ROS production. Consistent with dysfunctional state of mitochondria induced by HO-1, the mitochondrial recruitment of autophagy markers LC-3 and Drp-1 was also increased in these cells. Chronic ethanol feeding in rats also caused an increase in mitochondrial HO-1 and decrease in CcO activity. These results show that as opposed to the protective effect of the ER associated HO-1, mitochondria targeted HO-1 under normoxic conditions induces mitochondrial dysfunction. Under hypoxia, the inducible Heme Oxygenase-1 (HO-1) is localized in mitochondria. N-terminal truncated HO-1 is more efficiently translocated to mitochondria. Mitochondria targeted HO-1 induces oxidative stress and CcO dysfunction. Mitochondrial HO-1 content is increased in alcohol treated rat livers.
Collapse
Affiliation(s)
- Seema Bansal
- The Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gopa Biswas
- The Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Narayan G Avadhani
- The Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Teng YC, Tai YI, Lee YH, Lin AMY. Role of HO-1 in the Arsenite-Induced Neurotoxicity in Primary Cultured Cortical Neurons. Mol Neurobiol 2013; 48:281-7. [DOI: 10.1007/s12035-013-8492-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/16/2013] [Indexed: 11/29/2022]
|
40
|
Puerarin attenuates neuronal degeneration and blocks oxidative stress to elicit a neuroprotective effect on substantia nigra injury in 6-OHDA-lesioned rats. Brain Res 2013; 1517:28-35. [DOI: 10.1016/j.brainres.2013.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/28/2013] [Accepted: 04/08/2013] [Indexed: 11/24/2022]
|
41
|
He Q, Song N, Jia F, Xu H, Yu X, Xie J, Jiang H. Role of α-synuclein aggregation and the nuclear factor E2-related factor 2/heme oxygenase-1 pathway in iron-induced neurotoxicity. Int J Biochem Cell Biol 2013; 45:1019-30. [PMID: 23454680 DOI: 10.1016/j.biocel.2013.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023]
Abstract
Abnormal aggregation of α-synuclein (α-syn) plays a critical role in the pathogenesis of Parkinson's disease (PD). Iron is also believed to serve as a major contributor by inducing oxidative stress and α-syn aggregation. Here, we report that down-regulation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) may contribute to iron-induced α-syn aggregation. In this study, we show that ferrous iron down-regulates Nrf2 and HO-1 in a time-dependent manner in SK-N-SH neuroblastoma cells. Levels of both Nrf2 and HO-1 are decreased even more by ferrous iron in SK-N-SH cells that overexpress α-syn and results in greater cell toxicity. Consistent with these results, knockdown of α-syn expression prevents reduction of Nrf2 and HO-1 by ferrous iron, eliminates α-syn aggregates, and protects SK-N-SH cells against ferrous iron-induced cell damage. Furthermore, increased HO-1 expression exerts a protective role against ferrous iron. These results support a new hypothesis of synergistic α-syn/iron cytotoxicity, whereby ferrous iron induces α-syn aggregation and neurotoxicity by inhibiting Nrf2/HO-1. Inhibition of Nrf2/HO-1 leads to more α-syn aggregation and greater toxicity induced by iron, creating a vicious cycle of iron accumulation, α-syn aggregation and HO-1 disruption in PD.
