1
|
Guo C, Chen L, Wang Y. Substance abuse and neurodegenerative diseases: focus on ferroptosis. Arch Toxicol 2023; 97:1519-1528. [PMID: 37100932 DOI: 10.1007/s00204-023-03505-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Abstract
Psychostimulants and alcohol are widely abused substances with the adverse effects on global public health. Substance abuse seriously harms people's health and causes various diseases, especially neurodegenerative diseases. Neurodegenerative diseases include Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). The pathogenesis of neurodegenerative diseases is complex and diverse, usually involving oxidative stress, mitochondrial dysfunction, metal homeostasis disorder, and neuro-inflammation. The precise molecular mechanisms underlying neurodegeneration remain unclear, which is a major obstacle to therapeutic approaches. Therefore, it is urgent to improve the understanding of the molecular mechanisms of neurodegenerative processes and to identify the therapeutic targets for treatment and prevention. Ferroptosis is a regulatory cell necrosis caused by iron ion catalysis and lipid peroxidation induced by reactive oxygen species (ROS), which is thought to be associated with nervous system diseases, particularly neurodegenerative diseases. This review overviewed the ferroptosis process and explored the relationship of ferroptosis with substance abuse and neurodegenerative diseases, which provides a new way to study the molecular mechanisms of neurodegenerative diseases induced by alcohol, cocaine, and methamphetamine (MA), and also provides the potential therapeutic targets for substance abuse-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng Guo
- School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Lei Chen
- International Education School, China Medical University, Shenyang, Liaoning, China
| | - Yun Wang
- School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
2
|
Sauton P, Jeanblanc J, Benzerouk F, Gierski F, Naassila M. Sex-specific decision-making impairments and striatal dopaminergic changes after binge drinking history in rats. Front Pharmacol 2023; 14:1076465. [PMID: 36726581 PMCID: PMC9885167 DOI: 10.3389/fphar.2023.1076465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Binge drinking (BD) is a harmful behavior for health and is a predictive factor for the development of alcohol addiction. Weak decision-making (DM) capacities could play a role in the vulnerability to BD which in turn would lead to DM impairments, thus perpetuating BD. Longitudinal preclinical studies are however lacking and necessary to understand this complex relationship. Both DM and BD are influenced by sex and involve dopamine release in the core of the nucleus accumbens, a central mechanism regulated by dopamine D2/3 autoreceptors. In this context, we used an operant self-administration procedure of BD in male and female rats, and longitudinally assessed DM capacity, memory and anxiety-like behavior. To better understand the mechanisms potentially involved in the relationship between DM and BD, ex vivo dopamine transmission was assessed short term after the end of the binge exposure in the core of the nucleus accumbens (NAc) using the fast-scan cyclic voltammetry (FSCV) technique and the D2/3 agonist quinpirole. We found important basal sex differences in DM, with female rats showing better performances at baseline. Choice processes were impaired exclusively in males after BD history, associated with a decrease in impulse control in both sexes, while memory and anxiety-like behavior were not affected. Our neurobiological results demonstrate that BD did not affect basal dopamine signaling in the NAc core, regardless of the sex, but reveal changes in the sensitivity to the inhibitory effects of quinpirole in females. DM impairments were neither associated with changes in basal dopamine signaling nor pre-synaptic D2 activity. Overall, our findings show that BD affects both DM processes and dopamine transmission in the core of the NAc in a sex-related manner, further suggesting that these effects may play a role in the vicious cycle leading to BD perpetuation and the early onset of AUD. Our results may inform novel strategies for therapeutic and prevention interventions.