Collapse
Affiliation(s)
- Qing He
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Colín-González A, Orozco-Ibarra M, Chánez-Cárdenas M, Rangel-López E, Santamaría A, Pedraza-Chaverri J, Barrera-Oviedo D, Maldonado P. Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience 2013. [DOI: 10.1016/j.neuroscience.2012.11.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Schizophrenia-like features in transgenic mice overexpressing human HO-1 in the astrocytic compartment. J Neurosci 2012; 32:10841-53. [PMID: 22875919 DOI: 10.1523/jneurosci.6469-11.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Delineation of key molecules that act epigenetically to transduce diverse stressors into established patterns of disease would facilitate the advent of preventive and disease-modifying therapeutics for a host of neurological disorders. Herein, we demonstrate that selective overexpression of the stress protein heme oxygenase-1 (HO-1) in astrocytes of novel GFAP.HMOX1 transgenic mice results in subcortical oxidative stress and mitochondrial damage/autophagy; diminished neuronal reelin content (males); induction of Nurr1 and Pitx3 with attendant suppression of their targeting miRNAs, 145 and 133b; increased tyrosine hydroxylase and α-synuclein expression with downregulation of the targeting miR-7b of the latter; augmented dopamine and serotonin levels in basal ganglia; reduced D1 receptor binding in nucleus accumbens; axodendritic pathology and altered hippocampal cytoarchitectonics; impaired neurovascular coupling; attenuated prepulse inhibition (males); and hyperkinetic behavior. The GFAP.HMOX1 neurophenotype bears resemblances to human schizophrenia and other neurodevelopmental conditions and implicates glial HO-1 as a prime transducer of inimical (endogenous and environmental) influences on the development of monoaminergic circuitry. Containment of the glial HO-1 response to noxious stimuli at strategic points of the life cycle may afford novel opportunities for the effective management of human neurodevelopmental and neurodegenerative conditions.
Collapse
|
44
|
Béraud D, Hathaway HA, Trecki J, Chasovskikh S, Johnson DA, Johnson JA, Federoff HJ, Shimoji M, Mhyre TR, Maguire-Zeiss KA. Microglial activation and antioxidant responses induced by the Parkinson's disease protein α-synuclein. J Neuroimmune Pharmacol 2012; 8:94-117. [PMID: 23054368 PMCID: PMC3582877 DOI: 10.1007/s11481-012-9401-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/06/2012] [Indexed: 12/29/2022]
Abstract
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disorder typified by tremor, rigidity, akinesia and postural instability due in part to the loss of dopamine within the nigrostriatal system. The pathologic features of this disorder include the loss of substantia nigra dopamine neurons and attendant striatal terminals, the presence of large protein-rich neuronal inclusions containing fibrillar α-synuclein and increased numbers of activated microglia. Evidence suggests that both misfolded α-synuclein and oxidative stress play an important role in the pathogenesis of sporadic PD. Here we review evidence that α-synuclein activates glia inducing inflammation and that Nrf2-directed phase-II antioxidant enzymes play an important role in PD. We also provide new evidence that the expression of antioxidant enzymes regulated in part by Nrf2 is increased in a mouse model of α-synuclein overexpression. We show that misfolded α-synuclein directly activates microglia inducing the production and release of the proinflammatory cytokine, TNF-α, and increasing antioxidant enzyme expression. Importantly, we demonstrate that the precise structure of α-synuclein is important for induction of this proinflammatory pathway. This complex α-synuclein-directed glial response highlights the importance of protein misfolding, oxidative stress and inflammation in PD and represents a potential locus for the development of novel therapeutics focused on induction of the Nrf2-directed antioxidant pathway and inhibition of protein misfolding.
Collapse
Affiliation(s)
- Dawn Béraud
- Department of Neuroscience, Georgetown University Medical Center, NRB EP08, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Song W, Zukor H, Lin SH, Liberman A, Tavitian A, Mui J, Vali H, Fillebeen C, Pantopoulos K, Wu TD, Guerquin-Kern JL, Schipper HM. Unregulated brain iron deposition in transgenic mice over-expressing HMOX1 in the astrocytic compartment. J Neurochem 2012; 123:325-36. [PMID: 22881289 DOI: 10.1111/j.1471-4159.2012.07914.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022]
Abstract
The mechanisms responsible for pathological iron deposition in the aging and degenerating mammalian CNS remain poorly understood. The stress protein, HO-1 mediates the degradation of cellular heme to biliverdin/bilirubin, free iron, and CO and is up-regulated in the brains of persons with Alzheimer's disease and Parkinson's disease. HO-1 induction in primary astroglial cultures promotes deposition of non-transferrin iron, mitochondrial damage and macroautophagy, and predisposes cocultured neuronal elements to oxidative injury. To gain a better appreciation of the role of glial HO-1 in vivo, we probed for aberrant brain iron deposition using Perls' method and dynamic secondary ion mass spectrometry in novel, conditional GFAP.HMOX1 transgenic mice that selectively over-express human HO-1 in the astrocytic compartment. At 48 weeks, the GFAP.HMOX1 mice exhibited increased deposits of glial iron in hippocampus and other subcortical regions without overt changes in iron-regulatory and iron-binding proteins relative to age-matched wild-type animals. Dynamic secondary ion mass spectrometry revealed abundant FeO⁻ signals in the transgenic, but not wild-type, mouse brain that colocalized to degenerate mitochondria and osmiophilic cytoplasmic inclusions (macroautophagy) documented by TEM. Sustained up-regulation of HO-1 in astrocytes promotes pathological brain iron deposition and oxidative mitochondrial damage characteristic of Alzheimer's disease-affected neural tissues. Curtailment of glial HO-1 hyperactivity may limit iron-mediated cytotoxicity in aging and degenerating neural tissues.
Collapse
Affiliation(s)
- Wei Song
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Therapeutic approach to neurodegenerative diseases by medical gases: focusing on redox signaling and related antioxidant enzymes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:324256. [PMID: 22811764 PMCID: PMC3395194 DOI: 10.1155/2012/324256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/25/2012] [Indexed: 12/30/2022]
Abstract
Oxidative stress in the central nervous system is strongly associated with neuronal cell death in the pathogenesis of several neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In order to overcome the oxidative damage, there are some protective signaling pathways related to transcriptional upregulation of antioxidant enzymes, such as heme oxygenase-1 (HO-1) and superoxide dismutase (SOD)-1/-2. Their expression is regulated by several transcription factors and/or cofactors like nuclear factor-erythroid 2 (NF-E2) related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). These antioxidant enzymes are associated with, and in some cases, prevent neuronal death in animal models of neurodegenerative diseases. They are activated by endogenous mediators and phytochemicals, and also by several gases such as carbon monoxide (CO), hydrogen sulphide (H2S), and hydrogen (H2). These might thereby protect the brain from severe oxidative damage and resultant neurodegenerative diseases. In this paper, we discuss how the expression levels of these antioxidant enzymes are regulated. We also introduce recent advances in the therapeutic uses of medical gases against neurodegenerative diseases.
Collapse
|
47
|
Dopamine and paraquat enhance α-synuclein-induced alterations in membrane conductance. Neurotox Res 2011; 20:387-401. [PMID: 21735318 DOI: 10.1007/s12640-011-9255-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 06/03/2011] [Accepted: 06/22/2011] [Indexed: 12/21/2022]
Abstract
We have previously demonstrated that α-synuclein overexpression increases the membrane conductance of dopaminergic-like cells. Although α-synuclein is thought to play a central role in the pathogenesis of several neurodegenerative diseases including Parkinson's disease, multiple system atrophy, and diffuse Lewy body disease, the mechanism of action is not completely understood. In this study, we sought to determine whether multiple factors act together with α-synuclein to engender cell vulnerability through an augmentation of membrane conductance. In this article, we employed a cell model that mimics dopaminergic neurons coupled with α-synuclein overexpression and oxidative stressors. We demonstrate an enhancement of α-synuclein-induced toxicity in the presence of combined treatment with dopamine and paraquat, two molecules known to incite oxidative stress. In addition, we show that combined dopamine and paraquat treatment increases the expression of heme oxygenase-1, an antioxidant response protein. Finally, we demonstrate for the first time that combined treatment of dopaminergic cells with paraquat and dopamine enhances α-synuclein-induced leak channel properties resulting in increased membrane conductance. Importantly, these increases are most robust when both paraquat and dopamine are present suggesting the need for multiple oxidative insults to augment α-synuclein-induced disruption of membrane integrity.