Collapse
Affiliation(s)
- Pierre Sauton
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France
| | - Jerome Jeanblanc
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France
| | - Farid Benzerouk
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France,Université de Reims Champagne-Ardenne, Laboratoire Cognition, Santé, Société (C2S, EA6291), Reims, France
| | - Fabien Gierski
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France,Université de Reims Champagne-Ardenne, Laboratoire Cognition, Santé, Société (C2S, EA6291), Reims, France
| | - Mickael Naassila
- INSERM UMR 1247—Research Group on Alcohol & Pharmacodependences (GRAP), Université de Picardie Jules Verne, Centre Universitaire de Recherche en Santé, Amiens, France,*Correspondence: Mickael Naassila,
| |
Collapse
|
3
|
Obray JD, Jang EY, Klomp AM, Small CA, Richardson AP, LeBaron JJ, Lee JG, Yorgason JT, Yang CH, Steffensen SC. The peripheral dopamine 2 receptor antagonist domperidone attenuates ethanol enhancement of dopamine levels in the nucleus accumbens. Alcohol Clin Exp Res 2022; 46:396-409. [PMID: 35040146 PMCID: PMC8920780 DOI: 10.1111/acer.14775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dopamine neuron firing in the ventral tegmental area (VTA) and dopamine release in the nucleus accumbens have been implicated in reward learning. Ethanol is known to increase both dopamine neuron firing in the VTA and dopamine levels in the nucleus accumbens. Despite this, some discrepancies exist between the dose of ethanol required to enhance firing in vivo and ex vivo. In the present study we investigated the effects of peripheral dopamine 2 subtype receptor antagonism on ethanol's effects on dopamine neurotransmission. METHODS Plasma catecholamine levels were assessed following ethanol administration across four different doses of EtOH. Microdialysis and voltammetry were used to assess the effects of domperidone pretreatment on ethanol-mediated increases in dopamine release in the nucleus accumbens. A place conditioning paradigm was used to assess conditioned preference for ethanol and whether domperidone pretreatment altered this preference. Open-field and loss-of-righting reflex paradigms were used to assess the effects of domperidone on ethanol-induced sedation. A rotarod apparatus was used to assess the effects of domperidone on ethanol-induced motor impairment. RESULTS Domperidone attenuated ethanol's enhancement of mesolimbic dopamine release under non-physiological conditions at intermediate (1.0 and 2.0 g/kg) doses of ethanol. Domperidone also decreased EtOH-induced sedation at 2.0 g/kg. Domperidone did not alter ethanol conditioned place preference nor did it affect ethanol-induced motor impairment. CONCLUSIONS These results show that peripheral dopamine 2 receptors mediate some of the effects of ethanol on nonphysiological dopamine neurotransmission, although these effects are not related to the rewarding properties of ethanol.
Collapse
Affiliation(s)
- James Daniel Obray
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Eun Young Jang
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA,Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Anneke M. Klomp
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Christina A. Small
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Aaron P. Richardson
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Joshua J. LeBaron
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jordan T. Yorgason
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Scott C. Steffensen
- Department of Psychology, Center for Neuroscience, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
4
|
Cahill CM, Aleyadeh R, Gao J, Wang C, Rogers JT. Alpha-Synuclein in Alcohol Use Disorder, Connections with Parkinson's Disease and Potential Therapeutic Role of 5' Untranslated Region-Directed Small Molecules. Biomolecules 2020; 10:E1465. [PMID: 33096655 PMCID: PMC7589448 DOI: 10.3390/biom10101465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022] Open
Abstract
Alpha-synuclein (α-Syn) is a 140-amino acid (aa) protein encoded by the Synuclein alpha SNCA gene. It is the synaptic protein associated with Parkinson's disease (PD) and is the most highly expressed protein in the Lewy bodies associated with PD and other alpha synucleopathies, including Lewy body dementia (LBD) and multiple system atrophy (MSA). Iron deposits are present in the core of Lewy bodies, and there are reports suggesting that divalent metal ions including Cu2+ and Fe2+ enhance the aggregation of α-Syn. Differential expression of α-Syn is associated with alcohol use disorder (AUD), and specific genetic variants contribute to the risk for alcoholism, including alcohol craving. Spliced variants of α-Syn, leading to the expression of several shorter forms which are more prone to aggregation, are associated with both PD and AUD, and common transcript variants may be able to predict at-risk populations for some movement disorders or subtypes of PD, including secondary Parkinsonism. Both PD and AUD are associated with liver and brain iron dyshomeostasis. Research over the past decade has shown that α-Syn has iron import functions with an ability to oxidize the Fe3+ form of iron to Fe2+ to facilitate its entry into cells. Our prior research has identified an iron-responsive element (IRE) in the 5' untranslated region (5'UTR) of α-Syn mRNA, and we have used the α-Syn 5'UTR to screen for small molecules that modulate its expression in the H4 neuronal cell line. These screens have led us to identify several interesting small molecules capable of both decreasing and increasing α-Syn expression and that may have the potential, together with the recently described mesenchymal stem cell therapies, to normalize α-Syn expression in different regions of the alcoholic and PD brain.