Collapse
|
48
|
Worth CL, Preissner R, Blundell TL. SDM--a server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res 2011; 39:W215-22. [PMID: 21593128 PMCID: PMC3125769 DOI: 10.1093/nar/gkr363] [Citation(s) in RCA: 417] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The sheer volume of non-synonymous single nucleotide polymorphisms that have been generated in recent years from projects such as the Human Genome Project, the HapMap Project and Genome-Wide Association Studies means that it is not possible to characterize all mutations experimentally on the gene products, i.e. elucidate the effects of mutations on protein structure and function. However, automatic methods that can predict the effects of mutations will allow a reduced set of mutations to be studied. Site Directed Mutator (SDM) is a statistical potential energy function that uses environment-specific amino-acid substitution frequencies within homologous protein families to calculate a stability score, which is analogous to the free energy difference between the wild-type and mutant protein. Here, we present a web server for SDM (http://www-cryst.bioc.cam.ac.uk/~sdm/sdm.php), which has obtained more than 10 000 submissions since being online in April 2008. To run SDM, users must upload a wild-type structure and the position and amino acid type of the mutation. The results returned include information about the local structural environment of the wild-type and mutant residues, a stability score prediction and prediction of disease association. Additionally, the wild-type and mutant structures are displayed in a Jmol applet with the relevant residues highlighted.
Collapse
Affiliation(s)
- Catherine L Worth
- Biochemistry Department, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | |
Collapse
|
49
|
Qureshi HY, Paudel HK. Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and alpha-synuclein mutations promote Tau protein phosphorylation at Ser262 and destabilize microtubule cytoskeleton in vitro. J Biol Chem 2010; 286:5055-68. [PMID: 21127069 DOI: 10.1074/jbc.m110.178905] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Parkinson disease (PD) brain, a progressive loss of dopaminergic neurons leads to dopamine depletion in the striatum and reduced motor function. Lewy bodies, the characteristic neuropathological lesions found in the brain of PD patients, are composed mainly of α-synuclein protein. Three point mutations in the α-synuclein gene are associated with familial PD. In addition, genome-wide association studies indicate that α-synuclein and Tau protein synergistically increase disease susceptibility in the human population. To determine the mechanism by which α-synuclein and Tau act together, we have used PD-causing neurotoxin MPTP and pathogenic α-synuclein mutants A30P, E46K, and A53T as models. We found that exposure of human neuroblastoma M17 cells to MPTP enhances the intracellular α-synuclein protein level, stimulates Tau protein phosphorylation at Ser(262), and induces apoptosis. In mouse brain, ablation of α-synuclein function significantly suppresses Tau phosphorylation at Ser(262). In vitro, α-synuclein binds to phosphorylated Ser(214) of Tau and stimulates PKA-catalyzed Tau phosphorylation at Ser(262). PD-associated α-synuclein mutations increase α-synuclein binding to Tau and stimulate Tau phosphorylation at Ser(262). In HEK-293 cells, α-synuclein and its all PD-associated mutants destabilize the microtubule cytoskeleton in a similar extent. In contrast, when co-expressed with Tau, these PD-associated mutants destabilize microtubules with significantly higher potency than WT. Our results demonstrate that α-synuclein is an in vivo regulator of Tau protein phosphorylation at Ser(262) and suggest that PD-associated risk factors such as environmental toxins and α-synuclein mutations promote Tau phosphorylation at Ser(262), causing microtubule instability, which leads to loss of dopaminergic neurons in PD brain.
Collapse
Affiliation(s)
- Hamid Y Qureshi
- Department of Neurology and Neurosurgery, McGill University, Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | |
Collapse
|
50
|
|