Collapse
Affiliation(s)
- Catherine M. Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | | | - Jin Gao
- Department of Clinical Psychology, Qilu Hospital of Shandong University, Qingdao 266011, China;
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA;
| |
Collapse
|
5
|
Peng B, Yang Q, B Joshi R, Liu Y, Akbar M, Song BJ, Zhou S, Wang X. Role of Alcohol Drinking in Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21072316. [PMID: 32230811 PMCID: PMC7177420 DOI: 10.3390/ijms21072316] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), increase as the population ages around the world. Environmental factors also play an important role in most cases. Alcohol consumption exists extensively and it acts as one of the environmental factors that promotes these neurodegenerative diseases. The brain is a major target for the actions of alcohol, and heavy alcohol consumption has long been associated with brain damage. Chronic alcohol intake leads to elevated glutamate-induced excitotoxicity, oxidative stress and permanent neuronal damage associated with malnutrition. The relationship and contributing mechanisms of alcohol with these three diseases are different. Epidemiological studies have reported a reduction in the prevalence of Alzheimer’s disease in individuals who drink low amounts of alcohol; low or moderate concentrations of ethanol protect against β-amyloid (Aβ) toxicity in hippocampal neurons; and excessive amounts of ethanol increase accumulation of Aβ and Tau phosphorylation. Alcohol has been suggested to be either protective of, or not associated with, PD. However, experimental animal studies indicate that chronic heavy alcohol consumption may have dopamine neurotoxic effects through the induction of Cytochrome P450 2E1 (CYP2E1) and an increase in the amount of α-Synuclein (αSYN) relevant to PD. The findings on the association between alcohol consumption and ALS are inconsistent; a recent population-based study suggests that alcohol drinking seems to not influence the risk of developing ALS. Additional research is needed to clarify the potential etiological involvement of alcohol intake in causing or resulting in major neurodegenerative diseases, which will eventually lead to potential therapeutics against these alcoholic neurodegenerative diseases.
Collapse
Affiliation(s)
- Bin Peng
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qiang Yang
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye 435100, China
| | - Rachna B Joshi
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Internal Medicine, Stafford Medical, PA. 1364 NJ-72, Manahawkin, NJ 08050, USA
| | - Yuancai Liu
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Daye 435100, China
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.Z.); (X.W.); Tel.: 1-617-732-5398 (S.Z.); 1-617-732-4186 (X.W.)
| | - Xin Wang
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (S.Z.); (X.W.); Tel.: 1-617-732-5398 (S.Z.); 1-617-732-4186 (X.W.)
| |
Collapse
|
6
|
Faccidomo S, Swaim KS, Saunders BL, Santanam TS, Taylor SM, Kim M, Reid GT, Eastman VR, Hodge CW. Mining the nucleus accumbens proteome for novel targets of alcohol self-administration in male C57BL/6J mice. Psychopharmacology (Berl) 2018; 235:1681-1696. [PMID: 29502276 PMCID: PMC5949261 DOI: 10.1007/s00213-018-4870-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/20/2018] [Indexed: 02/01/2023]
Abstract
RATIONALE There is a clear need for discovery of effective medications to treat behavioral pathologies associated with alcohol addiction, such as chronic drinking. OBJECTIVE The goal of this preclinical study was to assess effects of chronic alcohol drinking on the nucleus accumbens (NAcb) proteome to identify and validate novel targets for medications development. MATERIALS AND METHODS Two-dimensional difference in-gel electrophoresis (2D-DIGE) with matrix-assisted laser desorption ionization tandem time-of-flight (MALDI-TOF/TOF) was used to assess effects of chronic voluntary home-cage (24-h access) alcohol drinking on the NAcb proteome of C57BL/6J mice. To extend these findings to a model of alcohol self-administration and reinforcement, we investigated potential regulation of the positive reinforcing effects of alcohol by the target protein glutathione S-transferase Pi 1 (GSTP1) using a pharmacological inhibition strategy in mice trained to self-administer alcohol or sucrose. RESULTS Expression of 52 unique proteins in the NAcb was changed by chronic alcohol drinking relative to water control (23 upregulated, 29 downregulated). Ingenuity Pathway Analysis showed that alcohol drinking altered an array of protein networks associated with neurological and psychological disorders, molecular and cellular functions, and physiological systems and development. DAVID functional annotation analysis identified 9 proteins (SNCA, GSTP1, PRDX3, PPP3R1, EIF5A, PHB, PEBP1/RKIP, GAPDH, AND SOD1) that were significantly overrepresented in a functional cluster that included the Gene Ontology categories "response to alcohol" and "aging." Immunoblots confirmed changes in Pebp1 (RKIP) and GSTP1 in NAcb with no change in amygdala or frontal cortex, suggesting anatomical specificity. Systemic inhibition of GSTP1 with Ezatiostat (0-30 mg/kg, i.p.) dose-dependently reduced the reinforcing effects of alcohol as measured by operant self-administration, in the absence of motor effects. Sucrose self-administration was also reduced but in a manner associated with nonspecific motor inhibition. CONCLUSIONS Protein expression profiling identified an array of proteins and networks in the NAcb, including GSTP1, that are novel molecular targets of chronic alcohol drinking. Pharmacological inhibition of GSTP1 significantly reduced the positive reinforcing effects of alcohol, which regulate repetitive use and abuse liability. The observation that this protein was both upregulated after chronic drinking and that its inhibition could modulate the reinforcing properties of alcohol suggests that it is a key target for alcohol-related pathologies. Proteomic strategies combined with specific preclinical models has potential to identify and validate novel targets of alcohol that may be useful in the medical management of alcohol addiction.
Collapse
Affiliation(s)
- Sara Faccidomo
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Katarina S Swaim
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Briana L Saunders
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Taruni S Santanam
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Seth M. Taylor
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Michelle Kim
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Grant T Reid
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Vallari R Eastman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Clyde W Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, CB #7178, Thurston Bowles Building, Chapel Hill, NC, 27599, USA. .,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
An α-synuclein gene (SNCA) polymorphism moderates the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures. J Anxiety Disord 2015; 30:41-7. [PMID: 25594371 PMCID: PMC4355301 DOI: 10.1016/j.janxdis.2014.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/30/2014] [Accepted: 12/15/2014] [Indexed: 01/25/2023]
Abstract
Posttraumatic stress disorder (PTSD) often precedes comorbid substance use disorder and has been associated with aggression. Prior research has evidenced that alcohol use and other externalizing behaviors share genetic factors with PTSD; however, few studies have examined if specific genes are associated with externalizing behaviors in PTSD. The purpose of the current study was to investigate whether an α-synuclein gene polymorphism (SNCA rs356195) moderates the association of PTSD symptomatology with externalizing behaviors. We examined the separate and combined effects of PTSD symptomatology and SNCA rs356195 on alcohol- and aggression-related measures in nonclinical participants (N=138 European Americans; 15 diagnosed with probable PTSD). Probable PTSD status and SNCA were both associated with externalizing measures. SNCA also moderated the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures. Current findings suggest that variations in SNCA may increase the likelihood that PTSD symptomatology results in excessive alcohol use.
Collapse
|
8
|
Yorgason JT, Rose JH, McIntosh JM, Ferris MJ, Jones SR. Greater ethanol inhibition of presynaptic dopamine release in C57BL/6J than DBA/2J mice: Role of nicotinic acetylcholine receptors. Neuroscience 2015; 284:854-864. [PMID: 25451295 PMCID: PMC4274184 DOI: 10.1016/j.neuroscience.2014.10.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/11/2014] [Accepted: 10/17/2014] [Indexed: 02/06/2023]
Abstract
The mesolimbic dopamine system, originating in the ventral tegmental area (VTA) and projecting to the nucleus accumbens (NAc), has been heavily implicated in the reinforcing effects of ethanol. Recent slice voltammetry studies have shown that ethanol inhibits dopamine release selectively during high-frequency activity that elicits phasic dopamine release shown to be important for learning and reinforcement. Presently, we examined ethanol inhibition of electrically evoked NAc dopamine in two mouse strains with divergent dopamine responses to ethanol, C57BL/6 (C57) and DBA/2J (DBA) mice. Previous electrophysiology and microdialysis studies have demonstrated greater ethanol-induced VTA dopaminergic firing and NAc dopamine elevations in DBA compared to C57 mice. Additionally, DBA mice have greater ethanol responses in dopamine-related behaviors, including hyperlocomotion and conditioned place preference. Currently, we demonstrate greater sensitivity of ethanol inhibition of NAc dopamine signaling in C57 compared to DBA mice. The reduced sensitivity to ethanol inhibition in DBA mice may contribute to the overall greater ethanol-induced dopamine signaling and related behaviors observed in this strain. NAc cholinergic activity is known to potently modulate terminal dopamine release. Additionally, ethanol is known to interact with multiple aspects of nicotinic acetylcholine receptor activity. Therefore, we examined ethanol-mediated inhibition of dopamine release at two ethanol concentrations (80 and 160 mM) during bath application of the non-selective nicotinic receptor antagonist mecamylamine, as well as compounds selective for the β2-(dihydro-β-erythroidine hydrobromide; DhβE) and α6-(α-conotoxin MII [H9A; L15A]) subunit-containing receptors. Mecamylamine and DhβE decreased dopamine release and reduced ethanol's inhibitory effects on dopamine in both DBA and C57 mice. Further, α-conotoxin also reduced the dopamine release and the dopamine-inhibiting effects of ethanol at the 80 mM, but not 160 mM, concentration. These data suggest that ethanol is acting in part through nicotinic acetylcholine receptors, or downstream effectors, to reduce dopamine release during high-frequency activity.
Collapse
Affiliation(s)
- J T Yorgason
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, United States
| | - J H Rose
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, United States
| | - J M McIntosh
- George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT 84108, United States
| | - M J Ferris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, United States
| | - S R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, United States.
| |
Collapse
|
9
|
Yorgason JT, Ferris MJ, Steffensen SC, Jones SR. Frequency-dependent effects of ethanol on dopamine release in the nucleus accumbens. Alcohol Clin Exp Res 2013; 38:438-47. [PMID: 24117706 DOI: 10.1111/acer.12287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ethanol (EtOH) is known to have excitatory effects on dopamine (DA) release, with moderate-to-high doses (0.5 to 2.5 g/kg) of acute EtOH enhancing DA neuron firing rates in the ventral tegmental area (VTA) and DA levels in the nucleus accumbens (NAc). EtOH has also been shown to reduce DA activity, with moderate doses (1 to 2 g/kg) attenuating electrically evoked release, and higher doses (5 g/kg) decreasing NAc DA levels, demonstrating a biphasic effect of EtOH on DA release. The purpose of the current study was to evaluate EtOH's inhibitory effects on NAc DA terminal release under low- and high-frequency stimulation conditions. METHODS Using fast-scan cyclic voltammetry in NAc slices from C57BL/6J mice, we examined EtOH's (40 to 160 mM) effects on DA release under several different stimulation parameters, varying frequency (5 to 125 Hz), number of pulses (1 to 10), and stimulation intensity (50 to 350 μA). Additionally, calcium concentrations were manipulated under high-frequency stimulation conditions (20 Hz, 10 pulses, 350 μA) to determine whether EtOH's effects were dependent upon calcium concentration, and by extension, the amount of DA release. RESULTS Acute EtOH (40 to 160 mM) inhibited DA release to a greater extent under high-frequency, multiple-pulse stimulation conditions, with increased sensitivity at 5 and 10 pulses and frequencies of 20 Hz or higher. High-frequency, multiple-pulse stimulations also resulted in greater DA release compared with single-pulse release, which was controlled by reducing stimulation intensity. Under reduced DA conditions, high-frequency stimulations still showed increased EtOH sensitivity. Reducing calcium levels also decreased DA release at high-frequency stimulations, but did not affect EtOH sensitivity. CONCLUSIONS EtOH appears to inhibit DA release at NAc terminals under high-frequency stimulation conditions that are similar to release events observed during phasic burst firing in DAergic neurons, suggesting that EtOH may provide inhibition of DA terminals selectively during phasic signaling, while leaving tonic DA terminal activity unaffected.
Collapse
Affiliation(s)
- Jordan T Yorgason
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | |
Collapse
|